JP5321181B2 - Method for producing assembly of catalyst layer and electrolyte membrane of fuel cell member - Google Patents

Method for producing assembly of catalyst layer and electrolyte membrane of fuel cell member Download PDF

Info

Publication number
JP5321181B2
JP5321181B2 JP2009071573A JP2009071573A JP5321181B2 JP 5321181 B2 JP5321181 B2 JP 5321181B2 JP 2009071573 A JP2009071573 A JP 2009071573A JP 2009071573 A JP2009071573 A JP 2009071573A JP 5321181 B2 JP5321181 B2 JP 5321181B2
Authority
JP
Japan
Prior art keywords
catalyst layer
transfer
electrolyte membrane
transfer film
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009071573A
Other languages
Japanese (ja)
Other versions
JP2010225421A (en
Inventor
祐太 小林
秀樹 森
法康 藪下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2009071573A priority Critical patent/JP5321181B2/en
Publication of JP2010225421A publication Critical patent/JP2010225421A/en
Application granted granted Critical
Publication of JP5321181B2 publication Critical patent/JP5321181B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a porous and arbitrary shaped catalyst layer with homogeneously and uniformly dispersed catalyst, and a catalyst layer contact face to the electrolytic membrane for the fuel cell of which is in good adhesive state, in order to provide an MEA, junction structure of a catalyst layer with an electrolytic film with high power output and durability, and to provide a manufacturing method and a device for a junction structure MEA (Membrane Electrode Assembly) for the electrolyte membrane of the fuel cell by the R to R method with high productivity. <P>SOLUTION: The manufacturing method includes a step of applying catalyst solution on a transfer film 3 and forming an arbitrary shaped catalyst layer 2 with homogeneously and uniformly dispersed catalyst, a drying step of evaporating a solvent in the catalyst layer on the transfer film 3 into a porous state, a step of making the junction structure MEA of the electrolytic film 1 and the catalyst layer 2 by transferring the catalyst layer 2 on the electrolytic layer 1 with a transfer roll 9 by heating with pressure in an arbitrary temperature, velocity and pressure, and a step of peeling off the transfer film 3 from the junction structure of the catalyst layer 2 and the electrolytic film 1 with an arbitrary velocity. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は燃料電池における触媒層と電解質膜の接合体MEAの製造方法およびその装置に関する。   The present invention relates to a method of manufacturing a MEA of a catalyst layer and an electrolyte membrane in a fuel cell and an apparatus therefor.

燃料電池は、水素などの燃料と酸素などの酸化剤を供給することで電力を取り出すことができる化学電池である。
燃料電池には様々な燃料が用いられるが、燃料には水素があり、水の電気分解の逆反応である 2H2 + O2 → 2H2O によって電力を取り出す場合が多い。用いられる電気化学反応、電解質の種類などによって燃料電池は分類される。なかでも固体高分子形燃料電池は室温動作が可能かつ小型軽量化が可能であるため、携帯機器、燃料電池自動車などへの応用が期待されている。
A fuel cell is a chemical cell that can extract electric power by supplying a fuel such as hydrogen and an oxidant such as oxygen.
Various fuels are used for fuel cells, and hydrogen is used as the fuel. In many cases, power is extracted by 2H 2 + O 2 → 2H 2 O, which is the reverse reaction of water electrolysis. Fuel cells are classified according to the electrochemical reaction used and the type of electrolyte. In particular, the polymer electrolyte fuel cell can be operated at room temperature and can be reduced in size and weight, and is expected to be applied to portable devices, fuel cell vehicles, and the like.

燃料電池部材の中に、電解質膜の両面に触媒層を形成する膜・電極接合体MEAがある。MEAにより、発電効率を高めるためには触媒が均質かつ均一に分散された、均一な膜厚の触媒層を形成すること、燃料が触媒層内に拡散されやすいよう触媒層が多孔質形状であることが求められている。   Among fuel cell members is a membrane / electrode assembly MEA that forms catalyst layers on both sides of an electrolyte membrane. In order to improve power generation efficiency by MEA, a catalyst layer having a uniform film thickness in which the catalyst is uniformly and uniformly dispersed is formed, and the catalyst layer is porous so that the fuel is easily diffused into the catalyst layer. It is demanded.

従来製造方法としては特許文献1のようなホットプレス法がある。この方法では触媒層を電解質膜に均一に転写することは可能であるがプレスにかかる時間が長い、間欠動作となるなど生産効率が低いことが問題となる。   As a conventional manufacturing method, there is a hot press method as in Patent Document 1. In this method, it is possible to uniformly transfer the catalyst layer to the electrolyte membrane, but there is a problem that the production efficiency is low such as a long time for pressing and an intermittent operation.

