JP3005953B2 - Steel nitriding method - Google Patents

Steel nitriding method

Info

Publication number
JP3005953B2
JP3005953B2 JP8347019A JP34701996A JP3005953B2 JP 3005953 B2 JP3005953 B2 JP 3005953B2 JP 8347019 A JP8347019 A JP 8347019A JP 34701996 A JP34701996 A JP 34701996A JP 3005953 B2 JP3005953 B2 JP 3005953B2
Authority
JP
Japan
Prior art keywords
nitriding
steel
gas
layer
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8347019A
Other languages
Japanese (ja)
Other versions
JPH09170065A (en
Inventor
正昭 田原
孝一 友田
憲三 北野
輝男 湊
Original Assignee
大同ほくさん株式会社
株式会社マイヅル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大同ほくさん株式会社, 株式会社マイヅル filed Critical 大同ほくさん株式会社
Priority to JP8347019A priority Critical patent/JP3005953B2/en
Publication of JPH09170065A publication Critical patent/JPH09170065A/en
Application granted granted Critical
Publication of JP3005953B2 publication Critical patent/JP3005953B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本願発明は鋼の表面に窒化層
を形成して耐摩耗性等を向上させる鋼の窒化方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for nitriding steel in which a nitride layer is formed on the surface of steel to improve wear resistance and the like.

【0002】[0002]

【従来の技術】耐摩耗性、耐食性、疲労強度等の機械的
性質を向上させる目的で、鋼の表面に窒化物の層を形成
する窒化法あるいは、浸炭窒化法として従来採用されて
きた方法は次のようなものである。 (イ) NaCN、KCNO等のシアン系溶融塩による
方法(タフトライド法) (ロ) グロー放電による窒化(イオン窒化) (ハ) アンモニアまたはアンモニアと炭素源を有する
ガス(例えばRXガス)との混合ガスによる窒化(ガス
窒化、ガス軟窒化)
2. Description of the Related Art For the purpose of improving mechanical properties such as wear resistance, corrosion resistance, fatigue strength and the like, a method conventionally used as a nitriding method for forming a nitride layer on the surface of steel or a carbonitriding method is as follows. It looks like this: (A) Method using cyanide molten salt such as NaCN, KCNO, etc. (Tufftride method) (b) Glow discharge nitriding (ion nitriding) (c) Ammonia or a mixed gas of ammonia and a gas having a carbon source (eg, RX gas) By gas (gas nitriding, gas nitrocarburizing)

【0003】これらのうち、(イ)の方法は、有害な溶
融塩を用いるので作業環境、廃棄物処理等の点で将来的
に好ましくない。また、(ロ)の方法は、低真空のN2
+H2 雰囲気中でグロー放電により窒化するもので、ス
パッタリングに伴う清浄化作用により酸化皮膜の影響は
少なくなるが、局部的な温度差による窒化ムラが発生し
やすい。また、この方法は、処理物の形状寸法に制約が
大きく、コスト高となるという問題点がある。さらに、
上記(ハ)の方法は、窒化ムラが生じやすい等、処理の
安定性に問題があり、しかも深い窒化層を得るためには
長時間を要するという問題点もある。
[0003] Among them, the method (a) uses a harmful molten salt, and therefore is not preferable in the future in terms of working environment, waste disposal, and the like. The method (b) is based on low vacuum N 2
Nitrogen is nitrided by glow discharge in a + H 2 atmosphere. The effect of the oxide film is reduced due to the cleaning effect accompanying sputtering, but nitriding unevenness due to a local temperature difference is likely to occur. In addition, this method has a problem that the shape and size of the processed object are greatly restricted, and the cost is increased. further,
The method (c) has a problem in the stability of the treatment, such as uneven nitridation, and also requires a long time to obtain a deep nitride layer.

