JP2009078971A - Nitride semiconductor single crystal substrate and method for synthesizing the same - Google Patents

Nitride semiconductor single crystal substrate and method for synthesizing the same Download PDF

Info

Publication number
JP2009078971A
JP2009078971A JP2009001807A JP2009001807A JP2009078971A JP 2009078971 A JP2009078971 A JP 2009078971A JP 2009001807 A JP2009001807 A JP 2009001807A JP 2009001807 A JP2009001807 A JP 2009001807A JP 2009078971 A JP2009078971 A JP 2009078971A
Authority
JP
Japan
Prior art keywords
substrate
single crystal
nitride semiconductor
crystal substrate
semiconductor single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009001807A
Other languages
Japanese (ja)
Inventor
Shinsuke Fujiwara
伸介 藤原
Seiji Nakahata
成二 中畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2009001807A priority Critical patent/JP2009078971A/en
Publication of JP2009078971A publication Critical patent/JP2009078971A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To decrease an absorption coefficient of a nitride semiconductor single crystal substrate itself. <P>SOLUTION: The nitride semiconductor single crystal substrate has a composition of AlN, a total impurity density of not more than 1×10<SP>17</SP>cm<SP>-3</SP>, and an absorption coefficient of not more than 50 cm<SP>-1</SP>in the full wavelength range from 350 to 780 nm. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は種々の電子デバイスの基板として利用され得る窒化物半導体単結晶に関し、特に、窒化物半導体単結晶基板の破壊靭性と透光性の改善に関する。   The present invention relates to a nitride semiconductor single crystal that can be used as a substrate for various electronic devices, and more particularly to improvement of fracture toughness and translucency of a nitride semiconductor single crystal substrate.

半導体電子デバイスの基板として窒化物半導体単結晶ウエハを利用する場合、当然のことながら、半導体電子デバイスの作製プロセス中にその窒化物半導体単結晶ウエハが割れないようにしなければならない。なぜならば、窒化物半導体単結晶ウエハがプロセス途中で割れてしまえば、その後のプロセス処理を行うことができず、ウエハが無駄になってしまうからである。   When a nitride semiconductor single crystal wafer is used as a substrate of a semiconductor electronic device, it is natural that the nitride semiconductor single crystal wafer should not be broken during the process of manufacturing the semiconductor electronic device. This is because if the nitride semiconductor single crystal wafer is cracked during the process, the subsequent process cannot be performed, and the wafer is wasted.

近年では、シリコン単結晶ウエハのみならず窒化物半導体単結晶ウエハを利用して種々の電子デバイスが作製されている。窒化物半導体単結晶ウエハの中でも、六方晶系のAlxGa1-xN(0≦x≦1)半導体ウエハは、種々の電子デバイスを作製するために好ましく用いられ得る。なお、本願明細書において、AlxGa1-xN(0≦x≦1)半導体をAlGaN系半導体と略称することもある。 In recent years, various electronic devices have been fabricated using not only silicon single crystal wafers but also nitride semiconductor single crystal wafers. Among the nitride semiconductor single crystal wafers, hexagonal Al x Ga 1-x N (0 ≦ x ≦ 1) semiconductor wafers can be preferably used for manufacturing various electronic devices. In the present specification, an Al x Ga 1-x N (0 ≦ x ≦ 1) semiconductor may be abbreviated as an AlGaN-based semiconductor.

ところで、非特許文献1のJpn.J.Appl.Phys. Vol.40 (2001) pp.L426-L427に記載されているように、シリコン単結晶に比べて、AlGaN系単結晶は低い破壊靭性を有していて割れやすい傾向にある。特に、AlN基板は、SiC基板やサファイヤ基板に比べて数分の1程度の低い破壊靭性を有し、そのハンドリング中に割れやすい。   By the way, as described in Jpn. J. Appl. Phys. Vol. 40 (2001) pp. L426-L427 of Non-Patent Document 1, AlGaN-based single crystals have lower fracture toughness than silicon single crystals. It has a tendency to break. In particular, an AlN substrate has a fracture toughness that is about a fraction of that of a SiC substrate or a sapphire substrate, and is easily broken during handling.

