JPH1129848A - Chromium nitride coating film and its forming method - Google Patents

Chromium nitride coating film and its forming method

Info

Publication number
JPH1129848A
JPH1129848A JP18257097A JP18257097A JPH1129848A JP H1129848 A JPH1129848 A JP H1129848A JP 18257097 A JP18257097 A JP 18257097A JP 18257097 A JP18257097 A JP 18257097A JP H1129848 A JPH1129848 A JP H1129848A
Authority
JP
Japan
Prior art keywords
plating
gas
crn
coating film
halogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18257097A
Other languages
Japanese (ja)
Inventor
Masayuki Kiuchi
正進 木内
Mutsumi Funai
睦 船井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP18257097A priority Critical patent/JPH1129848A/en
Priority to US09/104,352 priority patent/US6090223A/en
Publication of JPH1129848A publication Critical patent/JPH1129848A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a CrN coating film at a low cost which has excellent adhesion property with a metal base and prevents peeling by thermal hysteresis without any limitation of the shape or dimension of a body to be treated, by plating the surface of a metallic material with Cr and nitriding the plating layer. SOLUTION: The CrN coating film is formed in the following processes. After a Cr-plated material to be treated is degreased and cleaned, the material is put in a heating furnace. The inside of the furnace is replaced by inert gas, and if necessary, heated to 400 deg.C. A reaction gas containing halogen compd. or halogen such as a mixture gas of Cl2 and N2 or a mixture gas of CIF2 and N2 is introduced into the furnace. Thereby, contamination remaining on the surface is removed and the gas is allowed to rapidly react with the oxide film or adsorbed oxygen on the plating surface to activate the surface. Then the halogen compd. or reactive gas remaining is replaced by an inert gas to form a CrN coating film. The coating film is formed preferably by heating and maintaining at 400 to 500 deg.C and introducing a nitriding atmosphere gas containing NH3 such as a mixture gas of NH2 and N2 .

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、金属材料表面にC
rN被膜を形成して、表面硬度、耐摩耗性、耐食性等を
向上させるCrN被膜形成方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to a method for producing C
The present invention relates to a method for forming a CrN film for improving surface hardness, wear resistance, corrosion resistance and the like by forming an rN film.

【0002】[0002]

【従来の技術】金属材料の表面硬度、耐摩耗性、耐食
性、疲労強度等の化学的・機械的性質を向上させる目的
で、従来からCrメッキ、窒化処理等が一般的に実施さ
れているが、いずれの方法においても表面硬度は800
〜1000Hv程度にしか向上しない。しかしながら、
最近では金属材料へのさらなる高硬度、高耐摩耗性への
要求は強く、硬度として1500〜2400Hvを有す
るクロム窒化物(CrNおよびCr2 N)が注目されて
いる。そこで、表面硬度、耐摩耗性等を向上させる目的
のCrN被膜の形成方法としては、次のような方法が提
案されている。 イオンプレーティング法 スパッタリング法 イオン照射法
2. Description of the Related Art For the purpose of improving chemical and mechanical properties such as surface hardness, wear resistance, corrosion resistance, and fatigue strength of metal materials, Cr plating, nitriding, and the like have been generally performed. In any method, the surface hardness is 800
It only improves to about 1000 Hv. However,
A further high hardness recently to the metal material, the demand for high wear resistance strong, chromium nitride (CrN and Cr 2 N) is noted with 1500~2400Hv as hardness. Therefore, the following method has been proposed as a method for forming a CrN coating for the purpose of improving surface hardness, wear resistance, and the like. Ion plating method Sputtering method Ion irradiation method

【0003】イオンプレーティング法は、真空チャンバ
ー内で真空アーク放電を利用して、金属クロムターゲッ
トを蒸気化・イオン化して被処理物に照射し、被処理物
には負のバイアス電圧を印加してイオン化したCrイオ
ンを引きつけるとともに、真空チャンバー内に窒素ガス
を導入してクロム窒化物を形成する方法である。スパッ
タリング法は真空チャンバー内にコーティング物である
ターゲットと基板との間に高電圧を印加してグロー放電
を発生させ、放電によりプラズマ化したArイオンをタ
ーゲット表面に衝突させ、クロム原子をたたき出して基
板に堆積させる方法である。この時にチャンバー内に窒
素を導入することで窒素を過飽和に固溶したクロム膜お
よびクロム窒化物被膜を形成することができる。また、
イオン照射法は真空蒸着またはスパッタリングと窒素イ
オン照射を組み合わせる方法(特開平5−31139
6)で、低温でCrN被膜を形成することができる。
The ion plating method utilizes a vacuum arc discharge in a vacuum chamber to vaporize and ionize a metal chromium target and irradiates the target with a negative bias voltage. In this method, chromium nitride is formed by attracting ionized Cr ions and introducing nitrogen gas into a vacuum chamber. In the sputtering method, a glow discharge is generated by applying a high voltage between a target, which is a coating material, and a substrate in a vacuum chamber, and Ar ions generated by the discharge collide with the target surface to strike chromium atoms and strike the substrate. It is a method of depositing on the At this time, by introducing nitrogen into the chamber, a chromium film and a chromium nitride film in which nitrogen is dissolved in a supersaturated manner can be formed. Also,
The ion irradiation method combines vacuum deposition or sputtering with nitrogen ion irradiation (Japanese Patent Application Laid-Open No. 5-31139).
In 6), a CrN film can be formed at a low temperature.

