JP5333156B2 - Vapor growth equipment - Google Patents

Vapor growth equipment Download PDF

Info

Publication number
JP5333156B2
JP5333156B2 JP2009253204A JP2009253204A JP5333156B2 JP 5333156 B2 JP5333156 B2 JP 5333156B2 JP 2009253204 A JP2009253204 A JP 2009253204A JP 2009253204 A JP2009253204 A JP 2009253204A JP 5333156 B2 JP5333156 B2 JP 5333156B2
Authority
JP
Japan
Prior art keywords
film
substrate
top plate
deposition
vapor phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009253204A
Other languages
Japanese (ja)
Other versions
JP2011100783A (en
Inventor
高裕 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009253204A priority Critical patent/JP5333156B2/en
Publication of JP2011100783A publication Critical patent/JP2011100783A/en
Application granted granted Critical
Publication of JP5333156B2 publication Critical patent/JP5333156B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)

Description

本発明は、基板上にAlGaInN(ただしx+y+z=1)膜を有機金属気相エピタキシャル(Metal Organic Chemical Vapor Deposition: MOCVD)法によってエピタキシャル成長させる気相成長装置に関し、特に良質なAlGaInN膜を得ることができ、生産性を向上させることができる気相成長装置に関する。 The present invention relates to a vapor phase growth apparatus for epitaxially growing an Al x Ga y In z N (where x + y + z = 1) film on a substrate by a metal organic chemical vapor deposition (MOCVD) method. x Ga y In z N film can be obtained, relating to vapor phase growth apparatus which can improve productivity.

エレクトロニクス・オプトエレクトロニクス用材料としてIII−V族窒化物半導体膜、特にAlGaInN(ただしx+y+z=1)膜が用いられている。AlGaInN膜のエピタキシャル成長方法として、MOCVD法やMOVPE(Metalorganic Vapor Phase Epitaxy)法が一般的に知られており、最近では塩化物気相エピタキシャル(Hydride Vapor Phase Epitaxy: HVPE)法も提案されている。 Group III-V nitride semiconductor films, especially Al x Ga y In z N (where x + y + z = 1) films are used as materials for electronics and optoelectronics. As an epitaxial growth method of Al x Ga y In z N film, MOCVD method or MOVPE (Metalorganic Vapor Phase Epitaxy) method are generally known, chloride vapor-phase epitaxial recently (Hydride Vapor Phase Epitaxy: HVPE) method is also Proposed.

HVPE法でGaN膜を成膜する場合、表面にGaN薄膜を形成したサファイア基板を内部に保持した反応炉内にガリウム金属を装填し、反応炉に塩酸ガスを導入して塩化ガリウムガスを発生させ、これにアンモニアガスを反応させてGaN膜を堆積させる。このHVPE法は、MOCVD法やMOVPE法に比べて成膜速度が高い。例えば、MOVPE法によるGaN膜の典型的な成膜速度は毎時数μmであるが、HVPE法によるGaN膜の典型的な成膜速度は毎時数百μmである。従って、HVPE法は、膜厚の大きなIII−V族窒化物半導体膜を形成する場合に有利である。   When a GaN film is formed by the HVPE method, gallium metal is loaded into a reaction furnace in which a sapphire substrate having a GaN thin film formed on the surface is held, and hydrochloric acid gas is introduced into the reaction furnace to generate gallium chloride gas. This is reacted with ammonia gas to deposit a GaN film. This HVPE method has a higher deposition rate than the MOCVD method and the MOVPE method. For example, the typical film formation rate of the GaN film by the MOVPE method is several μm / hour, but the typical film formation rate of the GaN film by the HVPE method is several hundred μm / hour. Therefore, the HVPE method is advantageous when forming a group III-V nitride semiconductor film having a large film thickness.