【0004】一般に、鋼は500℃以上の温度で窒化さ
れるが、鋼表面層への窒素の吸着、拡散には、金属表面
の活性度が高いことが必要で、有機,無機系の汚れは勿
論、酸化皮膜やO2 の吸着皮膜が存在しないことが望ま
しい。また、酸化皮膜の存在は、窒化ガスであるアンモ
ニアの解離度を助長する点でも好ましくない。しかしな
がら、実際にはガス窒化法において酸化皮膜の形成を防
止することは不可能であり、例えばクロムを多量に含ま
ない肌焼鋼や構造用鋼の場合でも400℃〜500℃の
温度でも、NH3 やNH3 +RXの雰囲気下でも薄い酸
化物質が形成される。クロム等酸素との親和力の大きい
元素を多量に含む鋼種ではこの傾向が更に強くなる。
[0004] Generally, steel is nitrided at a temperature of 500 ° C or higher, but the adsorption and diffusion of nitrogen to the steel surface layer requires a high activity on the metal surface. of course, it is desirable that the adsorption film of the oxide film and O 2 is not present. Further, the presence of the oxide film is not preferable in that it promotes the dissociation degree of ammonia, which is a nitriding gas. However, it is actually impossible to prevent the formation of an oxide film by the gas nitriding method. For example, even in the case of case hardening steel or structural steel not containing a large amount of chromium, even at a temperature of 400 ° C. to 500 ° C., NH Even in an atmosphere of 3 or NH 3 + RX, a thin oxide substance is formed. This tendency is further enhanced in steel types containing a large amount of elements having a high affinity for oxygen such as chromium.

【0005】このような酸化物の形成は、同一部品でも
表面状態や加工条件等によって変化し、結果的に不均一
な窒化層を形成していた。典型的な例として、たとえば
オーステナイト系のステンレスの冷間加工品等の場合
は、処理炉に挿入する前にフッ硝酸により洗浄して表面
の不働態皮膜を完全に除去しても、満足な窒化層を形成
するのはほとんど不可能である。なお、窒化ムラについ
てはガス軟窒化のみでなく、窒化鋼やステンレス鋼に対
するアンモニアのみによる窒化(ガス窒化)においても
同様に発生する。また、通常の構造用鋼の場合でも歯車
のごとき形状の複雑な部品の場合窒化ムラが発生し易い
という基本的な問題がある。
The formation of such an oxide varies depending on the surface condition, processing conditions, and the like even in the same part, and as a result, a non-uniform nitride layer is formed. As a typical example, for example, in the case of a cold-worked austenitic stainless steel, even if it is washed with hydrofluoric nitric acid before being inserted into the processing furnace to completely remove the passivation film on the surface, satisfactory nitriding can be achieved. It is almost impossible to form a layer. In addition, the non-uniform nitriding occurs not only in gas nitrocarburizing but also in nitriding (gas nitriding) of nitrided steel or stainless steel with only ammonia. Further, even in the case of ordinary structural steel, there is a basic problem that in the case of a component having a complicated shape such as a gear, nitriding unevenness easily occurs.

【0006】上記のようなガス窒化、ガス軟窒化の本質
的な問題点を改良する手段として、塩化ビニル樹脂を処
理物(ワーク)とともに炉に挿入する方法や、CH3
l等をふりかけて200〜300℃に加熱し、HClを
発生させて酸化物の発生を防止するとともにその除去を
はかる方法、あるいは予め表面にメッキを施して酸化物
を抑制する方法等が過去に提唱されたことがあるが、ほ
とんど実用化されていないのが現状である。HClによ
って鋼表面にFeCl2 、FeCl3 等の塩化物が析出
するが、これらは窒化温度以下の温度で極めて脆く、し
かも昇華、蒸発しやすいため、塩化物膜は形成されず、
若干の酸化皮膜抑制効果はあるものの取扱いそのものの
煩雑さや炉材の損傷が著しいことと相まって実用的には
有効とはいえないのである。
As means for improving the essential problems of gas nitriding and gas nitrocarburizing as described above, a method of inserting a vinyl chloride resin into a furnace together with a processed material (work), a method of CH 3 C
In the past, a method of sprinkling 1 or the like and heating to 200 to 300 ° C. to generate HCl to prevent the generation of oxides and remove them, or a method of plating oxides on the surface in advance to suppress oxides, etc., have been used in the past. Although it has been proposed, it has hardly been put to practical use. HCl precipitates chlorides such as FeCl 2 and FeCl 3 on the steel surface, but these are extremely brittle at temperatures lower than the nitriding temperature, and are easily sublimated and evaporated, so that chloride films are not formed.
Although it has a slight oxide film suppression effect, it is not practically effective due to the complicated handling itself and the remarkable damage to the furnace material.

