JP2009129614A - Manufacturing method and manufacturing device of catalyst layer-polymer electrolyte membrane assembly - Google Patents

Manufacturing method and manufacturing device of catalyst layer-polymer electrolyte membrane assembly Download PDF

Info

Publication number
JP2009129614A
JP2009129614A JP2007301444A JP2007301444A JP2009129614A JP 2009129614 A JP2009129614 A JP 2009129614A JP 2007301444 A JP2007301444 A JP 2007301444A JP 2007301444 A JP2007301444 A JP 2007301444A JP 2009129614 A JP2009129614 A JP 2009129614A
Authority
JP
Japan
Prior art keywords
catalyst layer
coated substrate
polymer electrolyte
electrolyte membrane
roller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007301444A
Other languages
Japanese (ja)
Inventor
Naotoshi Suzuki
直俊 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Fuel Cell Power Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Fuel Cell Power Systems Corp filed Critical Toshiba Corp
Priority to JP2007301444A priority Critical patent/JP2009129614A/en
Publication of JP2009129614A publication Critical patent/JP2009129614A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide the manufacturing method and manufacturing device of a catalyst layer-polymer electrolyte membrane assembly reducing the possibility of mixing of impurities to a catalyst layer and generation of defects of the catalyst layer, by using an inexpensive coating substrate. <P>SOLUTION: A guide roller 11 for controlling the delivery is installed in a winding roller 10 of the catalyst layer-polymer electrolyte membrane assembly. Guide rollers 12, 13, 17 and a pressure applying roller 6 are installed in a delivery passage of the assembly. The pressure applying roller 6 is supported in a pressure applying mechanism 14. An assembly supporting roller 15 is installed in the position facing the pressure applying roller 6 through the catalyst layer-polymer electrolyte membrane assembly. The coating substrate and the catalyst layer are separated while applying pressure with the pressure applying roller 6, and the coating substrate is wound around the pressure applying roller 6. A gap adjusting mechanism 16 for adjusting the gap between the pressure apply roller 6 and the assembly supporting roller 15 is installed. A winding roller 18 winding the catalyst layer-polymer electrolyte membrane from which the coating substrate 3 is separated is installed. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、例えば、定置電源用、車載電源用、携帯電源用として使用される固体高分子形燃料電池に関するものであって、特に、固体高分子形燃料電池を構成する触媒層−高分子電解質膜接合体の製造方法および製造装置に係るものである。   The present invention relates to a solid polymer fuel cell used for, for example, a stationary power source, an in-vehicle power source, and a portable power source, and more particularly, a catalyst layer-polymer electrolyte constituting the solid polymer fuel cell The present invention relates to a method and apparatus for manufacturing a membrane assembly.

燃料電池は、水素等の燃料ガス又は液体燃料と空気等の酸化剤ガスを電気化学的に反応させることにより、燃料ガス又は液体燃料のもつ化学的エネルギを電気エネルギに変換する装置である。   A fuel cell is a device that converts the chemical energy of a fuel gas or liquid fuel into electrical energy by electrochemically reacting a fuel gas such as hydrogen or a liquid fuel with an oxidant gas such as air.

このような無公害エネルギを利用する燃料電池は、イオン導電性を有する電解質層を挟んで配置した燃料極および酸化剤極からなる単位電池と、それぞれの電極に反応物(燃料ガス又は液体燃料、酸化剤ガス)を供給するための燃料供給溝、酸化剤ガス供給溝をそれぞれ設けた導電性を有するガス不透過性の燃料供給セパレータおよび酸化剤ガス供給セパレータと、冷却水供給溝を設けた冷却水供給セパレータとからなる基本構成を複数枚積み重ねて燃料電池積層体で構成されている。   A fuel cell using such pollution-free energy is composed of a unit cell composed of a fuel electrode and an oxidant electrode arranged with an electrolyte layer having ionic conductivity, and a reactant (fuel gas or liquid fuel, A fuel supply groove for supplying an oxidant gas), a conductive gas-impermeable fuel supply separator provided with an oxidant gas supply groove, an oxidant gas supply separator, and a cooling provided with a cooling water supply groove A plurality of basic components including a water supply separator are stacked to form a fuel cell stack.

このような燃料電池積層体において、燃料供給溝、酸化剤ガス溝に、燃料電池積層体に設けた反応ガス供給マニホールドを介してそれぞれの反応ガス(燃料ガス、酸化剤ガス)を供給すると、単位電池の一対の電極で下記に示す電気化学反応が進行し、電極間で起電力が生じる。   In such a fuel cell stack, when each reaction gas (fuel gas, oxidant gas) is supplied to the fuel supply groove and the oxidant gas groove via the reaction gas supply manifold provided in the fuel cell stack, the unit The electrochemical reaction shown below proceeds at a pair of electrodes of the battery, and an electromotive force is generated between the electrodes.

[燃料極]
2H → 4H4e ……(1)
[酸化剤極]
+4H+4e → 2HO ……(2)
[Fuel electrode]
2H 2 → 4H + 4e (1)
[Oxidant electrode]
O 2 + 4H + + 4e → 2H 2 O (2)

上式において、燃料極では、式(1)に示すように、供給した水素を水素イオンと電子に解離する。その際、水素イオンは、電解質層を通り、また、電子は、外部回路を通り、酸化剤極にそれぞれ移動する。一方、酸化剤極では、式(2)に示すように、供給した酸化剤ガス中の酸素と、上述水素イオンおよび電子が反応して水を生成する。このとき、外部回路を通った電子は、電流となり、電力を供給することができる。   In the above equation, the fuel electrode dissociates the supplied hydrogen into hydrogen ions and electrons as shown in equation (1). At that time, hydrogen ions pass through the electrolyte layer, and electrons move through the external circuit to the oxidant electrode. On the other hand, at the oxidant electrode, as shown in Formula (2), oxygen in the supplied oxidant gas reacts with the hydrogen ions and electrons to generate water. At this time, electrons that have passed through the external circuit become current and can be supplied with electric power.

なお、式(1)(2)の反応により生成した水は、燃料電池本体で消費されなかった反応ガス(既反応ガス)とともに上述燃料電池積層体に設けた反応ガス排出マニホールドを介して燃料電池本体の外部に排出される。   In addition, the water produced | generated by reaction of Formula (1) (2) is a fuel cell via the reaction gas discharge manifold provided in the said fuel cell laminated body with the reaction gas (already-reacted gas) which was not consumed with the fuel cell main body. It is discharged outside the main body.

ところで、燃料電池は、使用されている電解質層により、アルカリ形燃料電池、リン酸形燃料電池、固体高分子形燃料電池、溶融炭酸塩形燃料電池、固体酸化物形燃料電池に分類されている。これら燃料電池のうち、電解質層として固体高分子電解質膜を使用した固体高分子形燃料電池は、比較的低温で運転ができ、起動時間が短く、大きな出力密度が得られることから、定置電源用、車載電源用、携帯電源用として大きな注目を浴びている。   By the way, fuel cells are classified into alkaline fuel cells, phosphoric acid fuel cells, polymer electrolyte fuel cells, molten carbonate fuel cells, and solid oxide fuel cells, depending on the electrolyte layer used. . Among these fuel cells, polymer electrolyte fuel cells using a solid polymer electrolyte membrane as an electrolyte layer can be operated at a relatively low temperature, have a short start-up time, and provide a large output density. It has attracted a great deal of attention as an in-vehicle power source and a portable power source.