しかし、HVPE法では、良好なAlGaInN(ただしx+y+z=1)膜が得られにくく、基板内での膜厚の変動が比較的大きいという問題がある。また、MOVPE法では成膜速度が遅く、コストが高くなるという問題がある。従って、AlGaInN(ただしx+y+z=1)膜のエピタキシャル成長にはMOCVD法が用いられる。 However, the HVPE method has a problem that it is difficult to obtain a good Al x Ga y In z N (where x + y + z = 1) film, and the film thickness variation in the substrate is relatively large. Further, the MOVPE method has a problem that the film forming speed is slow and the cost is high. Therefore, the MOCVD method is used for epitaxial growth of the Al x Ga y In z N (where x + y + z = 1) film.

MOCVD法を用いる装置の反応炉の内壁は一般的に石英(SiO)製である。そして、基板と対向するように反応炉の天井部の内壁に取り付けられた天板(防着板)も石英製である(例えば、特許文献1参照)。結晶成長中に天板にもデポ膜が堆積するため、デポ膜が堆積した天板を洗浄した天板に定期的に交換する必要がある。 The inner wall of the reactor of the apparatus using the MOCVD method is generally made of quartz (SiO 2 ). And the top plate (attachment plate) attached to the inner wall of the ceiling part of the reactor so as to face the substrate is also made of quartz (for example, see Patent Document 1). Since a deposit film is deposited on the top plate during crystal growth, it is necessary to periodically replace the top plate on which the deposit film is deposited with a cleaned top plate.

特開平5−144734号公報JP-A-5-144734

AlGaInN(ただしx+y+z=1)膜の成長温度の高低差は、他のIII−V族半導体膜のそれに比べて大きい。従って、AlGaInN(ただしx+y+z=1)膜の成長中に天板は大きく撓む。このため、天板に堆積したデポ膜に亀裂が発生し、そこを起点としてデポ膜が剥がれて基板上に落下して、AlGaInN(ただしx+y+z=1)膜の特性が著しく劣化するという問題があった。これを防ぐためには、天板を短いサイクルで交換する必要があり、生産性が劣化するという問題があった。 The difference in the growth temperature of the Al x Ga y In z N (where x + y + z = 1) film is larger than that of other III-V group semiconductor films. Therefore, the top plate bends greatly during the growth of the Al x Ga y In z N (where x + y + z = 1) film. For this reason, a crack is generated in the deposition film deposited on the top plate, and the deposition film is peeled off from the crack and dropped onto the substrate, and the characteristics of the Al x Ga y In z N (x + y + z = 1) film are remarkably increased. There was a problem of deterioration. In order to prevent this, it is necessary to replace the top plate in a short cycle, and there is a problem that productivity is deteriorated.

本発明は、上述のような課題を解決するためになされたもので、その目的は、良質なAlGaInN膜を得ることができ、生産性を向上させることができる気相成長装置を得るものである。 The present invention has been made in order to solve the above-described problems, and an object of the present invention is to obtain a high-quality Al x Ga y In z N film and to improve the productivity by vapor phase growth. Get the device.

本発明は、基板上にAlGaInN(ただしx+y+z=1)膜をMOCVD法によってエピタキシャル成長させる気相成長装置において、反応炉と、前記反応炉内において前記基板を保持するサセプタと、前記反応炉内に原料ガスを導入する導入部と、前記基板と対向するように前記反応炉の内壁に取り付けられた防着板と、前記防着板の前記基板側の表面に形成され、GaN膜とAlN膜が交互に積層された多層膜とを備えることを特徴とする気相成長装置である。 The present invention relates to a vapor phase growth apparatus for epitaxially growing an Al x Ga y In z N (x + y + z = 1) film on a substrate by MOCVD, a reaction furnace, a susceptor holding the substrate in the reaction furnace, An introduction part for introducing a source gas into the reaction furnace; a deposition plate attached to the inner wall of the reaction furnace so as to face the substrate; and a surface of the deposition plate on the substrate side, GaN A vapor phase growth apparatus comprising a multilayer film in which films and AlN films are alternately stacked.

本発明により、良質なAlGaInN膜を得ることができ、生産性を向上させることができる。 According to the present invention, a high-quality Al x Ga y In z N film can be obtained, and productivity can be improved.

