JP5318240B2 - Suction tank - Google Patents

Suction tank Download PDF

Info

Publication number
JP5318240B2
JP5318240B2 JP2012061833A JP2012061833A JP5318240B2 JP 5318240 B2 JP5318240 B2 JP 5318240B2 JP 2012061833 A JP2012061833 A JP 2012061833A JP 2012061833 A JP2012061833 A JP 2012061833A JP 5318240 B2 JP5318240 B2 JP 5318240B2
Authority
JP
Japan
Prior art keywords
water tank
suction water
suction
pump
vortex prevention
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012061833A
Other languages
Japanese (ja)
Other versions
JP2012112391A (en
Inventor
一宏 長岡
栄司 菅井
義弘 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2012061833A priority Critical patent/JP5318240B2/en
Publication of JP2012112391A publication Critical patent/JP2012112391A/en
Application granted granted Critical
Publication of JP5318240B2 publication Critical patent/JP5318240B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Sewage (AREA)

Description

本発明は、ポンプ機場やポンプゲートなどの排水設備に設けられる吸込水槽に関するものである。   The present invention relates to a suction water tank provided in a drainage facility such as a pump station or a pump gate.

吸込水槽はポンプに水を導くための水路である。この吸込水槽では、種々のモデル実験等により水槽の形状と呑み口(開水路から閉水路に移行する部分)での許容流速が求められ、種々の基準で規定されている。例えば、図16に示すような呑み口11に傾斜面12を有し、開水路と閉水路を合わせもつ水槽(セミクローズ水槽という)では、呑み口11での流速は0.6m/s程度と定められている。この流速はセミクローズ水槽でポンプに有害な空気吸込渦が発生しない流速であり、多くの排水機場ではこの流速をもとに水槽、水路形状が決定されている。しかしながら、近年では建設コストの縮減がさらに求められ、吸込水槽のさらなるコンパクト化が必要となっており、流速を速くしてもポンプに有害な渦を発生させることのない吸込水槽が強く求められている。   The suction water tank is a water channel for guiding water to the pump. In this suction water tank, the allowable flow velocity at the shape of the water tank and the stagnation mouth (portion that moves from the open water channel to the closed water channel) is obtained by various model experiments and the like, and is defined by various standards. For example, in a water tank (referred to as a semi-closed water tank) having an inclined surface 12 at a stagnation mouth 11 as shown in FIG. 16 and having both an open channel and a closed water channel, the flow velocity at the stagnation port 11 is about 0.6 m / s. It has been established. This flow rate is a semi-closed water tank that does not generate air suction vortices that are harmful to the pump. In many drainage stations, the shape of the water tank and the water channel is determined based on this flow speed. However, in recent years, there has been a further demand for reduction in construction costs, and a further reduction in the size of the suction water tank is required, and there is a strong demand for a suction water tank that does not generate harmful vortices even at high flow rates. Yes.

呑み口11での流速を従来より速くして吸込水槽を小さくすると、水面から発生する空気吸込渦や気泡の巻き込みが問題となる。空気吸込渦が発生し、ポンプの羽根車と干渉した場合、振動や騒音が発生して、最悪の場合はポンプが排水不能となり、浸水被害を起こす危険がある。従来のセミクローズ水槽で、流速をさらに速くした場合には、図17に示すように、呑み口11近傍に発生するくぼみ渦の先端がちぎれ、気泡がポンプPへ吸い込まれ始める。その渦が成長すると、ついには連続渦としてポンプP内に入り、上記のような現象が発生してしまう。   When the flow velocity at the stagnation port 11 is made faster than before and the suction water tank is made smaller, air suction vortices and bubbles entrained from the water surface become a problem. If an air suction vortex is generated and interferes with the impeller of the pump, vibration and noise are generated. In the worst case, the pump cannot be drained and there is a risk of inundation damage. When the flow rate is further increased in the conventional semi-closed water tank, as shown in FIG. 17, the tip of the hollow vortex generated in the vicinity of the stagnation mouth 11 is broken, and bubbles begin to be sucked into the pump P. When the vortex grows, it finally enters the pump P as a continuous vortex and the above phenomenon occurs.

図17に示すように、開水路では、水深の浅い上層部の流速が速い状態にある。さらに流速を速くすると呑み口11付近において入射波と反射波がぶつかり、波立ちが起こる。波は空気を巻き込み、気泡が多く発生する。この気泡は傾斜面12による下降流に連行され、ポンプPに気泡が吸引され、ポンプPに影響を及ぼす。特に、図17に示すように、両側部の流速が水路壁面との摩擦抵抗により遅くなることから、傾斜面12の両端部付近で旋回成分を持つ水流が発生し、これが成長するとくぼみ渦が発生しやすくなる。さらに、前述した波立ちによる気泡もこの渦の流れにのってポンプPに流入する。つまり、傾斜面12を有するセミクローズ水槽においては、傾斜面12の両側部が最も空気吸込渦や気泡巻き込みが発生しやすい部分といえる。   As shown in FIG. 17, in the open channel, the flow rate of the upper layer portion having a shallow depth is high. When the flow velocity is further increased, the incident wave and the reflected wave collide in the vicinity of the stagnation mouth 11 to cause a wave. Waves entrain air and generate many bubbles. The bubbles are entrained in the downward flow by the inclined surface 12, and the bubbles are sucked into the pump P and affect the pump P. In particular, as shown in FIG. 17, since the flow velocity on both sides is slowed by frictional resistance with the channel wall surface, a water flow having a swirl component is generated near both ends of the inclined surface 12, and when this grows, a hollow vortex is generated. It becomes easy to do. Furthermore, the bubble caused by the above-described wave also flows into the pump P along this vortex flow. That is, in the semi-closed water tank having the inclined surface 12, it can be said that both side portions of the inclined surface 12 are the portions where the air suction vortex and the bubble entrapment are most likely to occur.