固体高分子形燃料電池の単位セルは一般的に、イオン導電性を有する高分子電解質膜に燃料極と酸化剤極を熱圧着させて製造されている。燃料極、酸化剤極はカーボンペーパー等のカーボン材料を用いたガス拡散層と、燃料極、酸化剤極上での化学反応(1)(2)が起こる触媒層から構成されている。   A unit cell of a polymer electrolyte fuel cell is generally manufactured by thermocompression bonding a fuel electrode and an oxidant electrode to a polymer electrolyte membrane having ionic conductivity. The fuel electrode and the oxidant electrode are composed of a gas diffusion layer using a carbon material such as carbon paper and a catalyst layer in which chemical reactions (1) and (2) occur on the fuel electrode and the oxidant electrode.

燃料極、触媒層の形成方法としては、ガス拡散層上に触媒層を直接形成する方法や、塗布基板に触媒層を形成する方法がある。塗布基板に触媒層を形成する方法は、ロール形成が容易であり、また高分子電解質膜がロール形成されている場合、連続的に熱圧着できることから量産技術、低コスト化の観点から有効な製造方法であるといえる。   As a method for forming the fuel electrode and the catalyst layer, there are a method for directly forming the catalyst layer on the gas diffusion layer and a method for forming the catalyst layer on the coated substrate. The method of forming the catalyst layer on the coated substrate is easy to roll, and when the polymer electrolyte membrane is roll-formed, it can be continuously thermocompression-bonded, making it effective from the viewpoint of mass production technology and cost reduction. It can be said that it is a method.

触媒層を塗布基板に形成する方法としては、剥離性に優れたPTFE(ポリテトラフルオロエチレン)等の耐熱性フッ素樹脂基板に触媒溶液を塗布し、乾燥させる方法が提案されているが、PTFEのような耐熱性フッ素樹脂基板は高価であり大量生産時のコストが増大することが課題となる。   As a method for forming a catalyst layer on a coated substrate, a method of applying a catalyst solution to a heat-resistant fluororesin substrate such as PTFE (polytetrafluoroethylene) having excellent releasability and drying is proposed. Such a heat-resistant fluororesin substrate is expensive, and the cost for mass production increases.

これに対して、ポリイミド、ポリアミドポリエチレンテレタレート、ポリエチレンナフタレート、ポリフェニレンサルファイド、ポリサルフォンなどの高分子フィルムは、PTFE基板に比較すると安価ではあるものの剥離性が劣るため、基板上に形成された触媒層を剥がす場合に触媒層が基板に残ってしまい、できあがった触媒層に欠損箇所が存在するという問題があった。そのため、特許文献1では、PTFE基板に代わる安価な基板の表面に剥離層を設けることにより、触媒層の剥離を容易にする方法が提案されている。
特開2004−95553号公報
In contrast, polymer films such as polyimide, polyamide polyethylene terephthalate, polyethylene naphthalate, polyphenylene sulfide, and polysulfone are less expensive than PTFE substrates, but have poor peelability, so a catalyst layer formed on the substrate. When peeling off the catalyst layer, the catalyst layer remains on the substrate, and there is a problem that a defect portion exists in the completed catalyst layer. For this reason, Patent Document 1 proposes a method of facilitating the peeling of the catalyst layer by providing a peeling layer on the surface of an inexpensive substrate that replaces the PTFE substrate.
JP 2004-95553 A

前記特許文献1の発明によれば、塗布基板の表面に剥離層を設けることにより、安価な高分子フィルムを基板として使用した場合であっても、触媒層の剥離が円滑になり、触媒層の高分子電解質膜への熱圧着が容易になる。その反面、塗布基板に剥離層を設けると触媒層への不純物の混入が課題となり、実用性に適したものとはいえなかった。   According to the invention of Patent Document 1, by providing a release layer on the surface of the coated substrate, even when an inexpensive polymer film is used as the substrate, the catalyst layer can be smoothly peeled off. Thermocompression bonding to the polymer electrolyte membrane is facilitated. On the other hand, if a release layer is provided on the coated substrate, the entry of impurities into the catalyst layer becomes a problem, which cannot be said to be suitable for practical use.

本発明は前記のような従来技術の問題点を解決するために提案されたものであって、その目的は、塗布基板上に形成した触媒層を高分子電解質膜へ熱圧着した後、触媒層から塗布基板を引き剥がして触媒層−高分子電解質膜接合体を製造にあたり、安価なポリエチレンテレフタレートなどの安価な塗布基板を用いて、しかも、触媒層への不純物の混入や触媒層の欠損が生ずる可能性が少ない触媒層−高分子電解質膜接合体の製造方法ならびに製造装置を提供することである。   The present invention has been proposed in order to solve the problems of the prior art as described above, and its purpose is to thermally bond a catalyst layer formed on a coated substrate to a polymer electrolyte membrane, and then In the production of the catalyst layer-polymer electrolyte membrane assembly by peeling the coated substrate from the substrate, an inexpensive coated substrate such as inexpensive polyethylene terephthalate is used, and impurities are mixed into the catalyst layer or the catalyst layer is lost. It is an object of the present invention to provide a production method and production apparatus for a catalyst layer-polymer electrolyte membrane assembly with little possibility.

前記の目的を達成するために、本発明の触媒層−高分子電解質膜接合体の製造方法は、燃料極触媒層または酸化剤極触媒層の少なくとも一つを塗布基板に形成する工程と、塗布基板に形成した燃料極触媒層または酸化剤極触媒層を、塗布基板と共に高分子電解質膜に熱圧着する工程と、高分子電解質膜に対して熱圧着された塗布基板と触媒層を、引き剥がし部分における塗布基板の触媒層と反対側の面から圧力を与えながら、塗布基板を触媒層部分から引き剥がす工程とを備えていることを特徴とする。   In order to achieve the above object, the method for producing a catalyst layer-polymer electrolyte membrane assembly of the present invention comprises a step of forming at least one of a fuel electrode catalyst layer or an oxidant electrode catalyst layer on a coating substrate, The fuel electrode catalyst layer or the oxidant electrode catalyst layer formed on the substrate is thermocompression bonded to the polymer electrolyte membrane together with the coated substrate, and the coated substrate and the catalyst layer thermally bonded to the polymer electrolyte membrane are peeled off. And a step of peeling the coated substrate from the catalyst layer portion while applying pressure from the surface of the coated substrate opposite to the catalyst layer.

また、本発明の触媒層−高分子電解質膜接合体の製造装置は、高分子電解質膜に対して熱圧着された塗布基板を、触媒層との境界面から引き剥がす塗布基板引き剥がし手段を備え、前記塗布基板引き剥がし手段には、高分子電解質膜に対して熱圧着された塗布基板と触媒層を、引き剥がし部分における塗布基板の触媒層と反対側の面から圧力を与えながら、塗布基板を触媒層部分から引き剥がすための圧力付与部材が設けられていることを特徴とする。   The apparatus for producing a catalyst layer-polymer electrolyte membrane assembly of the present invention further comprises a coated substrate peeling means for peeling off the coated substrate thermocompression bonded to the polymer electrolyte membrane from the interface with the catalyst layer. The coated substrate peeling means includes a coated substrate and a catalyst layer that are thermocompression bonded to the polymer electrolyte membrane, while applying pressure from the surface opposite to the catalyst layer of the coated substrate at the peeled portion. It is characterized in that a pressure applying member is provided for peeling off the catalyst from the catalyst layer portion.