ホットプレス法に変わり生産効率をあげる方法としては、加熱ロールによる貼合方法が挙げられる。この方式ではRtoRによる生産が可能となり、生産効率が大幅にあがる。特許文献3に示すような、転写フィルム上に形成された触媒層を電解質膜上に熱ロールにて加熱加圧し転写し、転写フィルムを剥離するものがある。この製造方法では、ラインスピードにより、転写、剥離の速度が決まる、しかし、転写に最適な速度と剥離に最適な速度は異なる場合が多く、この転写剥離に最適なプロセス条件を探し出すのは困難である。また、剥離は一般的に、温度が低いほど離型性が良い場合が多い、しかしこのプロセスでは熱ロールにて剥離を行うため、転写シートへの転写残り、剥離面の表面状態の荒れが品質、性能に悪影響を及ぼす可能性が高い。   As a method for increasing the production efficiency instead of the hot press method, there is a bonding method using a heating roll. With this method, RtoR production is possible, and production efficiency is greatly increased. As shown in Patent Document 3, there is a technique in which a catalyst layer formed on a transfer film is heated and pressed with a heat roll on an electrolyte film, transferred, and the transfer film is peeled off. In this manufacturing method, the transfer speed depends on the line speed. However, the optimal transfer speed and the optimal speed are often different, and it is difficult to find the optimal process conditions for this transfer peeling. is there. In general, the lower the temperature, the better the releasability. In this process, however, peeling is performed with a hot roll, so that the transfer to the transfer sheet and the rough surface condition of the peeled surface are quality. , Likely to adversely affect performance.

転写と剥離の工程を分ける方法としては特許文献3があげられるが、この方法では剥離温度を低下させることは可能となるが、転写、剥離速度が同じであるという問題は残る。   As a method for separating the transfer and peeling processes, Patent Document 3 can be cited. However, this method can lower the peeling temperature, but the problem remains that the transfer and peeling speed are the same.

特開2006−278073号公報 (日産)JP 2006-278073 A (Nissan) 特開2003−331863号公報 (トヨタ)JP 2003-331863 A (Toyota) 特開2006−185762号公報 (大日本)JP 2006-185762 A (Dainippon)

本発明は均一かつ均質に触媒が分散された多孔質上の任意の形状の触媒層と燃料電池用電解質膜の接合面が界面密着性良好な状態である触媒層と燃料電池用電解質膜の接合体(MEA:Membrane Electrode Assebly)の製造する方法及び装置を生産性の高いRtoR方式で提供することを課題とする。この製造装置により出力が高く耐久性のあるMEAを提供することができる。   The present invention relates to the joining of a catalyst layer and a fuel cell electrolyte membrane in which the joint surface of the catalyst layer of any shape on the porous material in which the catalyst is uniformly and homogeneously dispersed and the fuel cell electrolyte membrane has good interface adhesion It is an object of the present invention to provide a method and an apparatus for manufacturing a body (MEA: Membrane Electrode Assembly) in an RtoR system with high productivity. This manufacturing apparatus can provide a MEA having high output and durability.

上記の課題を解決するための手段として、請求項1に記載の発明は、電解質膜の両面に触媒層を形成する固体高分子形燃料電池用電解質膜・触媒層の接合体において、電解質成分と有機溶媒と触媒金属担持粉末を含む触媒溶液を転写フィルムの表面に塗布する塗布工程と、塗布された触媒溶液を乾燥し多孔質状の触媒層とする乾燥工程と、前記転写フィルム上の前記触媒層を電解質膜表面に転写する転写工程と、前記転写フィルムを、前記電解質膜表面に転写された前記触媒層から剥離する剥離工程と、を有し、前記塗布工程では、吸着テーブル上で前記転写フィルムが搬送されており、前記触媒溶液の前記転写フィルムへの塗布は、前記搬送を一旦停止させて吸着テーブル上で前記転写フィルムを保持し、停止された転写フィルム上に塗布ヘッドにより前記触媒溶液を塗布する間欠塗工でなされ、前記転写工程では、吸着プレート上で前記電解質膜と、前記触媒層が形成された前記転写フィルムが搬送されており、前記電解質膜表面への前記触媒層の転写は、前記搬送を一旦停止させて、前記吸着プレート上で転写ロールによって前記転写フィルムを前記電解質膜に押し付けつつ前記転写ロールが前記吸着プレート上で移動することでなされ、前記剥離工程における前記転写フィルムの剥離は、前記転写工程での搬送の停止を継続させた状態で、前記電解質膜の搬送路から離れる方向に前記転写フィルムの搬送路の向きを変える剥離ロールを前記吸着プレート上で移動させることでなされる、ことを特徴とする電解質膜・触媒層接合体の製造方法である。
言い換えると、請求項1に記載の発明は、触媒層の塗布、乾燥、電解質膜表面への触媒層の転写、触媒層と電解質膜の接合体からの転写フィルムの剥離の4工程を持つ、触媒層と電解質膜の接合体の製造方法である。
As a means for solving the above problems, the invention according to claim 1 is directed to an electrolyte component / catalyst layer assembly for a polymer electrolyte fuel cell in which a catalyst layer is formed on both surfaces of an electrolyte membrane. An application step of applying a catalyst solution containing an organic solvent and a catalyst metal-supported powder to the surface of the transfer film; a drying step of drying the applied catalyst solution to form a porous catalyst layer; and the catalyst on the transfer film a transfer step of transferring the layer to the electrolyte membrane surface, the transfer film, have a, a peeling step of peeling from the catalyst layer transferred to the electrolyte membrane surface, in the coating step, the transfer on the suction table The film is transported, and the application of the catalyst solution to the transfer film is performed by temporarily stopping the transport and holding the transfer film on an adsorption table, and then applying the catalyst solution onto the stopped transfer film. In the transfer step, the electrolyte film and the transfer film on which the catalyst layer is formed are transported on an adsorption plate and transferred to the surface of the electrolyte film. The transfer of the catalyst layer is performed by temporarily stopping the conveyance and moving the transfer roll on the adsorption plate while pressing the transfer film against the electrolyte membrane by the transfer roll on the adsorption plate. In the peeling step, the transfer film is peeled off by adsorbing the peeling roll that changes the direction of the transfer film conveyance path in a direction away from the electrolyte film conveyance path in a state in which the conveyance in the transfer process is continuously stopped. It is made by moving on a plate, It is a manufacturing method of the electrolyte membrane and catalyst layer assembly characterized by the above-mentioned.
In other words, the invention according to claim 1 is a catalyst having four steps: application of a catalyst layer, drying, transfer of the catalyst layer to the surface of the electrolyte membrane, and peeling of the transfer film from the joined body of the catalyst layer and the electrolyte membrane. It is a manufacturing method of the joined body of a layer and an electrolyte membrane.

