JP5326679B2 - Lithium ion secondary battery charge / discharge control method, secondary battery system, and hybrid vehicle - Google Patents

Lithium ion secondary battery charge / discharge control method, secondary battery system, and hybrid vehicle Download PDF

Info

Publication number
JP5326679B2
JP5326679B2 JP2009054828A JP2009054828A JP5326679B2 JP 5326679 B2 JP5326679 B2 JP 5326679B2 JP 2009054828 A JP2009054828 A JP 2009054828A JP 2009054828 A JP2009054828 A JP 2009054828A JP 5326679 B2 JP5326679 B2 JP 5326679B2
Authority
JP
Japan
Prior art keywords
charge
soc
secondary battery
discharge
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009054828A
Other languages
Japanese (ja)
Other versions
JP2010211990A (en
Inventor
富太郎 原
曜 辻子
武志 阿部
剛志 矢野
大介 寺本
幸恵 湯浅
景子 和佐田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009054828A priority Critical patent/JP5326679B2/en
Publication of JP2010211990A publication Critical patent/JP2010211990A/en
Application granted granted Critical
Publication of JP5326679B2 publication Critical patent/JP5326679B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、リチウムイオン二次電池の充放電制御方法、リチウムイオン二次電池を有する二次電池システム、及び、二次電池システムを有するハイブリッド自動車に関する。   The present invention relates to a charge / discharge control method for a lithium ion secondary battery, a secondary battery system having a lithium ion secondary battery, and a hybrid vehicle having the secondary battery system.

ニッケル水素蓄電池やリチウムイオン二次電池などの二次電池は、携帯機器の電源として、また、電気自動車やハイブリッド自動車などの電源として需要が高まっている。このため、近年、様々な二次電池の充放電制御方法が提案されている(例えば、特許文献1参照)。   Secondary batteries such as nickel metal hydride storage batteries and lithium ion secondary batteries are in high demand as power sources for portable devices and as power sources for electric vehicles and hybrid vehicles. For this reason, in recent years, various charge / discharge control methods for secondary batteries have been proposed (see, for example, Patent Document 1).

特開2003−9415号公報JP 2003-9415 A

特許文献1では、ニッケル水素蓄電池の充放電制御方法が提案されている。具体的には、メモリー効果(完全放電(SOCがほぼ0%)や完全充電(SOCがほぼ100%)を行わない充放電を繰り返すと、蓄電池の残容量に対する起電力値が低下し、蓄電池容量が減少する現象)を防止する充放電制御方法が提案されている。   Patent Document 1 proposes a charge / discharge control method for a nickel-metal hydride storage battery. Specifically, repeated charging / discharging without the memory effect (complete discharge (SOC is almost 0%) or full charge (SOC is almost 100%)) decreases the electromotive force value relative to the remaining capacity of the storage battery. Has been proposed.

ところで、近年、正極活物質として、組成式LiFePO4等で表されるオリビン構造のリチウム遷移金属複合酸化物を用いたリチウムイオン二次電池が提案されている。LiFePO4等で表されるオリビン構造のリチウム遷移金属複合酸化物は、充放電電位が充放電の際にも略一定であり、リチウムイオンを脱離・吸蔵してもほとんど変化しない。その理由は、例えば、LiFePO4で表されるオリビン構造のリチウム遷移金属複合酸化物は、Liの吸蔵・脱離時に、LiFePO4とFePO4との2相共存状態となるからであると考えられる。 By the way, in recent years, a lithium ion secondary battery using a lithium transition metal composite oxide having an olivine structure represented by a composition formula LiFePO 4 or the like has been proposed as a positive electrode active material. The lithium transition metal composite oxide having an olivine structure represented by LiFePO 4 or the like has a substantially constant charge / discharge potential even during charge / discharge, and hardly changes even when lithium ions are desorbed and occluded. The reason is, for example, lithium transition metal composite oxide having an olivine structure represented by LiFePO 4, when absorption and desorption of Li, believed to be because the two-phase coexistence state between LiFePO 4 and FePO 4 .

従って、LiFePO4等の2相共存型の充放電を行う正極活物質を用いることで、充電状態の変化に伴う入力密度や出力密度の変化が少なく、出力特性の安定したリチウム二次電池を構成することが可能となる。このため、2相共存型の充放電を行う正極活物質を有する二次電池は、近年、ハイブリッド自動車などの電源として注目されている。 Therefore, by using a positive electrode active material that performs charge and discharge in a two-phase coexistence type, such as LiFePO 4 , a lithium secondary battery that has little change in input density and output density due to change in charge state and stable output characteristics is configured. It becomes possible to do. For this reason, a secondary battery having a positive electrode active material that performs charge and discharge in a two-phase coexistence type has recently attracted attention as a power source for hybrid vehicles and the like.

ところが、2相共存型の充放電を行う正極活物質を有するリチウムイオン二次電池を、ハイブリッド自動車の駆動用電源として搭載した場合、充放電を短時間で繰り返すことが多いため、例えば、SOC40〜60%の範囲内で充放電が繰り返される場合が多い。このような充放電を繰り返し行うと、2相共存型の充放電を行う正極活物質の結晶内において、Liイオンの局在化(正極活物質内でLiイオンが偏って存在する現象)が生じてしまう。この影響で、リチウムイオン二次電池の放電容量が大きく低下し、リチウムイオン二次電池の性能を十分に引き出すことができなくなることがあった。   However, when a lithium ion secondary battery having a positive electrode active material that performs charge and discharge in a two-phase coexistence type is mounted as a power source for driving a hybrid vehicle, charging and discharging are often repeated in a short time. In many cases, charging and discharging are repeated within a range of 60%. When such charge / discharge is repeated, localization of Li ions (a phenomenon in which Li ions are unevenly present in the positive electrode active material) occurs in the crystal of the positive electrode active material that performs charge and discharge in a two-phase coexistence type. End up. Due to this influence, the discharge capacity of the lithium ion secondary battery may be greatly reduced, and the performance of the lithium ion secondary battery may not be fully exploited.

なお、Liイオンの局在化は、リフレッシュ充放電(完全充電や完全放電を意図的に行う)を行うことで解消できるが、リフレッシュ充放電は時間を要するため、二次電池システムとして稼動する時間を減らすこととなり好ましくない。   In addition, although localization of Li ion can be eliminated by performing refresh charging / discharging (complete charging or complete discharging is intentionally performed), since refresh charging / discharging requires time, time for operating as a secondary battery system This is not preferable.

本発明は、かかる現状に鑑みてなされたものであって、2相共存型の充放電を行う正極活物質を有するリチウムイオン二次電池について、Liイオンの局在化を抑制して、電池性能を十分に引き出すことができるリチウムイオン二次電池の充放電制御方法、二次電池システム、及びハイブリッド自動車を提供することを目的とする。   The present invention has been made in view of the present situation, and for a lithium ion secondary battery having a positive electrode active material that performs charge and discharge in a two-phase coexistence type, suppressing the localization of Li ions, battery performance An object of the present invention is to provide a charge / discharge control method for a lithium ion secondary battery, a secondary battery system, and a hybrid vehicle.

その解決手段は、2相共存型の充放電を行う正極活物質を有するリチウムイオン二次電池の充放電を制御する方法であって、上記リチウムイオン二次電池を、放電終止充電深さSOCDと充電終止充電深さSOCCとの間で使用し、上記放電終止充電深さSOCD及び充電終止充電深さSOCCを、下限充電深さSOCBと上限充電深さSOCTとの間で順次変動させるリチウムイオン二次電池の充放電制御方法であって、上記正極活物質は、LiM1 (1-X) M2 X PO 4 (M1は、FeまたはMnであり、M2は、Mn,Cr,Co,Cu,Ni,V,Mo,Ti,Zn,Al,Ga,Mg,B,Nbの少なくともいずれか(但し、M1がMnのときはMnを除く)であり、0≦X≦0.5)で表される化合物であり、上記下限充電深さSOC B は15〜30%の範囲内の値であり、上記上限充電深さSOC T は80〜100%の範囲内の値であり、上記充電終止充電深さSOC C と前記放電終止充電深さSOC D との差が10〜50%の範囲内であるリチウムイオン二次電池の充放電制御方法である。 The solution is a method for controlling charging and discharging of a lithium ion secondary battery having a positive electrode active material that performs charge and discharge in a two-phase coexistence type, wherein the lithium ion secondary battery is charged with a discharge end charge depth SOC D. use between charging end charging depth SOC C and, the discharge termination charge depth SOC D and charge end charging depth SOC C, with the lower limit charging depth SOC B and the upper limit charge depth SOC T A charge / discharge control method for a lithium ion secondary battery that is sequentially changed, wherein the positive electrode active material is LiM1 (1-X) M2 X PO 4 (M1 is Fe or Mn, and M2 is Mn, Cr, It is at least one of Co, Cu, Ni, V, Mo, Ti, Zn, Al, Ga, Mg, B, and Nb (however, when M1 is Mn, Mn is excluded), and 0 ≦ X ≦ 0.5 ) is a compound represented by the above lower limit charging depth SOC B A value in the range of 15% to 30%, the upper limit charge depth SOC T is a value within the range of 80% to 100%, and the discharge termination charge depth SOC D and the charging end charging depth SOC C Is a charge / discharge control method for a lithium ion secondary battery in which the difference is in the range of 10 to 50% .

本発明のリチウムイオン二次電池の充放電制御方法では、リチウムイオン二次電池を、放電終止充電深さSOCDと充電終止充電深さSOCCとの間で使用する。ここで、放電終止充電深さとは、1回の放電について見たときに、放電終止時におけるSOCの値(SOCDとする)をいう。また、充電終止充電深さとは、1回の充電について見たときに、充電終止時におけるSOCの値(SOCCとする)をいう。 The method of controlling charge and discharge of the lithium ion secondary battery of the present invention, a lithium ion secondary battery, used between the discharge termination charge depth SOC D and charge end charging depth SOC C. Here, the discharge cutoff charge depth, when viewed on a single discharge means the SOC value at the time of discharge termination (and SOC D). Further, the end-of-charge charge depth refers to the SOC value (referred to as SOC C ) at the end of charge when viewed with respect to one charge.

さらに、本発明のリチウムイオン二次電池の充放電制御方法では、放電終止充電深さSOCD及び充電終止充電深さSOCCを、下限充電深さSOCBと上限充電深さSOCTとの間で順次変動させる。ここで、上限充電深さとは、これ以上のSOC(State Of Charge)に至る充電を禁止するSOCの値(SOCTとする)をいう。また、下限充電深さとは、これ以下のSOCに至る放電を禁止するSOCの値(SOCBとする)をいう。 Furthermore, in the charge / discharge control method for a lithium ion secondary battery of the present invention, the end-of-discharge charge depth SOC D and the end-of-charge charge depth SOC C are set between the lower limit charge depth SOC B and the upper limit charge depth SOC T. Change sequentially. Here, the upper limit charge depth refers to the SOC value to prohibit the charging leading to no more SOC (State Of Charge) (a SOC T). In addition, the lower limit charging depth refers to a SOC value (SOC B ) that prohibits discharge to SOC below this level.