前記のような構成を有する本発明では、圧力付与部材によって塗布基板に一定の圧力を加えながら引き剥がし作業を行うので、塗布基板と触媒層及び高分子電解質膜との引き剥がし位置における面圧、引き剥がし位置及び引き剥がし角度が常に一定に保持されることになる。その結果、塗布基板と触媒層との境界面に加わる力の大きさ及び方向を一定にすることが可能となり、剥離むらが生じることを防止することが可能になる。   In the present invention having the above-described configuration, since the peeling operation is performed while applying a certain pressure to the coated substrate by the pressure applying member, the surface pressure at the peeling position between the coated substrate, the catalyst layer, and the polymer electrolyte membrane, The peeling position and the peeling angle are always kept constant. As a result, the magnitude and direction of the force applied to the boundary surface between the coated substrate and the catalyst layer can be made constant, and it is possible to prevent peeling unevenness from occurring.

本発明によれば、圧力を加えながら塗布基板を触媒層から引き剥がすため、ポリエチレンテレフタレートなどの高分子フィルムを塗布基板に使用した場合であっても、触媒層が塗布基板側に接着したまま引き剥がされる現象を低減することができ、安価な塗布基板を使用しながらも、触媒層の欠損が解消される。また、剥離層を別途形成した場合のような触媒層に対する不純物の混入も防止することができる。   According to the present invention, since the coated substrate is peeled off from the catalyst layer while applying pressure, even when a polymer film such as polyethylene terephthalate is used for the coated substrate, the catalyst layer is pulled while being adhered to the coated substrate side. The phenomenon of peeling off can be reduced, and defects in the catalyst layer are eliminated while using an inexpensive coated substrate. Further, it is possible to prevent impurities from being mixed into the catalyst layer as in the case where a release layer is separately formed.

(1)第1実施形態
本発明の第1実施形態における触媒層−高分子電解質膜接合体の製造方法は、図1に示す通り、塗布基板3に形成された燃料極の触媒層2a(または酸化剤極の触媒層2b)を高分子電解質膜1に熱転写したのちに、塗布基板3をあて板4で押さえながら燃料極の触媒層2a(または酸化剤極の触媒層2b)から引き剥がしていくことを特徴とする。
(1) 1st Embodiment The manufacturing method of the catalyst layer-polymer electrolyte membrane assembly in 1st Embodiment of this invention is the catalyst layer 2a of the fuel electrode formed in the application | coating board | substrate 3, as shown in FIG. After the oxidant electrode catalyst layer 2b) is thermally transferred to the polymer electrolyte membrane 1, it is peeled off from the fuel electrode catalyst layer 2a (or the oxidant electrode catalyst layer 2b) while holding the coated substrate 3 against the application plate 4. It is characterized by going.

この場合、あて板4が本発明の請求項で記載した圧力付与部材に相当している。また、図示しないが、このあて板4には、塗布基板3の表面に沿ってあて板4を移動させるための駆動装置が設けられており、剥離作業に伴って塗布基板3と燃料極の触媒層2a(または酸化剤極の触媒層2b)との剥離位置が移動するに従い、あて板4を塗布基板3の表面に沿って移動させるように構成されている。   In this case, the contact plate 4 corresponds to the pressure applying member described in the claims of the present invention. Although not shown in the drawing, the coating plate 4 is provided with a driving device for moving the coating plate 4 along the surface of the coating substrate 3. The contact plate 4 is configured to move along the surface of the coated substrate 3 as the position of separation from the layer 2a (or the catalyst layer 2b of the oxidant electrode) moves.

本実施形態において、燃料極の触媒層2a(または酸化剤極の触媒層2b)を形成する塗布基板3は厚さ50μmのポリエチレンテレフタレートのシートを用いた。   In the present embodiment, a polyethylene terephthalate sheet having a thickness of 50 μm is used as the coating substrate 3 on which the fuel electrode catalyst layer 2a (or the oxidant electrode catalyst layer 2b) is formed.

燃料極の触媒層2aは、カーボンブラックにPt−Ruの合金を担持した触媒に、電解質分散溶液(DuPont社の商品名「Nafion」の5wt%溶液)を、乾燥重量比3:1となるように混合したペーストを、図2に示すような剥離しろ5を設けた10cm角のポリエチレンテレフタレートの基板3に、白金量が単位面積当り0.4mgになるように塗布し、90℃で10分間乾燥して形成した。   The catalyst layer 2a of the fuel electrode has an electrolyte dispersion solution (5 wt% solution of DuPont's trade name “Nafion”) on a catalyst in which a Pt—Ru alloy is supported on carbon black so that the dry weight ratio is 3: 1. 2 is applied to a 10 cm square polyethylene terephthalate substrate 3 provided with a peeling margin 5 as shown in FIG. 2 so that the amount of platinum is 0.4 mg per unit area and dried at 90 ° C. for 10 minutes. Formed.

酸化剤極の触媒層2bは、カーボンブラックにPtを担持した触媒に、電解質分散溶液(DuPont社の商品名「Nafion」の5wt%溶液)を乾燥重量比3:1となるように混合したペーストを、図2に示すような剥離しろ5を設けた10cm角のポリエチレンテレフタレートの基板3に、白金量が単位面積当り0.4mgになるように塗布し、90℃で10分間乾燥して形成した。   The catalyst layer 2b of the oxidant electrode is a paste obtained by mixing a catalyst in which Pt is supported on carbon black with an electrolyte dispersion solution (a 5 wt% solution of DuPont's trade name “Nafion”) at a dry weight ratio of 3: 1. Was applied to a 10 cm square polyethylene terephthalate substrate 3 provided with a peeling margin 5 as shown in FIG. 2 so that the amount of platinum was 0.4 mg per unit area and dried at 90 ° C. for 10 minutes. .

上記形成した燃料極触媒層2aと酸化剤極触媒層2bとで11cm角の固体高分子電解質膜(DuPont社製、厚さ50μm)を挟持して温度130℃、面圧50kgf/cmで2分間熱圧着した。燃料極触媒層2a、酸化剤極触媒層2bを高分子電解質膜に熱圧着したのちに、図1及び図2に示すような長さ12cm、厚み1mm、幅3cmのあて板4を用い、このあて板4で塗布基板3を抑えながら剥離しろ4を摘んで塗布基板4を触媒層2a(または2b)から引き剥がし、触媒層−高分子電解質膜接合体を得た。 The formed fuel electrode catalyst layer 2a and the oxidant electrode catalyst layer 2b sandwich an 11 cm square solid polymer electrolyte membrane (manufactured by DuPont, thickness 50 μm), and the temperature is 130 ° C. and the surface pressure is 50 kgf / cm 2 . Thermocompression bonding was performed for a minute. After the fuel electrode catalyst layer 2a and the oxidant electrode catalyst layer 2b are thermocompression bonded to the polymer electrolyte membrane, a coating plate 4 having a length of 12 cm, a thickness of 1 mm, and a width of 3 cm as shown in FIGS. 1 and 2 is used. While holding the coated substrate 3 with the cover plate 4, the peeling margin 4 was picked and the coated substrate 4 was peeled off from the catalyst layer 2 a (or 2 b) to obtain a catalyst layer-polymer electrolyte membrane assembly.