【0007】[0007]

【発明が解決しようとする課題】本発明は上記事情に鑑
み、窒化処理前洗浄後の残存有機無機異物や、被処理物
の酸化皮膜による窒化ムラ等の発生を効果的に解消する
こと、およびこの目的を達成するため、処理プロセス上
シンプルなシステムを提供することを課題としている。
SUMMARY OF THE INVENTION In view of the above circumstances, it is an object of the present invention to effectively eliminate the occurrence of organic and inorganic foreign matters remaining after cleaning before nitriding treatment and the occurrence of uneven nitriding due to an oxide film on an object to be treated. In order to achieve this object, it is an object to provide a simple system in the processing process.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するた
め、この発明の鋼の窒化方法は、鋼の表面に窒素を反応
させて硬質の窒化層を形成する鋼の窒化方法において、
鋼を予めフッ素を含む反応ガス雰囲気中に加熱保持して
表面層にフッ化物膜を生成した後窒化雰囲気中で加熱し
て窒化層を形成するとともに、上記フッ化物膜の生成に
使用された後の上記反応ガスを除害化するという構成を
とる。ここで、窒化方法とは、浸炭窒化法、酸窒化法、
浸硫窒化法等の各種窒化法を包含する。
Means for Solving the Problems In order to solve the above problems, a method for nitriding steel according to the present invention is directed to a method for nitriding steel in which a hard nitrided layer is formed by reacting nitrogen on the surface of steel.
The steel is heated and held beforehand in a fluorine-containing reaction gas atmosphere to form a fluoride film on the surface layer, and then heated in a nitriding atmosphere to form a nitride layer and to form the above-mentioned fluoride film.
The above reaction gas after use is detoxified . Here, the nitriding method means a carbonitriding method, an oxynitriding method,
Includes various nitriding methods such as the sulphiditriding method.

【0009】本発明で使用されるフッ素含有反応ガスと
しては、例えばNF3 ,BF3 ,CF4 ,SF6 ,NH
4 F,F2 等のフッ素化合物もしくはフッ素を含むハロ
ゲンガスがある。これらフッ素化合物のうち、反応性、
取扱い性等の面でNF3 が最も優れており、実用的であ
る。上記フッ素化合物を含有する反応ガス雰囲気下で鋼
の被加工物を例えばNF3 の場合150〜350℃の温
度に加熱保持し、被加工物を表面処理した後、公知の窒
化用ガス、例えばアンモニアを用いて窒化処理(または
浸炭窒化処理)を行うのである。フッ素を含む反応ガス
雰囲気のフッ素化合物濃度は例えば1000〜1000
0ppmであり、該雰囲気中での保持時間は、鋼種、ワ
ークの形状寸法、加熱温度等に応じて適当な時間を選べ
ばよく、通常は十数分〜数十分である。
As the fluorine-containing reaction gas used in the present invention, for example, NF 3 , BF 3 , CF 4 , SF 6 , NH
4 F, there is a halogen gas containing a fluorine compound or fluorine, such as F 2. Among these fluorine compounds, reactivity,
NF 3 is the most excellent in terms of handleability and is practical. Under a reaction gas atmosphere containing the fluorine compound, the steel workpiece is heated and maintained at a temperature of 150 to 350 ° C. in the case of, for example, NF 3 , and after the workpiece is surface-treated, a known nitriding gas such as ammonia Is used to perform a nitriding treatment (or a carbonitriding treatment). The concentration of the fluorine compound in the reaction gas atmosphere containing fluorine is, for example, 1000 to 1000.
The retention time in the atmosphere is 0 ppm, and an appropriate time may be selected according to the type of steel, the shape and size of the work, the heating temperature, and the like.

【0010】[0010]

【発明の実施の形態】つぎに、本発明の実施の形態を説
明する。
Next, an embodiment of the present invention will be described.