具体的には、例えば、下限充電深さSOCBを30%、上限充電深さSOCTを90%に設定し、充電終止充電深さSOCCと放電終止充電深さSOCDとの差を10%に設定して、SOCD及びSOCCを、SOCBとSOCTとの間で順次変動させる方法(図6参照)が挙げられる。この方法では、例えば、1サイクル目は、放電終止充電深さSOCDを80%、充電終止充電深さSOCCを90%(SOCTと同じ)として放電と充電を行い、2サイクル目は、SOCB及びSOCCを1サイクル目のSOCCよりも小さい値、例えば、SOCDを70%、SOCCを80%として放電と充電を行う。このようにしてサイクル毎にSOCB及びSOCCを小さくしつつ、放電終止充電深さSOCDが下限充電深さSOCBと同値になるまで充放電を行う。そして、SOCDがSOCBと同値になったら、今度は反対に、SOCCがSOCTと同値になるまで、サイクル毎にSOCB及びSOCCを大きくしつつ充放電を行う。 Specifically, for example, the lower limit charge depth SOC B is set to 30%, the upper limit charge depth SOC T is set to 90%, and the difference between the charge end charge depth SOC C and the discharge end charge depth SOC D is set to 10 There is a method in which SOC D and SOC C are sequentially changed between SOC B and SOC T (see FIG. 6). In this method, for example, in the first cycle, the discharge end charge depth SOC D is 80% and the charge end charge depth SOC C is 90% (same as SOC T ), and the second cycle is SOC B and SOC C the first cycle of SOC C less than, for example, 70% SOC D, the charging and discharging of the SOC C as 80% performed. Thus while reducing the SOC B and SOC C per cycle, charging and discharging until the discharge termination charge depth SOC D is equivalent and lower charging depth SOC B. Then, when it SOC D is the same value and SOC B, performed in the opposite turn, until SOC C is SOC T and equivalence, a significantly while charging and discharging the SOC B and SOC C per cycle.

このように、2相共存型の充放電を行う正極活物質を有するリチウムイオン二次電池について、放電終止充電深さSOCD及び充電終止充電深さSOCCを、下限充電深さSOCBと上限充電深さSOCTとの間で順次変動させつつ充放電を行うことで、正極活物質内におけるLiイオンの局在化を抑制することができる。これにより、リチウムイオン二次電池の放電容量の低下が抑制され、リチウムイオン二次電池の性能を十分に引き出すことが可能となる。 Thus, for the lithium ion secondary battery having a positive electrode active material that performs charge and discharge in a two-phase coexistence type, the discharge end charge depth SOC D and the charge end charge depth SOC C are set to the lower limit charge depth SOC B and the upper limit. by charging and discharging while sequentially varying between charging depth SOC T, it is possible to suppress the localization of the Li ions in the positive electrode active material. Thereby, the fall of the discharge capacity of a lithium ion secondary battery is suppressed, and it becomes possible to fully draw out the performance of a lithium ion secondary battery.

なお、サイクル毎のSOCDについては、不規則に変動させてもよい(規則的に上下させなくても良い)。これは、例えば、リチウムイオン二次電池をハイブリッド自動車等の主電源として用いた場合、SOCCの規制は回生効率の低下程度で留まるのに対し、SOCDの規制を厳密に行うと、例えば、低いSOC領域において瞬時の大電流放電などができなくなり、ハイブリッド自動車等の主電源としての機能が低下するからである。 Note that the SOC D per cycle, (or even without regularly vertically are) irregularly is caused which may be varied. This is because, for example, when a lithium ion secondary battery is used as a main power source of a hybrid vehicle or the like, the regulation of SOC C stays only at a reduction in regeneration efficiency, whereas the regulation of SOC D is strictly performed, for example, This is because an instantaneous large current discharge cannot be performed in a low SOC region, and the function as a main power source of a hybrid vehicle or the like deteriorates.

また、SOC(State Of Charge)は、例えば、リチウムイオン二次電池の電池容量と充放電電流量を積算した値とに基づいて、百分率によって数値化した値を用いることができる。   In addition, as the SOC (State Of Charge), for example, a value obtained by quantifying the percentage based on the battery capacity of the lithium ion secondary battery and the value obtained by integrating the charge / discharge current amount can be used.

前記のLiM1 (1-X) M2 X PO 4 の組成式で表される化合物は、2相共存型の充放電を行う正極活物質である。この正極活物質を用いたリチウムイオン二次電池について、前述のように、放電終止充電深さSOCD及び充電終止充電深さSOCCを、下限充電深さSOCBと上限充電深さSOCTとの間で順次変動させつつ充放電を行うことで、正極活物質内におけるLiイオンの局在化を抑制することができる。これにより、リチウムイオン二次電池の放電容量の低下が抑制され、リチウムイオン二次電池の性能を十分に引き出すことが可能となる。 The compound represented by the composition formula of LiM1 (1-X) M2 X PO 4 is a positive electrode active material that performs charge and discharge in a two-phase coexistence type. Regarding the lithium ion secondary battery using this positive electrode active material, as described above, the end-of-discharge charge depth SOC D and the end-of-charge charge depth SOC C are set as the lower limit charge depth SOC B and the upper limit charge depth SOC T. By performing charging / discharging while sequentially changing between these, localization of Li ions in the positive electrode active material can be suppressed. Thereby, the fall of the discharge capacity of a lithium ion secondary battery is suppressed, and it becomes possible to fully draw out the performance of a lithium ion secondary battery.

さらに、本発明の充放電制御方法では、下限充電深さSOCBを15〜30%の範囲内の値とし、且つ、上限充電深さSOCTを80〜100%の範囲内の値とする。
前記の組成式で表される化合物を正極活物質として用いたリチウムイオン二次電池では、SOCが15%未満になると電池電圧が急激に低下する(図7参照)。従って、下限充電深さSOCBを15%以上とすることで、電池電圧が小さくなるのを防止できるので、リチウムイオン二次電池の出力特性を良好にできる。
Further, the charge and discharge control method of the present invention, the lower limit charging depth SOC B to a value within the range of 15% to 30%, and the upper limit charge depth SOC T to a value within the range of 80% to 100%.
In a lithium ion secondary battery using the compound represented by the above composition formula as a positive electrode active material, the battery voltage rapidly decreases when the SOC is less than 15% (see FIG. 7). Therefore, by setting the lower limit charging depth SOC B to 15% or more, it is possible to prevent the battery voltage from being reduced, and thus the output characteristics of the lithium ion secondary battery can be improved.

また、下限充電深さSOCBを30%以下とし、上限充電深さSOCTを80%以上とすることで、放電終止充電深さSOCD及び充電終止充電深さSOCCを、下限充電深さSOCBと上限充電深さSOCTとの間で十分に大きく変動させることができる。これにより、正極活物質内におけるLiイオンの局在化を適切に抑制することができる。 Further, by setting the lower limit charge depth SOC B to 30% or less and the upper limit charge depth SOC T to 80% or more, the discharge end charge depth SOC D and the charge end charge depth SOC C are set to the lower limit charge depth. A sufficiently large variation can be made between the SOC B and the upper limit charging depth SOC T. Thereby, localization of Li ions in the positive electrode active material can be appropriately suppressed.

しかも、前記の組成式で表される化合物を正極活物質として用いたリチウムイオン二次電池では、SOC30%〜80%の範囲では、電池電圧がほとんど変動しない。従って、SOCBを30%以下としSOCTを80%以上とすることで、SOC30%〜80%の広い容量範囲において、電池電圧をほとんど変動させることなく、リチウムイオン二次電池を放電させることができる。これにより、安定した出力特性を得ることができる。 In addition, in the lithium ion secondary battery using the compound represented by the above composition formula as the positive electrode active material, the battery voltage hardly varies in the range of SOC 30% to 80%. Therefore, by setting SOC B to 30% or less and SOC T to 80% or more, a lithium ion secondary battery can be discharged with almost no change in battery voltage in a wide capacity range of SOC 30% to 80%. it can. Thereby, stable output characteristics can be obtained.

また、上限充電深さSOCTを100%以下とすることで、過充電を防止することができる。これにより、過充電による不具合(電池内部におけるガス発生に伴って、電解液が減少し、早期に寿命に至ることなど)を防止することができる。
さらに、本発明の充放電制御方法では、充電終止充電深さSOC C と放電終止充電深さSOC D との差を10〜50%の範囲内とする。すなわち、1回の充電電気量または放電電気量を、SOC10%〜50%の範囲内の値に相当する電気量にする。このようにして、SOC D 及びSOC C を、下限充電深さSOC B (15〜30%の範囲内の値)と上限充電深さSOC T (80〜100%の範囲内の値)との間で順次変動させつつ充放電を行うことで、正極活物質内におけるLiイオンの局在化を適切に抑制することができる。
Further, the upper limit charge depth SOC T by 100% or less, it is possible to prevent overcharging. As a result, it is possible to prevent problems due to overcharge (such as a decrease in electrolyte due to gas generation inside the battery and an early life span).
Furthermore, in the charge / discharge control method of the present invention, the difference between the charge end charge depth SOC C and the discharge end charge depth SOC D is set within a range of 10 to 50%. That is, the amount of electricity charged or discharged once is set to an amount of electricity corresponding to a value within the range of SOC 10% to 50%. In this way, SOC D and SOC C are set between the lower limit charge depth SOC B (value in the range of 15 to 30%) and the upper limit charge depth SOC T (value in the range of 80 to 100%). By performing charging / discharging while sequentially changing, the localization of Li ions in the positive electrode active material can be appropriately suppressed.

さらに、上記のリチウムイオン二次電池の充放電制御方法であって、前記上限充電深さSOCTは85〜95%の範囲内の値であるリチウムイオン二次電池の充放電制御方法とするのが好ましい。 Furthermore, a method of controlling charge and discharge of the lithium ion secondary battery described above, the upper limit charge depth SOC T is a method of controlling charge and discharge of the lithium ion secondary battery as a value in the range of 85% to 95% Is preferred.

上限充電深さSOCTを85%以上とすることで、正極活物質内におけるLiイオンの局在化をより一層抑制することができる。また、上限充電深さSOCTを95%以下とすることで、過充電を確実に防止することができる。 By the upper limit charge depth SOC T 85% or higher, it is possible to further suppress the localization of the Li ions in the positive electrode active material. Further, the upper limit charge depth SOC T by 95% or less, it is possible to reliably prevent overcharging.

さらに、上記いずれかのリチウムイオン二次電池の充放電制御方法であって、前記充電終止充電深さSOCCと前記放電終止充電深さSOCDとの差が10〜30%の範囲内であるリチウムイオン二次電池の充放電制御方法とするのが好ましい。 Furthermore, in any one of the above lithium ion secondary battery charge / discharge control methods, a difference between the end-of-charge charge depth SOC C and the end-of-discharge charge depth SOC D is in a range of 10 to 30%. It is preferable to use a charge / discharge control method for a lithium ion secondary battery.