また、言い換えると、請求項1に記載の発明は、塗布工程においてフィルム搬送を停止し、塗布ヘッドを移動させることにより、塗布に最適なスピードで任意の膜厚、形状の触媒層を形成させるものである。 In other words, the invention according to claim 1 forms a catalyst layer having an arbitrary film thickness and shape at an optimum speed for coating by stopping film transport in the coating process and moving the coating head. It is.

また、言い換えると、請求項に記載の発明は、図2のように電解質膜に一定のギャップで相対する転写フィルム上の触媒層を図3に示すよう転写ロールにより加熱ラミネートし転写行うものであり、最適な温度、速度、圧力条件にて転写することで触媒層の多孔質形状を崩さず、触媒層と電解質膜の接合面密着性の向上を図るものである。 In other words, the invention described in claim 1 performs transfer by laminating the catalyst layer on the transfer film facing the electrolyte membrane with a certain gap as shown in FIG. 2 by heating lamination with a transfer roll as shown in FIG. The transfer is performed under optimum temperature, speed, and pressure conditions, and the porous shape of the catalyst layer is not destroyed, and the adhesion of the joint surface between the catalyst layer and the electrolyte membrane is improved.

また、言い換えると、請求項に記載の発明は、図4のように触媒層が電解質膜に転写された後に、図5に示すように、転写フィルムを支持する剥離ロール1と剥離ロール2を水平方向に移動することで、一定の速度、剥離角度、剥離力で剥離を行うことができる。それより、転写シートへの剥離残り、剥離後の触媒層表面形状の荒れを防ぐことができる、触媒層と電解質膜の接合体の製造方法である。 In other words, the invention described in claim 1 includes the peeling roll 1 and the peeling roll 2 that support the transfer film as shown in FIG. 5 after the catalyst layer is transferred to the electrolyte membrane as shown in FIG. By moving in the horizontal direction, peeling can be performed at a constant speed, peeling angle, and peeling force. More thereto, stripping the remaining to the transfer sheet, roughness can prevent the catalyst layer surface shape after peeling, a method for producing a joined body of the catalyst layer and the electrolyte membrane.

したがって、本発明は、塗布、乾燥、転写、剥離がRtoRの同ライン上にあるものの、上記記載の発明内容であることより、ラインスピードに寄らず、各プロセスに最適のスピードで電解質膜表面に触媒層の形成を行うことのできる、触媒層と電解質膜の接合体の製造装置である。   Therefore, in the present invention, coating, drying, transfer, and peeling are on the same line of RtoR. However, since it is the contents of the invention described above, the surface of the electrolyte membrane can be applied to the surface of the electrolyte membrane at the optimum speed for each process regardless of the line speed. It is an apparatus for manufacturing a joined body of a catalyst layer and an electrolyte membrane that can form a catalyst layer.