【0011】本発明の方法をより具体的に説明すると、
鋼製のワークを例えば脱脂洗浄し、図1に示すような熱
処理炉1に挿入する。この炉1は外殻2内に設けたヒー
タ3の内側にステンレス製内容器4を入れたピット炉
で、ガス導入管5と排気管6が挿入されている。ガス導
入管5にはボンベ15,16から流量計17,バルブ1
8等を経由してガスが供給される。内部の雰囲気はモー
タ7で回転するファン8によって攪拌される。ワーク1
0は金鋼製のコンテナ11に入れて炉内に挿入される。
図中、13は真空ポンプ、14は公知の除害装置であ
る。この炉中にフッ素を含む反応ガス、例えばNF3
2 の混合ガスを導入し、所定の反応温度に加熱する。
NF3 は250〜400℃の温度で活性基のF分を発生
し、このFが表面に残存している有機無機の異物を除去
すると共に、鋼表面のFe,Cr素地あるいはFeO,
Fe3 4 ,Cr2 3 等の酸化物と迅速に反応して、
例えば下記の式に示すごとく、表面にFeF2 ,FeF
3 ,CrF2 ,CrF4 等の化合物を金属組織中に含む
ごく薄いフッ化膜が形成される。
The method of the present invention will be described more specifically.
A steel work is, for example, degreased and washed, and inserted into a heat treatment furnace 1 as shown in FIG. The furnace 1 is a pit furnace in which a stainless steel inner container 4 is placed inside a heater 3 provided in an outer shell 2, and a gas introduction pipe 5 and an exhaust pipe 6 are inserted therein. The gas introduction pipe 5 has a flow meter 17 and a valve 1 from cylinders 15 and 16.
Gas is supplied via 8 or the like. The internal atmosphere is agitated by a fan 8 rotated by a motor 7. Work 1
No. 0 is put in a container 11 made of steel and inserted into the furnace.
In the figure, 13 is a vacuum pump and 14 is a known abatement device. A reaction gas containing fluorine, for example, a mixed gas of NF 3 and N 2 is introduced into the furnace, and heated to a predetermined reaction temperature.
NF 3 generates an F component of an active group at a temperature of 250 to 400 ° C., and this F removes organic and inorganic foreign substances remaining on the surface and also removes Fe, Cr substrate or FeO,
It reacts quickly with oxides such as Fe 3 O 4 and Cr 2 O 3 ,
For example, as shown in the following formula, FeF 2 , FeF
3 , a very thin fluoride film containing a compound such as CrF 2 or CrF 4 in the metal structure is formed.

【0012】[0012]

【化1】 Embedded image

【0013】この反応により、ワーク表面の酸化皮膜は
フッ化膜に変換され、表面に吸着されついたO2 も除去
される。そして、このようなフッ化膜は、O2 ,H2
2Oが存在しない場合600℃以下の温度で安定であ
って後続の窒化処理温度までの間における金属素地への
酸化皮膜の形成やO2 の吸着を防止すると考えられる。
By this reaction, the oxide film on the work surface is converted into a fluoride film, and O 2 adsorbed on the surface is also removed. And such a fluoride film is made of O 2 , H 2 ,
When H 2 O is not present, it is considered to be stable at a temperature of 600 ° C. or less and prevent the formation of an oxide film on the metal substrate and the adsorption of O 2 until the subsequent nitriding temperature.

【0014】このように、フッ素を含有する反応ガスで
処理したワークは、例えばN2 雰囲気等の非酸化性雰囲
気下で引続き480〜700℃の窒化温度に加熱され、
NH3 あるいはNH3 と炭素源を有するガス(例えばR
Xガス)との混合ガスを添加すると、フッ化膜はH2
たは微量の水分によって例えば下記の式のように還元あ
るいは破壊され、活性な金属素地が形成されると推測さ
れる。
Thus, the workpiece treated with the fluorine-containing reaction gas is heated to a nitriding temperature of 480 to 700 ° C. in a non-oxidizing atmosphere such as an N 2 atmosphere.
NH 3 or a gas containing NH 3 and a carbon source (for example, R 3
When a mixed gas with X gas is added, the fluoride film is reduced or destroyed by H 2 or a small amount of water, for example, as in the following formula, and it is presumed that an active metal base is formed.

【0015】[0015]

【化2】 Embedded image

【0016】このように、活性な金属素地が形成される
と同時に活性基のNが吸着されて金属内に侵入、拡散し
てゆき、その結果、表面にCrN,Fe2 N,Fe
3 N,Fe4 N等の窒化物を含有する化合物層が形成さ
れる。
As described above, at the same time when the active metal matrix is formed, N of the active group is adsorbed and penetrates and diffuses into the metal. As a result, CrN, Fe 2 N, Fe
3 N, compound layer containing a nitride such as Fe 4 N are formed.