【0004】しかし、イオンプレーティング、スパッタ
リング、イオン照射法等の気相コーティングは、高真空
雰囲気が必須要件となるため、従来処理法に比べ処理コ
ストが高く処理物の形状寸法に制約が生じるという問題
点があり、工業的により広く用いられていくためには、
プロセス機器の低コスト化、ハンドリングシステムの簡
略化が必要となる。
However, gas-phase coating such as ion plating, sputtering, and ion irradiation requires a high vacuum atmosphere, so that the processing cost is higher than that of the conventional processing method, and the shape and size of the processed material are restricted. There are problems and to be more widely used industrially,
It is necessary to reduce the cost of process equipment and simplify the handling system.

【0005】また、一般にCrN被膜の欠点として、C
rNの熱膨張率がFeに比べると1/6と小さいため、
熱応力がかかりやすく熱履歴剥離の問題が生じやすいこ
とや、低温処理の場合素地との密着性が悪いことなどが
あげられる。そこで、CrN被膜の素地への密着性を向
上する目的で真空蒸着でCr層を形成した後に窒素イオ
ンを照射し、窒化クロム膜にCr原子と窒素原子との組
成比を段階的または傾斜的に変化させる方法が提案され
ている(特開平7−109561)が、膜厚が薄く熱膨
張率の違いによる熱履歴剥離の防止にはほとんど効果が
ない。
[0005] In general, a disadvantage of CrN coating is that CN
Since the thermal expansion coefficient of rN is 1/6 smaller than that of Fe,
The problem is that thermal stress is easily applied, and the problem of thermal history peeling is likely to occur. In the case of low-temperature treatment, adhesion to a substrate is poor. Therefore, in order to improve the adhesion of the CrN film to the substrate, a Cr layer is formed by vacuum evaporation and then irradiated with nitrogen ions, and the composition ratio of Cr atoms and nitrogen atoms is gradually or gradiently applied to the chromium nitride film. Although a method of changing the thickness has been proposed (Japanese Patent Application Laid-Open No. Hei 7-109561), it has little effect on preventing thermal history peeling due to a difference in thermal expansion coefficient due to a small film thickness.

【0006】[0006]

【発明が解決しようとする課題】本発明は上記事情に鑑
み、金属材料表面にCrN被膜を形成させる方法におい
て、処理コストが安価で経済的でありかつ処理物の形状
寸法に制約を受けず、金属材料素地との密着性に優れか
つ熱履歴剥離を防止したCrN被膜およびその形成方法
の提供にある。
SUMMARY OF THE INVENTION In view of the above circumstances, the present invention provides a method for forming a CrN film on a surface of a metal material, which is inexpensive and economical in processing cost and is not restricted by the shape and size of the processed material. An object of the present invention is to provide a CrN coating film having excellent adhesion to a metal material base and preventing thermal history peeling, and a method for forming the same.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に、本発明のCrN被膜およびその形成方法は、金属材
料素地とCrN被膜の間に1〜50μmのCrメッキ層
を有する積層構造であり、金属材料の表面にCrメッキ
を施した後に窒素を反応させて硬質のCrN被膜を形成
する方法である。
In order to solve the above-mentioned problems, a CrN film and a method for forming the same according to the present invention have a laminated structure having a Cr plating layer of 1 to 50 μm between a metal material base and a CrN film. A method of forming a hard CrN film by reacting nitrogen after applying Cr plating on the surface of a metal material.

【0008】[0008]

【発明の実施の形態】すなわち、本発明者らは、金属材
料表面に迅速かつ均一で強固なCrN被膜を形成するこ
とができる方法として、経済性に優れ、汎用性が高い方
法の開発および金属材料素地との密着性に優れかつ熱履
歴剥離の少ないCrN被膜を目的に鋭意研究を重ねた。
その結果、被処理物表面にCrメッキを施した後に、窒
化雰囲気中で加熱保持してCrN被膜を形成する方法が
有効であり、この方法により金属材料素地とCrN被膜
の間に1〜50μmのCrメッキ層を設けることによ
り、金属材料素地との密着性に優れ、かつ熱履歴剥離の
少ないCrN被膜を得ることを見いだし本発明を完成さ
せた。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present inventors have developed a highly economical and versatile method for forming a rapid, uniform and strong CrN coating on a metal material surface. Intensive research has been conducted with the aim of providing a CrN coating film having excellent adhesion to a material substrate and little thermal history peeling.
As a result, it is effective to form a CrN coating by heating and holding in a nitriding atmosphere after applying Cr plating to the surface of the object to be treated, and by this method, a 1 to 50 μm gap between the metal material substrate and the CrN coating is obtained. By providing a Cr plating layer, it has been found that a CrN film excellent in adhesion to a metal material base and having little thermal history peeling can be obtained, and the present invention has been completed.

【0009】本発明のCrN形成方法は、従来技術と比
較すると高真空系を必要としないので経済性に優れ、汎
用性が高い方法である。また、熱履歴剥離の一つの原因
としては熱膨張率の違いによる熱応力が考えられる。例
えばFeの熱膨張率は13.8×10-6(/deg)あ
り、Cr以外のその他の非鉄金属も同等かそれ以上の大
きな値を示す。ところがCrNの熱膨張率は2.3×1
-6(/deg)と小さいため熱応力の発生しやすい状
況となる。しかし、Crの熱膨張率は8.4×10
-6(/deg)であり、金属材料とCrNの中間の値を
示す。金属材料素地とCrN被膜の中間にCrメッキの
層を形成することにより熱応力を分散抑制することが可
能となるものと考えられる。
The method of forming CrN of the present invention does not require a high vacuum system as compared with the prior art, so it is excellent in economy and has high versatility. Further, as one cause of the thermal history peeling, a thermal stress due to a difference in thermal expansion coefficient can be considered. For example, the coefficient of thermal expansion of Fe is 13.8 × 10 −6 (/ deg), and other non-ferrous metals other than Cr also show a large value that is equal to or greater than that. However, the thermal expansion coefficient of CrN is 2.3 × 1.
Since it is as small as 0 -6 (/ deg), a situation is liable to occur in thermal stress. However, the thermal expansion coefficient of Cr is 8.4 × 10
−6 (/ deg), which is an intermediate value between the metal material and CrN. It is considered that thermal stress can be suppressed and dispersed by forming a Cr plating layer between the metal material base and the CrN coating.