他方、窒化物半導体単結晶ウエハは発光素子の作製のためにしばしば利用され、特に短波長の光を放射し得る窒化物半導体発光素子の基板として利用されることが多い。この場合、短波長の光は半導体基板中の電子を励起しやすく、すなわち半導体基板中に吸収されやすい。このように、短波長の光が窒化物半導体基板に吸収されれば、発光素子から光を素子外に取り出す効率が低下してしまう。したがって、発光素子の作製に利用される窒化物半導体単結晶基板は、できるだけ短波長の光に対しても小さな吸収係数を有していることが望まれる。   On the other hand, a nitride semiconductor single crystal wafer is often used for manufacturing a light emitting device, and is often used as a substrate of a nitride semiconductor light emitting device capable of emitting light of a short wavelength. In this case, short-wavelength light easily excites electrons in the semiconductor substrate, that is, is easily absorbed in the semiconductor substrate. Thus, if light having a short wavelength is absorbed by the nitride semiconductor substrate, the efficiency of extracting light from the light emitting element to the outside of the element is reduced. Therefore, it is desired that the nitride semiconductor single crystal substrate used for manufacturing the light emitting element has a small absorption coefficient even for light having a short wavelength as much as possible.

非特許文献2のJ.Appl.Phys.,Vol.44,1973,pp.292-296においては、可視域から紫外域にかけて比較的小さな吸収係数を有するエピタキシャルAlN膜がHVPE(ハイドライド気相エピタキシ)法で育成され得ることを報告している。しかし、この非特許文献2におけるAlN膜も、短波長領域(特に紫外領域)においては十分に小さな吸収係数を有しているとは言えない。したがって、HVPEによってAlN層をさらに厚く育成して窒化物半導体単結晶基板として用いるとしても、そのAlN基板の短波長領域における吸収係数のさらなる低減が望まれる。   In J. Appl. Phys., Vol. 44, 1973, pp. 292-296 of Non-Patent Document 2, an epitaxial AlN film having a relatively small absorption coefficient from the visible region to the ultraviolet region is HVPE (hydride vapor phase epitaxy). It is reported that it can be nurtured by law. However, it cannot be said that the AlN film in Non-Patent Document 2 also has a sufficiently small absorption coefficient in a short wavelength region (particularly in the ultraviolet region). Therefore, even if the AlN layer is grown thicker by HVPE and used as a nitride semiconductor single crystal substrate, further reduction of the absorption coefficient in the short wavelength region of the AlN substrate is desired.

Jpn.J.Appl.Phys. Vol.40 (2001) pp.L426-L427Jpn.J.Appl.Phys.Vol.40 (2001) pp.L426-L427 J.Appl.Phys.,Vol.44,1973,pp.292-296J.Appl.Phys., Vol.44,1973, pp.292-296

上述のように、窒化物半導体単結晶ウエハは種々の電子デバイスの基板として利用され、近年では特にAlGaN系単結晶基板の需要が高まっている。しかし、このAlGaN系単結晶ウエハは割れやすく、このことが電子デバイスの生産性を低下させる要因となり得る。したがって、可能ならば、AlGaN系単結晶ウエハ自体の破壊靭性を改善することが望まれる。   As described above, nitride semiconductor single crystal wafers are used as substrates for various electronic devices, and in recent years, the demand for AlGaN-based single crystal substrates is increasing. However, this AlGaN-based single crystal wafer is easily broken, and this can be a factor that reduces the productivity of electronic devices. Therefore, if possible, it is desired to improve the fracture toughness of the AlGaN single crystal wafer itself.

また、窒化物半導体単結晶ウエハは、近年では短波長の発光素子の基板として用いられることが多い。この場合に、窒化物半導体基板が短波長の光を吸収すれば、短波長発光素子の光取り出し効率を低下させてしまう。したがって、可能ならば、AlGaN系単結晶基板自体の吸収係数を低減させることが望まれる。   In addition, a nitride semiconductor single crystal wafer is often used as a substrate for a light emitting element having a short wavelength in recent years. In this case, if the nitride semiconductor substrate absorbs light having a short wavelength, the light extraction efficiency of the short wavelength light emitting element is lowered. Therefore, if possible, it is desirable to reduce the absorption coefficient of the AlGaN single crystal substrate itself.

かかる状況に鑑み、本発明の一つの目的は、AlGaN系単結晶基板自体の破壊靭性を改善することである。また、本発明のもう一つの目的は、AlGaN系単結晶基板自体の吸収係数を低減させることである。   In view of this situation, one object of the present invention is to improve the fracture toughness of the AlGaN single crystal substrate itself. Another object of the present invention is to reduce the absorption coefficient of the AlGaN single crystal substrate itself.