この充放電制御方法によれば、正極活物質内におけるLiイオンの局在化を、より一層抑制することができる。   According to this charge / discharge control method, localization of Li ions in the positive electrode active material can be further suppressed.

他の解決手段は、2相共存型の充放電を行う正極活物質を有するリチウムイオン二次電池と、上記リチウムイオン二次電池の充放電を制御する制御装置と、を備える二次電池システムであって、上記制御装置は、上記リチウムイオン二次電池を放電終止充電深さSOCDと充電終止充電深さSOCCとの間で充放電させる制御をし、且つ、上記放電終止充電深さSOCD及び充電終止充電深さSOCCを、下限充電深さSOCBと上限充電深さSOCTとの間で順次変動させる制御を行う二次電池システムであって、上記正極活物質は、LiM1 (1-X) M2 X PO 4 (M1は、FeまたはMnであり、M2は、Mn,Cr,Co,Cu,Ni,V,Mo,Ti,Zn,Al,Ga,Mg,B,Nbの少なくともいずれか(但し、M1がMnのときはMnを除く)であり、0≦X≦0.5)で表される化合物であり、上記下限充電深さSOC B は15〜30%の範囲内の値であり、上記上限充電深さSOC T は80〜100%の範囲内の値であり、上記充電終止充電深さSOC C と前記放電終止充電深さSOC D との差が10〜50%の範囲内である二次電池システムである。 Another solution is a secondary battery system comprising: a lithium ion secondary battery having a positive electrode active material that performs charge and discharge in a two-phase coexistence type; and a control device that controls charge and discharge of the lithium ion secondary battery. there are, the control device controls the charging and discharging between the lithium ion secondary battery with discharge cutoff charge depth SOC D and charge end charging depth SOC C, and, the end-of-discharge charge depths SOC D and a charge termination charge depth SOC C are secondary battery systems that perform control to sequentially vary between a lower limit charge depth SOC B and an upper limit charge depth SOC T , wherein the positive electrode active material is LiM1 ( 1-X) M2 X PO 4 (M1 is Fe or Mn, and M2 is at least one of Mn, Cr, Co, Cu, Ni, V, Mo, Ti, Zn, Al, Ga, Mg, B, and Nb. Either (however, when M1 is Mn Except for Mn), and 0 ≦ X ≦ 0.5). The lower limit charge depth SOC B is a value in the range of 15 to 30%, and the upper limit charge depth SOC T Is a value in the range of 80 to 100% , and is a secondary battery system in which the difference between the charge end charge depth SOC C and the discharge end charge depth SOC D is in the range of 10 to 50% .

本発明の二次電池システムでは、制御装置が、リチウムイオン二次電池を放電終止充電深さSOCDと充電終止充電深さSOCCとの間で充放電させる制御をし、且つ、放電終止充電深さSOCD及び充電終止充電深さSOCCを、下限充電深さSOCBと上限充電深さSOCTとの間で順次変動させて、2相共存型の充放電を行う正極活物質を有するリチウムイオン二次電池の充放電を制御する。これにより、2相共存型の充放電を行う正極活物質を有するリチウムイオン二次電池について、正極活物質内におけるLiイオンの局在化を抑制することができる。従って、リチウムイオン二次電池の放電容量の低下を抑制でき、リチウムイオン二次電池の性能を十分に引き出すことができる。 In the secondary battery system of the present invention, the control device performs control to charge and discharge the lithium ion secondary battery between the end-of-discharge charge depth SOC D and the end-of-charge charge depth SOC C , and the end-of-discharge charge. A positive electrode active material that performs charge and discharge in a two-phase coexistence type by sequentially varying the depth SOC D and the end-of-charge charge depth SOC C between the lower limit charge depth SOC B and the upper limit charge depth SOC T Controls charging and discharging of the lithium ion secondary battery. Thereby, about the lithium ion secondary battery which has a positive electrode active material which performs charge / discharge of 2 phase coexistence type, localization of Li ion in a positive electrode active material can be suppressed. Therefore, it is possible to suppress a decrease in the discharge capacity of the lithium ion secondary battery, and to fully draw out the performance of the lithium ion secondary battery.

前記のLiM1 (1-X) M2 X PO 4 の組成式で表される化合物は、2相共存型の充放電を行う正極活物質である。この正極活物質を用いたリチウムイオン二次電池について、前述のように、放電終止充電深さSOCD及び充電終止充電深さSOCCを、下限充電深さSOCBと上限充電深さSOCTとの間で順次変動させつつ充放電を制御することで、正極活物質内におけるLiイオンの局在化を抑制することができる。これにより、リチウムイオン二次電池の放電容量の低下が抑制され、リチウムイオン二次電池の性能を十分に引き出すことが可能となる。 The compound represented by the composition formula of LiM1 (1-X) M2 X PO 4 is a positive electrode active material that performs charge and discharge in a two-phase coexistence type. Regarding the lithium ion secondary battery using this positive electrode active material, as described above, the end-of-discharge charge depth SOC D and the end-of-charge charge depth SOC C are set as the lower limit charge depth SOC B and the upper limit charge depth SOC T. By controlling charging / discharging while sequentially changing between, the localization of Li ions in the positive electrode active material can be suppressed. Thereby, the fall of the discharge capacity of a lithium ion secondary battery is suppressed, and it becomes possible to fully draw out the performance of a lithium ion secondary battery.

さらに、本発明の二次電池システムでは、前記の組成式で表される化合物を正極活物質として用いたリチウムイオン二次電池について、下限充電深さSOCBを15〜30%の範囲内の値とし、且つ、上限充電深さSOCTを80〜100%の範囲内の値として、制御装置が、前述のようにして、リチウムイオン二次電池の充放電を制御する。
下限充電深さSOCBを15%以上とすることで、電池電圧が小さくなるのを防止できるので、リチウムイオン二次電池の出力特性を良好にできる。
Furthermore, in the secondary battery system of the present invention, the lower limit charge depth SOC B is a value within the range of 15 to 30% for the lithium ion secondary battery using the compound represented by the composition formula as a positive electrode active material. and then, and the upper limit charge depth SOC T as a value in the range of 80% to 100%, control device, as described above, controls the charging and discharging of the lithium ion secondary battery.
By setting the lower limit charging depth SOC B to 15% or more, the battery voltage can be prevented from becoming small, and the output characteristics of the lithium ion secondary battery can be improved.

また、下限充電深さSOCBを30%以下とし、上限充電深さSOCTを80%以上とすることで、放電終止充電深さSOCD及び充電終止充電深さSOCCを、下限充電深さSOCBと上限充電深さSOCTとの間で十分に大きく変動させることができる。これにより、正極活物質内におけるLiイオンの局在化を適切に抑制することができる。しかも、出力変動の小さい安定した出力特性を得ることができる。
また、上限充電深さSOCTを100%以下とすることで、過充電を防止することができる。
さらに、本発明の二次電池システムでは、制御装置が、充電終止充電深さSOC C と放電終止充電深さSOC D との差を10〜50%の範囲内として、前述のように充放電を制御する。これにより、正極活物質内におけるLiイオンの局在化を適切に抑制することができる。
Further, by setting the lower limit charge depth SOC B to 30% or less and the upper limit charge depth SOC T to 80% or more, the discharge end charge depth SOC D and the charge end charge depth SOC C are set to the lower limit charge depth. A sufficiently large variation can be made between the SOC B and the upper limit charging depth SOC T. Thereby, localization of Li ions in the positive electrode active material can be appropriately suppressed. In addition, stable output characteristics with small output fluctuations can be obtained.
Further, the upper limit charge depth SOC T by 100% or less, it is possible to prevent overcharging.
Furthermore, in the secondary battery system of the present invention, the control device performs charging / discharging as described above by setting the difference between the charge end charge depth SOC C and the discharge end charge depth SOC D within a range of 10 to 50%. Control. Thereby, localization of Li ions in the positive electrode active material can be appropriately suppressed.

さらに、上記の二次電池システムであって、前記上限充電深さSOCTは85〜95%の範囲内の値である二次電池システムとするのが好ましい。 Further, in the above-described secondary battery system, the upper limit charge depth SOC T is preferably a secondary battery system is a value in the range 85-95%.

上限充電深さSOCTを85%以上として充放電を制御することで、正極活物質内におけるLiイオンの局在化をより一層抑制することができる。また、上限充電深さSOCTを95%以下として充放電を制御することで、過充電を確実に防止することができる。 By controlling the charge and discharge limit charging depth SOC T as 85% or more, it is possible to further suppress the localization of the Li ions in the positive electrode active material. Further, by controlling the charging and discharging of the upper limit charge depth SOC T as 95% or less, it is possible to reliably prevent overcharging.

さらに、上記の二次電池システムであって、前記充電終止充電深さSOCCと前記放電終止充電深さSOCDとの差が10〜30%の範囲内である二次電池システムとするのが好ましい。 Furthermore, the secondary battery system may be a secondary battery system in which a difference between the end-of-charge charge depth SOC C and the end-of-charge charge depth SOC D is within a range of 10 to 30%. preferable.

充電終止充電深さSOCCと放電終止充電深さSOCDとの差を10〜30%の範囲内として、前述のように充放電を制御することで、正極活物質内におけるLiイオンの局在化を、より一層抑制することができる。 By controlling the charge / discharge as described above by setting the difference between the end-of-charge charge depth SOC C and the end-of-discharge charge depth SOC D within a range of 10 to 30%, the localization of Li ions in the positive electrode active material Can be further suppressed.

他の解決手段は、ハイブリッド自動車であって、前記いずれかの二次電池システムを、当該ハイブリッド自動車の駆動用電源システムとして搭載してなるハイブリッド自動車である。   Another solution is a hybrid vehicle, in which any of the secondary battery systems is mounted as a drive power supply system for the hybrid vehicle.

本発明のハイブリッド自動車は、前述の二次電池システムを、当該ハイブリッド自動車の駆動用電源システムとして搭載している。従って、本発明のハイブリッド自動車では、駆動用電源である前記リチウムイオン二次電池について、正極活物質内におけるLiイオンの局在化を抑制することができる。これにより、リチウムイオン二次電池の放電容量の低下を抑制でき、リチウムイオン二次電池の性能を十分に引き出すことができる。従って、本発明のハイブリッド自動車は、走行性能が良好になる。   The hybrid vehicle of the present invention is equipped with the above-described secondary battery system as a drive power supply system for the hybrid vehicle. Therefore, in the hybrid vehicle of the present invention, the localization of Li ions in the positive electrode active material can be suppressed for the lithium ion secondary battery that is the driving power source. Thereby, the fall of the discharge capacity of a lithium ion secondary battery can be suppressed, and the performance of a lithium ion secondary battery can fully be drawn out. Therefore, the hybrid vehicle of the present invention has good running performance.