また、図18に示すオープン水槽においては、流速が速くなると、中央部と両側部との流速の違いに起因して渦防止壁20の両端に渦が発生しやすくなるという問題がある。さらに、図19に示すように、ゲート30にポンプP1,P2が取り付けられたポンプゲートにおける吸込水槽においても、吸込水槽の側壁25とポンプP1,P2との間に回転成分を持つ水流が発生しやすい。したがって、ゲート30の両側部は空気吸込渦や気泡巻き込みが発生しやすい位置といえる。   Further, in the open water tank shown in FIG. 18, when the flow velocity is increased, there is a problem that vortices are likely to be generated at both ends of the vortex prevention wall 20 due to the difference in flow velocity between the central portion and both side portions. Further, as shown in FIG. 19, also in the suction water tank in the pump gate in which the pumps P1 and P2 are attached to the gate 30, a water flow having a rotational component is generated between the side wall 25 of the suction water tank and the pumps P1 and P2. Cheap. Therefore, it can be said that both sides of the gate 30 are positions where air suction vortices and bubble entrainment are likely to occur.

特開2001−317496号公報Japanese Patent Laid-Open No. 2001-317496

本発明は、このような従来の問題点に鑑みてなされたもので、排水機場のセミクローズ水槽を含む吸込水槽やポンプゲートにおける吸込水槽の流速を高速化させた場合であっても、ポンプに有害な渦や気泡の巻き込みを防止できる、又は渦や気泡をポンプに導かない吸込水槽を提供することを目的とする。   The present invention has been made in view of such a conventional problem, and even when the flow rate of the suction water tank including the semi-closed water tank of the drainage station and the suction water tank at the pump gate is increased, the pump is used. It is an object of the present invention to provide a suction water tank that can prevent harmful vortices and bubbles from being involved, or that does not guide vortices and bubbles to a pump.

上述した目的を達成するために、本発明の一態様は、ポンプに水を導くための、開水路として構成される吸込水槽であって、ポンプの上流側に配置され、前記吸込水槽の一方の側面から他方の側面まで延びる渦防止構造体と、前記渦防止構造体の両端部に配置される流路形成部材とを有し、前記渦防止構造体は、水の流れに対向する前面を有すると共に、該渦防止構造体の下端が最低運転水位より下に位置し、前記流路形成部材は、前記吸込水槽の側面から前記渦防止構造体の前面に向かって傾斜する傾斜面を有することを特徴とする。 In order to achieve the above-described object, one aspect of the present invention is a suction water tank configured as an open channel for guiding water to a pump, which is disposed on the upstream side of the pump, and one of the suction water tanks has a vortex prevention structure extending to the other side from the side, and both ends disposed are flow path forming member of the vortex prevention structure, the vortex prevention structure has a front face facing the flow of water In addition, the lower end of the vortex prevention structure is positioned below the lowest operating water level, and the flow path forming member has an inclined surface that is inclined from the side surface of the suction water tank toward the front surface of the vortex prevention structure. Features.

本発明の好ましい態様は、前記渦防止構造体は、流れに平行な垂直断面が略四角形であることを特徴とする。
本発明の好ましい態様は、前記流路形成部材と前記渦防止構造体との接続長さは、前記開水路の幅Dが1000mm未満の場合に0.2D以上であり、前記開水路の幅Dが1000mm以上の場合に600mm以下とすることを特徴とする。
本発明の好ましい態様は、前記傾斜面は、その下部が最低運転水位以下に位置することを特徴とする。
本発明の一参考例は、前記傾斜面は滑らかな曲面となっていることを特徴とする。
本発明の好ましい態様は、前記傾斜面の前記吸込み水槽の側面からの角度が30〜45°であることを特徴とする。
本発明の好ましい態様は、前記傾斜面の上部は、前記吸込水槽の最高水位以上に位置することを特徴とする。
In a preferred aspect of the present invention, the vortex prevention structure has a substantially quadrangular vertical cross section parallel to the flow.
In a preferred aspect of the present invention, the connection length between the flow path forming member and the vortex prevention structure is 0.2D or more when the width D of the open channel is less than 1000 mm, and the width D of the open channel. When it is 1000 mm or more, it is 600 mm or less.
In a preferred aspect of the present invention, the inclined surface has a lower portion positioned below a minimum operating water level.
One reference example of the present invention is characterized in that the inclined surface is a smooth curved surface.
In a preferred aspect of the present invention, an angle of the inclined surface from a side surface of the suction water tank is 30 to 45 °.
In a preferred aspect of the present invention, the upper portion of the inclined surface is located above the maximum water level of the suction water tank.

本発明の他の参考例は、ポンプに水を導くための吸込水槽であって、ポンプの上流側に配置される渦防止構造体を有し、前記渦防止構造体は、水の流れに対向する面が下流に向かって上方に傾斜することを特徴とする。 Another reference example of the present invention is a suction water tank for guiding water to a pump, and has a vortex prevention structure disposed on the upstream side of the pump, and the vortex prevention structure faces the flow of water. The surface to be inclined is inclined upward toward the downstream.

本発明の他の参考例は、吸込水槽内に配置されたゲートと、前記ゲートに設置され、前記ゲートの上流側領域から下流側領域に水を移送するポンプと、前記ゲートの上流側に設置された少なくとも1つの渦防止部材とを備えたことを特徴とするポンプゲートである。
本発明の他の参考例は、前記渦防止部材は、水の流れに対向する前面を有する流路形成部材と、該流路形成部材を支持する支持部材とを備え、複数の前記渦防止部材を前記ゲートの両端に取り付けたことを特徴とする。
Other reference examples of the present invention include a gate disposed in a suction water tank, a pump installed in the gate, for transferring water from an upstream region of the gate to a downstream region, and installed on an upstream side of the gate. A pump gate comprising at least one vortex preventing member.
In another reference example of the present invention, the vortex prevention member includes a flow path forming member having a front surface facing the flow of water, and a support member that supports the flow path formation member, and a plurality of the vortex prevention members Are attached to both ends of the gate.