本発明による窒化物半導体単結晶基板は、AlNの組成と、1×10 17 cm -3 以下の全不純物密度と、350〜780nmの全波長範囲における50cm-1以下の吸収係数を有することを特徴としている。 Nitride semiconductor single crystal substrate according to the invention has a composition of AlN, and the total impurity concentration 1 × 10 17 cm -3 or less, and an absorption coefficient in our Keru 50 cm -1 or less in the entire wavelength range of 350~780nm It is a feature that.

以上のような窒化物半導体単結晶基板は、HVPE法で好ましく合成され得る。このHVPE法に用いられる結晶成長炉内において、原料ガスが800℃以上の温度で接する領域の内壁がpBN(熱分解窒化ホウ素)で形成されているか、窒化物、炭化物、および酸化物のいずれかの焼結体で形成されているか、またはpBN、窒化物、炭化物、および酸化物のいずれかで表面コーティングされた部材で形成されていることが好ましい。   The nitride semiconductor single crystal substrate as described above can be preferably synthesized by the HVPE method. In the crystal growth furnace used in this HVPE method, the inner wall of the region where the source gas contacts at a temperature of 800 ° C. or higher is formed of pBN (pyrolytic boron nitride), or any of nitride, carbide, and oxide It is preferable that the sintered body is formed of a member that is surface-coated with any of pBN, nitride, carbide, and oxide.

本発明によれば、窒化物半導体単結晶基板が改善された破壊靭性を有し得るので、その基板を用いた半導体電子デバイスの製造プロセスにおいて、基板が破損し難くなってそのデバイスの生産性を高めることができる。   According to the present invention, a nitride semiconductor single crystal substrate can have improved fracture toughness. Therefore, in the manufacturing process of a semiconductor electronic device using the substrate, the substrate is not easily damaged, and the productivity of the device is reduced. Can be increased.

さらに、本発明によれば、窒化物半導体単結晶基板が改善された透光性を有し得るので、その基板を用いた半導体発光素子の光取り出し効率を高めることができる。   Furthermore, according to the present invention, since the nitride semiconductor single crystal substrate can have improved translucency, the light extraction efficiency of a semiconductor light emitting device using the substrate can be increased.

本発明によるAlGaN系単結晶基板をHVPEで合成するために用いられ得る単結晶育成装置である。1 is a single crystal growth apparatus that can be used for synthesizing an AlGaN-based single crystal substrate according to the present invention by HVPE. 本発明によるAlN単結晶基板における吸収係数の波長依存性を示すグラフである。It is a graph which shows the wavelength dependence of the absorption coefficient in the AlN single crystal substrate by this invention.

前述のように、種々の半導体電子デバイスの作製のためにAlGaN系単結晶基板を使用することを考えれば、その基板が割れにくいことが望まれる。割れにくさを規定する物性値は、破壊靭性値である。ここで、本発明者らは、AlGaN系単結晶基板の不純物の増加とともにその破壊靭性値が低下し、その基板が割れやすくなることを見出した。すなわち、AlGaN系単結晶基板の靭性を改善するためには、その不純物密度を低減させることが重要であることがわかった。   As described above, considering the use of an AlGaN single crystal substrate for the production of various semiconductor electronic devices, it is desired that the substrate is difficult to break. The physical property value that defines the resistance to cracking is the fracture toughness value. Here, the present inventors have found that the fracture toughness value decreases as the impurities of the AlGaN-based single crystal substrate increase, and the substrate easily breaks. That is, it has been found that it is important to reduce the impurity density in order to improve the toughness of the AlGaN single crystal substrate.

そこで、本発明者らは、不純物源を極力除去してAlN単結晶およびGaN単結晶を成長させた。AlN結晶の育成においては、(0001)面の主面を有する直径51mmのAlN単結晶が種結晶基板として用いられ、原料ガスとしてAlCl3またはAlClおよびHN3が使用された。他方、GaN結晶の育成においては、(0001)面の主面を有する直径51mmのGaN単結晶が種結晶基板として用いられ、原料ガスとしてGaClとHN3が使用された。 Therefore, the inventors have grown the AlN single crystal and the GaN single crystal by removing the impurity source as much as possible. In the growth of the AlN crystal, an AlN single crystal having a diameter of 51 mm having a (0001) principal surface was used as a seed crystal substrate, and AlCl 3 or AlCl and HN 3 were used as source gases. On the other hand, in growing a GaN crystal, a GaN single crystal having a diameter of 51 mm having a (0001) principal surface was used as a seed crystal substrate, and GaCl and HN 3 were used as source gases.

