JP2001332246A - Nonaqueous-electrolyte secondary battery - Google Patents

Nonaqueous-electrolyte secondary battery

Info

Publication number
JP2001332246A
JP2001332246A JP2000149337A JP2000149337A JP2001332246A JP 2001332246 A JP2001332246 A JP 2001332246A JP 2000149337 A JP2000149337 A JP 2000149337A JP 2000149337 A JP2000149337 A JP 2000149337A JP 2001332246 A JP2001332246 A JP 2001332246A
Authority
JP
Japan
Prior art keywords
positive electrode
secondary battery
active material
thickness
lithium manganate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000149337A
Other languages
Japanese (ja)
Inventor
Yuichi Takatsuka
祐一 高塚
Katsunori Suzuki
克典 鈴木
Koji Higashimoto
晃二 東本
Kensuke Hironaka
健介 弘中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2000149337A priority Critical patent/JP2001332246A/en
Publication of JP2001332246A publication Critical patent/JP2001332246A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous-electrolyte secondary battery that can improve pulse charge-discharge cycle characteristics. SOLUTION: As an anode active substance, lithium manganate is used, and the bulk density of lithium manganate is to be 0.8-1.2 g/cm3. The thickness of the one side of an anode active substance mixture layer 12 from an aluminum foil 11 is to be 30-70 μm, and mixture density of the anode active substance mixture is to be 2.2-3.0 g/cm3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は非水電解液二次電池
に係り、特に正極集電体にマンガン酸リチウムを活物質
とする正極活物質合剤を塗布した非水電解液二次電池に
関する。
The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to a non-aqueous electrolyte secondary battery in which a positive electrode active material mixture containing lithium manganate as an active material is applied to a positive electrode current collector. .

【0002】[0002]

【従来の技術】従来、再充電が可能な二次電池の分野で
は、鉛電池、ニッケル−カドミウム電池、ニッケル−水
素電池等の水溶液系電池が主流であった。しかしなが
ら、地球温暖化や枯渇燃料の問題から電気自動車(E
V)や駆動の一部を電気モーターで補助するハイブリッ
ド自動車が着目され、その電源に用いられる電池には、
より高容量で高出力な二次電池が求められるようになっ
てきた。このような要求に合致する電源として、高電圧
を有する非水溶液系のリチウム二次電池が注目されてい
る。
2. Description of the Related Art Conventionally, in the field of rechargeable secondary batteries, aqueous batteries such as lead batteries, nickel-cadmium batteries, and nickel-hydrogen batteries have been the mainstream. However, due to global warming and exhausted fuel, electric vehicles (E
V) and hybrid vehicles that support a part of the drive with an electric motor are attracting attention.
Higher capacity and higher output secondary batteries have been required. As a power source meeting such a demand, a non-aqueous solution type lithium secondary battery having a high voltage has attracted attention.

【0003】一般的に、リチウム二次電池の負極材には
炭素材が用いられている。この炭素材としては、天然黒
鉛や鱗片状、塊状等の人造黒鉛、メソフェーズピッチ系
黒鉛等の黒鉛系材料や、フルフリルアルコール等のフラ
ン樹脂等を焼成した非晶質炭素材料が用いられている。
黒鉛系材料は不可逆容量が小さく電圧特性も平坦であり
高容量であることが特徴であるが、サイクル特性が劣
る、という問題がある。また、合成樹脂を焼成した非晶
質炭素材料は黒鉛の理論容量値以上の容量が得られサイ
クル特性にも優れるという特徴を持つが、不可逆容量が
大きく電池での高容量化が難しい、という欠点がある。
In general, a carbon material is used as a negative electrode material of a lithium secondary battery. As the carbon material, an artificial carbon material such as artificial graphite such as natural graphite, flake, or lump, a graphite material such as mesophase pitch graphite, or a furan resin such as furfuryl alcohol is used. .
Graphite-based materials are characterized by low irreversible capacity, flat voltage characteristics and high capacity, but have the problem of poor cycle characteristics. An amorphous carbon material obtained by firing a synthetic resin has the characteristic that it has a capacity greater than the theoretical capacity value of graphite and has excellent cycle characteristics, but has the disadvantage that it has a large irreversible capacity and it is difficult to increase the capacity in batteries. There is.