実施例にかかるハイブリッド自動車の概略図である。It is the schematic of the hybrid vehicle concerning an Example. 実施例にかかる二次電池システムの概略図である。It is the schematic of the secondary battery system concerning an Example. 実施例にかかるリチウムイオン二次電池の断面図である。It is sectional drawing of the lithium ion secondary battery concerning an Example. リチウムイオン二次電池の電極体の断面図である。It is sectional drawing of the electrode body of a lithium ion secondary battery. 電極体の部分拡大断面図であり、図4のB部拡大図に相当する。It is a partial expanded sectional view of an electrode body, and is equivalent to the B section enlarged view of FIG. 実施例1にかかる充放電制御方法を示す模式図である。1 is a schematic diagram illustrating a charge / discharge control method according to Example 1. FIG. 実施例にかかるリチウムイオン二次電池のSOCと電池電圧との関係を示すグラフである。It is a graph which shows the relationship between SOC of a lithium ion secondary battery concerning an Example, and battery voltage. 他のリチウムイオン二次電池のSOCと電池電圧との関係を示すグラフである。It is a graph which shows the relationship between SOC of another lithium ion secondary battery, and battery voltage. 比較例1にかかる充放電制御方法を示す模式図である。6 is a schematic diagram illustrating a charge / discharge control method according to Comparative Example 1. FIG.

(実施例1)
次に、本発明の実施例1について、図面を参照しつつ説明する。
ハイブリッド自動車1は、図1に示すように、車体2、エンジン3、フロントモータ4、リヤモータ5、二次電池システム6、及び、ケーブル7を有し、エンジン3とフロントモータ4及びリヤモータ5との併用で駆動するハイブリッド自動車である。具体的には、このハイブリッド自動車1は、二次電池システム6をフロントモータ4及びリヤモータ5の駆動用電源として、エンジン3とフロントモータ4及びリヤモータ5とを用いて走行できるように構成されている。
Example 1
Next, Example 1 of the present invention will be described with reference to the drawings.
As shown in FIG. 1, the hybrid vehicle 1 includes a vehicle body 2, an engine 3, a front motor 4, a rear motor 5, a secondary battery system 6, and a cable 7, and includes an engine 3, a front motor 4, and a rear motor 5. It is a hybrid car that is driven in combination. Specifically, the hybrid vehicle 1 is configured to be able to travel using the engine 3, the front motor 4, and the rear motor 5 using the secondary battery system 6 as a driving power source for the front motor 4 and the rear motor 5. .

このうち、二次電池システム6は、ハイブリッド自動車1の車体2に取り付けられており、ケーブル7によりフロントモータ4及びリヤモータ5に接続されている。この二次電池システム6は、図2に示すように、複数(例えば、100個)のリチウムイオン二次電池100を互いに電気的に直列に接続した組電池10と、制御装置30と、電流検知装置50とを備えている。   Among these, the secondary battery system 6 is attached to the vehicle body 2 of the hybrid vehicle 1 and is connected to the front motor 4 and the rear motor 5 by a cable 7. As shown in FIG. 2, the secondary battery system 6 includes a battery pack 10 in which a plurality of (for example, 100) lithium ion secondary batteries 100 are electrically connected in series to each other, a control device 30, and current detection. Device 50.

リチウムイオン二次電池100は、図3に示すように、直方体形状の電池ケース110と、正極端子120と、負極端子130とを備える、角形密閉式のリチウムイオン二次電池である。このうち、電池ケース110は、金属からなり、直方体形状の収容空間をなす角形収容部111と、金属製の蓋部112とを有している。電池ケース110(角形収容部111)の内部には、電極体150、正極集電部材122、負極集電部材132などが収容されている。   As shown in FIG. 3, the lithium ion secondary battery 100 is a rectangular sealed lithium ion secondary battery including a rectangular parallelepiped battery case 110, a positive electrode terminal 120, and a negative electrode terminal 130. Among these, the battery case 110 is made of metal, and includes a rectangular housing portion 111 that forms a rectangular parallelepiped housing space, and a metal lid portion 112. An electrode body 150, a positive current collecting member 122, a negative current collecting member 132, and the like are accommodated in the battery case 110 (rectangular accommodation portion 111).

電極体150は、断面長円状をなし、シート状の正極板155、負極板156、及びセパレータ157を捲回してなる扁平型の捲回体である(図4及び図5参照)。正極板155は、アルミニウム箔からなる正極集電部材151と、その表面に塗工された正極合材152を有している。負極板156は、銅箔からなる負極集電部材158と、その表面に塗工された負極合材159を有している。   The electrode body 150 is an oblong cross section, and is a flat wound body formed by winding a sheet-like positive electrode plate 155, a negative electrode plate 156, and a separator 157 (see FIGS. 4 and 5). The positive electrode plate 155 has a positive electrode current collecting member 151 made of an aluminum foil and a positive electrode mixture 152 coated on the surface thereof. The negative electrode plate 156 has a negative electrode current collector 158 made of copper foil and a negative electrode mixture 159 coated on the surface thereof.

電極体150は、その軸線方向(図3において左右方向)の一方端部(図3において右端部)に位置し、正極集電部材151の一部のみが渦巻状に重なる正極捲回部155bと、他方端部(図3において左端部)に位置し、負極集電部材158の一部のみが渦巻状に重なる負極捲回部156bとを有している。   The electrode body 150 is positioned at one end portion (right end portion in FIG. 3) in the axial direction (left and right direction in FIG. 3), and a positive electrode winding portion 155b in which only a part of the positive electrode current collecting member 151 overlaps in a spiral shape. The negative electrode winding portion 156b is located at the other end portion (left end portion in FIG. 3) and only a part of the negative electrode current collecting member 158 is spirally overlapped.

正極板155には、正極捲回部155bを除く部位に、正極活物質153を含む正極合材152が塗工されている(図5参照)。また、負極板156には、負極捲回部156bを除く部位に、負極活物質154を含む負極合材159が塗工されている(図5参照)。正極捲回部155bは、正極集電部材122を通じて、正極端子120に電気的に接続されている。負極捲回部156bは、負極集電部材132を通じて、負極端子130に電気的に接続されている。   The positive electrode plate 155 is coated with a positive electrode mixture 152 including a positive electrode active material 153 at a portion other than the positive electrode winding portion 155b (see FIG. 5). The negative electrode plate 156 is coated with a negative electrode mixture 159 including a negative electrode active material 154 at a portion excluding the negative electrode winding portion 156b (see FIG. 5). The positive electrode winding part 155 b is electrically connected to the positive electrode terminal 120 through the positive electrode current collecting member 122. The negative electrode winding part 156 b is electrically connected to the negative electrode terminal 130 through the negative electrode current collecting member 132.

本実施例1では、正極活物質153として、平均一次粒子径が0.5μmで凝集二次粒子径が2μmのLiFePO4を用いている。LiFePO4は、2相共存型の充放電を行う活物質であり、結晶構造が異なる2つの結晶が共存した状態で充放電の反応が行われるものである。また、負極活物質154として、炭素材料(天然黒鉛)を用いている。詳細には、平均粒子径が20μm、格子定数C0が0.67nm、結晶子サイズLcが27nm、黒鉛化度0.9以上の天然黒鉛を用いている。 In Example 1, LiFePO 4 having an average primary particle diameter of 0.5 μm and an agglomerated secondary particle diameter of 2 μm is used as the positive electrode active material 153. LiFePO 4 is an active material that performs charge and discharge in a two-phase coexistence type, and a charge and discharge reaction is performed in a state where two crystals having different crystal structures coexist. Further, a carbon material (natural graphite) is used as the negative electrode active material 154. Specifically, natural graphite having an average particle diameter of 20 μm, a lattice constant C0 of 0.67 nm, a crystallite size Lc of 27 nm, and a graphitization degree of 0.9 or more is used.

なお、本実施例1では、正極板155を次のようにして製造した。まず、LiFePO4(正極活物質153)とアセチレンブラック(導電助剤)とポリフッ化ビニリデン(バインダ樹脂)とを、85:5:10(重量比)の割合で混合し、これにN−メチルピロリドン(分散溶媒)を混合して、正極スラリを作製した。次いで、この正極スラリを、正極集電部材151(アルミニウム箔)の表面に塗布し、乾燥させた後、プレス加工を施した。これにより、正極集電部材151の表面に正極合材152が塗工された正極板155を得た。 In Example 1, the positive electrode plate 155 was manufactured as follows. First, LiFePO 4 (positive electrode active material 153), acetylene black (conducting aid) and polyvinylidene fluoride (binder resin) are mixed in a ratio of 85: 5: 10 (weight ratio), and N-methylpyrrolidone is mixed therewith. (Dispersion solvent) was mixed to prepare a positive electrode slurry. Next, this positive electrode slurry was applied to the surface of the positive electrode current collector 151 (aluminum foil), dried, and then pressed. Thereby, the positive electrode plate 155 in which the positive electrode mixture 152 was coated on the surface of the positive electrode current collecting member 151 was obtained.

また、本実施例1では、負極板156を次のようにして製造した。まず、天然黒鉛(負極活物質154)と、スチレン−ブタジエン共重合体(バインダ樹脂)と、カルボキシメチルセルロース(増粘剤)とを、95:2.5:2.5(重量比)の割合で水中で混合して、負極スラリを作製した。次いで、この負極スラリを、負極集電部材158(銅箔)の表面に塗布し、乾燥させた後、プレス加工を施した。これにより、負極集電部材158の表面に負極合材159が塗工された負極板156を得た(図5参照)。
なお、本実施例1では、正極の理論容量と負極の理論容量との比が1:1.3となるように、正極スラリ及び負極スラリの塗布量を調整している。
In Example 1, the negative electrode plate 156 was manufactured as follows. First, natural graphite (negative electrode active material 154), styrene-butadiene copolymer (binder resin), and carboxymethyl cellulose (thickener) are used in a ratio of 95: 2.5: 2.5 (weight ratio). A negative electrode slurry was prepared by mixing in water. Next, this negative electrode slurry was applied to the surface of the negative electrode current collector 158 (copper foil), dried, and then pressed. As a result, a negative electrode plate 156 in which the negative electrode mixture 159 was coated on the surface of the negative electrode current collector 158 was obtained (see FIG. 5).
In Example 1, the coating amounts of the positive electrode slurry and the negative electrode slurry are adjusted so that the ratio between the theoretical capacity of the positive electrode and the theoretical capacity of the negative electrode is 1: 1.3.