図1は、本発明によるAlN単結晶およびGaN単結晶をHVPEで合成する際に用いられた単結晶育成炉を模式的な断面図で図解している。この図に示されているように、石英ガラスの反応管1は排気口1aを有しており、その外周にはヒータ2が配置されている。   FIG. 1 is a schematic cross-sectional view illustrating a single crystal growth furnace used in synthesizing an AlN single crystal and a GaN single crystal according to the present invention by HVPE. As shown in this figure, the reaction tube 1 made of quartz glass has an exhaust port 1a, and a heater 2 is disposed on the outer periphery thereof.

ここで、石英ガラスは、高温においてSiやOの汚染源となり得る(特に800℃以上の高温で顕著)。また、反応管1中で高温になる領域にグラファイトの内管を配置しても、高温ではそれがC汚染源になり得る。   Here, quartz glass can be a source of contamination of Si and O at high temperatures (particularly at high temperatures of 800 ° C. or higher). Further, even if a graphite inner tube is disposed in a region where the temperature in the reaction tube 1 becomes high, it can become a C contamination source at a high temperature.

したがって、反応管1内において、800℃以上の高温になる領域には、pBNの内管3が配置された。ただし、この内管3はpBNに限られず、窒化物、炭化物、または酸化物の焼結体(バインダーを使用しないものが好ましい)で形成されていてもよく、窒化物、炭化物、または酸化物でコーティングされた部材で形成されていてもよい。   Therefore, in the reaction tube 1, the pBN inner tube 3 was arranged in a region where the temperature became 800 ° C. or higher. However, the inner tube 3 is not limited to pBN, and may be formed of a sintered body of nitride, carbide, or oxide (preferably not using a binder), and may be formed of nitride, carbide, or oxide. It may be formed of a coated member.

内管3内において、pBN基台4上にAlNまたはGaNの種結晶基板5が配置された。そして、その内管3内へ、3族原料ガス(AlCl3、AlCl、またはGaCl)が第1のガス導入管6から導入され、NH3ガスが第2のガス導入管7から導入された。 In the inner tube 3, an AlN or GaN seed crystal substrate 5 was disposed on the pBN base 4. Then, the group 3 source gas (AlCl 3 , AlCl, or GaCl) was introduced into the inner pipe 3 from the first gas introduction pipe 6, and NH 3 gas was introduced from the second gas introduction pipe 7.

キャリアガスとしては、高純度のH2、N2、およびArのいずれか、またはそれらの混合ガスが使用された。3族原料ガスとNH3ガスの供給比率は1:10〜1:1000の範囲内に設定された。基板の温度は900〜1100℃の範囲内で設定された。AlNまたはGaNの結晶の成長速度が10〜50μm/hになるように合成条件を調整して、基板5上に厚さ5mmのAlNまたはGaNの単結晶を成長させた。なお、Al用原料ガスとGa用原料ガスを同時内管3内に導入すれば、AlGaN混晶の単結晶を育成することができる。 As the carrier gas, any one of high purity H 2 , N 2 and Ar, or a mixed gas thereof was used. The supply ratio of the Group 3 source gas and NH 3 gas was set within the range of 1:10 to 1: 1000. The temperature of the substrate was set within the range of 900 to 1100 ° C. The synthesis conditions were adjusted so that the growth rate of the AlN or GaN crystal was 10 to 50 μm / h, and an AlN or GaN single crystal having a thickness of 5 mm was grown on the substrate 5. If an Al source gas and a Ga source gas are introduced into the simultaneous inner tube 3, an AlGaN mixed crystal single crystal can be grown.

得られたGaN結晶とAlN結晶から、(0001)面の主面を有しかつ51mmの直径と0.5mmの厚さを有するAlN基板とGaN基板が切り出された。これらの基板の両面をミラー研磨して後にエッチングを行って、厚さ0.4mmで両面ミラーのAlN基板とGaN基板が得られた。   From the obtained GaN crystal and AlN crystal, an AlN substrate and a GaN substrate having a main surface of (0001) plane and a diameter of 51 mm and a thickness of 0.5 mm were cut out. Both surfaces of these substrates were mirror-polished and then etched to obtain a double-sided mirror AlN substrate and GaN substrate having a thickness of 0.4 mm.