【0004】一方、正極材にはリチウム遷移金属酸化物
が用いられており、中でも容量やサイクル特性等のバラ
ンスからコバルト酸リチウムが用いられている。しかし
ながら、原料であるコバルトの資源量が少なくコスト高
となる、という問題がある。また、高容量化の面からは
ニッケル酸リチウムも検討されているが、過充電時や破
壊時の安全性に問題がある。このため、資源が豊富で安
全性に優れるマンガン酸リチウムが電気自動車用やハイ
ブリッド自動車用二次電池の材料として有望視され開発
が進められている。
On the other hand, a lithium transition metal oxide is used as a positive electrode material, and among them, lithium cobalt oxide is used because of its balance in capacity and cycle characteristics. However, there is a problem that the amount of resources of cobalt as a raw material is small and the cost is high. Lithium nickelate is also being studied from the viewpoint of increasing capacity, but there is a problem in safety at the time of overcharging or destruction. For this reason, lithium manganate, which is rich in resources and excellent in safety, is considered promising as a material for secondary batteries for electric vehicles and hybrid vehicles, and is being developed.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、電気自
動車用やハイブリッド自動車用の電池、特にハイブリッ
ド自動車用の電池としては、高容量である必要はなく、
エンジンの動力をアシストするモーターを瞬間的に作動
させるための高出力性能や自動車が停止する時のエネル
ギーを回生するための高入力特性が望まれている。すな
わち、リチウム二次電池にとって大きな電流値による短
時間の充放電サイクル特性が良好であることが必要であ
る。このような使用方法は、従来の民生用リチウム二次
電池には見られなかったものである。
However, batteries for electric vehicles and hybrid vehicles, especially batteries for hybrid vehicles, do not need to have high capacity.
There is a demand for high output performance for instantaneously operating a motor that assists the power of the engine and high input characteristics for regenerating energy when the vehicle stops. That is, it is necessary for the lithium secondary battery to have good short-time charge / discharge cycle characteristics with a large current value. Such a method of use is not found in conventional consumer lithium secondary batteries.

【0006】本発明は上記事案に鑑み、パルス充放電サ
イクル特性を向上させることができる非水電解液二次電
池を提供することを課題とする。
[0006] In view of the above-mentioned proposal, an object of the present invention is to provide a non-aqueous electrolyte secondary battery capable of improving pulse charge / discharge cycle characteristics.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、正極集電体にマンガン酸リチウムを活物
質とする正極活物質合剤を塗布した非水電解液二次電池
において、前記マンガン酸リチウムのかさ密度が0.8
〜1.2g/cmであり、前記正極集電体からの前記
正極活物質合剤層片面の厚さが30〜70μmであり、
かつ、前記正極活物質合剤の合剤密度が2.2〜3.0
g/cmであることを特徴とする。本発明では、マン
ガン酸リチウムのかさ密度、正極集電体からの正極活物
質合剤層片面の厚さ及び正極活物質合剤の合剤密度の範
囲を限定しパルスサイクルによる出力低下を抑制できる
ようにしたので、非水電解液二次電池のパルス充放電サ
イクル特性を改善することができる。この場合におい
て、マンガン酸リチウムのかさ密度を1.0g/cm
以上、正極活物質合剤層片面の厚さを50μm以下、か
つ、合剤密度を2.5g/cm以上とすることが好ま
しい。
In order to solve the above problems, the present invention relates to a nonaqueous electrolyte secondary battery in which a positive electrode active material mixture containing lithium manganate as an active material is applied to a positive electrode current collector. The bulk density of the lithium manganate is 0.8
1.21.2 g / cm 3 , the thickness of one side of the positive electrode active material mixture layer from the positive electrode current collector is 30 to 70 μm,
In addition, the mixture density of the cathode active material mixture is 2.2 to 3.0.
g / cm 3 . In the present invention, the bulk density of lithium manganate, the thickness of one surface of the positive electrode active material mixture layer from the positive electrode current collector, and the range of the mixture density of the positive electrode active material mixture can be limited to suppress a decrease in output due to a pulse cycle. As a result, the pulse charge / discharge cycle characteristics of the nonaqueous electrolyte secondary battery can be improved. In this case, the bulk density of lithium manganate was set to 1.0 g / cm 3
As described above, the thickness of one side of the positive electrode active material mixture layer is preferably 50 μm or less, and the mixture density is preferably 2.5 g / cm 3 or more.

【0008】[0008]

【発明の実施の形態】以下、図面を参照して本発明を適
用したリチウム二次電池の実施の形態について説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of a lithium secondary battery to which the present invention is applied will be described with reference to the drawings.