この際、触媒層2a(または2b)を形成した塗布基板3の熱転写前後の塗布重量を測定すると、熱転写後の塗布基板3の重量は、触媒層2a(または2b)を形成する前の重量と変化なく、塗布基板3に形成した触媒層2a(または2b)が全て、高分子電解質膜1に熱転写されたことがわかる。   At this time, when the coating weight before and after thermal transfer of the coated substrate 3 on which the catalyst layer 2a (or 2b) is formed is measured, the weight of the coated substrate 3 after thermal transfer is the same as the weight before the catalyst layer 2a (or 2b) is formed. It can be seen that all the catalyst layers 2a (or 2b) formed on the coated substrate 3 were thermally transferred to the polymer electrolyte membrane 1 without change.

比較例として、厚み100μmの10cm角のポリエチレンテレフタレートの塗布基板を用いて、上記実施形態と同様な手順で燃料極触媒層、酸化剤極触媒層を形成した。燃料極触媒層と酸化剤極触媒層とで11cm角の固体高分子電解質膜(DuPont社製、厚さ50μm)を挟持して温度130℃、面圧50kgf/cmで2分間熱圧着し、触媒層−高分子電解質膜接合体を得た。 As a comparative example, a fuel electrode catalyst layer and an oxidant electrode catalyst layer were formed in the same procedure as in the above embodiment using a 10 cm square polyethylene terephthalate coated substrate having a thickness of 100 μm. An 11 cm square solid polymer electrolyte membrane (manufactured by DuPont, thickness 50 μm) is sandwiched between the fuel electrode catalyst layer and the oxidant electrode catalyst layer and thermocompression bonded at a temperature of 130 ° C. and a surface pressure of 50 kgf / cm 2 for 2 minutes. A catalyst layer-polymer electrolyte membrane assembly was obtained.

熱圧着したのちに、塗布基板を端から触媒層−高分子電解質膜接合体から引き剥がした。塗布基板を引き剥がした後の、重量を測定すると、触媒層の80%しか熱転写されておらず、触媒層の20%が塗布基板に残っており、また触媒層−高分子電解質膜接合体の触媒層には、剥がしムラが生じていた。   After thermocompression bonding, the coated substrate was peeled from the catalyst layer-polymer electrolyte membrane assembly from the end. When the weight is measured after the coated substrate is peeled off, only 80% of the catalyst layer is thermally transferred, 20% of the catalyst layer remains on the coated substrate, and the catalyst layer-polymer electrolyte membrane assembly The catalyst layer had peeling unevenness.

以上の通り、第1実施形態では、塗布基板3を引き剥がす際にあて板4を用い、塗布基板3に圧力を与えながら引き剥がすことによって、塗布基板3として従来の耐熱性フッ素樹脂に比較して安価なポリエチレンテレフタレートを使用しながらも、触媒層2a(または2b)の熱転写を良好に行うことができた。また、厚み50μm以下の塗布基板3を用いたことにより、塗布基板3が容易に曲げることが可能であり、塗布基板3の触媒層2a(または2b)からの引き剥がしが容易となり、触媒層2a(または2b)の高分子電解質膜1への熱転写が良好に行えた効果もある。さらに、塗布基板3に剥離しろ5を設けることにより、塗布基板3の引き剥がしが容易となった。   As described above, in the first embodiment, when the coated substrate 3 is peeled off, the coating plate 4 is used, and the coated substrate 3 is peeled off while applying pressure, so that the coated substrate 3 is compared with a conventional heat resistant fluororesin. The thermal transfer of the catalyst layer 2a (or 2b) was successfully performed while using inexpensive and inexpensive polyethylene terephthalate. Further, by using the coated substrate 3 having a thickness of 50 μm or less, the coated substrate 3 can be easily bent, and the coated substrate 3 can be easily peeled off from the catalyst layer 2a (or 2b), and the catalyst layer 2a. There is also an effect that the thermal transfer of (or 2b) to the polymer electrolyte membrane 1 can be performed satisfactorily. Further, the provision of the separation margin 5 on the coated substrate 3 makes it easy to peel off the coated substrate 3.

(2)第2実施形態
本発明の第2実施形態における触媒層−高分子電解質膜接合体の製造方法を図3及び図4を用いて説明する。
この第2実施形態の製造方法の基本的な構成は、図3に示すように、塗布基板3に形成された触媒層2a(または2b)を高分子電解質膜1に熱転写したのちに、塗布基板3を圧力付与ローラ6で押さえながら、塗布基板3を触媒層2a(または2b)から引き剥がしていくものである。
(2) 2nd Embodiment The manufacturing method of the catalyst layer-polymer electrolyte membrane assembly in 2nd Embodiment of this invention is demonstrated using FIG.3 and FIG.4.
As shown in FIG. 3, the basic configuration of the manufacturing method of the second embodiment is that after the catalyst layer 2a (or 2b) formed on the coating substrate 3 is thermally transferred to the polymer electrolyte membrane 1, the coating substrate The coated substrate 3 is peeled off from the catalyst layer 2a (or 2b) while pressing 3 with the pressure applying roller 6.

この第2実施形態においては、前記圧力付与ローラ6が、本発明の請求項に記載した圧力付与部材に相当する。また、前記第1実施の形態は、塗布基板3に対して圧力付与部材を移動させながら剥離作業を行ったが、この第2実施形態は、圧力付与部材であるローラ6の位置は変えることなく、触媒層−高分子電解質膜接合体を移動させながら、塗布基板3を剥離するように構成されている。   In the second embodiment, the pressure applying roller 6 corresponds to the pressure applying member described in the claims of the present invention. In the first embodiment, the peeling operation is performed while moving the pressure applying member with respect to the coating substrate 3. However, in the second embodiment, the position of the roller 6 that is the pressure applying member is not changed. The coated substrate 3 is peeled off while moving the catalyst layer-polymer electrolyte membrane assembly.

この製造方法を実現するに当たって、図4に示す製造装置を用いた。この製造装置は、高分子電解質膜1に塗布基板3に塗布した触媒層2a(または2b)を接合して成る触媒層−高分子電解質膜接合体をあらかじめ巻取ローラ10に巻き取っておき、これを巻取ローラ10から繰り出しながら塗布基板3を高分子電解質膜1及び触媒層2a(または2b)から引き剥がすものである。   In realizing this manufacturing method, the manufacturing apparatus shown in FIG. 4 was used. In this manufacturing apparatus, a catalyst layer-polymer electrolyte membrane assembly formed by joining a polymer electrolyte membrane 1 and a catalyst layer 2a (or 2b) coated on a coating substrate 3 is wound around a winding roller 10 in advance. The coated substrate 3 is peeled off from the polymer electrolyte membrane 1 and the catalyst layer 2a (or 2b) while being fed out from the winding roller 10.

すなわち、巻取ローラ10には、これに巻き取られている触媒層−高分子電解質膜接合体の繰り出し量を制御するためのガイドローラ11が一定の圧力で接触するように配置され、更に、触媒層−高分子電解質膜接合体の繰り出し経路には、案内用のガイドローラ12,13が設けられている。この案内用ガイドローラ12,13の先には、本実施形態の圧力付与ローラ6が設けられている。   That is, the winding roller 10 is arranged so that the guide roller 11 for controlling the feeding amount of the catalyst layer-polymer electrolyte membrane assembly wound around the winding roller 10 is in contact with a constant pressure. Guide rollers 12 and 13 for guidance are provided in the feeding path of the catalyst layer-polymer electrolyte membrane assembly. The pressure applying roller 6 of this embodiment is provided at the tip of the guide guide rollers 12 and 13.