これらのAlN基板とGaN基板についてSIMS(2次イオン質量分析)で不純物密度を測定したところ、いずれの基板中においても最も多い不純物はOであったが、その密度は5×1016cm-3以下であり、全不純物密度は1×1017cm-3以下であった。 When the impurity density of these AlN substrate and GaN substrate was measured by SIMS (secondary ion mass spectrometry), the most impurity in any substrate was O, but the density was 5 × 10 16 cm −3. The total impurity density was 1 × 10 17 cm −3 or less.

さらに、これらのAlN基板とGaN基板について、破壊靭性値が測定された。この場合に、ダイヤモンド正四角錐の圧子を用いたビッカース硬度測定法による圧子押し込み時に基板上に形成されたクラックの長さに基づいて、次式(1)および(2)によって破壊靭性が評価された。   Furthermore, fracture toughness values were measured for these AlN substrates and GaN substrates. In this case, the fracture toughness was evaluated by the following equations (1) and (2) based on the length of the crack formed on the substrate when the indenter was pressed by the Vickers hardness measurement method using a diamond square pyramid indenter. .

C=ξ(E/HV1/2(P/c3/2)・・・(1)
V=P/(2a3/2)・・・(2)
ここで、KCは破壊靭性値、HVはビッカース硬度、Eはヤング率、ξは構成定数(=0.016)、Pは圧子荷重(0.5〜5N)、2aは窪み長さ、そしてcはクラック長さを表している。
K C = ξ (E / H V ) 1/2 (P / c 3/2 ) (1)
H V = P / (2a 3/2 ) (2)
Here, K C is the fracture toughness, H V is the Vickers hardness, E is Young's modulus, xi] configuration constants (= 0.016), P is the indenter load (0.5 to 5 N), 2a indentations length, C represents the crack length.

上式(1)および(2)による評価の結果、AlN基板の破壊靭性値は0.5MPa・m1/2であり、GaN基板の破壊靭性値は1.2MPa・m1/2であった。 As a result of the evaluation by the above formulas (1) and (2), the fracture toughness value of the AlN substrate was 0.5 MPa · m 1/2 and the fracture toughness value of the GaN substrate was 1.2 MPa · m 1/2 . .

なお、内管3を使用しなくてO、Cなどの不純物が1×1018cm-3程度混入したGaN基板では、破壊靭性値が1.0MPa・m1/2程度であり、高純度化することによって破壊靭性値が向上することが見出された。こうして、高い破壊靭性値を示すAlGaN系基板の作製に成功した。 In addition, the GaN substrate in which impurities such as O and C are mixed at about 1 × 10 18 cm −3 without using the inner tube 3 has a fracture toughness value of about 1.0 MPa · m 1/2, which is highly purified. It has been found that the fracture toughness value is improved. Thus, an AlGaN-based substrate showing a high fracture toughness value was successfully produced.

得られたGaN基板の外周研削加工(直径2インチにする)を行なったところ、破壊靭性値が低い低純度GaN基板では割れが多発し、歩留りが20%程度であった。他方、高純度化によって破壊靭性値が高められたGaN基板では、歩留りが80%にまで向上した。なお、破壊は基板が大口径化するほど大きな問題になるので、約20cm2未満の小さな基板では破壊靭性値の改善はそれほど強く望まれることはない。 When the outer peripheral grinding process (with a diameter of 2 inches) of the obtained GaN substrate was performed, the low-purity GaN substrate having a low fracture toughness value was frequently cracked, and the yield was about 20%. On the other hand, in the GaN substrate whose fracture toughness value was increased by high purity, the yield was improved to 80%. Since fracture becomes a larger problem as the substrate becomes larger in diameter, an improvement in fracture toughness value is not so strongly desired for a small substrate of less than about 20 cm 2 .

ところで、窒化物半導体の中でも、AlNおよび(Al濃度の高い)AlGaNは広いエネルギバンドギャップを有し、紫外領域の発光材料として期待されている。より具体的には、AlNまたはAlGaNの基板上に同様の3族窒化物によってpn接合を形成し、紫外線発光素子を作製することが試みられている。このとき、発光素子内で生成された紫外線が基板で吸収されれば、発光素子から紫外線を外部に取り出す効率が低下してしまう。   By the way, among nitride semiconductors, AlN and AlGaN (high Al concentration) have a wide energy band gap and are expected as light emitting materials in the ultraviolet region. More specifically, an attempt has been made to fabricate an ultraviolet light emitting device by forming a pn junction with a similar group III nitride on an AlN or AlGaN substrate. At this time, if ultraviolet rays generated in the light emitting element are absorbed by the substrate, the efficiency of extracting ultraviolet rays from the light emitting element to the outside is lowered.