本発明により、均一かつ均質な多孔質形状の触媒層を有する電解質膜と触媒層の接合体MEAを作製することができる、これにより、燃料(水素、酸素)を触媒へ効率よく供給することができるため、燃料電池の出力の向上を図ることができる。従来の技術と比較し接合部の界面密着性、表面形状の改善が図れることから耐久性も向上も見込まれる。   According to the present invention, an electrolyte membrane-catalyst assembly MEA having a uniform and homogeneous porous catalyst layer can be produced, whereby fuel (hydrogen, oxygen) can be efficiently supplied to the catalyst. Therefore, the output of the fuel cell can be improved. Compared to conventional techniques, the interface adhesion and surface shape of the joint can be improved, so durability is also expected to improve.

燃料電池の触媒層と電解質膜の接合体の製造装置概略図Schematic diagram of manufacturing device for fuel cell catalyst layer and electrolyte membrane assembly 触媒層転写工程説明図Illustration of catalyst layer transfer process 触媒層転写工程説明図Illustration of catalyst layer transfer process 触媒層転写工程説明図Illustration of catalyst layer transfer process 保護フィルム剥離工程説明図Protective film peeling process illustration 保護フィルム剥離工程説明図Protective film peeling process illustration 電解質膜両面への触媒層の接合体の製造装置概略図Schematic diagram of manufacturing apparatus for catalyst layer assembly on both sides of electrolyte membrane

以下に本発明の燃料電池部材の触媒層と電解質膜の接合体MEAの製造方法及び装置について、図を参照し説明する。   Hereinafter, a method and an apparatus for producing a joined body MEA of a catalyst layer and an electrolyte membrane of a fuel cell member of the present invention will be described with reference to the drawings.

図1は本発明の一実施例である、接合体の製造装置概略図である。実施例の接合体の製造装置は転写フィルム3表面に触媒塗液を塗布する塗布部と、触媒層2の乾燥部、触媒層2を電解質膜1表面に転写する転写部、接合体から転写フィルムを剥離する剥離部からなる。各部の詳細は後述する。   FIG. 1 is a schematic view of an apparatus for manufacturing a joined body according to an embodiment of the present invention. The joined body manufacturing apparatus of the embodiment includes an application part for applying a catalyst coating liquid on the surface of the transfer film 3, a drying part for the catalyst layer 2, a transfer part for transferring the catalyst layer 2 to the surface of the electrolyte membrane 1, and a transfer film from the joined body. It consists of the peeling part which peels. Details of each part will be described later.

各材料について説明する。転写フィルム3はPET、PPフィルム上をシリコンコーティングしたものや、フッ素樹脂フィルム等の離型性に優れたものを用いる。   Each material will be described. The transfer film 3 is made of a PET or PP film with a silicon coating or a film having excellent releasability such as a fluororesin film.

電解質膜1はフッ素系イオン交換樹脂(デュポン社製「ナフィオン」など)等の厚さは10〜300μm程度に形成された薄膜を用いる。   As the electrolyte membrane 1, a thin film having a thickness of about 10 to 300 μm such as a fluorine ion exchange resin (such as “Nafion” manufactured by DuPont) is used.

触媒塗液は、白金または他金属の触媒と粉末カーボンとフッ素系イオン交換樹脂と有機溶剤(IPA他)を混合したものを用いる。   As the catalyst coating liquid, a mixture of a platinum or other metal catalyst, powdered carbon, a fluorine-based ion exchange resin, and an organic solvent (IPA or the like) is used.

塗布部においては図1のように、転写フィルム3の搬送を一旦停止し、巻き出された転写フィルム3を吸着テーブル7で保持し、塗布ヘッド6にて触媒塗液を間欠塗布し、転写フィルム上に厚さ5〜50μmの触媒層を形成する。このときフィルム3の搬送は停止しているので、塗布に最適な塗布スピードで塗布を行うことがきる。よって、均一な膜厚の、一様に触媒が分散した、表面形状の良い、触媒層を形成することができる。塗工方式はダイコーティング方式を用いて説明を行っているが、塗工方式はこれに限らず、スクリーン印刷方式、スプレーコーティング、アプリケータ方式等、公知の塗工方法を用いることができる。   In the coating unit, as shown in FIG. 1, the transfer film 3 is temporarily stopped, the unwound transfer film 3 is held by the suction table 7, and the catalyst coating liquid is intermittently applied by the coating head 6. A catalyst layer having a thickness of 5 to 50 μm is formed thereon. At this time, since the conveyance of the film 3 is stopped, the coating can be performed at a coating speed optimum for coating. Therefore, a catalyst layer having a uniform film thickness, a uniformly dispersed catalyst, and a good surface shape can be formed. The coating method is described using a die coating method, but the coating method is not limited to this, and a known coating method such as a screen printing method, spray coating, or an applicator method can be used.

乾燥部では図1の乾燥炉8内に塗工後の触媒層が搬送され、触媒塗液中の有機溶剤、水を蒸発させ多孔質状の触媒層を形成する。   In the drying section, the coated catalyst layer is transported into the drying furnace 8 in FIG. 1, and the organic solvent and water in the catalyst coating solution are evaporated to form a porous catalyst layer.