また、セパレータ157として、ポリプロピレン/ポリエチレン/ポリプロピレン3層構造複合体多孔質シート(厚さ25μm)を用いている。また、非水電解液として、EC(エチレンカーボネート)とDEC(ジエチルカーボネート)とを、4:6(体積比)で混合した溶液中に、六フッ化燐酸リチウム(LiPF6)を1モル/リットルの割合で溶解したものを用いている。
なお、リチウムイオン二次電池100の電池容量は15Ahである。
Further, as the separator 157, a polypropylene / polyethylene / polypropylene three-layer structure composite porous sheet (thickness: 25 μm) is used. In addition, as a non-aqueous electrolyte, 1 mol / liter of lithium hexafluorophosphate (LiPF 6 ) is added to a solution obtained by mixing EC (ethylene carbonate) and DEC (diethyl carbonate) at a ratio of 4: 6 (volume ratio). What was melt | dissolved in the ratio is used.
The battery capacity of the lithium ion secondary battery 100 is 15 Ah.

図2に示す電流検知装置50は、組電池10を構成するリチウムイオン二次電池100を流れる電流値を検知する。なお、この電流検知装置50では、リチウムイオン二次電池100に対し充電が行われているときは、電流値Iは正の値(I>0)で検出され、放電が行われているときは、電流値Iは負の値(I<0)で検出される。   A current detection device 50 shown in FIG. 2 detects a current value flowing through the lithium ion secondary battery 100 constituting the assembled battery 10. In the current detection device 50, when the lithium ion secondary battery 100 is being charged, the current value I is detected as a positive value (I> 0), and when the discharge is being performed. The current value I is detected as a negative value (I <0).

制御装置30は、演算部31と制御部32と記憶部33とを有している。このうち、演算部31は、電流検知装置50によって検知された電流値を積算(電流値×時間)して、リチウムイオン二次電池100のSOC(%)を算出する。この演算部31は、制御部32と接続されている。記憶部33には、下限充電深さSOCB、上限充電深さSOCT、及び充電終止充電深さSOCCと放電終止充電深さSOCDとの差が記憶されている。この記憶部33は、制御部32と接続されている。 The control device 30 includes a calculation unit 31, a control unit 32, and a storage unit 33. Among these, the calculating part 31 integrates the electric current value detected by the electric current detection apparatus 50 (electric current value x time), and calculates SOC (%) of the lithium ion secondary battery 100. The calculation unit 31 is connected to the control unit 32. The storage unit 33 stores a lower limit charge depth SOC B , an upper limit charge depth SOC T , and a difference between the charge end charge depth SOC C and the discharge end charge depth SOC D. The storage unit 33 is connected to the control unit 32.

制御部32には、演算部31によって算出されたリチウムイオン二次電池100のSOC(%)が逐次送られる。この制御部32は、演算部31から送られてくるリチウムイオン二次電池100のSOCに基づいて、リチウムイオン二次電池100の充放電を制御する。具体的には、リチウムイオン二次電池100を放電終止充電深さSOCDと充電終止充電深さSOCCとの間で充放電させる制御をし、且つ、放電終止充電深さSOCD及び充電終止充電深さSOCCを、下限充電深さSOCBと上限充電深さSOCTとの間で順次変動させる制御を行う。 The SOC (%) of the lithium ion secondary battery 100 calculated by the calculation unit 31 is sequentially sent to the control unit 32. The control unit 32 controls charging / discharging of the lithium ion secondary battery 100 based on the SOC of the lithium ion secondary battery 100 sent from the calculation unit 31. Specifically, the lithium ion secondary battery 100 is controlled to be charged / discharged between the end-of-discharge charge depth SOC D and the end-of-charge charge depth SOC C , and the end-of-discharge charge depth SOC D and the end of charge are controlled. Control is performed to sequentially change the charging depth SOC C between the lower limit charging depth SOC B and the upper limit charging depth SOC T.

ここで、実施例1にかかる充放電制御方法について、図6を参照して詳細に説明する。
本実施例1では、図6に示すように、下限充電深さSOCBを30%、上限充電深さSOCTを90%に設定し、各サイクルの充電終止充電深さSOCCと放電終止充電深さSOCDとの差を10%に設定して、制御装置30が、リチウムイオン二次電池100の充放電を制御する。
Here, the charge / discharge control method according to the first embodiment will be described in detail with reference to FIG.
In the first embodiment, as shown in FIG. 6, the lower limit charge depth SOC B is set to 30% and the upper limit charge depth SOC T is set to 90%, and the charge end charge depth SOC C and discharge end charge of each cycle are set. The control device 30 controls charging / discharging of the lithium ion secondary battery 100 by setting the difference from the depth SOC D to 10%.

詳細には、1サイクル目は、充電終止充電深さSOCCと放電終止充電深さSOCDとの差が10%になるように、放電終止充電深さSOCDを80%、充電終止充電深さSOCCを90%(SOCTと同じ)として、放電と充電の制御を行う。2サイクル目は、SOCB及びSOCCを1サイクル目のSOCCよりも小さい値、例えば、SOCDを70%、SOCCを80%として、放電と充電の制御を行う。このようにしてサイクル毎にSOCB及びSOCCを小さくしつつ、放電終止充電深さSOCDが下限充電深さSOCBと同値になるまで充放電の制御を行う。そして、SOCDがSOCBと同値(本実施例1では30%)になったら、今度は反対に、SOCCがSOCTと同値(本実施例1では90%)になるまで、サイクル毎にSOCB及びSOCCを大きくしつつ充放電の制御を行う。このようにして、図6に示す充放電パターンを繰り返すように、リチウムイオン二次電池100の充放電を制御する。 Specifically, in the first cycle, the discharge end charge depth SOC D is set to 80% and the charge end charge depth so that the difference between the charge end charge depth SOC C and the discharge end charge depth SOC D is 10%. SOC C is set to 90% (same as SOC T ), and discharging and charging are controlled. Second cycle, SOC B and SOC C for 1 cycle of SOC C less than, for example, 70% SOC D, as 80% SOC C, and controls the charging and discharging. Thus while reducing the SOC B and SOC C per cycle, and controls the charging and discharging until the discharge termination charge depth SOC D is equivalent and lower charging depth SOC B. When SOC D becomes the same value as SOC B (30% in this embodiment 1), on the contrary, every time until SOC C becomes the same value as SOC T (90% in this embodiment 1), on the contrary. Charge / discharge control is performed while increasing SOC B and SOC C. Thus, charging / discharging of the lithium ion secondary battery 100 is controlled so that the charging / discharging pattern shown in FIG. 6 is repeated.

本実施例1の二次電池システム6では、上述のようにして、充電終止充電深さSOCCと放電終止充電深さSOCDとの差を10%にしつつ、SOCD及びSOCCを、下限充電深さSOCBと上限充電深さSOCTとの間で順次変動させて、リチウムイオン二次電池100の充放電を制御する。これにより、リチウムイオン二次電池100について、正極活物質(LiFePO4)内におけるLiイオンの局在化を抑制することができる。従って、リチウムイオン二次電池100の放電容量の低下を抑制でき、リチウムイオン二次電池100の性能を十分に引き出すことができる。これにより、ハイブリッド自動車1の走行性能も良好になる。 In the secondary battery system 6 of the first embodiment, as described above, the SOC D and the SOC C are set to the lower limits while the difference between the charge end charge depth SOC C and the discharge end charge depth SOC D is 10%. The charging / discharging of the lithium ion secondary battery 100 is controlled by sequentially changing between the charging depth SOC B and the upper limit charging depth SOC T. Thus, the lithium ion secondary battery 100, it is possible to suppress the localization of the Li ions in the positive electrode active material (LiFePO 4). Therefore, a reduction in the discharge capacity of the lithium ion secondary battery 100 can be suppressed, and the performance of the lithium ion secondary battery 100 can be sufficiently extracted. Thereby, the running performance of the hybrid vehicle 1 is also improved.

なお、リチウムイオン二次電池100の充電は、例えば、内燃機関の運動エネルギーや停止時の摩擦エネルギーを充電電流に変換できるインバータを用いることができる。また、放電時に電気エネルギーを運動エネルギーに変換する際にも、このインバータを用いると効率的である。   The lithium ion secondary battery 100 can be charged using, for example, an inverter that can convert kinetic energy of the internal combustion engine or frictional energy at the time of stopping into a charging current. In addition, it is efficient to use this inverter when converting electrical energy into kinetic energy during discharge.

(実施例2)
実施例2では、充電終止充電深さSOCCと放電終止充電深さSOCDとの差を20%に設定した以外は、実施例1と同様にして、二次電池システム及びハイブリッド自動車を構成した。
(Example 2)
In Example 2, a secondary battery system and a hybrid vehicle were configured in the same manner as in Example 1 except that the difference between the end-of-charge charge depth SOC C and the end-of-discharge charge depth SOC D was set to 20%. .

(実施例3〜6)
実施例3〜6では、下限充電深さSOCBを20%、上限充電深さSOCTを100%に設定した。さらに、充電終止充電深さSOCCと放電終止充電深さSOCDとの差を、実施例3では20%、実施例4では30%、実施例5では40%、実施例6では50%に設定した。これら以外は実施例1と同様にして、実施例3〜6にかかる二次電池システム及びハイブリッド自動車を構成した。
(Examples 3 to 6)
In Examples 3 to 6, the lower limit charging depth SOC B was set to 20%, and the upper limit charging depth SOC T was set to 100%. Further, the difference between the end-of-charge charge depth SOC C and the end-of-discharge charge depth SOC D is 20% in Example 3, 30% in Example 4, 40% in Example 5, and 50% in Example 6. Set. Except these, it carried out similarly to Example 1, and comprised the secondary battery system and hybrid vehicle concerning Examples 3-6.

参考例1及び実施例7,8
参考例1及び実施例7,8では、上限充電深さSOCTを80%、充電終止充電深さSOCCと放電終止充電深さSOCDとの差を20%に設定した。さらに、下限充電深さSOCBを、参考例1では10%、実施例では20%、実施例では30%に設定した。これら以外は実施例1と同様にして、参考例1及び実施例7,8にかかる二次電池システム及びハイブリッド自動車を構成した。
( Reference Example 1 and Examples 7 and 8 )
In Reference Example 1 and Examples 7 and 8, 80% upper limit charge depth SOC T, setting the difference between the charging end charging depth SOC C with discharge termination charge depth SOC D 20%. Further, the lower limit charging depth SOC B was set to 10% in Reference Example 1 , 20% in Example 7 , and 30% in Example 8 . Except for these, the secondary battery system and the hybrid vehicle according to Reference Example 1 and Examples 7 and 8 were configured in the same manner as Example 1 .