本発明によれば、旋回流が発生しにくい液面状態を形成することができるので、くぼみ渦や空気吸込渦の発生を防止することができる。また、くぼみ渦の発生を防止することにより、波立ちにより発生した気泡が連行されてポンプ内部に入ることを防止できる。   According to the present invention, since it is possible to form a liquid surface state in which a swirl flow is difficult to occur, it is possible to prevent the generation of a hollow vortex and an air suction vortex. Further, by preventing the generation of the hollow vortex, it is possible to prevent the bubbles generated by the waves from being entrained and entering the pump.

本発明の第1の実施形態における吸込水槽を示す断面図である。It is sectional drawing which shows the suction water tank in the 1st Embodiment of this invention. 図1に示す吸込水槽を上から見たときの平面図である。It is a top view when the suction water tank shown in FIG. 1 is seen from the top. 渦防止構造体の他の構成例を示す図である。It is a figure which shows the other structural example of a vortex prevention structure. 本発明の第2の実施形態における吸込水槽を示す断面図である。It is sectional drawing which shows the suction water tank in the 2nd Embodiment of this invention. 図4に示す吸込水槽を上から見たときの平面図である。It is a top view when the suction water tank shown in FIG. 4 is seen from the top. 本発明の第3の実施形態における吸込水槽を示す断面図である。It is sectional drawing which shows the suction water tank in the 3rd Embodiment of this invention. 図6に示す吸込水槽を上から見たときの平面図である。It is a top view when the suction water tank shown in FIG. 6 is seen from the top. 本発明の第3の実施形態の他の構成例を示す図である。It is a figure which shows the other structural example of the 3rd Embodiment of this invention. 本発明の第4の実施形態に係る吸込水槽を示す断面図である。It is sectional drawing which shows the suction water tank which concerns on the 4th Embodiment of this invention. 図9に示す吸込水槽を示す平面図である。It is a top view which shows the suction water tank shown in FIG. 図9に示す吸込水槽を下から見た図である。It is the figure which looked at the suction water tank shown in FIG. 9 from the bottom. 本発明の第5の実施形態におけるポンプゲートの吸込水槽を示す断面図である。It is sectional drawing which shows the suction water tank of the pump gate in the 5th Embodiment of this invention. 図12に示す吸込水槽を上から見たときの平面図である。It is a top view when the suction water tank shown in FIG. 12 is seen from the top. 図12に示す支持部材の他の構成例を示す図である。It is a figure which shows the other structural example of the supporting member shown in FIG. 図15(a)〜15(d)は渦防止部材の他の例を上から見たときの図である。15A to 15D are views when another example of the vortex preventing member is viewed from above. 従来の吸込水槽を示す図である。It is a figure which shows the conventional suction water tank. 従来の吸込水槽を示す図である。It is a figure which shows the conventional suction water tank. 従来の吸込水槽を示す図である。It is a figure which shows the conventional suction water tank. 従来の吸込水槽を示す図である。It is a figure which shows the conventional suction water tank.

以下、本発明の実施形態について図面を参照して説明する。
図1は、本発明の第1の実施形態における吸込水槽を示す断面図であり、図2は図1に示す吸込水槽を上から見たときの平面図である。なお、本実施形態の吸込水槽は、開水路と閉水路から構成されるいわゆるセミクローズ水槽である。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a cross-sectional view showing a suction water tank according to the first embodiment of the present invention, and FIG. 2 is a plan view when the suction water tank shown in FIG. 1 is viewed from above. In addition, the suction water tank of this embodiment is what is called a semi-closed water tank comprised from an open water channel and a closed water channel.

図1および図2に示すように、吸込水槽の端部には立軸ポンプPが配置されている。この立軸ポンプPは、ケーシング1と、該ケーシング1に収容された羽根車2と、羽根車2に連結される回転軸3とを有している。この回転軸3は図示しない駆動源に連結されている。このような構成において、羽根車2を回転させると、ケーシング1の下端の開口部から水が吸い込まれ、ケーシング1および図示しない吐出配管を通じて吸込水槽の外部に排出される。水(例えば、河川からの水)は、ポンプPの運転に伴って吸込水槽内をポンプPに向かって矢印の方向に流れる。なお、符号11は開水路から閉水路に移行する呑み口を示している。   As shown in FIGS. 1 and 2, a vertical shaft pump P is disposed at the end of the suction water tank. The vertical shaft pump P includes a casing 1, an impeller 2 accommodated in the casing 1, and a rotating shaft 3 connected to the impeller 2. The rotary shaft 3 is connected to a drive source (not shown). In such a configuration, when the impeller 2 is rotated, water is sucked from the opening at the lower end of the casing 1 and discharged to the outside of the suction water tank through the casing 1 and a discharge pipe (not shown). Water (for example, water from a river) flows in the direction of the arrow toward the pump P in the suction water tank as the pump P is operated. In addition, the code | symbol 11 has shown the stagnation mouth which transfers from an open channel to a closed channel.

ポンプPの上流側の水路には渦防止構造体15が配置されている。この渦防止構造体15は、下流に向かって上方に傾斜する上面15aと、この上面15aの下端において接続され、略水平または上流に向かって上方に傾斜する下面15bと、上面15aの上端と下面15bとを接続する面15cとから基本的に構成されている。図1に示す例では、上面15aと下面15bとは鋭角に接続されているが、図3に示すように、流れの剥離を防止するために、上面15aと下面15bとの接続部を曲面で構成してもよい。   A vortex prevention structure 15 is disposed in the water channel upstream of the pump P. The vortex prevention structure 15 includes an upper surface 15a that is inclined upward toward the downstream side, a lower surface 15b that is connected at a lower end of the upper surface 15a and is inclined upward toward the substantially horizontal or upstream side, and an upper end and a lower surface of the upper surface 15a. It is basically composed of a surface 15c that connects 15b. In the example shown in FIG. 1, the upper surface 15a and the lower surface 15b are connected to each other at an acute angle. However, as shown in FIG. 3, the connection portion between the upper surface 15a and the lower surface 15b is a curved surface in order to prevent flow separation. It may be configured.