転写は図2〜図4に示すように行われる。図2のように、転写部まで触媒層2が搬送され、転写フィルム3および電解質膜1の搬送が一旦停止され、電解質膜1が吸着プレート14に保持される。その後、図3のように転写ロール9により触媒層2が電解質膜1へ押し付けられる。転写ロール9は加熱加圧に耐えうる耐熱性、強度を持つものを用いる。転写ロール9が押し付けたまま水平方向に移動することで、加熱ラミネートを行う。この場合、転写ロール9は回転しつつ移動してもよい。この方法においては任意の最適な温度、圧力、速度にてラミネートを行える。これにより、多孔質形状を崩すことなく触媒層と電解質膜の充分な密着性を得ることができる。   The transfer is performed as shown in FIGS. As shown in FIG. 2, the catalyst layer 2 is transported to the transfer portion, the transport of the transfer film 3 and the electrolyte membrane 1 is temporarily stopped, and the electrolyte membrane 1 is held on the adsorption plate 14. Thereafter, the catalyst layer 2 is pressed against the electrolyte membrane 1 by the transfer roll 9 as shown in FIG. The transfer roll 9 has heat resistance and strength that can withstand heat and pressure. Heat transfer lamination is performed by moving the transfer roll 9 in the horizontal direction while being pressed. In this case, the transfer roll 9 may move while rotating. In this method, lamination can be performed at any optimum temperature, pressure, and speed. Thereby, sufficient adhesion between the catalyst layer and the electrolyte membrane can be obtained without breaking the porous shape.

剥離は転写終了後、転写工程での転写フィルム3および電解質膜1の搬送の停止を継続させた状態で、剥離ロール10、17が図5のように水平方向に移動することで行う。すなわち電解質膜1の搬送路から離れる方向に転写フィルム3の搬送路の向きを変える剥離ロール10、17を吸着プレート14上で移動させることでなされる。これより最適な速度にて剥離を行うことができる。よって、転写フィルム3への剥離残り、無理な剥離による表面形状の荒れが軽減される。   Peeling is performed by moving the peeling rolls 10 and 17 in the horizontal direction as shown in FIG. 5 in a state where the transfer of the transfer film 3 and the electrolyte membrane 1 is continuously stopped in the transfer step after the transfer is completed. That is, the peeling rolls 10 and 17 that change the direction of the transfer path of the transfer film 3 in the direction away from the transfer path of the electrolyte membrane 1 are moved on the suction plate 14. Stripping can be performed at an optimum speed. Therefore, the remaining peeling on the transfer film 3 and surface roughness due to excessive peeling are reduced.

電解質膜1上に触媒層2が形成された後、処理面を保護フィルム16によって保護し、巻き取られる。   After the catalyst layer 2 is formed on the electrolyte membrane 1, the treated surface is protected by the protective film 16 and wound up.

上記製造方法、装置により、各プロセスを最適な条件によってMEA化を行うことが可能となる。   With the above manufacturing method and apparatus, each process can be made into an MEA under optimum conditions.

上記の方法、製造装置により、電解質膜1上の片面に触媒層2を形成することができる。燃料電池MEAでは電解質膜1両面への触媒層2の形成が必要である。
電解質膜1両面へ触媒層2を形成するには、上述の塗布工程、乾燥工程、転写工程、剥離工程を、電解質膜の両面において行ない、転写工程の前に、電解質膜の両面に形成される触媒層の位置合わせを行えばよい。
すなわち、この装置でMEAを行うための一つの方法としては、片面に触媒層2を形成後、再度この装置を用い裏面に触媒層2を形成する。もう一つの方法としては、図に示すように一つの製造装置内で両面に触媒層2を形成する。後者について以下に説明する。
The catalyst layer 2 can be formed on one surface of the electrolyte membrane 1 by the above method and manufacturing apparatus. In the fuel cell MEA, it is necessary to form the catalyst layer 2 on both surfaces of the electrolyte membrane 1.
In order to form the catalyst layer 2 on both surfaces of the electrolyte membrane 1, the above-described coating step, drying step, transfer step, and peeling step are performed on both sides of the electrolyte membrane, and are formed on both sides of the electrolyte membrane before the transfer step. The catalyst layers may be aligned.
That is, as one method for performing MEA with this apparatus, after forming the catalyst layer 2 on one side, the catalyst layer 2 is formed on the back side using this apparatus again. As another method, as shown in the figure, the catalyst layers 2 are formed on both sides in one manufacturing apparatus. The latter will be described below.

一製造装置内で、電解質膜1両面に触媒層2を形成する装置の場合、図7のようになる。
電解質膜1両面に転写ユニットが相対する為、上述の製造方法により、触媒層を両面に形成することができる。
FIG. 7 shows an apparatus for forming the catalyst layer 2 on both surfaces of the electrolyte membrane 1 in one manufacturing apparatus.
Since the transfer unit faces both surfaces of the electrolyte membrane 1, the catalyst layer can be formed on both surfaces by the above-described manufacturing method.