(比較例1)
比較例1として、図9に示すパターンでリチウムイオン二次電池100を制御する二次電池システムを用意した。この比較例1では、実施例4と同様に、下限充電深さSOCBを20%、上限充電深さSOCTを100%に設定し、充電終止充電深さSOCCと放電終止充電深さSOCDとの差を30%に設定している。しかしながら、実施例4と異なり、放電終止充電深さSOCD及び充電終止充電深さSOCCを、下限充電深さSOCBと上限充電深さSOCTとの間で変動させることなく、リチウムイオン二次電池100の充放電を制御する。具体的には、SOC50%を制御中心として、放電終止充電深さSOCDを35%、充電終止充電深さSOCCを65%に固定して、リチウムイオン二次電池100の充放電を制御する。これ以外は実施例1と同様にして、比較例1の二次電池システムを構成した。
(Comparative Example 1)
As Comparative Example 1, a secondary battery system for controlling the lithium ion secondary battery 100 with the pattern shown in FIG. 9 was prepared. In Comparative Example 1, as in Example 4, the lower limit charge depth SOC B is set to 20%, the upper limit charge depth SOC T is set to 100%, the charge end charge depth SOC C and the discharge end charge depth SOC. The difference from D is set to 30%. However, unlike Example 4, the end-of-discharge charge depth SOC D and the end-of-charge charge depth SOC C are not changed between the lower limit charge depth SOC B and the upper limit charge depth SOC T, and the lithium ion concentration The charging / discharging of the secondary battery 100 is controlled. Specifically, with the SOC 50% as the control center, the end-of-discharge charge depth SOC D is fixed at 35% and the end-of-charge charge depth SOC C is fixed at 65% to control the charge / discharge of the lithium ion secondary battery 100. . Except for this, the secondary battery system of Comparative Example 1 was configured in the same manner as Example 1.

(比較例2)
比較例2では、上限充電深さSOCTを90%に設定し、充電終止充電深さSOCCと放電終止充電深さSOCDとの差を20%に設定した。これ以外は比較例1と同様にして、比較例2の二次電池システムを構成した。従って、この比較例2でも、放電終止充電深さSOCD及び充電終止充電深さSOCCを、下限充電深さSOCBと上限充電深さSOCTとの間で変動させることなく、リチウムイオン二次電池100の充放電を制御する。具体的には、SOC50%を制御中心として、放電終止充電深さSOCDを40%、充電終止充電深さSOCCを60%に固定して、リチウムイオン二次電池100の充放電を制御する。
(Comparative Example 2)
In Comparative Example 2, an upper limit charge depth SOC T 90%, setting the difference between the charging end charging depth SOC C with discharge termination charge depth SOC D 20%. Except for this, the secondary battery system of Comparative Example 2 was configured in the same manner as Comparative Example 1. Therefore, in this Comparative Example 2, discharge termination charge depth SOC D and charge end charging depth SOC C, without varying between a lower limit charging depth SOC B and the upper limit charge depth SOC T, the lithium ion secondary The charging / discharging of the secondary battery 100 is controlled. Specifically, with the SOC 50% as the control center, the end-of-discharge charge depth SOC D is fixed at 40% and the end-of-charge charge depth SOC C is fixed at 60% to control the charge / discharge of the lithium ion secondary battery 100. .

(サイクル充放電)
実施例1〜8、参考例1、及び比較例1,2の各々の二次電池システムにおいて、リチウムイオン二次電池100の充放電を繰り返し行った。具体的には、各二次電池システムにおいて、リチウムイオン二次電池100について、50Aの充放電電流で、1000サイクルの充放電を行った。実施例1〜8、参考例1、及び比較例1,2におけるリチウムイオン二次電池100の充放電制御方法、充放電サイクルパターンは、前述の通りである(図6、図9参照)。
(Cycle charge / discharge)
In each of the secondary battery systems of Examples 1 to 8, Reference Example 1, and Comparative Examples 1 and 2, the lithium ion secondary battery 100 was repeatedly charged and discharged. Specifically, in each secondary battery system, the lithium ion secondary battery 100 was charged and discharged for 1000 cycles at a charge / discharge current of 50 A. The charge / discharge control methods and charge / discharge cycle patterns of the lithium ion secondary batteries 100 in Examples 1 to 8, Reference Example 1, and Comparative Examples 1 and 2 are as described above (see FIGS. 6 and 9).

(放電容量の確認)
実施例1〜8、参考例1、及び比較例1,2の各々の二次電池システムについて、上述の1000サイクルの充放電を行った後、各二次電池システムのリチウムイオン二次電池100の放電容量を測定した。具体的には、まず、1000サイクルの充放電を行った後、各二次電池システムのリチウムイオン二次電池100について、5Aの電流値でSOC80%まで充電を行った。その後、5Aの電流値でSOC0%まで放電を行い、このときの放電容量(放電容量Aとする)を測定した。
(Check discharge capacity)
About each secondary battery system of Examples 1-8, Reference Example 1, and Comparative Examples 1 and 2, after performing the above-described 1000 cycles of charging and discharging, the lithium ion secondary battery 100 of each secondary battery system The discharge capacity was measured. Specifically, after charging and discharging for 1000 cycles, the lithium ion secondary battery 100 of each secondary battery system was charged to SOC 80% at a current value of 5A. Thereafter, discharging was performed to SOC 0% at a current value of 5 A, and the discharge capacity (referred to as discharge capacity A) at this time was measured.

引き続き、各二次電池システムのリチウムイオン二次電池100について、リフレッシュ充放電(SOC100%まで充電した後SOC0%まで放電する操作を、数回繰り返し行う)を行った。その後、上述のようにして、各二次電池システムのリチウムイオン二次電池100について、SOC80%から0%にまで放電したときの放電容量(放電容量Bとする)を測定した。   Subsequently, the lithium ion secondary battery 100 of each secondary battery system was subjected to refresh charge / discharge (the operation of charging to SOC 100% and then discharging to SOC 0% is repeated several times). Thereafter, as described above, the discharge capacity (discharge capacity B) when the lithium ion secondary battery 100 of each secondary battery system was discharged from SOC 80% to 0% was measured.

なお、各二次電池システムのリチウムイオン二次電池100について、リフレッシュ充放電を行うことで、サイクル充放電によって生じたLiイオンの局在化を解消することができる。従って、リフレッシュ充放電後の放電容量Bとリフレッシュ充放電前の放電容量Aとの差分値(放電容量B−放電容量A)が、Liイオンの局在化によって低下した放電容量に相当する。すなわち、(放電容量B−放電容量A)の値が、Liイオンの局在化に伴う放電容量の低下量といえる。   In addition, about the lithium ion secondary battery 100 of each secondary battery system, by performing refresh charge / discharge, localization of Li ion produced by cycle charge / discharge can be eliminated. Therefore, the difference value (discharge capacity B−discharge capacity A) between the discharge capacity B after the refresh charge / discharge and the discharge capacity A before the refresh charge / discharge corresponds to the discharge capacity reduced by the localization of Li ions. That is, it can be said that the value of (discharge capacity B−discharge capacity A) is the amount of decrease in discharge capacity due to localization of Li ions.

従って、放電容量Bに対する(放電容量B−放電容量A)の割合、すなわち、「{(放電容量B−放電容量A)/放電容量B}×100(%)」の値によって、サイクル充放電によって生じたLiイオンの局在化の程度、及び、容量低下の程度を評価した。以下、{(放電容量B−放電容量A)/放電容量B}×100(%)の値を、放電容量低下率ともいう。すなわち、放電容量低下率(%)の値が大きいほど、サイクル充放電によって生じたLiイオンの局在化の程度が大きく、これに伴う放電容量低下が大きいといえる。換言すれば、放電容量低下率の値が小さい二次電池システムでは、正極活物質内におけるLiイオンの局在化を抑制することができ、これにより、リチウムイオン二次電池の放電容量の低下を抑制することができたといえる。   Accordingly, the ratio of (discharge capacity B−discharge capacity A) to the discharge capacity B, that is, the value of “{(discharge capacity B−discharge capacity A) / discharge capacity B} × 100 (%)” The degree of localization of the generated Li ions and the degree of capacity reduction were evaluated. Hereinafter, the value of {(discharge capacity B−discharge capacity A) / discharge capacity B} × 100 (%) is also referred to as a discharge capacity decrease rate. That is, it can be said that the larger the value of the discharge capacity decrease rate (%), the greater the degree of localization of Li ions generated by cycle charge / discharge, and the greater the discharge capacity decrease associated therewith. In other words, in a secondary battery system with a small discharge capacity reduction rate, localization of Li ions in the positive electrode active material can be suppressed, thereby reducing the discharge capacity of the lithium ion secondary battery. It can be said that it was able to be suppressed.

ここで、実施例1〜8、参考例1、及び比較例1,2の各々の二次電池システムについて、放電容量低下率(%)の値を算出した。そして、放電容量低下率の値が1%未満の場合は、放電容量低下が「なし」、1%以上5%未満の場合は、放電容量低下が「あり」、5%以上の場合は、放電容量低下が「顕著」と評価した。これらの結果を表1に示す。 Here, for each of the secondary battery systems of Examples 1 to 8, Reference Example 1, and Comparative Examples 1 and 2, the value of the discharge capacity reduction rate (%) was calculated. When the discharge capacity reduction rate is less than 1%, the discharge capacity reduction is “none”, when 1% or more and less than 5%, the discharge capacity reduction is “present”, and when 5% or more, the discharge The capacity drop was evaluated as “significant”. These results are shown in Table 1.

Figure 0005326679
Figure 0005326679

表1に示すように、比較例1,2では、顕著な放電容量低下が発生した。これに対し、実施例1〜8及び参考例1では、比較例1,2に比べて、放電容量低下を抑制することができた。このため、実施例1〜8及び参考例1の二次電池システムでは、リチウムイオン二次電池100の性能を十分に引き出すことができる。この結果より、実施例1〜8及び参考例1では、比較例1,2に比べて、リチウムイオン二次電池100について、正極活物質内におけるLiイオンの局在化を抑制することができたといえる。 As shown in Table 1, in Comparative Examples 1 and 2, a significant decrease in discharge capacity occurred. On the other hand, in Examples 1 to 8 and Reference Example 1 , it was possible to suppress a decrease in discharge capacity compared to Comparative Examples 1 and 2. For this reason, in the secondary battery systems of Examples 1 to 8 and Reference Example 1 , the performance of the lithium ion secondary battery 100 can be sufficiently obtained. From these results, in Examples 1 to 8 and Reference Example 1 , localization of Li ions in the positive electrode active material was suppressed for the lithium ion secondary battery 100 as compared with Comparative Examples 1 and 2. I can say that.

従って、2相共存型の充放電を行う正極活物質(実施例1〜8及び参考例1では、LiFePO4)を有するリチウムイオン二次電池について、放電終止充電深さSOCD及び充電終止充電深さSOCCを、下限充電深さSOCBと上限充電深さSOCTとの間で順次変動させつつ充放電を行うことで、正極活物質内におけるLiイオンの局在化を抑制することができるといえる。これにより、リチウムイオン二次電池の放電容量の低下を抑制することができ、リチウムイオン二次電池の性能を十分に引き出すことができるといえる。 Therefore, regarding the lithium ion secondary battery having the positive electrode active material (LiFePO 4 in Examples 1 to 8 and Reference Example 1 ) that performs charge and discharge in a two-phase coexistence type, the discharge end charge depth SOC D and the charge end charge depth By performing charge / discharge while sequentially varying the SOC C between the lower limit charge depth SOC B and the upper limit charge depth SOC T , localization of Li ions in the positive electrode active material can be suppressed. It can be said. Thereby, it can be said that the fall of the discharge capacity of a lithium ion secondary battery can be suppressed, and the performance of a lithium ion secondary battery can fully be drawn out.