なお、本実施形態では、この圧力付与ローラ6が、触媒層から塗布基板3を引き剥がすための引き剥がしローラと、引き剥がした塗布基板3を回収するための巻取ローラとを兼用している。   In this embodiment, the pressure applying roller 6 serves as both a peeling roller for peeling off the coated substrate 3 from the catalyst layer and a winding roller for collecting the peeled coated substrate 3. .

この圧力付与ローラ6は、油圧あるいは空気圧によって駆動されるシリンダや、バネなどの圧力付与手段を備えた圧力付与機構14に回転自在に支持され、触媒層−高分子電解質膜接合体表面の塗布基板3に一定の圧力で接触しながら回転するものである。   The pressure applying roller 6 is rotatably supported by a pressure applying mechanism 14 having pressure applying means such as a cylinder driven by hydraulic pressure or air pressure, and a spring, and is applied on the surface of the catalyst layer-polymer electrolyte membrane assembly. 3 while rotating at a constant pressure.

この圧力付与ローラ6の触媒層−高分子電解質膜接合体を挟んで対向する位置には、引き剥がしガイドとなる接合体支えローラ15が設けられ、前記圧力付与ローラ6の圧力を受け止めるように構成されている。また、圧力付与ローラ6とこの接合体支えローラ15との間隙を調整するために、前記圧力付与機構14には、長孔状の軸受部のようなローラ間隙調整機構16が設けられている。   A joint support roller 15 serving as a peeling guide is provided at a position opposite to the pressure applying roller 6 across the catalyst layer-polymer electrolyte membrane assembly, and is configured to receive the pressure of the pressure applying roller 6. Has been. Further, in order to adjust the gap between the pressure applying roller 6 and the joined body supporting roller 15, the pressure applying mechanism 14 is provided with a roller gap adjusting mechanism 16 such as a long hole bearing.

圧力付与ローラ6による引き剥がし機構の後段には、ガイドローラ17を介して、塗布基板3が引き剥がされた触媒層−高分子電解質膜を巻き取る巻取ローラ18が設けられている。   A take-up roller 18 for winding up the catalyst layer-polymer electrolyte membrane from which the coated substrate 3 has been peeled off is provided via a guide roller 17 at the subsequent stage of the peeling mechanism by the pressure applying roller 6.

前記塗布基板と触媒層及び高分子電解質膜との接合体を巻き取った巻取ローラ10と、この巻取ローラから繰り出された接合体の塗布基板を触媒層との境界面から引き剥がす塗布基板の巻取ローラであるα値力付与ローラ6と、塗布基板が剥がされた電極−高分子電解質膜接合体を巻き取る巻取ローラ18とが、本発明の請求項に記載した塗布基板引き剥がし手段を構成している。   The take-up roller 10 that winds up the joined body of the coated substrate, the catalyst layer, and the polymer electrolyte membrane, and the coated substrate that peels off the coated substrate of the joined body fed out from the take-up roller from the interface with the catalyst layer. The α-value force imparting roller 6 that is the take-up roller of the present invention and the take-up roller 18 that takes up the electrode-polymer electrolyte membrane assembly from which the coated substrate has been peeled off are the coated substrate peeling device described in the claims of the present invention. Means.

第2実施形態の製造装置は、前記のような構成を有するものであるが、次に、その作用を説明する。この第2実施形態において、燃料極の触媒層2a、酸化剤極の触媒層2bを形成する塗布基板3は厚さ30μmのポリエチレンテレフタラートのシートを用いた。燃料極の触媒層2aは、カーボンブラックにPt−Ruの合金を担持した触媒に、電解質分散溶液(DuPont社、Nafion、5wt%溶液)を乾燥重量比3:1となるように混合したペーストを剥離しろを設けた20cm幅のポリエチレンテレフタレートの基板に、白金量が単位面積当り0.4mgになるように連続塗布し90℃で10分間乾燥して形成した。   Although the manufacturing apparatus of 2nd Embodiment has the above structures, the effect | action is demonstrated next. In the second embodiment, a polyethylene terephthalate sheet having a thickness of 30 μm is used as the coating substrate 3 on which the fuel electrode catalyst layer 2a and the oxidant electrode catalyst layer 2b are formed. The catalyst layer 2a of the fuel electrode is a paste in which an electrolyte dispersion solution (DuPont, Nafion, 5 wt% solution) is mixed with a catalyst in which a Pt—Ru alloy is supported on carbon black to a dry weight ratio of 3: 1. A 20 cm wide polyethylene terephthalate substrate provided with a peeling margin was continuously applied so that the amount of platinum was 0.4 mg per unit area and dried at 90 ° C. for 10 minutes.

酸化剤極の触媒層2bは、カーボンブラックにPtを担持した触媒に、電解質分散溶液(DuPont社、Nafion、5wt%溶液)を乾燥重量比3:1となるように混合したペーストを剥離しろを設けた20cm幅のポリエチレンテレフタレートの基板に、白金量が単位面積当り0.4mgになるように塗布し90℃で10分間乾燥して形成した。   The catalyst layer 2b of the oxidant electrode is made by removing a paste obtained by mixing an electrolyte dispersion solution (DuPont, Nafion, 5 wt% solution) at a dry weight ratio of 3: 1 with a catalyst in which Pt is supported on carbon black. It was applied to a 20 cm wide polyethylene terephthalate substrate so that the amount of platinum was 0.4 mg per unit area and dried at 90 ° C. for 10 minutes.

上記形成した燃料極触媒層2aと酸化剤極触媒層2bとで22cm幅の固体高分子電解質膜(DuPont社製、厚さ50μm)を挟持して温度130℃、熱間ローラにて面圧50kgf/cmになるように線圧を調整し圧着した。 The above-formed fuel electrode catalyst layer 2a and oxidant electrode catalyst layer 2b sandwich a solid polymer electrolyte membrane (DuPont, 50 μm thick) having a width of 22 cm, temperature 130 ° C., surface pressure 50 kgf with a hot roller. The linear pressure was adjusted so as to be / cm 2 , and crimped.

燃料極触媒層2aまたは酸化剤極触媒層2bを塗布基板3と共に高分子電解質膜1に熱圧着した触媒層−高分子電解質膜接合体を巻取ローラ10及びガイドローラ11にセットして、案内用ガイドローラ12,13を介して圧力付与ローラ6と接合体支えローラ15にセットした。圧力付与ローラ6の巻き取り開始部に接着テープを用いて、塗布基板3の剥離しろを固定した。   A catalyst layer-polymer electrolyte membrane assembly in which the fuel electrode catalyst layer 2a or the oxidizer electrode catalyst layer 2b is thermocompression bonded to the polymer electrolyte membrane 1 together with the coating substrate 3 is set on the winding roller 10 and the guide roller 11, and guided. The pressure applying roller 6 and the joined body supporting roller 15 were set via the guide rollers 12 and 13. An adhesive tape was used at the winding start portion of the pressure applying roller 6 to fix the separation margin of the coated substrate 3.

圧力付与ローラ6には、前記圧力付与機構14により、圧力付与ローラ6の塗布基板3に対する面圧が15kgf/cmとなるように設定し、圧力付与ローラ6の線圧を調整した。圧力付与ローラ6を回転させ、塗布基板3を触媒層2a(または2b)から引き剥がしつつその外周に巻き取り、一方、塗布基板3を引き剥がした電極―高分子電解質膜接合体については、その巻取ローラ18に巻き取った。 For the pressure applying roller 6, the surface pressure of the pressure applying roller 6 against the coating substrate 3 was set to 15 kgf / cm 2 by the pressure applying mechanism 14, and the linear pressure of the pressure applying roller 6 was adjusted. The electrode-polymer electrolyte membrane assembly in which the pressure applying roller 6 is rotated and wound around the outer periphery of the coated substrate 3 while peeling the coated substrate 3 from the catalyst layer 2a (or 2b) It was wound on a winding roller 18.