最初に電解質膜1下面に触媒層2が形成される、この後、上面にも触媒層2を形成する際に、両面の触媒層2のズレがなきようラミネートする必要がある。触媒層2の端点、もしくは塗布時にアライメントマークを付加する工程も付け加えることで、それらをカメラ11で認識し、電解質膜1の巻き出し巻取りのユニット事態を水平方向、回転方向に自由に移動可能な機能とすることで、位置合わせを行える。
正確な位置合わせが行えることで、触媒層2が両面に形成された、発電に有効なエリアを確保することができる。
First, the catalyst layer 2 is formed on the lower surface of the electrolyte membrane 1. After that, when the catalyst layer 2 is formed on the upper surface, it is necessary to laminate so that the catalyst layers 2 on both sides are not misaligned. By adding an end point of the catalyst layer 2 or a step of adding an alignment mark at the time of application, the camera 11 can recognize them, and the unit state of unwinding and winding of the electrolyte membrane 1 can be freely moved in the horizontal and rotational directions. It is possible to align the position by using this function.
By performing accurate alignment, an area effective for power generation in which the catalyst layer 2 is formed on both surfaces can be secured.

本発明は、家庭用、車載用、その他用途全ての固体高分子形燃料電池に利用することが可能である。   The present invention can be used for polymer electrolyte fuel cells for home use, in-vehicle use, and other uses.

1・・・電解質膜
2・・・触媒層
3・・・転写フィルム
4・・・転写フィルム巻出
5・・・転写フィルム巻取
6・・・塗布ヘッド
7・・・吸着テーブル
8・・・乾燥炉
9・・・転写ロール
10・・・剥離ロール1
11・・・アライメントカメラ
12・・・電解質膜巻出
13・・・電解質膜巻取
14・・・吸着テーブル
15・・・電解質膜巻出巻取ユニット
16・・・保護フィルム
17・・・剥離ロール2
DESCRIPTION OF SYMBOLS 1 ... Electrolyte membrane 2 ... Catalyst layer 3 ... Transfer film 4 ... Transfer film unwinding 5 ... Transfer film winding 6 ... Coating head 7 ... Adsorption table 8 ... Drying furnace 9 ... transfer roll 10 ... peeling roll 1
DESCRIPTION OF SYMBOLS 11 ... Alignment camera 12 ... Electrolyte membrane unwinding 13 ... Electrolyte membrane winding 14 ... Adsorption table 15 ... Electrolyte membrane unwinding / winding unit 16 ... Protective film 17 ... Peeling Roll 2

Claims (2)