基本的には、基板のバンドギャップより低エネルギの光は基板を透過するので、AlNや(Al組成が十分に大きい)AlGaNを使用すればよいと思われる。しかし、一般にAlNやAlGaNはバンドギャップよりかなり低エネルギの光を吸収することが知られている。この吸収の起源は必ずしも明らかではないが、不純物による吸収であると考えられ得る。   Basically, light having energy lower than the band gap of the substrate is transmitted through the substrate, so that it is considered that AlN or AlGaN (Al composition is sufficiently large) may be used. However, it is generally known that AlN and AlGaN absorb light with energy considerably lower than the band gap. The origin of this absorption is not necessarily clear, but can be considered to be due to impurities.

本発明によって得られた高純度のAlN基板についても、その光学的特性を知るために吸収係数が測定された。この場合、吸収係数は、透過率と反射率を測定して算出された。また、基板内の吸収係数は、基板深さによらず一定と仮定されて、多重反射をも考慮して算出された。   Also for the high purity AlN substrate obtained by the present invention, the absorption coefficient was measured in order to know its optical characteristics. In this case, the absorption coefficient was calculated by measuring transmittance and reflectance. Further, the absorption coefficient in the substrate was assumed to be constant regardless of the substrate depth, and was calculated in consideration of multiple reflections.

図2は、こうして測定されたAlN基板の吸収係数を示している。すなわち、図2のグラフにおいて、横軸は励起光の波長を表し、300nmから800nmの範囲が表示されている。他方、縦軸は吸収係数を表し、0cm-1から80cm-1の範囲が表示されている。 FIG. 2 shows the absorption coefficient of the AlN substrate thus measured. That is, in the graph of FIG. 2, the horizontal axis represents the wavelength of the excitation light, and the range from 300 nm to 800 nm is displayed. On the other hand, the vertical axis represents the absorption coefficient, and the range from 0 cm −1 to 80 cm −1 is displayed.

図2に示されているように、本発明による高純度のAlN基板では、350nm以下の波長領域において吸収係数が波長の減少とともに急速に増加し始めるが、350nm以上の波長領域では吸収係数は50cm-1以下であった。ここで、50cm-1の吸収係数は、(1/50)cm=200μmの透過距離において透過光量が1/eに減衰することを意味する。そして、LED(発光ダイオード)などの発光素子の典型的な基板厚さが200μm程度であるから、発光素子用基板は50cm-1以下の吸収係数を有することが好ましい。 As shown in FIG. 2, in the high-purity AlN substrate according to the present invention, the absorption coefficient starts to increase rapidly as the wavelength decreases in the wavelength region of 350 nm or less, but in the wavelength region of 350 nm or more, the absorption coefficient is 50 cm. -1 or less. Here, the absorption coefficient of 50 cm −1 means that the amount of transmitted light attenuates to 1 / e at a transmission distance of (1/50) cm = 200 μm. And since the typical board | substrate thickness of light emitting elements, such as LED (light emitting diode), is about 200 micrometers, it is preferable that the board | substrate for light emitting elements has an absorption coefficient of 50 cm <-1> or less.

なお、得られたAlGaN系単結晶から基板用のウエハを切り出す場合、そのスライスされる基板の主面は、(0001)面だけでなく、(11−20)面、(10−12)面、(10−10)面、(10−11)面やそれらの面から任意の方向に傾斜された面にすることが可能である。また、種結晶基板の面方位も、任意の面方位に設定されうる。ただし、切り取る基板の主面方位と同じ主面方位の種結晶基板を使用することが、生産性の観点から好ましい。   In addition, when a wafer for a substrate is cut out from the obtained AlGaN-based single crystal, the main surface of the substrate to be sliced is not only the (0001) plane, but also the (11-20) plane, the (10-12) plane, The (10-10) plane, the (10-11) plane, or a plane inclined in any direction from those planes can be used. The plane orientation of the seed crystal substrate can also be set to an arbitrary plane orientation. However, it is preferable from the viewpoint of productivity to use a seed crystal substrate having the same principal plane orientation as that of the substrate to be cut.