本発明の実施の形態1に係る気相成長装置を示す図である。It is a figure which shows the vapor phase growth apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る気相成長装置を示す図である。It is a figure which shows the vapor phase growth apparatus which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る気相成長装置を示す図である。It is a figure which shows the vapor phase growth apparatus which concerns on Embodiment 3 of this invention. 本発明の実施の形態3に係る防着板を示す斜視図である。It is a perspective view which shows the adhesion prevention board which concerns on Embodiment 3 of this invention.

実施の形態1.
図1は、本発明の実施の形態1に係る気相成長装置を示す図である。反応炉10内に基板12を水平に保持するサセプタ14が設けられている。加熱装置16は、サセプタ14を介して基板12を所定の温度に加熱する。
Embodiment 1 FIG.
FIG. 1 is a diagram showing a vapor phase growth apparatus according to Embodiment 1 of the present invention. A susceptor 14 that holds the substrate 12 horizontally is provided in the reaction furnace 10. The heating device 16 heats the substrate 12 to a predetermined temperature via the susceptor 14.

導入部18は、トリメチルアルミニウム、トリメチルガリウム若しくはトリメチルインジウム又はこれらの有機金属ガスの2種類以上の混合ガスである有機金属原料20を導入する導入管22と、窒素原料であるアンモニア24を導入する導入管26とに接続されている。そして、導入部18は、これらの原料ガスを水素や窒素のようなキャリアガスとを一緒に反応炉10内に導入する。反応炉10の外周部にガス排気口28が設けられ、ガス排気口28は排気系に接続されている。   The introduction unit 18 introduces an introduction pipe 22 for introducing an organometallic raw material 20 that is trimethylaluminum, trimethylgallium, trimethylindium, or a mixed gas of two or more of these, and an introduction of ammonia 24 that is a nitrogen raw material. Connected to the tube 26. The introduction unit 18 introduces these raw material gases into the reaction furnace 10 together with a carrier gas such as hydrogen or nitrogen. A gas exhaust port 28 is provided in the outer periphery of the reaction furnace 10, and the gas exhaust port 28 is connected to an exhaust system.

基板12と対向するように反応炉10の天井部の内壁に、石英(SiO)製の天板30(防着板)が取り付けられている。天板30の基板12側の表面に、GaN膜とAlN膜が交互に20層積層された多層膜32が形成されている。GaN膜とAlN膜の一層分の膜厚はそれぞれ200nmである。 A top plate 30 (a deposition plate) made of quartz (SiO 2 ) is attached to the inner wall of the ceiling of the reaction furnace 10 so as to face the substrate 12. A multilayer film 32 in which 20 layers of GaN films and AlN films are alternately laminated is formed on the surface of the top plate 30 on the substrate 12 side. The film thickness of one layer of the GaN film and the AlN film is 200 nm.

この気相成長装置は、基板12上にAlGaInN(ただしx+y+z=1)膜、即ちAlN膜、GaN膜、InN膜、AlGaN膜、AlInN膜、GaInN膜、又はAlGaInN膜をMOCVD法によってエピタキシャル成長させる。即ち、反応炉10内に導入された有機金属原料20とアンモニア24との反応により生成された金属窒化物が、加熱された基板12上に堆積する。この際に、天板30の表面にもAlGaInN(ただしx+y+z=1)からなるデポ膜が堆積する。 This vapor phase growth apparatus MOCVDs an Al x Ga y In z N (where x + y + z = 1) film, that is, an AlN film, a GaN film, an InN film, an AlGaN film, an AlInN film, a GaInN film, or an AlGaInN film on a substrate 12. Epitaxially grown by the method. That is, the metal nitride generated by the reaction between the organometallic raw material 20 introduced into the reaction furnace 10 and the ammonia 24 is deposited on the heated substrate 12. At this time, a deposition film made of Al x Ga y In z N (x + y + z = 1) is also deposited on the surface of the top plate 30.