この場合、塗布基板3を引き剥がして圧力付与ローラ6に巻き取ることにより、圧力付与ローラ6と接合体支えローラ15の間隙が変化することから、前記ローラ間隙調整機構16を用いることにより、常に両ローラ6,15間隙を一定に保つことができる。このようにして、引き剥がした塗布基板3の重量を測定すると、触媒層塗布前の重量と同じであり、触媒のロスのない電極―高分子電解質膜接合体を得ることができた。   In this case, since the gap between the pressure applying roller 6 and the joined body supporting roller 15 changes by peeling off the coating substrate 3 and winding it around the pressure applying roller 6, the roller gap adjusting mechanism 16 is always used. The gap between the rollers 6 and 15 can be kept constant. In this way, when the weight of the coated substrate 3 peeled off was measured, it was the same as the weight before coating of the catalyst layer, and an electrode-polymer electrolyte membrane assembly without catalyst loss could be obtained.

以上のとおり、第2実施形態の製造装置を用いることにより、連続して触媒層−高分子電解質膜からの塗布基板3の引き剥がしが可能であり、塗布基板3を引き剥がす際に、圧力ローラ6による塗布基板への圧力付与と、塗布基板3の巻き取りが行えるので、触媒層−高分子電解質膜接合体の連続成形を行うことができた。   As described above, by using the manufacturing apparatus of the second embodiment, the coated substrate 3 can be continuously peeled from the catalyst layer-polymer electrolyte membrane, and when the coated substrate 3 is peeled off, the pressure roller Since the pressure application to the coated substrate by 6 and the winding of the coated substrate 3 can be performed, the catalyst layer-polymer electrolyte membrane assembly can be continuously formed.

(3)他の実施形態
本発明は前記の実施形態に限定されるものではなく、次のような実施態様も包含するものである。
(3) Other Embodiments The present invention is not limited to the above-described embodiments, and includes the following embodiments.

(1) あて板や圧力付与ローラによって、塗布基板3を押圧する圧力としては、塗布基板の材質、肉厚、触媒層の粘着度などによって適宜変更することが可能であるが、一例として、0.1〜30kgf/cm程度、好ましくは、15kgf/cm程度が望ましい。 (1) The pressure for pressing the coated substrate 3 with a contact plate or a pressure applying roller can be appropriately changed depending on the material of the coated substrate, the thickness, the degree of adhesion of the catalyst layer, etc. .1~30kgf / cm 2, preferably about, 15 kgf / cm 2 about desirable.

(2) あて板や圧力付与ローラによって、塗布基板を触媒層に押し付けながら剥離作業を行う場合、触媒層に対する塗布基板の剥離角度(触媒層と剥がれていく塗布基板のとのなす角度)としては、45〜120度程度、好ましくは90度程度が良い。 (2) When the peeling operation is performed while pressing the coated substrate against the catalyst layer with a contact plate or a pressure applying roller, the separation angle of the coated substrate with respect to the catalyst layer (the angle formed between the catalyst layer and the coated substrate) It is about 45 to 120 degrees, preferably about 90 degrees.

(3) 前記第1実施形態のような10〜11cm角の塗布基板を使用した場合には、半径1cm程度の円弧状コーナー部を有するあて板や、半径1cm程度の圧力付与ローラを使用することが好ましい。また、あて板として、断面半円形の棒状部材や断面矩形状の部材の使用も可能である。 (3) When a 10 to 11 cm square coated substrate as in the first embodiment is used, a coating plate having an arcuate corner having a radius of about 1 cm or a pressure applying roller having a radius of about 1 cm is used. Is preferred. In addition, a bar-shaped member having a semicircular cross section or a member having a rectangular cross section can be used as the contact plate.

(4) 引き剥がしの速度としては、塗布基板の材質や触媒層の種類にもよるが、一例として、1〜10cm/sec程度が好ましい。 (4) The peeling speed depends on the material of the coated substrate and the type of the catalyst layer, but is preferably about 1 to 10 cm / sec as an example.

(5) 塗布基板としては、前記実施形態に示したポリエチレンテレフタレート以外に、ポリイミド、ポリアミドポリエチレンテレタレート、ポリフェニレンサルファイド、ポリサルフォンなどの高分子フィルムが使用できる。また、塗布基板として、その価格が問題にならない場合には、従来使用されていたPTFEなどの耐熱性フッ素樹脂を使用することも可能である。 (5) In addition to the polyethylene terephthalate shown in the above embodiment, a polymer film such as polyimide, polyamide polyethylene terephthalate, polyphenylene sulfide, and polysulfone can be used as the coated substrate. Moreover, when the price does not become a problem as an application | coating board | substrate, it is also possible to use heat resistant fluororesins, such as PTFE conventionally used.

(6) 塗布基板3としては、前記実施形態の厚さ50μmポリエチレンテレフタレートに限らず、厚さ5〜200μm(好ましくは10〜50μm)、熱変形温度が130℃以上の高分子材料を適宜使用できる。すなわち、厚さ10〜50μmの高分子材料は、その薄い肉厚故に、柔軟に屈曲することから、圧力付与部材によって押さえながら剥離作業を行っても、隔離部分が圧力付与部材表面に沿って屈曲し、常に同じ角度で剥離作業が行える。また、熱変形温度が130℃以上であると、触媒層を高分子電解質膜に熱圧着する場合に、塗布基板の変形や溶融がなく、触媒層を均一に形成できる。 (6) The coated substrate 3 is not limited to the 50 μm-thick polyethylene terephthalate of the above embodiment, and a polymer material having a thickness of 5 to 200 μm (preferably 10 to 50 μm) and a heat distortion temperature of 130 ° C. or more can be used as appropriate. . That is, the polymer material having a thickness of 10 to 50 μm bends flexibly because of its thin wall thickness, so that the isolated portion bends along the surface of the pressure applying member even if the peeling operation is performed while being pressed by the pressure applying member. In addition, the peeling operation can always be performed at the same angle. Further, when the thermal deformation temperature is 130 ° C. or higher, when the catalyst layer is thermocompression bonded to the polymer electrolyte membrane, the coated substrate is not deformed or melted, and the catalyst layer can be formed uniformly.

(7) 第2実施形態では、圧力付与ローラ6を引き剥がした塗布基板3の巻取ローラと兼用したが、圧力付与ローラ6部分で触媒層から引き剥がされた塗布基板3を巻き取るために、圧力付与ローラ6の後段に塗布基板3の巻取ローラを別途設けることもできる。 (7) In the second embodiment, the pressure application roller 6 is also used as the take-up roller of the coated substrate 3 from which the pressure applying roller 6 has been peeled off. In order to wind up the coated substrate 3 that has been peeled off from the catalyst layer by the pressure applying roller 6 portion. In addition, a winding roller for the coating substrate 3 can be provided separately after the pressure applying roller 6.