【0017】このような化合物層が形成されるのは、従
来の窒化法でも同様であるが、従来法では、常温より窒
化温度まで昇温する間に形成される酸化皮膜や、このと
き吸着されるO2 分によって表面の活性度が低下してい
るので、Nの表面吸着の度合いが低く、不均一である。
また、このような不均一性は、NH3 の分解の度合いを
炉内で均一に保つことが実際上困難であることによって
も拡大されるのである。本発明ではワーク表面における
Nの吸着が均一かつ迅速に行われるので、上記のような
問題は生じない。本プロセスでは、フッ化膜が600℃
以下で安定な不働態膜を形成するため、金属製の炉材の
損傷はきわめて少ない。
The formation of such a compound layer is the same as in the conventional nitriding method. However, in the conventional method, the oxide film formed during the temperature rise from the room temperature to the nitriding temperature, Since the surface activity is reduced by the amount of O 2, the degree of N adsorption on the surface is low and non-uniform.
Such non-uniformity is also magnified by the fact that it is practically difficult to keep the degree of decomposition of NH 3 uniform in the furnace. In the present invention, since the adsorption of N on the work surface is performed uniformly and quickly, the above-mentioned problem does not occur. In this process, the fluoride film is 600 ° C
Since a stable passivation film is formed below, damage to the metal furnace material is extremely small.

【0018】上記本発明の操作プロセス上の大きな特徴
の一つは、フッ化膜を形成させる反応ガスとしてのNF
3 のような常温で反応性がなく、ガス状の取扱い易い物
質を用いることにより、メッキ処理や固体のPVC液体
の塩素源を用いるなどの方法に比べて処理が連続操作と
なるなどプロセスがシンプルな点にある。タフトライド
方式は、窒化層の付き廻り性や疲労強度の向上への効果
等ですぐれた方法といえるが作業環境、公害設備等への
大きな費用がかかる点で将来にひらけた方法とはいえな
い。上記プロセスでは処理廃ガスを除害化するための簡
易な装置だけで充分であり、タフトライド方式と同等以
上の付き廻り性で窒化ムラの排除が可能となるほか、タ
フトライド方式が浸窒と同時に浸炭も進行するのに比べ
て、純窒化のみも可能である。
One of the major features of the operation process of the present invention is that NF as a reaction gas for forming a fluoride film is used.
The use of a non-reactive, gaseous, easy-to-handle substance such as 3 makes the process simpler, such as continuous processing compared to methods such as plating and using a solid PVC liquid chlorine source. It is in a point. The tuftride method can be said to be an excellent method in terms of the effect of improving the throwing power of the nitride layer and the improvement of the fatigue strength, but cannot be said to be a future method in that it requires a large cost for the working environment, pollution equipment and the like. In the above process, a simple device for detoxifying the treatment waste gas is sufficient, and it is possible to eliminate uneven nitriding with the same or higher throwing power as that of the tuftride system. However, only pure nitriding is possible.

【0019】[0019]

【実施例1および比較例1】SUS305系加工硬化品
(ネジ)をフロン洗浄したのち、図1に示すような処理
炉1に入れ,NF3 を5000ppm含有するN2 ガス
雰囲気で300℃で15分間保持した。その後530℃
に加熱し、50%NH3 +50%N2 の混合ガスを炉内
に導入して3時間窒化処理を行い、しかるのち空冷して
取り出した。
Example 1 and Comparative Example 1 A SUS305-based work-hardened product (screw) was washed with Freon, placed in a processing furnace 1 as shown in FIG. 1, and placed in a N 2 gas atmosphere containing 5000 ppm of NF 3 at 300 ° C. for 15 hours. Hold for minutes. Then 530 ° C
Then, a mixed gas of 50% NH 3 + 50% N 2 was introduced into the furnace, and a nitriding treatment was performed for 3 hours.