上記のように、多層膜32は、熱膨張率差が大きいGaN膜(熱膨張率:5.59×10−6/K)とAlN膜(熱膨張率:4.15×10−6/K)が交互に積層されたものである。従って、デポ膜と天板30の間に発生する内部ストレスが多層膜32によって緩和される。 As described above, the multilayer film 32 includes a GaN film (thermal expansion coefficient: 5.59 × 10 −6 / K) and an AlN film (thermal expansion coefficient: 4.15 × 10 −6 / K) having a large difference in thermal expansion coefficient. ) Are alternately stacked. Therefore, the internal stress generated between the deposition film and the top plate 30 is relieved by the multilayer film 32.

これにより、天板30からデポ膜が剥がれるのを抑制することができる。従って、面内均一に良質なAlGaInN膜を得ることができる。また、天板30の交換サイクルを大幅に伸ばすことができるため、生産性を向上させることができる。 Thereby, it can suppress that a deposit film peels from the top plate 30. FIG. Therefore, a good quality Al x Ga y In z N film can be obtained uniformly in the plane. Moreover, since the replacement cycle of the top plate 30 can be greatly extended, productivity can be improved.

なお、多層膜32の第一層目がGaN膜とAlN膜のどちらでもよく、一層分の膜厚や積層数も上記の例に限られない。多層膜32を形成するには、反応炉10内を1000℃まで昇温させ、トリメチルガリウムとアンモニアガスを反応炉10内に導入してGaN膜を堆積させ、トリメチルアルミニウムとアンモニアガスを導入してAlNを堆積させる。   Note that the first layer of the multilayer film 32 may be either a GaN film or an AlN film, and the film thickness and the number of stacked layers are not limited to the above example. In order to form the multilayer film 32, the temperature in the reactor 10 is raised to 1000 ° C., trimethylgallium and ammonia gas are introduced into the reactor 10 to deposit a GaN film, and trimethylaluminum and ammonia gas are introduced. AlN is deposited.

実施の形態2.
図2は、本発明の実施の形態2に係る気相成長装置を示す図である。実施の形態1の石英製の天板30の代わりに、アルミナ(Al)からなる天板34が設けられている。その他の構成は実施の形態1と同様である。
Embodiment 2. FIG.
FIG. 2 is a diagram showing a vapor phase growth apparatus according to Embodiment 2 of the present invention. Instead of the quartz top plate 30 of the first embodiment, a top plate 34 made of alumina (Al 2 O 3 ) is provided. Other configurations are the same as those of the first embodiment.

GaNの熱膨張率は5.59×10−6/K、AlNの熱膨張率は4.15×10−6/K、SiOの熱膨張率は8×10−6/K、Alの熱膨張率は5.3×10−6/Kである。従って、実施の形態1に比べて天板34とデポ膜との熱膨張率差が小さいため、デポ膜が剥がれるのを更に抑制できる。 The thermal expansion coefficient of GaN is 5.59 × 10 −6 / K, the thermal expansion coefficient of AlN is 4.15 × 10 −6 / K, the thermal expansion coefficient of SiO 2 is 8 × 10 −6 / K, and Al 2 O. The coefficient of thermal expansion of 3 is 5.3 × 10 −6 / K. Therefore, since the difference in coefficient of thermal expansion between the top plate 34 and the deposition film is smaller than that in the first embodiment, it is possible to further suppress peeling of the deposition film.

なお、天板34がシリコンカーバイド(SiC)(熱膨張率:4.2×10−6/K)からなる場合でも、ある程度の効果を得ることができる。ただし、アルミナからなる天板34を用いる方が好ましい。 Even when the top plate 34 is made of silicon carbide (SiC) (thermal expansion coefficient: 4.2 × 10 −6 / K), a certain degree of effect can be obtained. However, it is preferable to use a top plate 34 made of alumina.

実施の形態3.
図3は、本発明の実施の形態3に係る気相成長装置を示す図である。図4は、本発明の実施の形態3に係る防着板を示す斜視図である。実施の形態1の天板30の代わりに天板36が設けられている。その他の構成は実施の形態1と同様である。
Embodiment 3 FIG.
FIG. 3 is a diagram showing a vapor phase growth apparatus according to Embodiment 3 of the present invention. FIG. 4 is a perspective view showing a deposition preventing plate according to Embodiment 3 of the present invention. A top plate 36 is provided instead of the top plate 30 of the first embodiment. Other configurations are the same as those of the first embodiment.