(8) 前記第2実施形態では、塗布基板引き剥がし手段を巻取ローラによって構成したが、巻取状態にない平板状の塗布基板−触媒層・高分子電解質膜接合体の引き剥がし手段としては、クリップ状の把持部によって塗布基板の端部と高分子電解質膜の端部とを摘んで、両者を引き剥がす構成を採用することも可能である。 (8) In the second embodiment, the coated substrate peeling means is constituted by a winding roller. However, as a peeling means for the flat coated substrate-catalyst layer / polymer electrolyte membrane assembly that is not in a wound state, It is also possible to adopt a configuration in which the end portion of the coating substrate and the end portion of the polymer electrolyte membrane are gripped by a clip-shaped gripping portion and both are peeled off.

本発明の第1実施形態における塗布基板の剥離状態を示す断面図。Sectional drawing which shows the peeling state of the coating substrate in 1st Embodiment of this invention. 本発明の第1実施形態における塗布基板とその剥離しろを示す平面図。The top view which shows the coating substrate in the 1st Embodiment of this invention, and its peeling margin. 本発明の第2実施形態における塗布基板の剥離状態を示す断面図。Sectional drawing which shows the peeling state of the coating substrate in 2nd Embodiment of this invention. 本発明の第2実施形態における触媒層−高分子電解質膜接合体の製造装置を示す側面図。The side view which shows the manufacturing apparatus of the catalyst layer-polymer electrolyte membrane assembly in 2nd Embodiment of this invention.

符号の説明Explanation of symbols

1…高分子電解質膜
2a,2b…触媒層
3…塗布基板
4…あて板
5…剥離しろ
6…圧力付与ローラ
10…触媒層−高分子電解質膜接合体の巻取ローラ
11,12,13,17…ガイドローラ
14…圧力付与機構
15…接合体支えローラ
16…ローラ間隙調整機構
18…触媒層−高分子電解質膜の巻取ローラ
DESCRIPTION OF SYMBOLS 1 ... Polymer electrolyte membrane 2a, 2b ... Catalyst layer 3 ... Application | coating board | substrate 4 ... Addressing plate 5 ... Separation 6 ... Pressure-applying roller 10 ... Winding roller 11, 12, 13, of catalyst layer-polymer electrolyte membrane assembly 17 ... Guide roller 14 ... Pressure applying mechanism 15 ... Joint body support roller 16 ... Roller gap adjusting mechanism 18 ... Catalyst layer-polymer electrolyte membrane winding roller

Claims (11)

燃料極触媒層または酸化剤極触媒層の少なくとも一つを塗布基板に形成する工程と、
塗布基板に形成した燃料極触媒層または酸化剤極触媒層を、塗布基板と共に高分子電解質膜に熱圧着する工程と、
高分子電解質膜に対して熱圧着された塗布基板と触媒層を、引き剥がし部分における塗布基板の触媒層と反対側の面から圧力を与えながら、塗布基板を触媒層部分から引き剥がす工程とを備えていることを特徴とする触媒層−高分子電解質膜接合体の製造方法。
Forming at least one of a fuel electrode catalyst layer or an oxidant electrode catalyst layer on a coated substrate;
A step of thermocompression bonding the fuel electrode catalyst layer or the oxidant electrode catalyst layer formed on the coated substrate to the polymer electrolyte membrane together with the coated substrate;
A step of peeling the coated substrate from the catalyst layer portion while applying pressure from the surface opposite to the catalyst layer of the coated substrate in the peeled portion of the coated substrate and the catalyst layer thermocompression bonded to the polymer electrolyte membrane. A method for producing a catalyst layer-polymer electrolyte membrane assembly, comprising:
前記塗布基板として、厚さ10〜50μmであり、熱変形温度が130℃以上の高分子材料を用いることを特徴とする請求項1に記載の触媒層−高分子電解質膜接合体の製造方法。   2. The method for producing a catalyst layer-polymer electrolyte membrane assembly according to claim 1, wherein a polymer material having a thickness of 10 to 50 μm and a thermal deformation temperature of 130 ° C. or higher is used as the coating substrate. 前記塗布基板に、剥離しろを設けることを特徴とする請求項1または請求項2に記載の触媒層−高分子電解質膜接合体の製造方法。   The method for producing a catalyst layer-polymer electrolyte membrane assembly according to claim 1 or 2, wherein a separation margin is provided on the coated substrate. 前記塗布基板を触媒層部分から引き剥がす工程が、塗布基板の表面に対して所定の圧力で接触する圧力付与部材を使用して、塗布基板の触媒層と反対側の面から圧力を与えながら、塗布基板を触媒層部分から引き剥がすものであり、
前記圧力付与部材が、剥離作業に伴って塗布基板と触媒層との剥離位置が移動するに従い、塗布基板の表面に沿って移動させるように構成されていることを特徴とする請求項1ないし請求項3のいずれか1項に記載の触媒層−高分子電解質膜接合体の製造方法。
The step of peeling the coated substrate from the catalyst layer portion uses a pressure applying member that contacts the surface of the coated substrate at a predetermined pressure, while applying pressure from the surface opposite to the catalyst layer of the coated substrate, It is to peel off the coated substrate from the catalyst layer part,
The pressure applying member is configured to move along the surface of the coating substrate as the peeling position between the coating substrate and the catalyst layer moves in accordance with the peeling operation. Item 4. The method for producing a catalyst layer-polymer electrolyte membrane assembly according to any one of Item 3.
前記塗布基板を触媒層部分から引き剥がす工程が、塗布基板の表面に対して所定の圧力で接触する圧力付与部材を使用して、塗布基板の触媒層と反対側の面から圧力を与えながら、塗布基板を触媒層部分から引き剥がすものであり、
前記圧力付与部材が、塗布基板表面に対して線圧を与えるものであることを特徴とする請求項1ないし請求項3のいずれか1項に記載の触媒層−高分子電解質膜接合体の製造方法。
The process of peeling the coated substrate from the catalyst layer portion uses a pressure applying member that contacts the surface of the coated substrate at a predetermined pressure, while applying pressure from the surface opposite to the catalyst layer of the coated substrate, It is to peel off the coated substrate from the catalyst layer part,
The production of the catalyst layer-polymer electrolyte membrane assembly according to any one of claims 1 to 3, wherein the pressure applying member applies a linear pressure to the surface of the coated substrate. Method.
高分子電解質膜に対して熱圧着された塗布基板を、触媒層との境界面から引き剥がす塗布基板引き剥がし手段を備え、
前記塗布基板引き剥がし手段には、高分子電解質膜に対して熱圧着された塗布基板と触媒層を、引き剥がし部分における塗布基板の触媒層と反対側の面から圧力を与えながら、塗布基板を触媒層部分から引き剥がすための圧力付与部材が設けられていることを特徴とする触媒層−高分子電解質膜接合体の製造装置。
A coating substrate peeling means for peeling the coating substrate thermocompression bonded to the polymer electrolyte membrane from the interface with the catalyst layer,
For the coated substrate peeling means, the coated substrate and the catalyst layer that are thermocompression bonded to the polymer electrolyte membrane are applied to the coated substrate while applying pressure from the surface opposite to the catalyst layer of the coated substrate in the peeled portion. An apparatus for producing a catalyst layer-polymer electrolyte membrane assembly, wherein a pressure applying member for peeling from the catalyst layer portion is provided.
前記圧力付与部材が、塗布基板表面に一定の圧力で接触し、塗布基板の剥離作業に伴って回転する圧力付与ローラであることを特徴とする請求項6に記載の触媒層−高分子電解質膜接合体の製造装置。   7. The catalyst layer-polymer electrolyte membrane according to claim 6, wherein the pressure applying member is a pressure applying roller that contacts the surface of the coated substrate at a constant pressure and rotates in accordance with a peeling operation of the coated substrate. Bonded body manufacturing equipment. 前記塗布基板引き剥がし手段が、塗布基板と触媒層及び高分子電解質膜との接合体を巻き取った巻取ローラと、この巻取ローラから繰り出された接合体の塗布基板を触媒層との境界面から引き剥がす塗布基板の巻取ローラと、塗布基板が剥がされた電極−高分子電解質膜接合体を巻き取る巻取ローラとから構成されていることを特徴とする請求項7に記載の触媒層−高分子電解質膜接合体の製造装置。   The coated substrate peeling means includes a winding roller that winds up the bonded body of the coated substrate, the catalyst layer, and the polymer electrolyte membrane, and a boundary between the coated substrate of the bonded body fed out from the winding roller and the catalyst layer. The catalyst according to claim 7, comprising a winding roller for the coated substrate peeled off from the surface, and a winding roller for winding the electrode-polymer electrolyte membrane assembly from which the coated substrate has been peeled off. An apparatus for producing a layer-polymer electrolyte membrane assembly. 前記圧力付与ローラが、塗布基板の巻取ローラを兼用していることを特徴とする請求項8に記載の触媒層−高分子電解質膜接合体の製造装置。   9. The apparatus for producing a catalyst layer-polymer electrolyte membrane assembly according to claim 8, wherein the pressure applying roller also serves as a winding roller for a coated substrate. 前記圧力付与ローラが、塗布基板を引き剥がす部位に加える圧力を調整する機構を備えていることを特徴とする請求項8記載の触媒層−高分子電解質膜接合体の製造装置。   9. The apparatus for producing a catalyst layer-polymer electrolyte membrane assembly according to claim 8, wherein the pressure applying roller has a mechanism for adjusting a pressure applied to a site where the coated substrate is peeled off. 前記塗布基板引き剥がし手段が、圧力付与ローラに対向する位置に接合体支えローラを有するものであって、前記圧力付与ローラには、圧力付与ローラと接合体支えローラとの間隙の寸法を調整する間隙調整機構が設けられていることを特徴とする請求項8記載の触媒層−高分子電解質膜接合体の製造装置。   The coating substrate peeling means has a joined body supporting roller at a position facing the pressure applying roller, and the pressure applying roller adjusts a dimension of a gap between the pressure applying roller and the joined body supporting roller. 9. The apparatus for producing a catalyst layer-polymer electrolyte membrane assembly according to claim 8, wherein a gap adjusting mechanism is provided.
JP2007301444A 2007-11-21 2007-11-21 Manufacturing method and manufacturing device of catalyst layer-polymer electrolyte membrane assembly Pending JP2009129614A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007301444A JP2009129614A (en) 2007-11-21 2007-11-21 Manufacturing method and manufacturing device of catalyst layer-polymer electrolyte membrane assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007301444A JP2009129614A (en) 2007-11-21 2007-11-21 Manufacturing method and manufacturing device of catalyst layer-polymer electrolyte membrane assembly