また、実施例1〜8及び参考例1の二次電池システムでは、下限充電深さSOCBを30%以下の値とし、且つ、上限充電深さSOCTを80〜100%の範囲内の値としている。さらに、参考例1を除いた実施例1〜8では、下限充電深さSOCBを15%以上の値としている(表1参照)。 In the secondary battery systems of Examples 1 to 8 and Reference Example 1 , the lower limit charging depth SOC B is set to a value of 30% or less, and the upper limit charging depth SOC T is a value within the range of 80 to 100%. It is said. Further, in Examples 1 to 8 except Reference Example 1 , the lower limit charging depth SOC B is set to a value of 15% or more (see Table 1).

ここで、リチウムイオン二次電池100にかかるSOCと電池電圧との関係を示すグラフを図7に示す。図7に示すように、リチウムイオン二次電池100では、SOCが15%未満になると電池電圧が急激に低下する(図7参照)。従って、下限充電深さSOCBを15%以上に設定している実施例1〜では、電池電圧が小さく(約3.3V以下)なるのを防止できるので、リチウムイオン二次電池100の出力特性を良好にできる。 Here, the graph which shows the relationship between SOC concerning lithium ion secondary battery 100 and battery voltage is shown in FIG. As shown in FIG. 7, in the lithium ion secondary battery 100, when the SOC becomes less than 15%, the battery voltage rapidly decreases (see FIG. 7). Accordingly, in Examples 1 to 8 in which the lower limit charging depth SOC B is set to 15% or more, the battery voltage can be prevented from becoming small (about 3.3 V or less), so the output of the lithium ion secondary battery 100 Good characteristics can be achieved.

なお、SOCが15%未満になると電池電圧が急激に低下する傾向は、LiM1(1-X)M2XPO4(M1は、FeまたはMnであり、M2は、Mn,Cr,Co,Cu,Ni,V,Mo,Ti,Zn,Al,Ga,Mg,B,Nbの少なくともいずれか(但し、M1がMnのときはMnを除く)であり、0≦X≦0.5)で表される化合物を正極活物質として用いたリチウムイオン二次電池全般に見られる。参考として、図8に、正極活物質にLiMnPO4を用いたリチウムイオン二次電池(リチウムイオン二次電池100と比べて、正極活物質のみが異なる)にかかるSOCと電池電圧との関係を示すグラフを示す。従って、上記組成式で表される化合物を正極活物質として用いたリチウムイオン二次電池について、下限充電深さSOCBを15%以上として充放電を制御することで、電池電圧が小さくなるのを防止でき、リチウムイオン二次電池の出力特性を良好にできるといえる。 In addition, when SOC becomes less than 15%, the tendency of the battery voltage to rapidly decrease is LiM1 (1-X) M2 X PO 4 (M1 is Fe or Mn, and M2 is Mn, Cr, Co, Cu, It is at least one of Ni, V, Mo, Ti, Zn, Al, Ga, Mg, B, and Nb (however, when M1 is Mn, Mn is excluded), and 0 ≦ X ≦ 0.5) It can be found in all lithium ion secondary batteries using a positive electrode active material as a positive electrode active material. For reference, FIG. 8 shows the relationship between the SOC and the battery voltage applied to a lithium ion secondary battery using LiMnPO 4 as the positive electrode active material (only the positive electrode active material is different from the lithium ion secondary battery 100). A graph is shown. Therefore, for a lithium ion secondary battery using the compound represented by the above composition formula as the positive electrode active material, the battery voltage is reduced by controlling the charge / discharge with the lower limit charge depth SOC B being 15% or more. It can be said that the output characteristics of the lithium ion secondary battery can be improved.

また、実施例1〜8及び参考例1の二次電池システムでは、下限充電深さSOCBを30%以下とし、上限充電深さSOCTを80%以上としている(表1参照)。これにより、放電終止充電深さSOCD及び充電終止充電深さSOCCを、下限充電深さSOCBと上限充電深さSOCTとの間で十分に大きく変動させることができる。このため、実施例1〜8及び参考例1の二次電池システムでは、正極活物質内におけるLiイオンの局在化を抑制することができ、リチウムイオン二次電池100の放電容量の低下を抑制することができたといえる。従って、上記組成式で表される化合物を正極活物質として用いたリチウムイオン二次電池について、下限充電深さSOCBを30%以下とし、上限充電深さSOCTを80%以上として充放電を制御することで、正極活物質内におけるLiイオンの局在化を抑制することができ、リチウムイオン二次電池100の放電容量の低下を抑制することができるといえる。 In the secondary battery systems of Examples 1 to 8 and Reference Example 1 , the lower limit charging depth SOC B is set to 30% or less, and the upper limit charging depth SOC T is set to 80% or more (see Table 1). Thus, discharge termination charge depth SOC D and end-of-charge charge depth SOC C, can be varied sufficiently large between the lower charge depth SOC B and the upper limit charge depth SOC T. For this reason, in the secondary battery systems of Examples 1 to 8 and Reference Example 1 , localization of Li ions in the positive electrode active material can be suppressed, and reduction in the discharge capacity of the lithium ion secondary battery 100 is suppressed. It can be said that it was possible. Therefore, the lithium ion secondary battery using the compound represented by the above composition formula as the positive electrode active material is charged / discharged with the lower limit charge depth SOC B being 30% or less and the upper limit charge depth SOC T being 80% or more. By controlling, it can be said that localization of Li ions in the positive electrode active material can be suppressed, and a decrease in discharge capacity of the lithium ion secondary battery 100 can be suppressed.

しかも、図7及び図8に示すように、上記組成式で表される化合物を正極活物質として用いたリチウムイオン二次電池では、SOC30%〜80%の範囲では、電池電圧がほとんど変動しない。従って、SOCBを30%以下としSOCTを80%以上とすることで、SOC30%〜80%の広い容量範囲において、電池電圧をほとんど変動させることなく、リチウムイオン二次電池を放電させることができる。これにより、安定した出力特性を得ることができる。 Moreover, as shown in FIGS. 7 and 8, in the lithium ion secondary battery using the compound represented by the above composition formula as the positive electrode active material, the battery voltage hardly varies in the range of SOC 30% to 80%. Therefore, by setting SOC B to 30% or less and SOC T to 80% or more, a lithium ion secondary battery can be discharged with almost no change in battery voltage in a wide capacity range of SOC 30% to 80%. it can. Thereby, stable output characteristics can be obtained.

また、実施例1〜8及び参考例1の二次電池システムでは、上限充電深さSOCTを100%以下としている(表1参照)。上限充電深さSOCTを100%以下とすることで、過充電を防止することができる。これにより、過充電による不具合(電池内部におけるガス発生に伴って、電解液が減少し、早期に寿命に至ることなど)を防止することができる。 Further, in the secondary battery system of Examples 1-8 and Reference Example 1, and the upper limit charge depth SOC T is 100% or less (see Table 1). The upper limit charge depth SOC T by 100% or less, it is possible to prevent overcharging. As a result, it is possible to prevent problems due to overcharge (such as a decrease in electrolyte due to gas generation inside the battery and an early life span).

さらに、実施例1〜8及び参考例1の二次電池システムでは、充電終止充電深さSOCCと放電終止充電深さSOCDとの差を10〜50%の範囲内の値としている(表1参照)。すなわち、1回の充電電気量または放電電気量を、SOC10%〜50%の範囲内の値に相当する電気量にしている(図6参照)。このようにして、SOCD及びSOCCを、下限充電深さSOCB(30%以下の値)と上限充電深さSOCT(80〜100%の範囲内の値)との間で順次変動させつつ充放電を行うことで、正極活物質内におけるLiイオンの局在化を適切に抑制することができる。このため、実施例1〜8及び参考例1の二次電池システムでは、正極活物質内におけるLiイオンの局在化を抑制することができ、リチウムイオン二次電池100の放電容量の低下を抑制することができたといえる。 Furthermore, in the secondary battery systems of Examples 1 to 8 and Reference Example 1 , the difference between the charge end charge depth SOC C and the discharge end charge depth SOC D is set to a value within a range of 10 to 50% (Table 1). That is, the amount of electricity charged or discharged once is set to an amount of electricity corresponding to a value within the range of SOC 10% to 50% (see FIG. 6). In this way, SOC D and SOC C are sequentially changed between the lower limit charging depth SOC B (value of 30% or less) and the upper limit charging depth SOC T (value in the range of 80 to 100%). However, by performing charging and discharging, localization of Li ions in the positive electrode active material can be appropriately suppressed. For this reason, in the secondary battery systems of Examples 1 to 8 and Reference Example 1 , localization of Li ions in the positive electrode active material can be suppressed, and reduction in the discharge capacity of the lithium ion secondary battery 100 is suppressed. It can be said that it was possible.

ところで、実施例5,6では、放電容量低下を抑制することができたものの、他の実施例に比べて、放電容量低下が大きくなった(表1参照)。換言すれば、実施例1〜4,7,8では、実施例5,6に比べて、より一層放電容量低下を抑制することができた。その理由は、実施例5,6では、充電終止充電深さSOCCと放電終止充電深さSOCDとの差を40%以上としたのに対し、実施例1〜4,7,8では、充電終止充電深さSOCCと放電終止充電深さSOCDとの差を、10〜30%の範囲内の値としているからであると考えられる。従って、SOCCとSOCDとの差を10〜30%の範囲内の値として、SOCD及びSOCCを、SOCB(30%以下の値)とSOCT(80〜100%の範囲内の値)との間で順次変動させつつ充放電を行うことで、正極活物質内におけるLiイオンの局在化を、より一層抑制することができるといえる。 By the way, in Examples 5 and 6, although the discharge capacity fall could be suppressed, the discharge capacity fall became large compared with the other Examples (refer to Table 1). In other words, in Examples 1 to 4 , 7 and 8 , it was possible to further suppress the discharge capacity decrease compared to Examples 5 and 6. The reason is that in Examples 5 and 6, the difference between the end-of-charge charge depth SOC C and the end-of-discharge charge depth SOC D was 40% or more, whereas in Examples 1 to 4 , 7 , and 8 , This is probably because the difference between the end-of-charge charge depth SOC C and the end-of-charge charge depth SOC D is set to a value within the range of 10 to 30%. Accordingly, assuming that the difference between SOC C and SOC D is a value in the range of 10 to 30%, SOC D and SOC C are calculated as SOC B (value of 30% or less) and SOC T (in the range of 80 to 100%). It can be said that the localization of Li ions in the positive electrode active material can be further suppressed by charging and discharging while sequentially varying the value.