【0020】得られたワークの窒化層の厚みは均一で、
その硬度は、基材の部分が260〜280Hvであるの
に対し、表面硬度が1100〜1300Hvであった。
The thickness of the nitrided layer of the obtained work is uniform,
The hardness of the substrate was 260 to 280 Hv, while the surface hardness was 1100 to 1300 Hv.

【0021】これに対し、比較例1として同じワークを
フロン洗浄後フッ硝酸処理したのち上記炉に入れ、75
%NH3 中で530℃および570℃で3時間加熱した
が、いずれの処理でも形成された窒化層の厚みに大きな
バラツキがあり、全く窒化層が形成されていない部分が
多かった。
On the other hand, as Comparative Example 1, the same work was washed with chlorofluorocarbon and then treated with hydrofluoric-nitric acid.
After heating at 530 ° C. and 570 ° C. for 3 hours in% NH 3 , the thickness of the nitrided layer formed by any of the treatments varied greatly, and there were many portions where no nitrided layer was formed.

【0022】上記実施例1と比較例1(570℃)につ
いて、EPMAで表面層の元素分析を行った結果を図2
に示す。また、両者の表面付近の顕微鏡組織を図3およ
び図4に示す。
FIG. 2 shows the results of elemental analysis of the surface layer by EPMA for Example 1 and Comparative Example 1 (570 ° C.).
Shown in 3 and 4 show the microscopic structures near the surfaces of both.

【0023】[0023]

【実施例2】SUS305のタッピングネジをアセトン
洗浄後図1に示す炉にいれNF3 を5000ppm含有
するN2 雰囲気下で280℃15分間保持その後470
℃に昇温しN2 +90%H2 下で30分間保持した後2
0%NH3 +80%RXにて8時間窒化して取り出し
た。
Example 2 After washing the tapping screw of SUS305 with acetone, the tapping screw was put in the furnace shown in FIG. 1 and kept at 280 ° C. for 15 minutes in an N 2 atmosphere containing 5,000 ppm of NF 3, and then 470 mm.
Temperature and kept under N 2 + 90% H 2 for 30 minutes.
It was taken out by nitriding with 0% NH 3 + 80% RX for 8 hours.

【0024】40〜50μmの窒化層がネジの表面全体
に形成されていたが、表面硬度はHv=650〜750
であり、この窒化層は5%硫酸に対して、基材とそれほ
ど遜色のない耐食性を示した。
Although a nitride layer of 40 to 50 μm was formed on the entire surface of the screw, the surface hardness was Hv = 650 to 750.
This nitrided layer exhibited corrosion resistance to 5% sulfuric acid that was not inferior to that of the substrate.

【0025】[0025]

【実施例3および比較例2】エメリー研磨した熱間金型
部品(SKD61)をワークとして図1に示す炉に入
れ、NF3 を3000ppm含有するN2 雰囲気中で、
300℃で15〜20分間加熱したのち、570℃まで
加熱し50%NH3 +50%N2 の混合ガスで3時間処
理した。その結果、表面硬度1000〜1100Hv
(基材450〜500Hv)、厚さ120μmの均一な
窒化層が得られた。
Example 3 and Comparative Example 2 A hot die part (SKD61) polished by emery was put into a furnace shown in FIG. 1 as a work, and was placed in an N 2 atmosphere containing 3000 ppm of NF 3 .
After heating at 300 ° C. for 15 to 20 minutes, the mixture was heated to 570 ° C. and treated with a mixed gas of 50% NH 3 + 50% N 2 for 3 hours. As a result, the surface hardness is 1000 to 1100 Hv
(Base material 450 to 500 Hv), a uniform nitrided layer having a thickness of 120 μm was obtained.

【0026】これに対し、比較例2として、同じ部品を
フッ硝酸洗浄したのち、570℃で3時間窒化処理した
ものの窒化膜は、最も厚いところで90〜100μmで
あり、バラツキが大きくしかも面荒れがひどかった。
On the other hand, in Comparative Example 2, the same part was subjected to nitric acid cleaning at 570 ° C. for 3 hours after cleaning with hydrofluoric nitric acid, but the nitrided film was 90 to 100 μm at the thickest point, and had a large variation and a rough surface. It was terrible.