石英製(SiO)の天板36の表面に、切削又はブラスト研磨等により格子状の溝38が施されている。これにより、実施の形態1に比べてデポ膜と天板30の密着性が向上するため、デポ膜が剥がれるのを更に抑制できる。 A lattice-shaped groove 38 is formed on the surface of the top plate 36 made of quartz (SiO 2 ) by cutting or blast polishing. Thereby, since the adhesiveness of a deposition film and the top plate 30 improves compared with Embodiment 1, it can further suppress that a deposition film peels.

ただし、結晶成長中に流れる種々のガスに乱流を発生させないために、極端な凹凸を付けることは好ましくない。そこで、溝38の深さ及び幅を天板36の厚みに対して1/5〜1/10程度にする。また、溝38の間隔は、剥がれるデポ膜のサイズよりも小さいことが好ましく、例えば5mm程度とする。   However, it is not preferable to apply extreme irregularities in order to prevent turbulent flow from being generated in various gases flowing during crystal growth. Therefore, the depth and width of the groove 38 are set to about 1/5 to 1/10 of the thickness of the top plate 36. Moreover, it is preferable that the space | interval of the groove | channel 38 is smaller than the size of the deposit film which peels, for example, is about 5 mm.

なお、溝38の深さ、幅及び間隔は上記の例に限られない。また、天板36が実施の形態2と同様にアルミナからなることが好ましい。   The depth, width, and interval of the groove 38 are not limited to the above example. Moreover, it is preferable that the top plate 36 is made of alumina as in the second embodiment.

10 反応炉
12 基板
14 サセプタ
18 導入部
30,34,36 天板(防着板)
32 多層膜
38 溝
10 Reactor 12 Substrate 14 Susceptor 18 Introduction part 30, 34, 36 Top plate (protection plate)
32 Multilayer film 38 Groove

Claims (3)

基板上にAlGaInN(ただしx+y+z=1)膜をMOCVD法によってエピタキシャル成長させる気相成長装置において、
反応炉と、
前記反応炉内において前記基板を保持するサセプタと、
前記反応炉内に原料ガスを導入する導入部と、
前記基板と対向するように前記反応炉の内壁に取り付けられた防着板と、
前記防着板の前記基板側の表面に形成され、GaN膜とAlN膜が交互に積層された多層膜とを備えることを特徴とする気相成長装置。
In a vapor phase growth apparatus for epitaxially growing an Al x Ga y In z N (where x + y + z = 1) film on a substrate by MOCVD,
A reactor,
A susceptor for holding the substrate in the reaction furnace;
An introduction part for introducing a raw material gas into the reaction furnace;
A deposition plate attached to the inner wall of the reactor so as to face the substrate;
A vapor phase growth apparatus, comprising: a multilayer film formed on a surface of the deposition preventing plate on the substrate side, wherein GaN films and AlN films are alternately laminated.
前記防着板はアルミナからなることを特徴とする請求項1に記載の気相成長装置。   The vapor deposition apparatus according to claim 1, wherein the deposition preventing plate is made of alumina. 前記防着板の表面に溝が施されていることを特徴とする請求項1又は2に記載の気相成長装置。   The vapor phase growth apparatus according to claim 1 or 2, wherein a groove is formed on a surface of the deposition preventing plate.
JP2009253204A 2009-11-04 2009-11-04 Vapor growth equipment Active JP5333156B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009253204A JP5333156B2 (en) 2009-11-04 2009-11-04 Vapor growth equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009253204A JP5333156B2 (en) 2009-11-04 2009-11-04 Vapor growth equipment

Publications (2)

Publication Number Publication Date
JP2011100783A JP2011100783A (en) 2011-05-19
JP5333156B2 true JP5333156B2 (en) 2013-11-06

Family

ID=44191758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009253204A Active JP5333156B2 (en) 2009-11-04 2009-11-04 Vapor growth equipment

Country Status (1)