以上において、本発明を実施例1〜に即して説明したが、本発明は上記実施例に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることはいうまでもない。 In the above, the present invention has been described with reference to the first to eighth embodiments. However, the present invention is not limited to the above-described embodiments, and it can be applied as appropriate without departing from the scope of the present invention. Nor.

例えば、実施例1の二次電池システム6では、正極活物質としてLiFePO4を有するリチウムイオン二次電池100を用いた。しかしながら、正極活物質は、LiFePO4に限定されるものではなく、LiMnPO4など2相共存型の充放電を行う正極活物質であればいずれを用いても良い。 For example, in the secondary battery system 6 of Example 1, the lithium ion secondary battery 100 having LiFePO 4 as the positive electrode active material was used. However, the positive electrode active material is not limited to LiFePO 4 , and any positive electrode active material that performs charge and discharge in a two-phase coexistence type such as LiMnPO 4 may be used.

1 ハイブリッド自動車
6 二次電池システム
10 組電池
30 制御装置
100 リチウムイオン二次電池
153 正極活物質
DESCRIPTION OF SYMBOLS 1 Hybrid vehicle 6 Secondary battery system 10 Battery pack 30 Controller 100 Lithium ion secondary battery 153 Cathode active material

Claims (3)

2相共存型の充放電を行う正極活物質を有するリチウムイオン二次電池の充放電を制御する方法であって、
上記リチウムイオン二次電池を、放電終止充電深さSOCDと充電終止充電深さSOCCとの間で使用し、
上記放電終止充電深さSOCD及び充電終止充電深さSOCCを、下限充電深さSOCBと上限充電深さSOCTとの間で順次変動させる
リチウムイオン二次電池の充放電制御方法であって、
上記正極活物質は、LiM1 (1-X) M2 X PO 4 (M1は、FeまたはMnであり、M2は、Mn,Cr,Co,Cu,Ni,V,Mo,Ti,Zn,Al,Ga,Mg,B,Nbの少なくともいずれか(但し、M1がMnのときはMnを除く)であり、0≦X≦0.5)で表される化合物であり、
上記下限充電深さSOC B は15〜30%の範囲内の値であり、
上記上限充電深さSOC T は80〜100%の範囲内の値であり、
上記充電終止充電深さSOC C と前記放電終止充電深さSOC D との差が10〜50%の範囲内である
リチウムイオン二次電池の充放電制御方法
A method for controlling charge / discharge of a lithium ion secondary battery having a positive electrode active material that performs charge / discharge of a two-phase coexistence type,
The lithium ion secondary battery is used between the end-of-discharge charge depth SOC D and the end-of-charge charge depth SOC C ,
The discharge termination charge depth SOC D and end-of-charge charge depth SOC C, met the charge and discharge control method for sequentially lithium ion secondary battery which vary between a lower limit charging depth SOC B and the upper limit charge depth SOC T And
The positive electrode active material is LiM1 (1-X) M2 X PO 4 (M1 is Fe or Mn, M2 is Mn, Cr, Co, Cu, Ni, V, Mo, Ti, Zn, Al, Ga) , Mg, B, Nb (however, when M1 is Mn, Mn is excluded), and 0 ≦ X ≦ 0.5),
The lower limit charging depth SOC B is a value within a range of 15 to 30%,
The upper limit charge depth SOC T is a value within the range of 80% to 100%,
The difference between the end-of-charge charge depth SOC C and the end-of-charge charge depth SOC D is in the range of 10 to 50%.
A charge / discharge control method for a lithium ion secondary battery .
2相共存型の充放電を行う正極活物質を有するリチウムイオン二次電池と、
上記リチウムイオン二次電池の充放電を制御する制御装置と、を備える
二次電池システムであって、
上記制御装置は、
上記リチウムイオン二次電池を放電終止充電深さSOCDと充電終止充電深さSOCCとの間で充放電させる制御をし、且つ、上記放電終止充電深さSOCD及び充電終止充電深さSOCCを、下限充電深さSOCBと上限充電深さSOCTとの間で順次変動させる制御を行う
二次電池システムであって、
上記正極活物質は、LiM1 (1-X) M2 X PO 4 (M1は、FeまたはMnであり、M2は、Mn,Cr,Co,Cu,Ni,V,Mo,Ti,Zn,Al,Ga,Mg,B,Nbの少なくともいずれか(但し、M1がMnのときはMnを除く)であり、0≦X≦0.5)で表される化合物であり、
上記下限充電深さSOC B は15〜30%の範囲内の値であり、
上記上限充電深さSOC T は80〜100%の範囲内の値であり、
上記充電終止充電深さSOC C と前記放電終止充電深さSOC D との差が10〜50%の範囲内である
二次電池システム。
A lithium ion secondary battery having a positive electrode active material that performs charge and discharge of two-phase coexistence type;
A control device that controls charging and discharging of the lithium ion secondary battery, and a secondary battery system comprising:
The control device
The lithium ion secondary battery is controlled to be charged / discharged between an end-of-discharge charge depth SOC D and an end-of-charge charge depth SOC C , and the end-of-discharge charge depth SOC D and the end-of-charge charge depth SOC are controlled. A secondary battery system that performs control to sequentially change C between a lower limit charging depth SOC B and an upper limit charging depth SOC T ,
The positive electrode active material is LiM1 (1-X) M2 X PO 4 (M1 is Fe or Mn, M2 is Mn, Cr, Co, Cu, Ni, V, Mo, Ti, Zn, Al, Ga) , Mg, B, Nb (however, when M1 is Mn, Mn is excluded), and 0 ≦ X ≦ 0.5),
The lower limit charging depth SOC B is a value within a range of 15 to 30%,
The upper limit charge depth SOC T is a value within the range of 80% to 100%,
The difference between the end-of-charge charge depth SOC C and the end-of-charge charge depth SOC D is in the range of 10 to 50%.
Secondary battery system.
ハイブリッド自動車であって、
請求項2に記載の二次電池システムを、当該ハイブリッド自動車の駆動用電源システムとして搭載してなる
ハイブリッド自動車。
A hybrid car,
A hybrid vehicle comprising the secondary battery system according to claim 2 mounted as a drive power supply system for the hybrid vehicle.
JP2009054828A 2009-03-09 2009-03-09 Lithium ion secondary battery charge / discharge control method, secondary battery system, and hybrid vehicle Active JP5326679B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009054828A JP5326679B2 (en) 2009-03-09 2009-03-09 Lithium ion secondary battery charge / discharge control method, secondary battery system, and hybrid vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009054828A JP5326679B2 (en) 2009-03-09 2009-03-09 Lithium ion secondary battery charge / discharge control method, secondary battery system, and hybrid vehicle

Publications (2)

Publication Number Publication Date
JP2010211990A JP2010211990A (en) 2010-09-24
JP5326679B2 true JP5326679B2 (en) 2013-10-30

Family

ID=42971951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009054828A Active JP5326679B2 (en) 2009-03-09 2009-03-09 Lithium ion secondary battery charge / discharge control method, secondary battery system, and hybrid vehicle

Country Status (1)

Country Link
JP (1) JP5326679B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4915480B2 (en) * 2009-04-28 2012-04-11 トヨタ自動車株式会社 Lithium ion secondary battery charge retention method, battery system, vehicle, and battery-equipped device
JP5644602B2 (en) * 2011-03-16 2014-12-24 トヨタ自動車株式会社 Battery system, vehicle, and capacity recovery method of lithium ion secondary battery
JP6106991B2 (en) * 2011-09-09 2017-04-05 株式会社Gsユアサ State management device and method for equalizing storage elements
CN102364744B (en) * 2011-10-28 2013-06-12 深圳市格瑞普电池有限公司 Lithium ion battery pack charging and discharging cycle control method and system
JP2013097892A (en) * 2011-10-28 2013-05-20 Nippon Electric Glass Co Ltd Powder of lithium ion secondary battery anode material
JP2013175374A (en) * 2012-02-27 2013-09-05 Gs Yuasa Corp Positive electrode active material for secondary battery, active material particle, and positive electrode and secondary battery using those
US10634729B2 (en) 2015-03-27 2020-04-28 Gs Yuasa International Ltd. Deterioration detector for non-aqueous electrolyte power storage element, power storage device, deterioration detection system for non-aqueous electrolyte power storage element, and deterioration detection method for non-aqueous electrolyte power storage element
WO2017158960A1 (en) * 2016-03-16 2017-09-21 オートモーティブエナジーサプライ株式会社 Hybrid electric vehicle, and lithium ion secondary battery selection method for hybrid electric vehicle
JP6759668B2 (en) 2016-03-31 2020-09-23 株式会社Gsユアサ Power storage element management device, power storage device, and power storage system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4613781B2 (en) * 2005-10-04 2011-01-19 パナソニック株式会社 Charge / discharge control method and power supply system for alkaline storage battery
CN102037601B (en) * 2007-07-12 2014-04-23 A123系统公司 Multifunctional mixed metal olivines for lithium ion batteries

Also Published As

Publication number Publication date
JP2010211990A (en) 2010-09-24

Similar Documents

Publication Publication Date Title
JP5326679B2 (en) Lithium ion secondary battery charge / discharge control method, secondary battery system, and hybrid vehicle
JP5081886B2 (en) Non-aqueous electrolyte type lithium ion secondary battery
JP5109619B2 (en) Battery pack system and charge / discharge control method
JP4492683B2 (en) Battery system
JP5332983B2 (en) Battery system
KR101414955B1 (en) positive-electrode active material with improved safety and Lithium secondary battery including them
JP5750814B2 (en) Mixed cathode active material with improved output characteristics and lithium secondary battery including the same
RU2540072C1 (en) Active material of positive electrode for lithium-ion secondary battery
JP5708977B2 (en) Assembled battery
JP2002358966A (en) Lithium secondary battery positive electrode plate and lithium secondary battery
JP2008010394A (en) Nonaqueous electrolyte battery, battery pack, and rechargeable cleaner
JP5517007B2 (en) Lithium ion secondary battery
US9698413B2 (en) High-capacity cathode active material and lithium secondary battery including the same
JP4714229B2 (en) Lithium secondary battery
JP5392585B2 (en) Non-aqueous electrolyte type lithium ion secondary battery
JP2007335360A (en) Lithium secondary cell
JP5279567B2 (en) Nonaqueous electrolyte secondary battery
US20110269021A1 (en) Lithium ion battery
JP5626035B2 (en) Method for pretreatment and use of lithium ion secondary battery
JP2010074960A (en) Secondary battery system and charge/discharge control method of secondary battery
JP5696850B2 (en) Secondary battery
JP2010073498A (en) Controlling method of charging/discharging of secondary battery, secondary battery system, and hybrid automobile
JP2001332246A (en) Nonaqueous-electrolyte secondary battery
JP2017054677A (en) Negative electrode for lithium ion battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130708

R151 Written notification of patent or utility model registration

Ref document number: 5326679

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151