また、上述の実施形態では直径51mmの種結晶基板が使用されたが、さらに大口径の種結晶基板の入手が可能であれば、もちろんそれを同様に使用することができる。HVPE法で成長させる単結晶の厚さも上述の例の5mmに制限されるわけではなく、さらに厚いAlN結晶を成長させてもよいことは言うまでもない。   In the above-described embodiment, a seed crystal substrate having a diameter of 51 mm is used. However, if a seed crystal substrate having a larger diameter is available, it can be used as well. The thickness of the single crystal grown by the HVPE method is not limited to 5 mm in the above example, and it goes without saying that a thicker AlN crystal may be grown.

さらに、本発明によって得られた高純度のAlGaN系基板は、発光ダイオード、レーザダイオードなどの発光素子;整流器、バイポーラトランジスタ、電界効果トランジスタ、HEMT(高電子移動度トランジスタ)などの電子素子;温度センサ、圧力センサ、放射線センサ、可視・紫外光検出センサなどの半導体センサ;さらにはSAW(弾性表面波)デバイスなどの作製に用いれば、プロセス中の破壊が起こり難くなって生産効率を改善することができる。   Further, the high-purity AlGaN-based substrate obtained by the present invention includes light-emitting elements such as light-emitting diodes and laser diodes; electronic elements such as rectifiers, bipolar transistors, field-effect transistors, and HEMTs (high electron mobility transistors); temperature sensors , Semiconductor sensors such as pressure sensors, radiation sensors, and visible / ultraviolet light detection sensors; and if used for the fabrication of SAW (surface acoustic wave) devices, etc., it is less likely to break during the process and improve production efficiency. it can.

本発明によれば、窒化物半導体単結晶基板が改善された破壊靭性を有し得るので、その基板を用いた半導体電子デバイスの製造プロセスにおける破損を低減させて生産性を高めることができる。   According to the present invention, since the nitride semiconductor single crystal substrate can have improved fracture toughness, it is possible to increase the productivity by reducing the damage in the manufacturing process of the semiconductor electronic device using the substrate.

本発明によればまた、窒化物半導体単結晶基板が改善された透光性を有し得るので、その基板を用いることによって光取り出し効率が高められた半導体発光素子を提供することができる。   According to the present invention, since the nitride semiconductor single crystal substrate can have improved translucency, it is possible to provide a semiconductor light emitting device with improved light extraction efficiency by using the substrate.

1 石英ガラス反応管、1a 排気口、2 ヒータ、3 pBN内管、4 pBN基台、5 AlGaN系種結晶基板、6 第1のガス導入管、7 第2のガス導入管。   1 quartz glass reaction tube, 1a exhaust port, 2 heater, 3 pBN inner tube, 4 pBN base, 5 AlGaN seed crystal substrate, 6 first gas introduction tube, 7 second gas introduction tube.

Claims (3)

AlNの組成と、1×1017cm-3以下の全不純物密度と、350〜780nmの全波長範囲における50cm-1以下の吸収係数とを有することを特徴とする窒化物半導体単結晶基板。 A nitride semiconductor single crystal substrate having a composition of AlN, a total impurity density of 1 × 10 17 cm −3 or less, and an absorption coefficient of 50 cm −1 or less in a total wavelength range of 350 to 780 nm. 請求項1に記載の窒化物半導体単結晶基板を合成するための方法であって、前記基板はHVPE法で合成されることを特徴とする窒化物半導体単結晶基板の合成方法。   2. The method for synthesizing a nitride semiconductor single crystal substrate according to claim 1, wherein the substrate is synthesized by an HVPE method. 前記HVPE法に用いられる結晶成長炉内において、原料ガスが800℃以上の温度で接する領域の内壁がpBNで形成されているか、窒化物、炭化物、および酸化物のいずれかの焼結体で形成されているか、またはpBN、窒化物、炭化物、および酸化物のいずれかで表面コーティングされた部材で形成されていることを特徴とする請求項2に記載の窒化物半導体単結晶基板の合成方法。   In the crystal growth furnace used for the HVPE method, the inner wall of the region where the source gas contacts at a temperature of 800 ° C. or higher is formed of pBN, or formed of a sintered body of any one of nitride, carbide, and oxide. 3. The method for synthesizing a nitride semiconductor single crystal substrate according to claim 2, wherein the nitride semiconductor single crystal substrate is formed of a member coated with a surface of any one of pBN, nitride, carbide, and oxide.
JP2009001807A 2009-01-07 2009-01-07 Nitride semiconductor single crystal substrate and method for synthesizing the same Pending JP2009078971A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009001807A JP2009078971A (en) 2009-01-07 2009-01-07 Nitride semiconductor single crystal substrate and method for synthesizing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009001807A JP2009078971A (en) 2009-01-07 2009-01-07 Nitride semiconductor single crystal substrate and method for synthesizing the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004228032A Division JP2006044982A (en) 2004-08-04 2004-08-04 Nitride semiconductor single crystal substrate and method for synthesizing the same