図1においては渦防止構造体15が三角形の断面形状の例を示している。この渦防止構造体15の特徴は上面15aと下面15bを水路内に形成することであり、設置するポンプの形式に合わせた断面形状としてよい。ポンプPは横軸ポンプや水中ポンプでもよく、下面15bにて形成される水路に連通するチューブラポンプでもよい。また本渦防止構造体15は、水路の構築と合わせてコンクリートにて形成してもよく、既に完成している吸込水槽においては鋼で形成してもよい。   FIG. 1 shows an example in which the vortex prevention structure 15 has a triangular cross-sectional shape. The feature of the vortex prevention structure 15 is that the upper surface 15a and the lower surface 15b are formed in the water channel, and the cross-sectional shape may be in accordance with the type of pump to be installed. The pump P may be a horizontal shaft pump or a submersible pump, or a tubular pump communicating with a water channel formed by the lower surface 15b. The vortex prevention structure 15 may be formed of concrete in conjunction with the construction of a water channel, or may be formed of steel in a suction tank that has already been completed.

図17に示す従来の吸込水槽においては、液面の流れは水流に対向する傾斜面12にぶつかって気泡や空気吸込渦(くぼみ渦、断続渦)が発生し(以下、この箇所を巻き込み部Sという)、発生した気泡や空気吸込渦(くぼみ渦、断続渦)は下向きの水流に連行されてポンプに導かれていた。本実施形態によれば、液面の流れと底面の流れを渦防止構造体15によって分離させ、さらに渦防止構造体15の上面15aにより、表層面の流速を遅くさせる。これにより、巻き込み部Sで空気吸込渦の発生を抑制することができると共に、下降流の方向を変えることにより気泡や渦がポンプPに連行されることが防止される。特に、気泡は、仮に発生してもその浮上速度が概ね0.3m/sであるため、下降流に比べ速く、連行されずに水面に浮上し、ポンプPに至ることはない。   In the conventional suction water tank shown in FIG. 17, the flow of the liquid surface collides with the inclined surface 12 facing the water flow, and bubbles and air suction vortices (recessed vortices, intermittent vortices) are generated (hereinafter, this portion is entrained part S). The generated bubbles and air suction vortices (recessed vortices, intermittent vortices) were entrained by the downward water flow and led to the pump. According to the present embodiment, the flow on the liquid surface and the flow on the bottom surface are separated by the vortex prevention structure 15, and the flow velocity on the surface layer is slowed by the upper surface 15 a of the vortex prevention structure 15. Thereby, generation | occurrence | production of an air suction vortex can be suppressed in the entrainment part S, and it is prevented that a bubble and a vortex are taken to the pump P by changing the direction of a downward flow. In particular, even if bubbles are generated, the ascending speed is approximately 0.3 m / s, so that the air bubbles are faster than the descending flow and are not entrained and float on the water surface and do not reach the pump P.

図4は、本発明の第2の実施形態における吸込水槽を示す断面図であり、図5は図4に示す吸込水槽を上から見たときの平面図である。なお、特に説明しない本実施形態の構成は上述した第1の実施形態の構成と同様であるので、その重複する説明を省略する。   FIG. 4 is a cross-sectional view showing a suction water tank according to the second embodiment of the present invention, and FIG. 5 is a plan view when the suction water tank shown in FIG. 4 is viewed from above. Note that the configuration of the present embodiment that is not particularly described is the same as the configuration of the first embodiment described above, and thus redundant description thereof is omitted.

図4および図5に示すように、渦防止構造体15は、上面15aから上流に向かって略水平に延びる水平面15dと、この水平面15dと下面15bとを接続する接続面15eとをさらに有している。水平面15dおよび接続面15eはポンプPの最低運転水位よりも下に位置している。ここで、最低運転水位とはポンプPが運転可能な最低水位である。   As shown in FIGS. 4 and 5, the vortex prevention structure 15 further includes a horizontal surface 15d extending substantially horizontally from the upper surface 15a toward the upstream side, and a connection surface 15e connecting the horizontal surface 15d and the lower surface 15b. ing. The horizontal surface 15d and the connection surface 15e are located below the lowest operating water level of the pump P. Here, the minimum operating water level is the lowest water level at which the pump P can be operated.

図6は本発明の第3の実施形態における吸込水槽を示す断面図であり、図7は図6に示す吸込水槽の平面図である。本実施形態の吸込水槽は、開水路のみから構成されるオープン水槽である。   FIG. 6 is a cross-sectional view showing a suction water tank according to the third embodiment of the present invention, and FIG. 7 is a plan view of the suction water tank shown in FIG. The suction water tank of this embodiment is an open water tank comprised only from an open water channel.

図6に示すように、吸込水槽の端部には立軸ポンプPが設置されている。上述の実施形態と同様に、羽根車2を回転させることにより、ケーシング1の下端の開口部から水が吸い込まれ、ケーシング1および図示しない吐出配管を通じて水が排出される。水(例えば、河川からの水)は、ポンプPの運転に伴って吸込水槽内をポンプPに向かって矢印の方向に流れる。また、図6においては立軸ポンプの例を示しているが、横軸ポンプや水中ポンプを用いてよい。   As shown in FIG. 6, a vertical shaft pump P is installed at the end of the suction water tank. Similarly to the above-described embodiment, by rotating the impeller 2, water is sucked from the opening at the lower end of the casing 1, and water is discharged through the casing 1 and a discharge pipe (not shown). Water (for example, water from a river) flows in the direction of the arrow toward the pump P in the suction water tank as the pump P is operated. 6 shows an example of a vertical shaft pump, a horizontal shaft pump or a submersible pump may be used.

図7に示すように、ポンプPの上流側には、吸込水槽の一方の側面25から他方の側面25まで延びる渦防止壁(渦防止構造体)20が配置されている。また、この渦防止壁20の両端部には流路形成部材21が配置されている。渦防止壁20は、吸込水槽を流れる水に対向する面(前面)20aを有し、流路形成部材21は吸込水槽の側面25から渦防止壁20の面20aに向かって傾斜する傾斜面21aを有している。渦防止壁20の下端は、最低運転水位Lよりも下に位置している。 As shown in FIG. 7, on the upstream side of the pump P, a vortex prevention wall (vortex prevention structure) 20 extending from one side surface 25 of the suction water tank to the other side surface 25 is disposed. In addition, flow path forming members 21 are disposed at both ends of the vortex prevention wall 20. The vortex prevention wall 20 has a surface (front surface) 20a facing the water flowing through the suction water tank, and the flow path forming member 21 is an inclined surface 21a inclined from the side surface 25 of the suction water tank toward the surface 20a of the vortex prevention wall 20. have. The lower end of the vortex prevention wall 20 is located below the minimum operating water level L L.

図8は本実施形態の他の構成例を示す図である。この例においては、流路形成部材として鋼製のライナ22が用いられている。このライナ22は、渦防止壁20および吸込水槽の側面(側壁)25にアンカー23により固定されている。ライナ22は湾曲しており、これにより渦防止壁20の垂直面20aと吸込水槽の側面25とを連結する傾斜面22aは滑らかな曲面となっている。このような構成によれば、側面25付近を流れる水を、滑らかに吸込水槽の中央部に導くことができる。さらに、この例によれば、ライナ22を既設の渦防止壁20に容易に取り付けることができるので、既存のポンプ機場の構造を変えることなく、ポンプの吐出し量を増やすことが可能となる。なお、ライナ22として、鋼製の平坦な板材を用いてもよい。   FIG. 8 is a diagram illustrating another configuration example of the present embodiment. In this example, a steel liner 22 is used as the flow path forming member. The liner 22 is fixed to the vortex prevention wall 20 and the side surface (side wall) 25 of the suction water tank by an anchor 23. The liner 22 is curved, whereby the inclined surface 22a connecting the vertical surface 20a of the vortex prevention wall 20 and the side surface 25 of the suction water tank is a smooth curved surface. According to such a configuration, water flowing in the vicinity of the side surface 25 can be smoothly guided to the central portion of the suction water tank. Furthermore, according to this example, the liner 22 can be easily attached to the existing vortex prevention wall 20, so that the discharge amount of the pump can be increased without changing the structure of the existing pump station. Note that a flat plate material made of steel may be used as the liner 22.

なお、本実施形態の吸込水槽はいわゆるオープン水槽であるが、呑み口に傾斜面を有するセミクローズ水槽にも適用可能である。また、第1乃至第3の実施形態においては立軸ポンプが使用された例を示しているが、本発明はこれに限らず、例えば、横軸型、水中型などの他のタイプのポンプが用いられた吸込水槽にも適用することができる。   In addition, although the suction water tank of this embodiment is what is called an open water tank, it is applicable also to the semi-closed water tank which has an inclined surface in a stagnation mouth. In the first to third embodiments, an example in which a vertical shaft pump is used is shown. However, the present invention is not limited to this, and other types of pumps such as a horizontal shaft type and a submersible type are used. It can also be applied to a suction tank.

従来のオープン水槽及びセミクローズ水槽においては、両側壁の摩擦抵抗が影響し、水槽の中央部よりも側壁での流速が遅くなる。このため、図17、図18に示すように、両側壁部では旋回流が発生しやすく、流速を速くするとこの側壁でポンプに有害な渦が発生しやすくなる。この旋回流の発生防止策として、上記特許文献1では水槽の両端部に板や棒材を設置する技術が提案されている。しかしながら、排水を行うポンプ機場においては、塵芥等が流入して板や棒材にからまる、又は巻き付く等の問題があった。   In the conventional open water tank and semi-closed water tank, the frictional resistance of both side walls influences, and the flow velocity at the side wall becomes slower than the central part of the water tank. For this reason, as shown in FIGS. 17 and 18, swirl flows are likely to occur on both side walls, and if the flow velocity is increased, harmful vortices are likely to be generated on the side walls. As a measure for preventing the generation of this swirling flow, Patent Document 1 proposes a technique of installing plates and rods at both ends of the water tank. However, in the pump station where drainage is performed, there is a problem that dust or the like flows and gets tangled or wound around a plate or a bar.

以下に示す第4の実施形態によれば、塵芥のからみも無く、かつ渦の発生を防止することが可能である。図9は本発明の第4の実施形態に係る吸込水槽を示す断面図であり、図10は図9に示す吸込水槽を示す平面図であり、図11は図9に示す吸込水槽を下から見た図である。なお、特に説明しない本実施形態の構成は上述した第3の実施形態と同様であるので、その重複する説明を省略する。   According to the fourth embodiment described below, there is no entanglement of dust and the generation of vortices can be prevented. FIG. 9 is a cross-sectional view showing a suction water tank according to the fourth embodiment of the present invention, FIG. 10 is a plan view showing the suction water tank shown in FIG. 9, and FIG. 11 shows the suction water tank shown in FIG. FIG. Note that the configuration of the present embodiment that is not particularly described is the same as that of the third embodiment described above, and thus redundant description thereof is omitted.

図9乃至図11に示すように、本実施形態の渦防止壁(渦防止構造体)27は、水の流れに対向する前面27aを有し、この前面27aの両端部には流路形成部材28が配置されている。前面27aは下流に向かって下方に傾斜しており、したがって流路形成部材28も下流に向かって下方に傾斜している。各流路形成部材28は三角形の横断面形状を有しており、傾斜面28aを有している。この傾斜面28aは、吸込水槽の側面25から渦防止壁27の前面27aにかけて傾斜している。   As shown in FIGS. 9 to 11, the vortex prevention wall (vortex prevention structure) 27 of the present embodiment has a front surface 27a facing the flow of water, and a flow path forming member at both ends of the front surface 27a. 28 is arranged. The front surface 27a is inclined downward toward the downstream, and therefore the flow path forming member 28 is also inclined downward toward the downstream. Each flow path forming member 28 has a triangular cross-sectional shape and has an inclined surface 28a. The inclined surface 28 a is inclined from the side surface 25 of the suction water tank to the front surface 27 a of the vortex prevention wall 27.

流路形成部材21の傾斜面21aは流路形成面として機能し、吸込水槽の側面25付近を流れる水は傾斜面21aによりその向きを変えて、吸込水槽の中央部に導かれる。このような水の流れにより、図17に示すような旋回流の発生を防止することができる。したがって、吸込水槽を流れる水の速度が速くなった場合でも、両側面25付近での空気吸込渦の発生を防止することができる。なお、流路形成部材21は、水路の構築に合わせコンクリートにて形成してもよく、既に完成している水槽等においては鋼で形成してもよい。吸込水槽の幅Dが1000mm未満の場合、傾斜面21aの内側端部と側面25との距離Lは0.2D以上であることが好ましく、幅Dが1000mm以上の場合、距離Lは600mm以下であることが好ましい。また、傾斜面21aの上部が最高水位L以上、下部が最低運転水位L以下に位置することが好ましい。さらに、傾斜面21aの側面25からの角度θは30〜45°が好ましい。 The inclined surface 21a of the flow path forming member 21 functions as a flow path forming surface, and the water flowing in the vicinity of the side surface 25 of the suction water tank is guided to the central part of the suction water tank by changing its direction by the inclined surface 21a. Such a flow of water can prevent a swirling flow as shown in FIG. Therefore, even when the speed of the water flowing through the suction water tank is increased, the generation of the air suction vortex in the vicinity of both side surfaces 25 can be prevented. The flow path forming member 21 may be formed of concrete according to the construction of the water channel, or may be formed of steel in an already completed water tank or the like. When the width D of the suction water tank is less than 1000 mm, the distance L between the inner end of the inclined surface 21a and the side surface 25 is preferably 0.2D or more, and when the width D is 1000 mm or more, the distance L is 600 mm or less. Preferably there is. The upper inclined surface 21a is more than the maximum water level L H, it is preferred that lower portion located below the minimum operating level L L. Furthermore, the angle θ from the side surface 25 of the inclined surface 21a is preferably 30 to 45 °.

図12は本発明の第5の実施形態におけるポンプゲートの吸込水槽を示す断面図であり、図13は図12に示す吸込水槽を上から見たときの平面図である。本実施形態の吸込水槽は、開水路のみから構成されるオープン水槽である。   FIG. 12 is a cross-sectional view showing a suction water tank of a pump gate in the fifth embodiment of the present invention, and FIG. 13 is a plan view when the suction water tank shown in FIG. 12 is viewed from above. The suction water tank of this embodiment is an open water tank comprised only from an open water channel.

図12および図13に示すように、吸込水槽内にはゲート(扉門)30が配置され、このゲート30には2つの横軸ポンプP1,P2が並列に設置されている。これらのポンプP1,P2の吸込口はゲート30の上流側に位置している。ゲート30にはこれら2つのポンプP1,P2に対応して吐出流路31が設置されている。それぞれのポンプP1,P2は、吸込口を有するケーシング1と、ケーシング1に収容された羽根車2と、この羽根車2を回転させる駆動機(モータ)32を有している。駆動機32によって羽根車2を回転させると、吸込水槽内の水が吸込口から吸い込まれ、吐出流路31を通じてゲート30の下流側領域に水が移送される。吐出流路31の吐出口には水の逆流を防止するための逆流防止弁33が設けられている。   As shown in FIGS. 12 and 13, a gate (door gate) 30 is disposed in the suction water tank, and two horizontal shaft pumps P <b> 1 and P <b> 2 are installed in parallel in the gate 30. The suction ports of these pumps P1 and P2 are located on the upstream side of the gate 30. The gate 30 is provided with a discharge flow path 31 corresponding to the two pumps P1 and P2. Each pump P <b> 1, P <b> 2 has a casing 1 having a suction port, an impeller 2 accommodated in the casing 1, and a drive device (motor) 32 that rotates the impeller 2. When the impeller 2 is rotated by the driving device 32, the water in the suction water tank is sucked from the suction port, and the water is transferred to the downstream region of the gate 30 through the discharge channel 31. A reverse flow prevention valve 33 for preventing the reverse flow of water is provided at the discharge port of the discharge flow path 31.

ポンプP1,P2のやや上方であって、かつポンプP1,P2の両側には渦防止部材35が配置されている。本実施形態では、2つのポンプP1,P2が配置されているので、全部で3つの渦防止部材35が配置されている。より詳しくは、図13に示すように、これら3つの渦防止部材35は、吸込水槽の側面25とポンプP1との間、ポンプP1とポンプP2との間、そしてポンプP2と吸込水槽の側面25との間にそれぞれ配置されている。なお、ポンプの数は2つに限られず、1つ、または3つ以上であってもよい。この場合、ポンプの数に応じて渦防止部材35の数も変わることは言うまでもない。   Swirl prevention members 35 are disposed slightly above the pumps P1 and P2 and on both sides of the pumps P1 and P2. In the present embodiment, since the two pumps P1 and P2 are arranged, a total of three vortex preventing members 35 are arranged. More specifically, as shown in FIG. 13, these three vortex prevention members 35 are provided between the suction water tank side face 25 and the pump P1, between the pump P1 and the pump P2, and between the pump P2 and the suction water tank side face 25. Between each other. The number of pumps is not limited to two, and may be one or three or more. In this case, it goes without saying that the number of vortex preventing members 35 also changes according to the number of pumps.