【0009】(正極)かさ密度0.8〜1.2g/cm
のマンガン酸リチウム(LiMn)粉末90重
量部に対し、導電剤として鱗片状黒鉛粉末5重量部と結
着剤としてポリフッ化ビニリデン(PVDF)を5重量
部添加し、これに分散溶媒としてN−メチルピロリドン
を添加、混練して合剤スラリを作製した。図1(A)に
示すように、この合剤スラリを厚さ20μmの正極集電
体としてのアルミニウム箔11の両面に塗布した。その
後乾燥、プレスすることで、アルミニウム箔11からの
正極活物質合剤層12の片面の厚さ(以下、合剤層厚さ
という。)を30〜70μm、合剤密度を2.2〜3.
0g/cmとし、裁断することにより幅60mm、長
さ4000mmの正極1を得た。
(Positive electrode) Bulk density 0.8 to 1.2 g / cm
3 lithium manganate (LiMn 2 O 4 ) powder 90 parts by weight, flaky graphite powder 5 parts by weight as a conductive agent and polyvinylidene fluoride (PVDF) 5 parts by weight as a binder were added, and a dispersion solvent was added thereto. Was added and kneaded to prepare a mixture slurry. As shown in FIG. 1A, this mixture slurry was applied to both surfaces of an aluminum foil 11 as a positive electrode current collector having a thickness of 20 μm. Thereafter, by drying and pressing, the thickness of one side of the positive electrode active material mixture layer 12 from the aluminum foil 11 (hereinafter, referred to as the mixture layer thickness) is 30 to 70 μm, and the mixture density is 2.2 to 3. .
The positive electrode 1 was adjusted to 0 g / cm 3 and cut to obtain a positive electrode 1 having a width of 60 mm and a length of 4000 mm.

【0010】(負極)非晶質炭素粉末90重量部に対
し、結着剤としてポリフッ化ビニリデン10重量部添加
し、これに分散溶媒としてN−メチルピロリドンを添
加、混練して合剤スラリを作製した。図1(B)に示す
ように、この合剤スラリを厚さ10μmの圧延銅箔21
の両面に塗布、その後乾燥、プレスすることで、圧延銅
箔21からの負極活物質合剤層22の片面の厚さを70
μmとし、裁断することにより幅65mm、長さ450
0mmの負極2を得た。
(Negative Electrode) To 90 parts by weight of amorphous carbon powder, 10 parts by weight of polyvinylidene fluoride as a binder are added, and N-methylpyrrolidone as a dispersion solvent is added thereto and kneaded to prepare a mixture slurry. did. As shown in FIG. 1 (B), this mixture slurry was rolled into a rolled copper foil 21 having a thickness of 10 μm.
, And then dried and pressed to reduce the thickness of one side of the negative electrode active material mixture layer 22 from the rolled copper foil 21 to 70
μm and cut to 65 mm in width and 450 in length
A negative electrode 2 of 0 mm was obtained.

【0011】(電池の作製)上記のように作製した正極
1及び負極2を、厚さ40μmのリチウムイオンが通過
可能なポリエチレン製セパレータを介して捲回して電極
群を作製した。この電極群をφ40mm、高さ80mm
の円筒形のステンレス製電池缶に挿入し外部端子に接続
した後、エチレンカーボネート(EC)とジメチルカー
ボネート(DMC)の混合有機溶媒に6フッ化リン酸リ
チウム(LiPF)を1モル/リットル溶解した電解
液を注液して、リチウム二次電池を作製した。
(Preparation of Battery) The positive electrode 1 and the negative electrode 2 prepared as described above were wound through a polyethylene separator having a thickness of 40 μm and through which lithium ions can pass to prepare an electrode group. This electrode group is φ40mm, height 80mm
And connected to an external terminal, and then 1 mol / liter of lithium hexafluorophosphate (LiPF 6 ) is dissolved in a mixed organic solvent of ethylene carbonate (EC) and dimethyl carbonate (DMC). The obtained electrolytic solution was injected to produce a lithium secondary battery.

【0012】[0012]

【実施例】次に、上述した本実施形態に従って作製した
実施例及び比較例のリチウムイオン電池について説明す
る。なお、以下の実施例及び比較例では、負極及び電池
の作製については上記実施形態と同じであり正極の一部
のみが異なるので、実施形態の正極と異なる箇所のみ説
明する。
Next, lithium ion batteries of examples and comparative examples manufactured according to the above-described embodiment will be described. In the following examples and comparative examples, the fabrication of the negative electrode and the battery is the same as that of the above embodiment, and only a part of the positive electrode is different. Therefore, only different points from the positive electrode of the embodiment will be described.

【0013】(比較例1)比較例1では、下表1に示す
ように、かさ密度0.7g/cmのマンガン酸リチウ
ム粉末を使用し、合剤層厚さを50μm、合剤密度を
2.5g/cmとした正極を使用し、リチウム二次電
池を作製した。
Comparative Example 1 In Comparative Example 1, as shown in Table 1 below, lithium manganate powder having a bulk density of 0.7 g / cm 3 was used, the mixture layer thickness was 50 μm, and the mixture density was A lithium secondary battery was produced using a positive electrode having a density of 2.5 g / cm 3 .

【0014】[0014]

【表1】 [Table 1]

【0015】(実施例1)実施例1では、表1に示すよ
うに、かさ密度0.8g/cmのマンガン酸リチウム
粉末を使用した以外は、比較例1と同様にして、リチウ
ム二次電池を作製した。
(Example 1) In Example 1, as shown in Table 1, except that lithium manganate powder having a bulk density of 0.8 g / cm 3 was used, a lithium secondary battery was produced in the same manner as in Comparative Example 1. A battery was manufactured.

【0016】(実施例2)実施例2では、表1に示すよ
うに、かさ密度1.0g/cmのマンガン酸リチウム
粉末を使用した以外は、比較例1と同様にして、リチウ
ム二次電池を作製した。
(Example 2) In Example 2, as shown in Table 1, except that lithium manganate powder having a bulk density of 1.0 g / cm 3 was used, a lithium secondary battery was prepared in the same manner as in Comparative Example 1. A battery was manufactured.

【0017】(実施例3)実施例3では、表1に示すよ
うに、かさ密度1.2g/cmのマンガン酸リチウム
粉末を使用した以外は、比較例1と同様にして、リチウ
ム二次電池を作製した。
Example 3 In Example 3, as shown in Table 1, except that lithium manganate powder having a bulk density of 1.2 g / cm 3 was used, a lithium secondary battery was manufactured in the same manner as in Comparative Example 1. A battery was manufactured.

【0018】(比較例2)比較例2では、表1に示すよ
うに、かさ密度1.4g/cmのマンガン酸リチウム
粉末を使用した以外は、比較例1と同様にして、リチウ
ム二次電池を作製した。
Comparative Example 2 In Comparative Example 2, as shown in Table 1, except that lithium manganate powder having a bulk density of 1.4 g / cm 3 was used, a lithium secondary battery was prepared in the same manner as in Comparative Example 1. A battery was manufactured.

【0019】(比較例3)比較例3では、表1に示すよ
うに、かさ密度1.0g/cmのマンガン酸リチウム
粉末を使用し、合剤層厚さを15μmとした以外は、比
較例1と同様にして、リチウム二次電池を作製した。
Comparative Example 3 In Comparative Example 3, as shown in Table 1, a lithium manganate powder having a bulk density of 1.0 g / cm 3 was used, and the thickness of the mixture layer was changed to 15 μm. A lithium secondary battery was produced in the same manner as in Example 1.

【0020】(実施例4)実施例4では、表1に示すよ
うに、合剤層厚さを30μmとした以外は、実施例2と
同様にして、リチウム二次電池を作製した。
Example 4 In Example 4, as shown in Table 1, a lithium secondary battery was produced in the same manner as in Example 2 except that the thickness of the mixture layer was 30 μm.

【0021】(実施例5)実施例5では、表1に示すよ
うに、合剤層厚さを70μmとした以外は、実施例2と
同様にして、リチウム二次電池を作製した。
Example 5 In Example 5, as shown in Table 1, a lithium secondary battery was manufactured in the same manner as in Example 2, except that the thickness of the mixture layer was 70 μm.

【0022】(比較例4)比較例4では、表1に示すよ
うに、合剤層厚さを90μmとした以外は、実施例2と
同様にして、リチウム二次電池を作製した。
Comparative Example 4 In Comparative Example 4, as shown in Table 1, a lithium secondary battery was produced in the same manner as in Example 2 except that the thickness of the mixture layer was 90 μm.

【0023】(比較例5)比較例5では、表1に示すよ
うに、合剤密度を2.0g/cmとした以外は、実施
例2と同様にして、リチウム二次電池を作製した。
Comparative Example 5 In Comparative Example 5, as shown in Table 1, a lithium secondary battery was produced in the same manner as in Example 2 except that the mixture density was 2.0 g / cm 3 . .

【0024】(実施例6)実施例6では、表1に示すよ
うに、合剤密度を2.2g/cmとした以外は、実施
例2と同様にして、リチウム二次電池を作製した。
Example 6 In Example 6, as shown in Table 1, a lithium secondary battery was produced in the same manner as in Example 2, except that the mixture density was 2.2 g / cm 3 . .

【0025】(実施例7)実施例6では、表1に示すよ
うに、合剤密度を3.0g/cmとした以外は、実施
例2と同様にして、リチウム二次電池を作製した。
Example 7 In Example 6, as shown in Table 1, a lithium secondary battery was produced in the same manner as in Example 2 except that the mixture density was 3.0 g / cm 3 . .

【0026】(比較例6)比較例6では、表1に示すよ
うに、合剤密度を3.5g/cmとした以外は、実施
例2と同様にして、リチウム二次電池を作製した。
Comparative Example 6 In Comparative Example 6, as shown in Table 1, a lithium secondary battery was produced in the same manner as in Example 2 except that the mixture density was 3.5 g / cm 3 . .

【0027】(試験)次に、作製した実施例及び比較例
の各電池について、パルスサイクル試験を行い出力を測
定した。
(Test) Next, a pulse cycle test was performed on each of the batteries of the example and the comparative example, and the output was measured.

【0028】<パルスサイクル試験>約50Aの高負荷
電流を充電方向、放電方向共に約5秒通電し、休止時間
も含め1サイクル約30秒の試験を連続的に繰り返し
た。50万サイクル時点で、各電池の出力を測定した。
パルスサイクル試験は50±3°Cの雰囲気で行った。
<Pulse Cycle Test> A high load current of about 50 A was supplied for about 5 seconds in both the charging direction and the discharging direction, and the test was continuously repeated for about 30 seconds per cycle including a pause. At 500,000 cycles, the output of each battery was measured.
The pulse cycle test was performed in an atmosphere at 50 ± 3 ° C.

【0029】<出力の測定>電池を4.0V定電圧制御
で充電し、所定の電流、10A、50A、100Aで1
0秒間放電し、10秒目の電圧を記録した。その電圧を
電流値に対してプロットした直線が2.5Vに到達する
電流値(Ia)から、出力((W):Ia×2.5)を
その電池の出力とした。
<Measurement of Output> The battery was charged under a constant voltage control of 4.0 V, and was charged at a predetermined current of 10 A, 50 A, and 100 A.
Discharge was performed for 0 seconds, and the voltage at 10 seconds was recorded. The output ((W): Ia × 2.5) was defined as the output of the battery from the current value (Ia) at which a straight line plotting the voltage against the current value reached 2.5 V.

【0030】表2に各電池のパルスサイクル試験結果を
示す。なお、表2は各電池についてパルスサイクルを5
0万回行った時の出力を、比較例1の電池を100とし
た出力比で表記したものである。
Table 2 shows the results of the pulse cycle test for each battery. Table 2 shows a pulse cycle of 5 for each battery.
The output at the time when the operation was performed 100,000 times is represented by an output ratio with the battery of Comparative Example 1 being 100.

【0031】[0031]

【表2】 [Table 2]

【0032】(評価)表1及び表2に示すように、マン
ガン酸リチウムのかさ密度を0.8〜1.2g/cm
とした実施例1〜3の電池は、パルスサイクル試験によ
る劣化が少ない。一方、比較例1の電池のように、かさ
密度が0.7g/cmと0.8g/cmより小さい
場合は、パルスサイクル試験を行ったときに、正極でマ
ンガン酸リチウム粉末同士が絡み合い、大きな電流が導
電性の良い一部分にのみ集中するので、劣化が進み、結
果的に出力の低下を招いてしまう。逆に、比較例2の電
池のようにかさ密度が1.4g/cmと1.2g/c
より大きいと、粗大粒子が混入し、マンガン酸リチ
ウム粉末の内部での反応が関与しなくなるので、パルス
サイクル試験による劣化が大きく、出力低下を招いてし
まう。
(Evaluation) As shown in Tables 1 and 2, the bulk density of lithium manganate was 0.8 to 1.2 g / cm 3.
In the batteries of Examples 1 to 3, the deterioration by the pulse cycle test was small. On the other hand, as in the battery of Comparative Example 1, if the bulk density is 0.7 g / cm 3 and 0.8 g / cm 3 less than, when performing a pulse cycle test, the lithium manganate powder particles in the positive electrode are entangled Since a large current is concentrated only on a portion having good conductivity, deterioration proceeds, and as a result, output is reduced. Conversely, the bulk density was 1.4 g / cm 3 and 1.2 g / c as in the battery of Comparative Example 2.
larger than m 3, coarse particles are mixed, the reaction in the interior of the lithium manganate powder is not involved, degradation due to the pulse cycle test is large, resulting in an output reduction.

【0033】また、実施例4、5の電池のように合剤層
厚さを30μm〜70μmとすると、パルスサイクル試
験による劣化が少ない。一方、比較例3の電池のように
合剤層厚さを15μmと30μmより薄くすると、面積
当たりの反応するマンガン酸リチウム量が少なくなり、
大きな電流に対してマンガン酸リチウムの負荷が大きく
なるので、パルスサイクル試験により劣化を生じ、出力
が低下する。逆に、比較例4の電池のように合剤層厚さ
を90μmと70μmより厚くすると、アルミニウム箔
からの距離が離れすぎるため、反応スピードが低下し、
出力が低下する。
Further, when the thickness of the mixture layer is 30 μm to 70 μm as in the batteries of Examples 4 and 5, deterioration by the pulse cycle test is small. On the other hand, when the thickness of the mixture layer is smaller than 15 μm and 30 μm as in the battery of Comparative Example 3, the amount of lithium manganate that reacts per area decreases,
Since the load of lithium manganate increases with respect to a large current, deterioration occurs in the pulse cycle test, and the output decreases. Conversely, when the thickness of the mixture layer is larger than 90 μm and 70 μm as in the battery of Comparative Example 4, the distance from the aluminum foil is too large, and the reaction speed is reduced.
Output drops.

【0034】更に、実施例6、7の電池のように合剤密
度を2.2〜3.0g/cmとすると、パルスサイク
ル試験による劣化が少ない。一方、比較例5の電池のよ
うに合剤密度を2.0g/cmと2.2g/cm
り低くすると、正極活物質合剤層中の導電性が低下する
ため、反応しやすい一部分のみに電流が集中し、パルス
サイクル試験によりその部分が劣化し、正極全体として
は出力の低下を招く。逆に、比較例6の電池のように合
剤層密度を3.5g/cmと3.0g/cm より高
くすると、電解液の保持量が少なすぎるので、均質な反
応が妨げられ出力の低下を招く。
Further, as in the batteries of Examples 6 and 7,
2.2 to 3.0 g / cm3Then, pulse cycling
Less deterioration due to test. On the other hand, the battery of Comparative Example 5
2.0g / cm3And 2.2 g / cm3Yo
Lower, the conductivity in the positive electrode active material mixture layer decreases
Therefore, current concentrates only on the part where
The part deteriorates due to the cycle test, and the whole positive electrode
Causes a decrease in output. On the other hand, like the battery of Comparative Example 6,
The agent layer density is 3.5 g / cm3And 3.0 g / cm 3Higher
In this case, the amount of retained electrolyte is too small,
The response is hindered and the output is reduced.

【0035】実施例の電池の中でもとりわけ、マンガン
酸リチウムのかさ密度を1.0〜1.2g/cm、合
剤層厚さを30〜50μm、合剤密度を2.5〜3.0
g/cmの範囲とした実施例2、3、4、7の電池は
好ましいパルス充放電サイクル特性を示している。
Among the batteries of the examples, lithium manganate has a bulk density of 1.0 to 1.2 g / cm 3 , a mixture layer thickness of 30 to 50 μm, and a mixture density of 2.5 to 3.0.
The batteries of Examples 2, 3, 4, and 7 in the range of g / cm 3 exhibited preferable pulse charge / discharge cycle characteristics.

【0036】以上のように、本実施形態のリチウム二次
電池では、正極側のマンガン酸リチウムのかさ密度を
0.8〜1.2g/cm、合剤層厚さを30〜70μ
m、合剤密度を2.2〜3.0g/cmとしたので、
パルス充放電サイクル特性を改善することができる。
As described above, in the lithium secondary battery of this embodiment, the bulk density of lithium manganate on the positive electrode side is 0.8 to 1.2 g / cm 3 , and the thickness of the mixture layer is 30 to 70 μm.
m, and the mixture density was 2.2 to 3.0 g / cm 3 ,
The pulse charge / discharge cycle characteristics can be improved.

【0037】なお、本実施形態では、説明を簡単にする
ために正極配合比を一定として説明したが、±20%の
範囲で変更しても同様の効果を発揮することができる。
また、本実施形態では、導電剤、結着材、電解液の塩や
溶媒の種類について例示したが、本発明はこれらに制限
されず種々の導電剤、結着材、電解液を使用することが
できる。
In the present embodiment, the positive electrode compounding ratio has been described as being constant for the sake of simplicity, but the same effect can be obtained even if the positive electrode compounding ratio is changed within the range of ± 20%.
Further, in the present embodiment, the types of the conductive agent, the binder, the salt and the solvent of the electrolytic solution have been exemplified, but the present invention is not limited thereto, and various conductive agents, binders, and electrolytic solutions may be used. Can be.

【0038】更に、本実施形態では、負極の活物質に非
晶質炭素を用いた例を示したが、リチウムイオンを挿
入、脱離可能な黒鉛やその他の材料を使用するようにし
てもよい。そして、本実施形態では、電池容器として円
筒形の缶を使用したリチウム二次電池を例示したが、本
発明は電池缶の外径や捲回群の形状には影響を受けず、
角型、三角形その他の多角形のリチウム二次電池にも適
用が可能である。
Further, in this embodiment, an example was described in which amorphous carbon was used as the active material of the negative electrode. However, graphite or another material into which lithium ions can be inserted and desorbed may be used. . And in the present embodiment, the lithium secondary battery using a cylindrical can as a battery container is exemplified, but the present invention is not affected by the outer diameter of the battery can or the shape of the winding group,
The present invention is also applicable to rectangular, triangular and other polygonal lithium secondary batteries.

【0039】[0039]

【発明の効果】以上説明したように、本発明によれば、
マンガン酸リチウムのかさ密度、正極集電体からの正極
活物質合剤層片面の厚さ及び正極活物質合剤の合剤密度
の範囲を限定しパルスサイクルによる出力低下を抑制で
きるようにしたので、非水電解液二次電池のパルス充放
電サイクル特性を改善することができる、という効果を
得ることができる。
As described above, according to the present invention,
Since the bulk density of lithium manganate, the thickness of one side of the positive electrode active material mixture layer from the positive electrode current collector, and the range of the mixture density of the positive electrode active material mixture were limited, it was possible to suppress output reduction due to pulse cycles. In addition, it is possible to obtain an effect that the pulse charge / discharge cycle characteristics of the nonaqueous electrolyte secondary battery can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(A)は正極の厚さ方向の断面図であり、
(B)は負極の厚さ方向の断面図である。
FIG. 1A is a cross-sectional view in the thickness direction of a positive electrode,
(B) is a sectional view in the thickness direction of the negative electrode.

【符号の説明】[Explanation of symbols]

1 正極 11 アルミニウム箔(正極集電体) 12 正極活物質合剤層 2 負極 Reference Signs List 1 positive electrode 11 aluminum foil (positive electrode current collector) 12 positive electrode active material mixture layer 2 negative electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 東本 晃二 東京都中央区日本橋本町二丁目8番7号 新神戸電機株式会社内 (72)発明者 弘中 健介 東京都中央区日本橋本町二丁目8番7号 新神戸電機株式会社内 Fターム(参考) 5H029 AJ02 AJ05 AK03 AL06 AM03 AM05 AM07 BJ02 BJ14 HJ04 HJ08 HJ09 5H050 AA02 AA07 BA17 CA09 CB07 FA05 HA04 HA08 HA09  ──────────────────────────────────────────────────続 き Continued on the front page (72) Koji Higashimoto 2-8-7 Nihonbashi Honcho, Chuo-ku, Tokyo Inside Shin-Kobe Electric Machinery Co., Ltd. (72) Kensuke Hironaka 2-87 Nihonbashi Honcho, Chuo-ku, Tokyo No. Shin Kobe Electric Co., Ltd. F term (reference) 5H029 AJ02 AJ05 AK03 AL06 AM03 AM05 AM07 BJ02 BJ14 HJ04 HJ08 HJ09 5H050 AA02 AA07 BA17 CA09 CB07 FA05 HA04 HA08 HA09