【0027】[0027]

【実施例4および比較例3】窒化鋼(SACM1)を洗
浄後、図1に示す炉に入れ、NF3 5000ppmを含
むN2 ガス中で280℃にて20分間保持し、その後5
50℃に昇温して75%NH3 中で12時間加熱したと
ころ、得られた窒化層の厚さが0.42mmであった。
比較例3として従来法で同じ部品を窒化した時の窒化層
の厚さは0.28mmであった。
Example 4 and Comparative Example 3 After cleaning the nitrided steel (SACM1), it was placed in the furnace shown in FIG. 1 and kept at 280 ° C. for 20 minutes in N 2 gas containing 5000 ppm of NF 3 , and then
After heating to 50 ° C. and heating in 75% NH 3 for 12 hours, the thickness of the obtained nitrided layer was 0.42 mm.
As Comparative Example 3, when the same component was nitrided by the conventional method, the thickness of the nitrided layer was 0.28 mm.

【0028】[0028]

【実施例5】構造用炭素鋼(S45C)の金型部品を洗
浄後、NF3 ガスを5000ppm含有する雰囲気下で
300℃で20分間保持し、その後530℃に昇温して
NH3 +50%RXにて4時間処理した後、油冷して取
り出した。得られた窒化層の硬度は450〜480Hv
であった。このワークの回転曲げ疲労強度試験を行った
結果は44kg/mm2 で従来のガス軟窒化品に較べて
同等またはそれ以上であった。
Embodiment 5 After cleaning the mold parts of the structural carbon steel (S45C), the NF 3 gas was held at 300 ° C. for 20 minutes in an atmosphere containing 5000 ppm, and then the temperature was raised to 530 ° C. and NH 3 + 50% After treatment with RX for 4 hours, the mixture was taken out with oil cooling. The hardness of the obtained nitrided layer is 450 to 480 Hv
Met. The result of the rotational bending fatigue strength test of this work was 44 kg / mm 2 , which was equal to or higher than that of a conventional gas nitrocarburized product.

【0029】[0029]

【発明の効果】以上の説明から明らかなように、本発明
の窒化法は従来のガス窒化、ガス軟窒化を改良するもの
で、均一な窒化層を迅速に得ることが可能となった。ま
た、鋼種、加工段階、前処理状態等の如何にかかわらず
良好な窒化層を得ることができ、穴やスリットを有する
部品でも窒化が可能である。さらに、オーステナイト系
ステンレス鋼のような窒化困難な鋼種に対しても、容易
に窒化できる等の利点がある。
As is apparent from the above description, the nitriding method of the present invention is an improvement over conventional gas nitriding and gas nitrocarburizing, and has made it possible to quickly obtain a uniform nitrided layer. Also, a good nitrided layer can be obtained regardless of the type of steel, processing stage, pretreatment state, etc., and nitriding can be performed even on a component having holes or slits. Furthermore, there is an advantage that nitriding can be easily performed even on a steel type that is difficult to nitride such as austenitic stainless steel.

【図面の簡単な説明】[Brief description of the drawings]

【図1】処理炉の1例をあらわす断面図である。FIG. 1 is a sectional view showing an example of a processing furnace.

【図2】元素分析結果を示すチャートである。FIG. 2 is a chart showing the results of elemental analysis.

【図3】この発明により処理された実施例1品の表面層
の金属組織写真である。
FIG. 3 is a metallographic photograph of the surface layer of the product of Example 1 treated according to the present invention.

【図4】比較例1品の表面層の金属組織写真である。FIG. 4 is a photograph of the metal structure of the surface layer of Comparative Example 1;

───────────────────────────────────────────────────── フロントページの続き (72)発明者 北野 憲三 大阪府河内長野市小山田町1498−1 (72)発明者 湊 輝男 和歌山県橋本市城山台3丁目38−2 (56)参考文献 特開 平3−44457(JP,A) 特開 平6−299317(JP,A) 特開 平6−145951(JP,A) 特開 平5−195193(JP,A) 特開 平5−59530(JP,A) 特開 平4−358057(JP,A) 特開 平4−187755(JP,A) 特開 平4−187754(JP,A) 特開 平4−44457(JP,A) (58)調査した分野(Int.Cl.7,DB名) C23C 8/00 - 8/26 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Kenzo Kitano, Inventor 1498-1 Koyamadacho, Kawachinagano, Osaka (72) Teruo Minato, 3-38-2, Shiroyamadai, Hashimoto, Wakayama, Japan (56) References 3-44457 (JP, A) JP-A-6-299317 (JP, A) JP-A-6-145951 (JP, A) JP-A-5-195193 (JP, A) JP-A-5-59530 (JP, A) A) JP-A-4-358057 (JP, A) JP-A-4-187755 (JP, A) JP-A-4-187754 (JP, A) JP-A-4-44457 (JP, A) (58) Survey Field (Int.Cl. 7 , DB name) C23C 8/00-8/26

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 鋼の表面に窒素を反応させて硬質の窒化
層を形成する鋼の窒化方法において、鋼を予めフッ素を
含む反応ガス雰囲気中に加熱保持して表面層にフッ化物
膜を生成した後窒化雰囲気中で加熱して窒化層を形成す
とともに、上記フッ化物膜の生成に使用された後の上
記反応ガスを除害化することを特徴とする鋼の窒化方
法。
In a method for nitriding steel, in which a hard nitrided layer is formed by reacting nitrogen on the surface of steel, a steel film is heated and held in a reaction gas atmosphere containing fluorine in advance to form a fluoride film on the surface layer. thereby forming a nitride layer by heating in a nitriding atmosphere after, on after being used for generating the fluoride film
A method for nitriding steel, comprising detoxifying the reaction gas .
JP8347019A 1996-12-26 1996-12-26 Steel nitriding method Expired - Lifetime JP3005953B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8347019A JP3005953B2 (en) 1996-12-26 1996-12-26 Steel nitriding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8347019A JP3005953B2 (en) 1996-12-26 1996-12-26 Steel nitriding method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP6135715A Division JP2881111B2 (en) 1994-06-17 1994-06-17 Steel nitriding method

Publications (2)

Publication Number Publication Date
JPH09170065A JPH09170065A (en) 1997-06-30
JP3005953B2 true JP3005953B2 (en) 2000-02-07

Family

ID=18387376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8347019A Expired - Lifetime JP3005953B2 (en) 1996-12-26 1996-12-26 Steel nitriding method

Country Status (1)

Country Link
JP (1) JP3005953B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6543962B2 (en) * 2015-03-02 2019-07-17 日本製鉄株式会社 Austenitic stainless steel sheet and method of manufacturing the same

Also Published As

Publication number Publication date
JPH09170065A (en) 1997-06-30

Similar Documents

Publication Publication Date Title
JPH089766B2 (en) Steel nitriding method
JP2501925B2 (en) Pretreatment method for metal materials
JP3161644B2 (en) Method of nitriding austenitic stainless steel products
EP0408168B1 (en) Method of pretreating metallic works and method of nitriding steel
CN107109615A (en) The enhancing activation of self-passivating metal
CN112236540A (en) Chemical activation of self-passivating metals
JP3961390B2 (en) Surface carbonitrided stainless steel parts with excellent wear resistance and manufacturing method thereof
JP3064938B2 (en) Carburizing method for austenitic stainless steel and austenitic stainless steel product obtained thereby
WO2005075705A1 (en) Method for surface treatment of metal material
JP3023222B2 (en) Hard austenitic stainless steel screw and its manufacturing method
US5650022A (en) Method of nitriding steel
JP2881111B2 (en) Steel nitriding method
JP2633076B2 (en) Hard austenitic stainless steel screw and its manufacturing method
JP3005953B2 (en) Steel nitriding method
US6179932B1 (en) Motor rotary shaft and manufacturing method thereof
JP3026596B2 (en) Crankshaft and its manufacturing method
JPH1129848A (en) Chromium nitride coating film and its forming method
JP2686001B2 (en) Austenitic stainless hard screws
JPH08158035A (en) Carburizing treatment for austenitic metal and austenitic metal product using the same
JP3428776B2 (en) Steel nitriding method
CN1032263C (en) Motor rotary shaft and manufacturing method thereof
JP3396336B2 (en) Method of nitriding steel
US6020025A (en) Method of manufacturing a crank shaft
KR100213404B1 (en) Stainless screw and its manufacturing method
US5426998A (en) Crank shaft and method of manufacturing the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19991026

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071126

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091126

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091126

Year of fee payment: 10