各渦防止部材35は、吸込水槽を流れる水の流れに対向する前面を有する前垂れ板(流路形成部材)36と、この前垂れ板36を支持する支持部材37とを備えている。支持部材37はゲート30またはポンプPに固定され、図12に示すように渦防止部材35の前垂れ板36の下端は、ポンプP1,P2が運転可能な最低水位よりも下に位置している。なお、支持部材として、図14に示すように水平板38を用いてもよい。   Each vortex prevention member 35 includes a front hanging plate (flow path forming member) 36 having a front surface facing the flow of water flowing through the suction water tank, and a support member 37 that supports the front hanging plate 36. The support member 37 is fixed to the gate 30 or the pump P, and the lower end of the front hanging plate 36 of the vortex preventing member 35 is located below the lowest water level at which the pumps P1 and P2 can operate as shown in FIG. As a support member, a horizontal plate 38 may be used as shown in FIG.

このような構成によれば、ポンプP1,P2の吸込口と水の衝突面(前垂れ板36の前面)との距離D2が短くなるので、吸込水槽を流れる水は旋回流を形成することなく速やかにポンプP1,P2の吸込口に吸い込まれる。したがって、吸込水槽の端部での空気吸込渦の発生を防止することができる。   According to such a configuration, since the distance D2 between the suction ports of the pumps P1 and P2 and the water collision surface (front surface of the front hanging plate 36) is shortened, the water flowing through the suction water tank can be quickly formed without forming a swirling flow. Are sucked into the suction ports of the pumps P1 and P2. Therefore, generation | occurrence | production of the air suction vortex in the edge part of a suction water tank can be prevented.

図15(a)乃至図15(d)は本実施形態の渦防止部材の他の例を上から見たときの図である。図15(a)乃至図15(d)に示すように、ポンプP1,P2の設置位置や吸込水槽の形状(例えば湾曲形状)に合わせて渦防止部材35の前垂れ板36を傾斜させてもよく、また前垂れ板36の側部に湾曲部39を設けてもよい。また、前垂れ板の角度を調整可能な構造(例えばボルトによる取付構造やヒンジ構造)とすることにより種々の水路形状に対応することが可能となる。   FIG. 15A to FIG. 15D are views when another example of the vortex preventing member of this embodiment is viewed from above. As shown in FIGS. 15 (a) to 15 (d), the front drooping plate 36 of the vortex prevention member 35 may be inclined according to the installation position of the pumps P1 and P2 and the shape of the suction water tank (for example, a curved shape). Further, a curved portion 39 may be provided on the side portion of the front hanging plate 36. Moreover, it becomes possible to respond | correspond to various water channel shapes by setting it as the structure (for example, attachment structure by a volt | bolt, or hinge structure) which can adjust the angle of a front drooping plate.

これまで本発明の実施形態について説明したが、本発明は上述の実施形態に限定されず、その技術的思想の範囲内において種々異なる形態にて実施されてよいことは言うまでもない。   Although the embodiments of the present invention have been described so far, it is needless to say that the present invention is not limited to the above-described embodiments and may be implemented in various forms within the scope of the technical idea.

1 ケーシング
2 羽根車
3 回転軸
11 呑み口
15 渦防止構造体
16 凹部
20 渦防止壁
21 流路形成部材
22 ライナ
23 アンカー
25 吸込水槽側面(側壁)
27 渦防止壁(渦防止構造体)
28 流路形成部材
30 ゲート
31 吐出流路
32 駆動機(モータ)
33 逆流防止弁
35 渦防止部材
36 前垂れ板(流路形成部材)
37 支持部材
38 水平板
39 湾曲部
P,P1,P2 ポンプ
S 巻き込み部
DESCRIPTION OF SYMBOLS 1 Casing 2 Impeller 3 Rotating shaft 11 Stagnation mouth 15 Vortex prevention structure 16 Recess 20 Vortex prevention wall 21 Flow path formation member 22 Liner 23 Anchor 25 Side surface of suction water tank (side wall)
27 Vortex prevention wall (vortex prevention structure)
28 Flow path forming member 30 Gate 31 Discharge flow path 32 Drive machine (motor)
33 Backflow prevention valve 35 Vortex prevention member 36 Front drooping plate (flow path forming member)
37 support member 38 horizontal plate 39 curved part P, P1, P2 pump S entrainment part

Claims (6)