Country Link
JP (1) JP5333156B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6050688B2 (en) * 2013-01-11 2016-12-21 大陽日酸株式会社 Vapor growth equipment
JP6063293B2 (en) * 2013-02-22 2017-01-18 大陽日酸株式会社 Vapor growth method
JP6666516B1 (en) * 2018-10-18 2020-03-13 東ソー・クォーツ株式会社 Quartz glass dummy wafer

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001345268A (en) * 2000-05-31 2001-12-14 Matsushita Electric Ind Co Ltd Device and method for manufacturing semiconductor
JP4210823B2 (en) * 2001-08-20 2009-01-21 サンケン電気株式会社 Shiyaki barrier diode and manufacturing method thereof
JP2004055672A (en) * 2002-07-17 2004-02-19 Nikko Materials Co Ltd Chemical vapor deposition apparatus and method
JP2007227429A (en) * 2006-02-21 2007-09-06 Ngk Insulators Ltd Vapor phase epitaxy method of aln-based group iii nitride thick film, and mocvd apparatus
JP2009065025A (en) * 2007-09-07 2009-03-26 Covalent Materials Corp Compound semiconductor substrate
JP2009117618A (en) * 2007-11-06 2009-05-28 Sumitomo Electric Ind Ltd Method for fabricating epitaxial substrate, and method for baking the substrate
JP5196474B2 (en) * 2008-01-29 2013-05-15 サムコ株式会社 Thin film manufacturing equipment
JP2009078971A (en) * 2009-01-07 2009-04-16 Sumitomo Electric Ind Ltd Nitride semiconductor single crystal substrate and method for synthesizing the same

Also Published As

Publication number Publication date
JP2011100783A (en) 2011-05-19

Similar Documents

Publication Publication Date Title
JP5276852B2 (en) Method for manufacturing group III nitride semiconductor epitaxial substrate
JP5472513B2 (en) Single crystal substrate, group III nitride crystal obtained using the same, and method for producing group III nitride crystal
JPH10173288A (en) Method for growing nitride-based iii-v compound semiconductor layer, and manufacture if nitride-based iii-v compound semiconductor substrate
JP2010269970A (en) Nitride semiconductor substrate
JP4467615B2 (en) Nitride semiconductor crystal growth method, growth apparatus, and program
KR101672213B1 (en) Method for manufacturing semiconductor device
JP5333156B2 (en) Vapor growth equipment
JP5238924B2 (en) Single crystal substrate and method for producing nitride semiconductor single crystal
JP4738748B2 (en) Method for producing group III nitride single crystal
JP4130389B2 (en) Method for producing group III nitride compound semiconductor substrate
JP2013227202A (en) Method for manufacturing semiconductor crystal of nitride of group 13 metal in periodic table and semiconductor light-emitting device using semiconductor crystal of nitride of group 13 metal in periodic obtained by the manufacturing method
JPH1012555A (en) Method of manufacturing nitride compd. semiconductor crystal
JP2016201481A (en) Vapor deposition method
JP4969860B2 (en) Method for producing AlN single crystal film
JP2005183524A (en) Epitaxial substrate and its manufacturing method, and method of reducing dislocation
JP2007227429A (en) Vapor phase epitaxy method of aln-based group iii nitride thick film, and mocvd apparatus
JP3579344B2 (en) Method and apparatus for manufacturing group IIIV nitride film
TW201338205A (en) Manufacturing method of gallium nitride template substrate and gallium nitride template substrate
JP2009084136A (en) Method for manufacturing semiconductor device
JP2013209271A (en) Manufacturing method of periodic table group 13 metal nitride semiconductor substrate, and groundwork substrate used for the manufacturing method
JP4084539B2 (en) Method for producing crystal growth substrate of group III nitride compound semiconductor
JP4545389B2 (en) Dislocation reduction method for epitaxial substrate and group III nitride layer group
JP4748925B2 (en) Epitaxial substrate, semiconductor multilayer structure, and method for reducing dislocations in group III nitride layer
JP3104677B2 (en) Group III nitride crystal growth equipment
JP5601033B2 (en) Nitride single crystal manufacturing method and nitride single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120814

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130715

R150 Certificate of patent or registration of utility model

Ref document number: 5333156

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250