Publications (1)

Publication Number Publication Date
JP2009129614A true JP2009129614A (en) 2009-06-11

Family

ID=40820358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007301444A Pending JP2009129614A (en) 2007-11-21 2007-11-21 Manufacturing method and manufacturing device of catalyst layer-polymer electrolyte membrane assembly

Country Status (1)

Country Link
JP (1) JP2009129614A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013069543A1 (en) * 2011-11-07 2013-05-16 トヨタ自動車株式会社 Membrane electrode assembly manufacturing method
JP2014213556A (en) * 2013-04-26 2014-11-17 日産自動車株式会社 Transfer method and transfer device for transfer member
CN109702031A (en) * 2017-10-25 2019-05-03 深圳迅泰德自动化科技有限公司 Battery battery core hot-press equipment
KR20220112896A (en) * 2021-02-04 2022-08-12 주식회사 디에스케이 sticking device of secondary battery separator

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013069543A1 (en) * 2011-11-07 2013-05-16 トヨタ自動車株式会社 Membrane electrode assembly manufacturing method
JP2013101757A (en) * 2011-11-07 2013-05-23 Toyota Motor Corp Manufacturing method of membrane electrode assembly
CN103918113A (en) * 2011-11-07 2014-07-09 丰田自动车株式会社 Membrane electrode assembly manufacturing method
US8980038B2 (en) 2011-11-07 2015-03-17 Toyota Jidosha Kabushiki Kaisha Method for producing membrane electrode assembly
EP2779289A4 (en) * 2011-11-07 2015-05-27 Toyota Motor Co Ltd Membrane electrode assembly manufacturing method
JP2014213556A (en) * 2013-04-26 2014-11-17 日産自動車株式会社 Transfer method and transfer device for transfer member
CN109702031A (en) * 2017-10-25 2019-05-03 深圳迅泰德自动化科技有限公司 Battery battery core hot-press equipment
KR20220112896A (en) * 2021-02-04 2022-08-12 주식회사 디에스케이 sticking device of secondary battery separator
KR102567873B1 (en) * 2021-02-04 2023-08-21 주식회사 디에스케이 sticking device of secondary battery separator

Similar Documents

Publication Publication Date Title
JP5321181B2 (en) Method for producing assembly of catalyst layer and electrolyte membrane of fuel cell member
JP3491894B2 (en) Method for producing electrolyte membrane electrode assembly
JP5183925B2 (en) Process for producing a polymer electrolyte membrane coated with a catalyst
JPWO2005104280A1 (en) Fuel cell and method of manufacturing fuel cell
JP2009129614A (en) Manufacturing method and manufacturing device of catalyst layer-polymer electrolyte membrane assembly
JP2006134611A (en) Manufacturing device and manufacturing method of junction
KR20090043765A (en) Fabrication apparatus of membrane electrode assembly for fuel cell and fabrication method thereof
WO2012081169A1 (en) Method for manufacturing membrane-catalyst layer assembly
JP2015035256A (en) Method and device of manufacturing membrane electrode assembly
KR101926910B1 (en) Release liner, method of making the same, and method of manufacturing membrane electrode assembly using the same
JP5836060B2 (en) Manufacturing method of fuel cell
JP2004247294A (en) Power generation element for fuel cell, its manufacturing method, and fuel cell using power generation element
JP6155989B2 (en) Membrane electrode assembly manufacturing apparatus and manufacturing method
JP5021885B2 (en) Fuel cell
JP3398013B2 (en) Method for manufacturing cell for polymer electrolyte fuel cell
JP5853194B2 (en) Membrane-catalyst layer assembly manufacturing method and manufacturing apparatus thereof
JP2003303599A (en) Method of manufacturing electrolyte membrane/ electrode joint body for fuel cell
JP2019164890A (en) Support film, bonding method, and manufacturing method and manufacturing apparatus of membrane/electrode assembly
JP5619841B2 (en) Method for producing polymer electrolyte fuel cell
JP5993987B2 (en) Manufacturing method of fuel cell
JP5137008B2 (en) Manufacturing method of membrane / electrode assembly for fuel cell
JP7255461B2 (en) Manufacturing method of membrane electrode gas diffusion layer assembly
JP6127598B2 (en) Membrane electrode assembly manufacturing apparatus and membrane electrode assembly manufacturing method
US20240170684A1 (en) Method and Apparatus for Manufacturing Membrane-Electrode Assembly
JP2019185930A (en) Method of manufacturing membrane electrode assembly for fuel cell