Publications (1)

Publication Number Publication Date
JP2009078971A true JP2009078971A (en) 2009-04-16

Family

ID=40654016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009001807A Pending JP2009078971A (en) 2009-01-07 2009-01-07 Nitride semiconductor single crystal substrate and method for synthesizing the same

Country Status (1)

Country Link
JP (1) JP2009078971A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011100783A (en) * 2009-11-04 2011-05-19 Mitsubishi Electric Corp Vapor growth device
WO2013094058A1 (en) 2011-12-22 2013-06-27 国立大学法人東京農工大学 Aluminum nitride single crystal substrate and method for producing same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001345268A (en) * 2000-05-31 2001-12-14 Matsushita Electric Ind Co Ltd Device and method for manufacturing semiconductor
JP2002173393A (en) * 2000-09-01 2002-06-21 Ngk Insulators Ltd Device and method for producing group iii-v nitride film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001345268A (en) * 2000-05-31 2001-12-14 Matsushita Electric Ind Co Ltd Device and method for manufacturing semiconductor
JP2002173393A (en) * 2000-09-01 2002-06-21 Ngk Insulators Ltd Device and method for producing group iii-v nitride film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011100783A (en) * 2009-11-04 2011-05-19 Mitsubishi Electric Corp Vapor growth device
WO2013094058A1 (en) 2011-12-22 2013-06-27 国立大学法人東京農工大学 Aluminum nitride single crystal substrate and method for producing same
US9691942B2 (en) 2011-12-22 2017-06-27 National University Corporation Tokyo University Of Agriculture And Technology Single-cystalline aluminum nitride substrate and a manufacturing method thereof

Similar Documents

Publication Publication Date Title
KR101289128B1 (en) Nitride semiconductor single-crystal substrate and method of its synthesis
US8697550B2 (en) Method of manufacturing GaN-based film
US20230167584A1 (en) Thermal control for formation and processing of aluminum nitride
US7510906B2 (en) Diamond substrate and method for fabricating the same
US8697564B2 (en) Method of manufacturing GaN-based film
JP2002043223A (en) Semiconductor substrate and semiconductor device wherein it is used
US20150118830A1 (en) Method of Manufacturing GaN-Based Film and Composite Substrate Used Therefor
US20120118222A1 (en) METHOD OF MANUFACTURING GaN-BASED FILM
JP2009078972A (en) Nitride semiconductor single crystal substrate and method for synthesizing the same
EP2784191A1 (en) Low carbon group-III nitride crystals
JP2009078971A (en) Nitride semiconductor single crystal substrate and method for synthesizing the same
JP2012066943A (en) Substrate for forming nitride semiconductor, and nitride semiconductor
JP2008230868A (en) Method for growing gallium nitride crystal and gallium nitride crystal substrate
JP4595592B2 (en) Single crystal growth method
JP5929434B2 (en) Method for manufacturing AlN-based film and composite substrate used therefor
JP4089730B2 (en) Manufacturing method of GaN single crystal substrate
EP1852895A1 (en) Diamond substrate and method for fabricating the same
KR100890085B1 (en) Method for manufacturing substrate of Nitride chemical semiconductor
JP2014192246A (en) Semiconductor substrate and semiconductor element using the same
Zhuang et al. Seeded growth of AlN crystals on nonpolar seeds via physical vapor transport
JP4957751B2 (en) GaN single crystal and manufacturing method thereof, and semiconductor device and manufacturing method thereof
JP2008044844A (en) Nitride semiconductor element
JP2010192698A (en) Manufacturing method of ion implantation group iii nitride semiconductor substrate, group iii nitride semiconductor layer junction substrate, and group iii nitride semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120821