ポンプに水を導くための、開水路として構成される吸込水槽であって、
ポンプの上流側に配置され、前記吸込水槽の一方の側面から他方の側面まで延びる渦防止構造体と、
前記渦防止構造体の両端部に配置される流路形成部材とを有し、
前記渦防止構造体は、水の流れに対向する前面を有すると共に、該渦防止構造体の下端が最低運転水位より下に位置し、
前記流路形成部材は、前記吸込水槽の側面から前記渦防止構造体の前面に向かって傾斜する傾斜面を有することを特徴とする吸込水槽。
A suction water tank configured as an open channel for guiding water to the pump,
A vortex prevention structure that is disposed upstream of the pump and extends from one side surface of the suction water tank to the other side surface;
A flow path forming member disposed at both ends of the vortex prevention structure,
The vortex prevention structure has a front surface facing the flow of water, and the lower end of the vortex prevention structure is located below a minimum operating water level,
The suction water tank, wherein the flow path forming member has an inclined surface that is inclined from a side surface of the suction water tank toward a front surface of the vortex prevention structure.
前記渦防止構造体は、流れに平行な垂直断面が略四角形であることを特徴とする請求項1に記載の吸込水槽。The suction water tank according to claim 1, wherein the vortex prevention structure has a substantially rectangular vertical cross section parallel to the flow. 前記流路形成部材と前記渦防止構造体との接続長さは、前記開水路の幅Dが1000mm未満の場合に0.2D以上であり、前記開水路の幅Dが1000mm以上の場合に600mm以下とすることを特徴とする請求項1に記載の吸込水槽。The connection length between the flow path forming member and the vortex prevention structure is 0.2 D or more when the width D of the open channel is less than 1000 mm, and 600 mm when the width D of the open channel is 1000 mm or more. The suction water tank according to claim 1, wherein: 前記傾斜面は、その下部が最低運転水位以下に位置することを特徴とする請求項1に記載の吸込水槽。The suction water tank according to claim 1, wherein a lower portion of the inclined surface is positioned below a minimum operating water level. 前記傾斜面の前記吸込み水槽の側面からの角度が30〜45°であることを特徴とする請求項1に記載の吸込水槽。   The suction water tank according to claim 1, wherein an angle of the inclined surface from a side surface of the suction water tank is 30 to 45 °. 前記傾斜面の上部は、前記吸込水槽の最高水位以上に位置することを特徴とする請求項1に記載の吸込水槽。The suction water tank according to claim 1, wherein an upper portion of the inclined surface is located at or above a maximum water level of the suction water tank.
JP2012061833A 2007-08-21 2012-03-19 Suction tank Active JP5318240B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012061833A JP5318240B2 (en) 2007-08-21 2012-03-19 Suction tank

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007214461A JP5102561B2 (en) 2007-08-21 2007-08-21 Suction tank
JP2012061833A JP5318240B2 (en) 2007-08-21 2012-03-19 Suction tank

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007214461A Division JP5102561B2 (en) 2007-08-21 2007-08-21 Suction tank

Publications (2)

Publication Number Publication Date
JP2012112391A JP2012112391A (en) 2012-06-14
JP5318240B2 true JP5318240B2 (en) 2013-10-16

Family

ID=40499524

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2007214461A Active JP5102561B2 (en) 2007-08-21 2007-08-21 Suction tank
JP2012061833A Active JP5318240B2 (en) 2007-08-21 2012-03-19 Suction tank

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2007214461A Active JP5102561B2 (en) 2007-08-21 2007-08-21 Suction tank

Country Status (1)

Country Link
JP (2) JP5102561B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014134142A (en) * 2013-01-10 2014-07-24 Mitsubishi Heavy Ind Ltd Pump water suction tank
JP6268742B2 (en) * 2013-04-12 2018-01-31 三菱重工業株式会社 Pump water tank
JP6715047B2 (en) * 2016-03-22 2020-07-01 株式会社東芝 Hydro mechanical equipment
CN105735207B (en) * 2016-04-18 2017-11-28 辽宁省水利水电勘测设计研究院 Automatic balance type bifurcation pivot
CN106948418B (en) * 2017-05-05 2022-05-27 江苏省水利工程科技咨询股份有限公司 Vortex eliminating device and method for square upright post on rear wall of closed water inlet pool
CN107386210B (en) * 2017-09-07 2020-05-01 扬州市勘测设计研究院有限公司 Elbow-shaped water inlet runner with arc-shaped flow distribution plate
JP2020070752A (en) * 2018-10-31 2020-05-07 株式会社日立インダストリアルプロダクツ Operation control method of submerged pump
KR102236628B1 (en) * 2019-08-12 2021-04-07 주식회사 화신엔지니어링 Double screen type sewage pumping station

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58175175U (en) * 1982-05-19 1983-11-22 株式会社荏原製作所 Vortex generation prevention device
JPS59141176U (en) * 1983-03-11 1984-09-20 株式会社荏原製作所 suction water tank
JP4277328B2 (en) * 1998-07-01 2009-06-10 株式会社日立プラントテクノロジー Device for preventing vortex generation in pump suction tank
JP4116228B2 (en) * 2000-04-28 2008-07-09 株式会社荏原製作所 Pump water intake path
JP3998148B2 (en) * 2004-05-11 2007-10-24 株式会社クボタ Suction cover structure of horizontal shaft pump

Also Published As

Publication number Publication date
JP2009047082A (en) 2009-03-05
JP5102561B2 (en) 2012-12-19
JP2012112391A (en) 2012-06-14

Similar Documents

Publication Publication Date Title
JP5318240B2 (en) Suction tank
JP5628384B2 (en) Vortex prevention device and pump device
JP5717391B2 (en) Defoamer and defoaming method
JP6953317B2 (en) Pump with vortex suppressor
JP5063744B2 (en) Vertical shaft pump
JP4566852B2 (en) Horizontal axis pump, pump gate equipment, drainage station
JP4657845B2 (en) Horizontal shaft pump
JP2015078679A (en) Pump
JP2015158135A (en) pump
JP5432336B2 (en) pump
JP7186119B2 (en) Operation method of suction cover, horizontal shaft pump, pump gate and pump gate
JP2004360503A (en) Suction cover structure of horizontal pump
JP3998148B2 (en) Suction cover structure of horizontal shaft pump
JP2005290972A (en) Pump gate and method for operating the same
JP5596104B2 (en) Pump equipment
JP5188366B2 (en) Advance standby operation pump
JP5322459B2 (en) Advance standby operation pump and operation method thereof
JP4348120B2 (en) Pump equipment
JP4570822B2 (en) Horizontal pump gate for low suction water level
JP4628029B2 (en) Rectifying member of submersible pump for pump gate
JP5478430B2 (en) Advance standby pump
KR102660098B1 (en) Suction cover enabling low water level operation and transverse submersible pump including the same
JP7178194B2 (en) Suction cover, horizontal shaft pump and pump gate
JP4116228B2 (en) Pump water intake path
JP5602816B2 (en) Pump equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120423

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130709

R150 Certificate of patent or registration of utility model

Ref document number: 5318240

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250