【0010】さらに、本発明ではCrN被膜形成前にハ
ロゲン化合物もしくはハロゲンを含む反応ガスで前処理
することも可能である。これは、CrN被膜形成前の被
処理物を、ハロゲン化合物もしくはハロゲンを含む反応
ガス雰囲気中に加熱保持する。この前処理によりCrメ
ッキ表面層に付着していた無機・有機の汚染物が破壊除
去されて表面が浄化され、更に、Crメッキ表面層に存
在している酸化被膜及びO2 吸着被膜を除去し、Crメ
ッキ表面は活性化された状態となる。CrN被膜形成に
おいて、この活性化されたCrメッキ表面は、未処理の
Crメッキ表面に比べ窒素原子が吸着・浸透・拡散しや
すく、より低温でも迅速かつ均一なCrN被膜が形成さ
れる。この低温でも迅速にCrN被膜が形成されること
は、被処理物がゆがみ・ひずみのないものが望ましい場
合に特に有効である。
Further, in the present invention, it is possible to carry out a pretreatment with a halogen compound or a reactive gas containing halogen before forming the CrN film. In this method, the object to be processed before the formation of the CrN film is heated and held in a halogen compound or a reaction gas atmosphere containing halogen. By this pretreatment, inorganic and organic contaminants adhering to the Cr plating surface layer are destroyed and removed to purify the surface, and furthermore, the oxide film and the O 2 adsorption film present on the Cr plating surface layer are removed. , Cr plating surface is in an activated state. In forming the CrN film, the activated Cr-plated surface is easier to adsorb, permeate and diffuse nitrogen atoms than the untreated Cr-plated surface, and a quick and uniform CrN film is formed even at a lower temperature. The rapid formation of the CrN coating even at this low temperature is particularly effective when the object to be processed is desirably free from distortion and distortion.

【0011】次に、本発明を詳しく説明する。本発明で
用いられる金属材料は、Crメッキが施せる材料であれ
ば特に限定されるものではなく、例えば鉄、鋼、非鉄金
属が利用可能である。また、他のメッキ処理との組み合
わせも可能である。本発明で用いられるCrメッキとし
ては、通常の工業用Crメッキおよび割れ目なしの高耐
食性Crメッキ、マイクロポーラスCrメッキ、2〜4
%炭素を含有したアモルファスCrメッキ等の特殊Cr
メッキが利用可能である。Crメッキ厚みは特に限定さ
れないが2〜50μmが好適に利用される。被処理物の
形状・寸法等は特に限定されないが、工業的には、半導
体封止材用金型、ゴム成形用金型、射出成形部品、シリ
ンダーおよびライナー、ピストンおよびピストンロッ
ド、ピストンリング、工具、シャフト及びジャーナル、
ロール、機械部品等に利用可能である。
Next, the present invention will be described in detail. The metal material used in the present invention is not particularly limited as long as it can be subjected to Cr plating, and for example, iron, steel, and non-ferrous metals can be used. Further, a combination with another plating process is also possible. Examples of the Cr plating used in the present invention include ordinary industrial Cr plating, high corrosion-resistant Cr plating without cracks, microporous Cr plating, and 2-4.
Special Cr such as amorphous Cr plating containing% carbon
Plating is available. Although the thickness of the Cr plating is not particularly limited, a thickness of 2 to 50 μm is preferably used. The shape and dimensions of the object to be treated are not particularly limited, but industrially, a mold for semiconductor sealing material, a mold for rubber molding, an injection molded part, a cylinder and a liner, a piston and a piston rod, a piston ring, a tool , Shafts and journals,
It can be used for rolls, mechanical parts, etc.

【0012】本発明で使用されるハロゲン化合物もしく
はハロゲンを含む反応ガスとしては、例えばNaCl、
KCl、CaCl2 、CaF2 、KF、NaF等の塩浴
や、Cl2 、HCl、CH3 Cl等の塩素系ガスを含む
もの、F2 、HF、ClF3、NF3 、BF3 、CF
4 、SF6 等のフッ素系ガスを含むものが利用できる。
特にハロゲンガスはN2 、アルゴン等の不活性ガスで希
釈されたものでもよく、ハロゲン濃度は0.1〜100
%の範囲で利用でき、処理温度は20〜400℃、処理
時間は10〜480分が一般的に使われる。さらに詳し
く言えば、上記のハロゲン化合物の中でも低温でも反応
性が高く、より低濃度での処理が可能であることからC
lF3 が好適に用いられる。
Examples of the halogen compound or the halogen-containing reaction gas used in the present invention include NaCl,
Salt baths such as KCl, CaCl 2 , CaF 2 , KF, and NaF, and those containing chlorine-based gases such as Cl 2 , HCl, and CH 3 Cl, F 2 , HF, ClF 3 , NF 3 , BF 3 , and CF
4, those containing a fluorine-based gas such as SF 6 can be used.
In particular, the halogen gas may be diluted with an inert gas such as N 2 or argon, and the halogen concentration is 0.1 to 100.
%, A processing temperature of 20 to 400 ° C. and a processing time of 10 to 480 minutes are generally used. More specifically, among the above halogen compounds, the reactivity is high even at a low temperature, and the treatment at a lower concentration is possible.
lF 3 is preferably used.

【0013】本発明の方法を具体的に説明すると、Cr
メッキを施した被処理物を脱脂洗浄した後に、加熱炉に
挿入する。Crメッキを施した被処理物は、メッキ後連
続に脱脂洗浄した後に、加熱炉に挿入することが望まし
いが、時間が経過した保存品を使用しても本発明の方法
では差し支えない。次に加熱炉をN2 、アルゴン等の不
活性ガスで置換する。更に、必要ならば、400℃以下
まで昇温する。この場合は、不活性ガスの流通を継続し
てもよく、不活性ガスの流通を止めて真空ポンプにより
加熱炉を真空状態にすることも可能である。この操作は
その後のハロゲン前処理、CrN被膜形成処理に妨害を
およぼす水分および酸素を十分に除去・脱離させること
を目的とするものである。その後、必要に応じて、加熱
炉を前処理温度(20〜400℃)に調整した後にハロ
ゲン化合物もしくはハロゲンを含む反応ガス、例えばC
2 とN2 の混合ガスあるいはClF3 とN2 の混合ガ
ス等を導入する。Cl2 またはClF3 は活性基のC
l、Fを発生し、表面に残存する汚れを除去するととも
に、Crメッキ表面に存在する酸化被膜や吸着O2 と迅
速に反応し、活性化された表面となる。このようにし
て、前処理した被処理物は、残存のハロゲン化合物およ
びハロゲンを含む反応ガスをN2 、Ar等の不活性ガス
雰囲気の非酸化性雰囲気で置換した後にCrN被膜形成
処理を実施する。
[0013] The method of the present invention will be described specifically.
After the object to be plated is degreased and cleaned, it is inserted into a heating furnace. The Cr-plated workpiece is desirably degreased and washed continuously after plating, and then inserted into a heating furnace. However, the method of the present invention does not interfere with the use of a stored product after a lapse of time. Next, the heating furnace is replaced with an inert gas such as N 2 or argon. Further, if necessary, the temperature is raised to 400 ° C. or lower. In this case, the flow of the inert gas may be continued, or the flow of the inert gas may be stopped, and the heating furnace may be evacuated by a vacuum pump. This operation is intended to sufficiently remove and desorb moisture and oxygen which interfere with the subsequent halogen pretreatment and CrN film formation treatment. Thereafter, if necessary, the heating furnace is adjusted to a pretreatment temperature (20 to 400 ° C.), and then a halogen compound or a reaction gas containing halogen, for example, C 2
A mixed gas of l 2 and N 2 or a mixed gas of ClF 3 and N 2 is introduced. Cl 2 or ClF 3 is the active group C
Generates 1 and F, removes dirt remaining on the surface, and quickly reacts with an oxide film or adsorbed O 2 existing on the Cr plating surface to form an activated surface. The pre-processed object is subjected to a CrN film forming process after replacing the remaining halogen compound and the reaction gas containing halogen with a non-oxidizing atmosphere of an inert gas atmosphere such as N 2 or Ar. .

【0014】CrN被膜形成処理は、350〜700
℃、好ましくは400〜500℃の処理温度に加熱保持
し、NH3 を含む窒化雰囲気ガス、例えばNH3 とN2
の混合ガスを導入することで行う。この場合に、効率よ
く活性なCr層を形成させるためにCrN形成処理に先
がけてH2 を含む還元雰囲気ガスで処理することも可能
である。これにより活性なCr層が形成されているた
め、NH3 が分解して発生する活性期の窒素(N)が吸
着され、金属内に侵入・拡散しやすく、以下の反応式に
従って被処理物表面にCrN、Cr2 N等の窒化クロム
層が形成される。 2Cr+N→Cr2 N (1) Cr+N →CrN (2)
The CrN film forming process is performed at 350 to 700
° C., preferably heated to keep the treatment temperature of 400 to 500 ° C., nitriding atmosphere gas containing NH 3, and for example, NH 3 and N 2
Is carried out by introducing a mixed gas of In this case, it is also possible prior to CrN formation processing to form an efficient active Cr layer is treated with a reducing atmosphere gas containing H 2. Due to this, an active Cr layer is formed, so that nitrogen (N) in an active period generated by decomposition of NH 3 is adsorbed and easily penetrates and diffuses into the metal. Then, a chromium nitride layer such as CrN, Cr 2 N is formed. 2Cr + N → Cr 2 N (1) Cr + N → CrN (2)

【0015】Crメッキ処理後ハロゲン化処理なしで直
接CrN被膜形成処理を実施すると、Crメッキ表面上
に存在する酸化膜や吸着汚染物によりCrメッキ表面の
活性度が低下するために、処理時間が延びるという問題
点は生じるが本発明のCrN被膜は形成可能である。C
rN被膜形成の過程は、最初にCr2 Nが形成されてさ
らにNが吸着・拡散されCrNが形成される。従って最
深部はCr2 Nの比率が高く、被処理物の表層部はCr
Nの比率が高い。本発明のCrN被膜はCrNのみに限
定されるものではなくCrNおよびCr2 Nの濃度勾配
を持った被膜となる。CrNおよびCr2 N被膜厚みは
特に限定されるものではないが通常1〜20μmが好適
に用いられる。
If the CrN film forming process is directly performed without the halogenation process after the Cr plating process, the activity of the Cr plating surface decreases due to the oxide film and the adsorbed contaminants existing on the Cr plating surface. Although the problem of elongation occurs, the CrN coating of the present invention can be formed. C
In the process of forming the rN film, Cr 2 N is first formed, and N is further adsorbed and diffused to form CrN. Therefore, the ratio of Cr 2 N is high in the deepest part, and the surface layer
The ratio of N is high. The CrN coating of the present invention is not limited to only CrN, but is a coating having a concentration gradient of CrN and Cr 2 N. The thickness of the CrN and Cr 2 N coatings is not particularly limited, but usually 1 to 20 μm is preferably used.

【0016】このようにして、得られた本発明のCrN
被膜は、金属材料素地とCrN被膜の間に1〜50μm
のCrメッキ層を有する積層構造をとる。この構造は、
金属材料の熱膨張率とCrNの熱膨張率の大きな差によ
り発生する熱応力を分散抑制する効果がある。ただし、
Crメッキ層が1μm以下の薄膜ではその効果はほとん
どみられない、また50μm以上の膜厚はかえって脆く
なるので実際上効果がない。また、このCrN被膜の積
層構造は、表面硬度、耐摩耗性の向上だけでなく、Cr
メッキの耐食性を向上させることも可能である。
The thus obtained CrN of the present invention
The coating is between 1 and 50 μm between the metal material substrate and the CrN coating.
To have a laminated structure having a Cr plating layer. This structure
This has an effect of suppressing dispersion of thermal stress generated by a large difference between the coefficient of thermal expansion of the metal material and the coefficient of thermal expansion of CrN. However,
The effect is hardly seen in the case of a thin film having a Cr plating layer of 1 μm or less, and a film thickness of 50 μm or more is rather brittle, so that there is practically no effect. In addition, the laminated structure of this CrN coating not only improves the surface hardness and wear resistance, but also
It is also possible to improve the corrosion resistance of the plating.

【0017】[0017]

【実施例】【Example】

(実施例1)SKD61のテストピース(15×30×
2mm)に10μmの工業用クロムめっきを施したサン
プルを、アセトン中で超音波処理60秒かけて脱脂を行
った。脱脂したサンプルを、反応炉(30mmφ×40
0mm)に挿入し、N2 ガスで2回置換した後、50℃
に昇温した。その後、N2 で希釈された1%ClF3
導入し、1時間保持した。次に、残存のClF3 含有ガ
スをN2 を流通することで置換した後に、N2 で希釈さ
れた40%NH3 ガスを導入し、500℃まで昇温し、
500℃で24時間CrN被膜形成処理を行った。この
際に、反応炉でのNH3 ガスの分解率を50%になるよ
うに、NH3 分解触媒を使用してNH3 ガスを流通させ
た。
(Example 1) Test piece of SKD61 (15 × 30 ×
2 mm) was subjected to 10 μm industrial chromium plating and degreased in acetone for 60 seconds by ultrasonic treatment. The degreased sample is placed in a reaction furnace (30 mmφ × 40
0 mm) and replaced with N 2 gas twice, then at 50 ° C.
The temperature rose. Thereafter, 1% ClF 3 diluted with N 2 was introduced and kept for 1 hour. Next, the ClF 3 gas containing remaining after replacing by flowing N 2, to introduce 40% NH 3 gas diluted with N 2, the temperature was raised to 500 ° C.,
A CrN film formation treatment was performed at 500 ° C. for 24 hours. At this time, the NH 3 gas was circulated using an NH 3 decomposition catalyst so that the decomposition rate of the NH 3 gas in the reaction furnace became 50%.

【0018】処理終了後、空冷してサンプルを取り出し
た。得られたサンプルのCrNおよびCr2 N被膜は均
一で2μmであり、SKD61素地とCrN被膜の間に
8μmのCrメッキ層が構成された。硬度は、母材SK
D61が500〜600Hv、Crめっき処理が900
〜1000Hvであるのに対して1800〜2000H
vであった。往復運動摩耗試験の結果は、Crメッキ処
理が360ds/μmに対して820ds/μmであっ
た。液槽冷熱衝撃試験(100サイクル)の結果外観等
特に異常は見られなかった。
After the treatment, the sample was taken out by air cooling. The CrN and Cr 2 N coatings of the obtained samples were uniform and 2 μm, and an 8 μm Cr plating layer was formed between the SKD61 substrate and the CrN coating. Hardness is base material SK
D61 is 500-600Hv, Cr plating is 900
1800 to 2000H
v. As a result of the reciprocating motion wear test, the Cr plating treatment was 820 ds / μm compared to 360 ds / μm. As a result of the liquid tank thermal shock test (100 cycles), no particular abnormality such as appearance was observed.

【0019】(実施例2)実施例1と同様にSKD61
のテストピース(15×30×2mm)に10μmの工
業用クロムめっきを施したサンプルを、アセトン中で超
音波処理60秒かけて脱脂を行った。脱脂したサンプル
を、反応炉(30mmφ×400mm)に挿入し、N2
ガスで2回置換した後、50℃に昇温した。その後、N
2 で希釈された10%Cl2を導入し、1時間保持し
た。次に、残存のCl2 含有ガスをN2 を流通すること
で置換した後に、N2 で希釈された40%NH3 ガスを
導入し、500℃まで昇温し、500℃で24時間Cr
N被膜形成処理を行った。この際に、反応炉でのNH3
ガスの分解率を50%になるように、NH3 分解触媒を
使用してNH3 ガスを流通させた。
(Embodiment 2) As in Embodiment 1, SKD61
A sample obtained by subjecting a test piece (15 × 30 × 2 mm) to an industrial chrome plating of 10 μm was degreased in acetone by ultrasonic treatment for 60 seconds. The degreased sample is inserted into a reaction furnace (30 mmφ × 400 mm), and N 2
After the gas was replaced twice, the temperature was raised to 50 ° C. Then N
Introducing 10% Cl 2, diluted with 2, and held for one hour. Then, the Cl 2 containing gas remaining after replacing by flowing N 2, to introduce 40% NH 3 gas diluted with N 2, the temperature was raised to 500 ° C., 24 h Cr at 500 ° C.
An N film forming process was performed. At this time, NH 3 in the reactor was
An NH 3 gas was circulated using an NH 3 decomposition catalyst so that the gas decomposition rate became 50%.

【0020】処理終了後、空冷してサンプルを取り出し
た。得られたサンプルのCrNおよびCr2 N被膜は均
一で1.8μmであり、SKD61素地とCrN被膜の
間に8.2μmのCrメッキ層が構成された。硬度は、
母材SKD61が500〜600Hv、Crめっき処理
が900〜1000Hvであるのに対して1700〜1
900Hvであった。往復運動摩耗試験の結果は、Cr
メッキ処理が360ds/μmに対して800ds/μ
mであった。液槽冷熱衝撃試験(100サイクル)の結
果外観等特に異常は見られなかった。
After the treatment, the sample was taken out by air cooling. The CrN and Cr 2 N coatings of the obtained sample were uniform and 1.8 μm, and an 8.2 μm Cr plating layer was formed between the SKD61 substrate and the CrN coating. The hardness is
The base material SKD61 is 500-600 Hv, and the Cr plating process is 900-1000 Hv, whereas 1700-1
900 Hv. The result of the reciprocating motion wear test was Cr
800ds / μm against 360ds / μm plating
m. As a result of the liquid tank thermal shock test (100 cycles), no particular abnormality such as appearance was observed.

【0021】(実施例3)実施例1と同様にSKD61
のテストピース(15×30×2mm)に10μmの工
業用クロムめっきを施したサンプルを、アセトン中で超
音波処理60秒かけて脱脂を行った。脱脂したサンプル
を、反応炉(30mmφ×400mm)に挿入し、N2
ガスで2回置換した後、N2 で希釈された40%NH3
ガスを導入し、500℃まで昇温し、500℃で24時
間CrN被膜形成処理を行った。この際に、反応炉での
NH3 ガスの分解率を50%になるように、NH3 分解
触媒を使用してNH3ガスを流通させた。
(Embodiment 3) SKD61 as in Embodiment 1
A sample obtained by subjecting a test piece (15 × 30 × 2 mm) to an industrial chrome plating of 10 μm was degreased in acetone by ultrasonic treatment for 60 seconds. The degreased sample is inserted into a reaction furnace (30 mmφ × 400 mm), and N 2
After purging twice with gas, 40% NH 3 diluted with N 2
A gas was introduced, the temperature was raised to 500 ° C., and a CrN film forming treatment was performed at 500 ° C. for 24 hours. At this time, the NH 3 gas was circulated using an NH 3 decomposition catalyst so that the decomposition rate of the NH 3 gas in the reaction furnace became 50%.

【0022】処理終了後、空冷してサンプルを取り出し
た。得られたサンプルのCrNおよびCr2N被膜は均
一で1.5μmであり、SKD61素地とCrN被膜の
間に8.5μmのCrメッキ層が構成された。硬度は、
母材SKD61が500〜600Hv、Crめっき処理
が900〜1000Hvであるのに対して1600〜1
800Hvであった。往復運動摩耗試験の結果は、Cr
メッキ処理が360ds/μmに対して780ds/μ
mであった。液槽冷熱衝撃試験(100サイクル)の結
果外観等特に異常は見られなかった。
After the completion of the treatment, the sample was taken out by air cooling. The CrN and Cr2N coatings of the obtained sample were uniform and 1.5 μm, and a 8.5 μm Cr plating layer was formed between the SKD61 substrate and the CrN coating. The hardness is
The base material SKD61 is 500-600 Hv, and the Cr plating treatment is 900-1000 Hv, whereas 1600-1
800 Hv. The result of the reciprocating motion wear test was Cr
Plating treatment is 780ds / μm for 360ds / μm
m. As a result of the liquid tank thermal shock test (100 cycles), no particular abnormality such as appearance was observed.

【0023】(比較例1)実施例1と同様にSKD61
のテストピース(15×30×2mm)に2μmの工業
用クロムめっきを施したサンプルをアセトン中で超音波
処理60秒かけて脱脂を行った。脱脂したサンプルを、
反応炉(30mmφ×400mm)に挿入し、N2 ガス
で2回置換した後、50℃に昇温した。その後、N2
希釈された1%ClF3を導入し、1時間保持した。次
に、残存のClF3 含有ガスをN2 を流通することで置
換した後に、N2 で希釈された40%NH3 ガスを導入
し、500℃まで昇温し、500℃で24時間CrN被
膜形成処理を行った。この際に、反応炉でのNH3 ガス
の分解率を50%になるように、NH3 ガスを流通させ
た。
(Comparative Example 1) SKD61 as in Example 1
Of a test piece (15 × 30 × 2 mm) coated with 2 μm of industrial chrome was subjected to ultrasonic treatment in acetone for 60 seconds to perform degreasing. Defatted sample,
It was inserted into a reaction furnace (30 mmφ × 400 mm), replaced with N 2 gas twice, and then heated to 50 ° C. Thereafter, 1% ClF 3 diluted with N 2 was introduced and kept for 1 hour. Next, the ClF 3 gas containing remaining after replacing by flowing N 2, to introduce 40% NH 3 gas diluted with N 2, the temperature was raised to 500 ° C., 24 hours CrN film at 500 ° C. A forming process was performed. At this time, the NH 3 gas was circulated so that the decomposition rate of the NH 3 gas in the reaction furnace became 50%.

【0024】処理終了後、空冷してサンプルを取り出し
た。得られたサンプルのCrNおよびCr2 N被膜は均
一で2μmであり、SKD61素地とCrN被膜の間の
Crメッキ層は消滅して残存していなかった。硬度は0
〜600Hv、1600〜1800Hvであった。往復
運動摩耗試験の結果は、780ds/μmであった。液
槽冷熱衝撃試験(100サイクル)の結果外観に剥離ま
たはクラック、膨れ等がみられた。
After the treatment, the sample was taken out by air cooling. CrN and Cr 2 N coating of the resulting sample was 2μm uniform, Cr plating layer between the SKD61 matrix and CrN coating did not remain disappeared. Hardness is 0
600600 Hv, 1600 to 1800 Hv. The result of the reciprocating motion wear test was 780 ds / μm. As a result of the liquid tank thermal shock test (100 cycles), peeling, cracks, swelling, and the like were observed in the appearance.

【0025】(比較例2)SKD61のテストピース
(15×30×2mm)表面にイオンプレーティングに
より2μmのCrN被膜を施した。硬度は1600〜1
800Hvであった。往復運動摩耗試験の結果は、Cr
メッキ処理が360ds/μmに対して780ds/μ
mであった。液槽冷熱衝撃試験(100サイクル)の結
果外観に剥離またはクラック、膨れ等がみられた。
Comparative Example 2 A 2 μm CrN coating was applied to the surface of a test piece (15 × 30 × 2 mm) of SKD61 by ion plating. Hardness is 1600-1
800 Hv. The result of the reciprocating motion wear test was Cr
Plating treatment is 780ds / μm for 360ds / μm
m. As a result of the liquid tank thermal shock test (100 cycles), peeling, cracks, swelling, and the like were observed in the appearance.

【0026】[0026]

【発明の効果】本発明によれば硬度や耐摩耗性が著しく
向上し、しかも熱衝撃にも耐える強固な表面被膜を得る
ことが可能となる。
According to the present invention, it is possible to obtain a strong surface coating which has remarkably improved hardness and abrasion resistance and can withstand thermal shock.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 金属材料素地の表面にCrメッキ層を具
備し、該Crメッキ層表面が窒化されてなることを特徴
とするCrN被膜。
1. A CrN film comprising a metal plating and a Cr plating layer provided on a surface of the metal material substrate, wherein the surface of the Cr plating layer is nitrided.
【請求項2】 金属材料表面にCrメッキを施した後、
該金属素材を窒化雰囲気中で加熱してCrメッキ層表面
の一部を窒化させることを特徴とするCrN被膜の形成
方法。
2. After applying Cr plating on the surface of the metal material,
A method for forming a CrN film, wherein the metal material is heated in a nitriding atmosphere to nitride a part of the surface of the Cr plating layer.
【請求項3】 金属材料表面にCrメッキを施した後、
該金属素材をハロゲン化合物中若しくはハロゲンを含む
反応性ガス中で加熱し、Crメッキ層表面を浄化して活
性化し、次いで窒化雰囲気中で加熱してCrメッキ層表
面を窒化することを特徴とするCrN被膜の形成方法。
3. After applying Cr plating on the surface of the metal material,
The metal material is heated in a halogen compound or a reactive gas containing halogen to purify and activate the Cr plating layer surface, and then heated in a nitriding atmosphere to nitride the Cr plating layer surface. A method for forming a CrN coating.
【請求項4】 ハロゲン化合物もしくはハロゲンを含む
反応ガスがフッ素化合物もしくは含フッ素ガスであるこ
とを特徴とする請求項3記載のCrN被膜の形成方法。
4. The method according to claim 3, wherein the halogen compound or the reactive gas containing halogen is a fluorine compound or a fluorine-containing gas.
【請求項5】 含フッ素反応ガスがClF3 を含む反応
ガスであることを特徴とする請求項4記載のCrN被膜
の形成方法。
5. The method for forming a CrN film according to claim 4, wherein the fluorine-containing reaction gas is a reaction gas containing ClF 3 .
【請求項6】 500℃以下の低温で加熱することを特
徴とする請求項2から4のいずれかに記載のCrN被膜
の形成方法。
6. The method for forming a CrN film according to claim 2, wherein the heating is performed at a low temperature of 500 ° C. or less.
JP18257097A 1997-06-25 1997-07-08 Chromium nitride coating film and its forming method Pending JPH1129848A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP18257097A JPH1129848A (en) 1997-07-08 1997-07-08 Chromium nitride coating film and its forming method
US09/104,352 US6090223A (en) 1997-06-25 1998-06-25 Chromium nitride film and method for forming the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18257097A JPH1129848A (en) 1997-07-08 1997-07-08 Chromium nitride coating film and its forming method

Publications (1)

Publication Number Publication Date
JPH1129848A true JPH1129848A (en) 1999-02-02

Family

ID=16120596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18257097A Pending JPH1129848A (en) 1997-06-25 1997-07-08 Chromium nitride coating film and its forming method

Country Status (1)

Country Link
JP (1) JPH1129848A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009084629A (en) * 2007-09-28 2009-04-23 Denka Himaku Inc METHOD FOR FORMING Cr-N FILM
WO2010002572A3 (en) * 2008-06-30 2010-03-25 Gm Global Technology Operations, Inc. Layered coating and method for forming the same
EP2196558A1 (en) * 2005-09-01 2010-06-16 Canon Anelva Corporation Thin layer formation equipment and process for formation of thin layers
JP2013127094A (en) * 2011-12-19 2013-06-27 Canon Inc Method of manufacturing chromium nitride or chromium carbonitride, chromium nitride or chromium carbonitride, and vibration wave driving apparatus for using chromium nitride or chromium carbonitride
WO2015167082A1 (en) * 2014-04-28 2015-11-05 세화엠피(주) High-functional bolt and method for manufacturing high-functional bolt
DE102016215709A1 (en) 2015-08-28 2017-03-02 Tsubakimoto Chain Co. Chain component and chain
DE102018204638A1 (en) 2015-08-28 2018-10-04 Tsubakimoto Chain Co. Chain component and chain
KR20180109758A (en) 2017-03-28 2018-10-08 가부시기가이샤쯔바기모도체인 Chain component and chain
CN112899733A (en) * 2021-01-20 2021-06-04 华中科技大学 Compact chromium oxynitride hydrogen permeation-resistant coating and preparation method thereof

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2196558A1 (en) * 2005-09-01 2010-06-16 Canon Anelva Corporation Thin layer formation equipment and process for formation of thin layers
EP2196558A4 (en) * 2005-09-01 2010-07-28 Canon Anelva Corp Thin layer formation equipment and process for formation of thin layers
JP2009084629A (en) * 2007-09-28 2009-04-23 Denka Himaku Inc METHOD FOR FORMING Cr-N FILM
WO2010002572A3 (en) * 2008-06-30 2010-03-25 Gm Global Technology Operations, Inc. Layered coating and method for forming the same
US8092922B2 (en) 2008-06-30 2012-01-10 GM Global Technology Operations LLC Layered coating and method for forming the same
JP2013127094A (en) * 2011-12-19 2013-06-27 Canon Inc Method of manufacturing chromium nitride or chromium carbonitride, chromium nitride or chromium carbonitride, and vibration wave driving apparatus for using chromium nitride or chromium carbonitride
WO2015167082A1 (en) * 2014-04-28 2015-11-05 세화엠피(주) High-functional bolt and method for manufacturing high-functional bolt
DE102016215709A1 (en) 2015-08-28 2017-03-02 Tsubakimoto Chain Co. Chain component and chain
KR20170026256A (en) 2015-08-28 2017-03-08 가부시기가이샤쯔바기모도체인 Chain component and chain
DE102018204638A1 (en) 2015-08-28 2018-10-04 Tsubakimoto Chain Co. Chain component and chain
DE102018204636A1 (en) 2015-08-28 2018-10-04 Tsubakimoto Chain Co. Chain component and chain
KR20180109758A (en) 2017-03-28 2018-10-08 가부시기가이샤쯔바기모도체인 Chain component and chain
US10260596B2 (en) 2017-03-28 2019-04-16 Tsubakimoto Chain Co. Chain component and chain
CN112899733A (en) * 2021-01-20 2021-06-04 华中科技大学 Compact chromium oxynitride hydrogen permeation-resistant coating and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2501925B2 (en) Pretreatment method for metal materials
EP0408168B1 (en) Method of pretreating metallic works and method of nitriding steel
US11473183B2 (en) Enhanced activation of self-passivating metals
JPH089766B2 (en) Steel nitriding method
JPS62294160A (en) Thermochemical surface treatment of material in reactive gaseous plasma
CN112236540A (en) Chemical activation of self-passivating metals
US6090223A (en) Chromium nitride film and method for forming the same
JPH1129848A (en) Chromium nitride coating film and its forming method
CN1160774A (en) Method of carburizing austenitic stainless and austenitic stainless products obtained thereby
US5650022A (en) Method of nitriding steel
CN114929924A (en) Chemical activation of self-passivated metals
JP2881111B2 (en) Steel nitriding method
KR100594998B1 (en) Method for nitriding of Ti and Ti alloy
JPH08158035A (en) Carburizing treatment for austenitic metal and austenitic metal product using the same
JP2001073164A (en) Metallic material in which oxidized passive film has been formed, formation of the oxidized passive film and die and parts in which the oxidized passive films have been formed
JP2005082844A (en) Coating method for base material and coating structure
JP3005953B2 (en) Steel nitriding method
JPS5919199B2 (en) Method for plating pre-treatment of steel articles subjected to surface hardening treatment
KR100290975B1 (en) Method for boronizing steel material using plasma
JP3396336B2 (en) Method of nitriding steel
KR100213404B1 (en) Stainless screw and its manufacturing method
CN111020465A (en) Surface treating agent for low-temperature salt bath nitrogen-carbon-oxygen co-cementation technology and using method
CN111809139A (en) Low-temperature carbon nitrogen oxygen co-permeation treating agent for improving liquid metal corrosion resistance of stainless steel
JPS6350456A (en) Surface treatment for aluminum material
Cleugh et al. PI exp 3 processing: OES diagnostics and rare earths