電解質膜の両面に触媒層を形成する固体高分子形燃料電池用電解質膜・触媒層の接合体において、
電解質成分と有機溶媒と触媒金属担持粉末を含む触媒溶液を転写フィルムの表面に塗布する塗布工程と、
塗布された触媒溶液を乾燥し多孔質状の触媒層とする乾燥工程と、
前記転写フィルム上の前記触媒層を電解質膜表面に転写する転写工程と、
前記転写フィルムを、前記電解質膜表面に転写された前記触媒層から剥離する剥離工程と、を有し、
前記塗布工程では、吸着テーブル上で前記転写フィルムが搬送されており、
前記触媒溶液の前記転写フィルムへの塗布は、前記搬送を一旦停止させて吸着テーブル上で前記転写フィルムを保持し、停止された転写フィルム上に塗布ヘッドにより前記触媒溶液を塗布する間欠塗工でなされ、
前記転写工程では、吸着プレート上で前記電解質膜と、前記触媒層が形成された前記転写フィルムが搬送されており、
前記電解質膜表面への前記触媒層の転写は、前記搬送を一旦停止させて、前記吸着プレート上で転写ロールによって前記転写フィルムを前記電解質膜に押し付けつつ前記転写ロールが前記吸着プレート上で移動することでなされ、
前記剥離工程における前記転写フィルムの剥離は、前記転写工程での搬送の停止を継続させた状態で、前記電解質膜の搬送路から離れる方向に前記転写フィルムの搬送路の向きを変える剥離ロールを前記吸着プレート上で移動させることでなされる、
ことを特徴とする電解質膜・触媒層接合体の製造方法。
In the electrolyte membrane / catalyst layer assembly for a polymer electrolyte fuel cell that forms catalyst layers on both sides of the electrolyte membrane,
An application step of applying a catalyst solution containing an electrolyte component, an organic solvent, and a catalyst metal-supported powder to the surface of the transfer film;
A drying step of drying the applied catalyst solution to form a porous catalyst layer;
A transfer step of transferring the catalyst layer on the transfer film to the electrolyte membrane surface;
The transfer film, have a, a peeling step of peeling from the catalyst layer transferred to the electrolyte membrane surface,
In the application step, the transfer film is conveyed on an adsorption table,
Application of the catalyst solution to the transfer film is intermittent application in which the conveyance is temporarily stopped, the transfer film is held on an adsorption table, and the catalyst solution is applied to the stopped transfer film by an application head. Made,
In the transfer step, the electrolyte film and the transfer film on which the catalyst layer is formed are conveyed on an adsorption plate,
The transfer of the catalyst layer to the electrolyte membrane surface temporarily stops the conveyance, and the transfer roll moves on the adsorption plate while pressing the transfer film against the electrolyte membrane by the transfer roll on the adsorption plate. Was made by
In the peeling step, the transfer film is peeled off by changing the direction of the transfer film transport path in a direction away from the electrolyte film transport path in a state where the transport stop in the transfer process is continued. Made by moving on the suction plate,
A method for producing an electrolyte membrane / catalyst layer assembly, wherein:
前記塗布工程、前記乾燥工程、前記転写工程、前記剥離工程は、前記電解質膜の両面において行われ、The coating process, the drying process, the transfer process, and the peeling process are performed on both surfaces of the electrolyte membrane,
前記塗布工程は、第1の転写フィルムの表面に前記触媒溶液を塗布する第1の塗布工程と、第2の転写フィルムの表面に前記触媒溶液を塗布する第2の塗布工程と、を含み、The coating step includes a first coating step of coating the catalyst solution on the surface of the first transfer film, and a second coating step of coating the catalyst solution on the surface of the second transfer film,
前記乾燥工程は、前記第1の転写フィルムに塗布された前記触媒溶液を乾燥し第1の触媒層とする第1の乾燥工程と、前記第2の転写フィルムに塗布された前記触媒溶液を乾燥し第2の触媒層とする第2の乾燥工程と、を含み、In the drying step, the catalyst solution applied to the first transfer film is dried to form a first catalyst layer, and the catalyst solution applied to the second transfer film is dried. And a second drying step as a second catalyst layer,
前記転写工程は、前記第1の転写フィルム上の前記第1の触媒層を前記電解質膜の一方の面に転写する第1の転写工程と、前記電解質膜の一方の面に転写された前記第1の触媒層と前記第2の転写フィルム上の前記第2の触媒層との位置合わせを行う位置合わせ工程と、前記第2の転写フィルム上の前記第2の触媒層を前記電解質膜の他方の面に転写する第2の転写工程と、を含み、The transfer step includes a first transfer step of transferring the first catalyst layer on the first transfer film to one surface of the electrolyte membrane, and the first transfer step transferred to one surface of the electrolyte membrane. An alignment step of aligning the first catalyst layer with the second catalyst layer on the second transfer film; and the second catalyst layer on the second transfer film with the other of the electrolyte membrane A second transfer step for transferring to the surface of
前記剥離工程は、前記第1の転写フィルムを、前記電解質膜の一方の面に転写された前記第1の触媒層から剥離する第1の剥離工程と、前記第2の転写フィルムを、前記電解質膜の他方の面に転写された前記第2の触媒層から剥離する第2の剥離工程と、を含む、The peeling step includes a first peeling step of peeling the first transfer film from the first catalyst layer transferred to one surface of the electrolyte membrane, and a step of removing the second transfer film from the electrolyte. A second peeling step of peeling from the second catalyst layer transferred to the other surface of the film,
ことを特徴とする請求項1記載の電解質膜・触媒層接合体の製造方法。The method for producing an electrolyte membrane / catalyst layer assembly according to claim 1.
JP2009071573A 2009-03-24 2009-03-24 Method for producing assembly of catalyst layer and electrolyte membrane of fuel cell member Expired - Fee Related JP5321181B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009071573A JP5321181B2 (en) 2009-03-24 2009-03-24 Method for producing assembly of catalyst layer and electrolyte membrane of fuel cell member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009071573A JP5321181B2 (en) 2009-03-24 2009-03-24 Method for producing assembly of catalyst layer and electrolyte membrane of fuel cell member

Publications (2)

Publication Number Publication Date
JP2010225421A JP2010225421A (en) 2010-10-07
JP5321181B2 true JP5321181B2 (en) 2013-10-23

Family

ID=43042398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009071573A Expired - Fee Related JP5321181B2 (en) 2009-03-24 2009-03-24 Method for producing assembly of catalyst layer and electrolyte membrane of fuel cell member

Country Status (1)