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 正極集電体にマンガン酸リチウムを活物
質とする正極活物質合剤を塗布した非水電解液二次電池
において、前記マンガン酸リチウムのかさ密度が0.8
〜1.2g/cmであり、前記正極集電体からの前記
正極活物質合剤層片面の厚さが30〜70μmであり、
かつ、前記正極活物質合剤の合剤密度が2.2〜3.0
g/cmであることを特徴とする非水電解液二次電
池。
1. A non-aqueous electrolyte secondary battery in which a positive electrode active material mixture containing lithium manganate as an active material is coated on a positive electrode current collector, wherein the lithium manganate has a bulk density of 0.8.
1.21.2 g / cm 3 , the thickness of one side of the positive electrode active material mixture layer from the positive electrode current collector is 30 to 70 μm,
In addition, the mixture density of the cathode active material mixture is 2.2 to 3.0.
g / cm 3 , a non-aqueous electrolyte secondary battery.
【請求項2】 前記マンガン酸リチウムのかさ密度が
1.0g/cm以上であり、前記正極活物質合剤層片
面の厚さが50μm以下であり、かつ、前記合剤密度が
2.5g/cm以上であることを特徴とする請求項1
に記載の非水電解液二次電池。
2. The bulk density of the lithium manganate is 1.0 g / cm 3 or more, the thickness of one side of the positive electrode active material mixture layer is 50 μm or less, and the mixture density is 2.5 g. / Cm 3 or more.
3. The non-aqueous electrolyte secondary battery according to 1.
JP2000149337A 2000-05-22 2000-05-22 Nonaqueous-electrolyte secondary battery Pending JP2001332246A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000149337A JP2001332246A (en) 2000-05-22 2000-05-22 Nonaqueous-electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000149337A JP2001332246A (en) 2000-05-22 2000-05-22 Nonaqueous-electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2001332246A true JP2001332246A (en) 2001-11-30

Family

ID=18655207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000149337A Pending JP2001332246A (en) 2000-05-22 2000-05-22 Nonaqueous-electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2001332246A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011089722A1 (en) 2010-01-22 2011-07-28 トヨタ自動車株式会社 Cathode and method for manufacturing the same
US9184442B2 (en) 2010-11-12 2015-11-10 Toyota Jidosha Kabushiki Kaisha Secondary battery
US9356289B2 (en) 2010-11-12 2016-05-31 Toyota Jidosha Kabushiki Kaisha Secondary battery
US9837663B2 (en) 2011-05-06 2017-12-05 Toyota Jidosha Kabushiki Kaisha Lithium-ion secondary battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011089722A1 (en) 2010-01-22 2011-07-28 トヨタ自動車株式会社 Cathode and method for manufacturing the same
US9184442B2 (en) 2010-11-12 2015-11-10 Toyota Jidosha Kabushiki Kaisha Secondary battery
US9356289B2 (en) 2010-11-12 2016-05-31 Toyota Jidosha Kabushiki Kaisha Secondary battery
US9837663B2 (en) 2011-05-06 2017-12-05 Toyota Jidosha Kabushiki Kaisha Lithium-ion secondary battery

Similar Documents

Publication Publication Date Title
JP5286200B2 (en) Lithium ion secondary battery
JP5081886B2 (en) Non-aqueous electrolyte type lithium ion secondary battery
JP5874430B2 (en) Non-aqueous electrolyte secondary battery and method for producing the same, and method for producing lithium transition metal composite oxide for non-aqueous electrolyte secondary battery
JP5854279B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP2008177346A (en) Energy storage device
JP2007234565A (en) Nonaqueous electrolyte secondary battery
JP4305111B2 (en) Battery pack and electric vehicle
JP2007265668A (en) Cathode for nonaqueous electrolyte secondary battery and its manufacturing method
JP2010129332A (en) Nonaqueous electrolyte secondary battery
JPH11339850A (en) Lithium-ion secondary battery
JP2007335360A (en) Lithium secondary cell
JP2004006264A (en) Lithium secondary battery
JP5279567B2 (en) Nonaqueous electrolyte secondary battery
JP2007184261A (en) Lithium-ion secondary battery
JP5620499B2 (en) Non-aqueous electrolyte battery
JP3580209B2 (en) Lithium ion secondary battery
JP6836727B2 (en) Non-aqueous electrolyte Lithium ion secondary battery
JP4770426B2 (en) Winding type power storage device
JP6902206B2 (en) Lithium ion secondary battery
JP5153134B2 (en) Nonaqueous electrolyte secondary battery
KR102520421B1 (en) Negative electrode
JP2006032296A (en) Negative electrode and nonaqueous electrolyte secondary battery
JP2001332246A (en) Nonaqueous-electrolyte secondary battery
JP6273707B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP2021077531A (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040810

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051004