Country Link
JP (1) JP5321181B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5581938B2 (en) * 2010-09-27 2014-09-03 大日本印刷株式会社 Catalyst layer with protective sheet-electrolyte membrane laminate, catalyst layer with protective sheet-electrolyte membrane laminate intermediate, membrane with protective sheet-electrode assembly, and catalyst layer with protective sheet-electrolyte membrane laminate manufacturing method
CN102529303A (en) * 2011-12-31 2012-07-04 武汉理工大学 Two-sided automatic-alignment intermittent thin film coating method
JP2013157270A (en) * 2012-01-31 2013-08-15 Toyota Motor Corp Method for manufacturing membrane electrode assembly
JP5776584B2 (en) * 2012-02-23 2015-09-09 トヨタ自動車株式会社 Membrane electrode assembly manufacturing apparatus, and membrane electrode assembly manufacturing method
JP6147985B2 (en) * 2012-10-15 2017-06-14 トヨタ自動車株式会社 Coating apparatus and coating method
GB2507733A (en) * 2012-11-07 2014-05-14 Intelligent Energy Ltd Fuel Cell Components
JP5935743B2 (en) * 2013-04-01 2016-06-15 トヨタ自動車株式会社 Fuel cell and fuel cell manufacturing method
JP6175356B2 (en) * 2013-11-13 2017-08-02 東芝燃料電池システム株式会社 Method for producing membrane electrode assembly for fuel cell
JP6062407B2 (en) * 2013-11-14 2017-01-18 株式会社ダイセル Release film, laminate, method for producing the same, and method for producing fuel cell
JP6090192B2 (en) * 2014-02-07 2017-03-08 トヨタ自動車株式会社 Membrane electrode assembly manufacturing method and membrane electrode assembly manufacturing apparatus
JP6217614B2 (en) * 2014-12-11 2017-10-25 トヨタ自動車株式会社 Method for inspecting membrane electrode assembly
KR102238261B1 (en) * 2015-08-11 2021-04-09 코오롱인더스트리 주식회사 Method and System for manufacturing membrane electrode assembly for fuel cell
JP7020980B2 (en) * 2018-03-30 2022-02-16 本田技研工業株式会社 Manufacturing method and manufacturing equipment of membrane electrode assembly
JP2021136074A (en) 2020-02-24 2021-09-13 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh Transfer sheet, transfer method, and manufacturing method of membrane electrode assembly

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5017776B2 (en) * 2004-12-28 2012-09-05 大日本印刷株式会社 Method for producing membrane / catalyst layer assembly for polymer electrolyte fuel cell, method for producing polymer electrolyte fuel cell, and apparatus for producing membrane / catalyst layer assembly for polymer electrolyte fuel cell

Also Published As

Publication number Publication date
JP2010225421A (en) 2010-10-07

Similar Documents

Publication Publication Date Title
JP5321181B2 (en) Method for producing assembly of catalyst layer and electrolyte membrane of fuel cell member
JP5439867B2 (en) Membrane electrode assembly manufacturing method and manufacturing apparatus
KR100443107B1 (en) Method of manufacturing elect rolytic film electrode connection body for fuel cell
JP2011165460A (en) Method of manufacturing membrane-catalyst layer assembly
JP5044062B2 (en) Method for producing membrane-catalyst layer assembly
JP4810841B2 (en) Method and apparatus for producing electrolyte membrane-catalyst layer assembly for polymer electrolyte fuel cell
JP5742457B2 (en) Manufacturing method of electrolyte membrane for fuel cell
JP6155989B2 (en) Membrane electrode assembly manufacturing apparatus and manufacturing method
JP5849418B2 (en) Manufacturing method of membrane electrode assembly
JP5853194B2 (en) Membrane-catalyst layer assembly manufacturing method and manufacturing apparatus thereof
JP2019164890A (en) Support film, bonding method, and manufacturing method and manufacturing apparatus of membrane/electrode assembly
KR102031399B1 (en) Fuelcell Membrane-Electrode Assembly and Method of Manufacturing The Same
JP2009129614A (en) Manufacturing method and manufacturing device of catalyst layer-polymer electrolyte membrane assembly
JP5137008B2 (en) Manufacturing method of membrane / electrode assembly for fuel cell
JP6127598B2 (en) Membrane electrode assembly manufacturing apparatus and membrane electrode assembly manufacturing method
JP6079381B2 (en) Membrane electrode assembly manufacturing method and membrane electrode assembly manufacturing apparatus
JP2014067483A (en) Method for manufacturing solid polymer fuel cell
US11652215B2 (en) Method of manufacturing and device for manufacturing membrane-catalyst assembly
JP6551646B2 (en) Film laminate and fuel cell member using the same
JP2010251033A (en) Method of manufacturing membrane-catalyst assembly, membrane-catalyst assembly, and fuel cell
JP2015022858A (en) Method of manufacturing solid polymer fuel cell
JP6175356B2 (en) Method for producing membrane electrode assembly for fuel cell
JP2017010704A (en) Method for manufacturing electrolyte membrane/electrode structure with resin frame
JP2021082444A (en) Manufacturing method of membrane electrode gas diffusion layer bonded body
JP2006351341A (en) Manufacturing method of membrane/electrode assembly and manufacturing device of membrane/electrode assembly

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130701

R150 Certificate of patent or registration of utility model

Ref document number: 5321181

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees