JP4277328B2 - Device for preventing vortex generation in pump suction tank - Google Patents

Device for preventing vortex generation in pump suction tank Download PDF

Info

Publication number
JP4277328B2
JP4277328B2 JP18550898A JP18550898A JP4277328B2 JP 4277328 B2 JP4277328 B2 JP 4277328B2 JP 18550898 A JP18550898 A JP 18550898A JP 18550898 A JP18550898 A JP 18550898A JP 4277328 B2 JP4277328 B2 JP 4277328B2
Authority
JP
Japan
Prior art keywords
pump suction
water tank
water channel
pump
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18550898A
Other languages
Japanese (ja)
Other versions
JP2000018199A (en
Inventor
孝英 長原
一郎 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP18550898A priority Critical patent/JP4277328B2/en
Publication of JP2000018199A publication Critical patent/JP2000018199A/en
Application granted granted Critical
Publication of JP4277328B2 publication Critical patent/JP4277328B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、ポンプ吸込水槽の渦発生防止装置に係り、特に、水中渦の発生を防止するのに好適なポンプ吸込水槽の渦発生防止装置に関するものである。
【0002】
【従来の技術】
まず、従来技術を図6ないし図10を参照して説明する。
図6は、従来のポンプ吸込水槽の課題を説明する略示断面図、図7は、従来の天井を有するポンプ吸込水槽の一形状を示す略示断面図、図8は、従来の遮水壁を有するポンプ吸込水槽の一形状を示す図で、(a)は略示平面図、(b)は略示断面図、図9は、従来の分割壁を有するポンプ吸込水槽の課題を説明する図で、(a)は略示平面図、(b)は略示断面図、図10は、従来のポンプ吸込水槽の課題を説明する図で、(a)は略示平面図、(b)は略示断面図である。
【0003】
図6において、1Aは、上流に開水路7を有する天井のないポンプ吸込水槽、2は、ポンプ吸込水槽1A内にベルマウス3(吸込口)を開口して設置されたポンプで、このポンプ2は、例えばポンプ吸込管4がポンプ吸込水槽1A内に直立する立軸ポンプである。
図6に示すポンプ吸込水槽1A内にベルマウス3(吸込口)を開口して設置されたポンプ2を運転すると、ベルマウス3付近に渦を生じる場合がある。この渦の中心に空洞が発生すると、空気吸込渦15,水中渦16などと呼ばれる渦となり、これがポンプ2に振動,騒音などの悪影響を与える。
【0004】
また、これらの渦は、一般にポンプ2のベルマウス3における流速Vb、水路もしくはポンプ吸込水槽1Aにおける流速Vsが大きくなるほど発生しやすく、ポンプ吸込水槽の省スペース化の妨げになっている。
このような渦を防止するために、従来は、例えば日本機械学会発行の「日本機械学会基準JSME004−1984」第25頁、解説表3・1に示されているような各種の渦防止装置が使用されてきた。
【0005】
図7に示すポンプ吸込水槽1は、天井10を有し上流側に開水路7から閉水路6に移る水路を備えた構造のものである。ポンプ吸込管4下部で発生する渦に対して水槽底部から水槽終端壁部にかけて渦発生防止板18が装備され、渦の発生を抑制していた。
また、ポンプ吸込水槽1の上流部に、開水路7から閉水路6に移行する如き屈曲部が在る場合は、例えば実公平1−30640号公報に記載したように、図8に示す閉水路6の入口側最先端部に水路に直交する遮水壁19を設け、ポンプ2のベルマウス3の口径とベルマウス3から遮水壁19までの距離の比を1.1〜2.9とし、屈曲部によって生じる水路の幅方向の偏流に起因して発生する水中渦の発生を防止する等の手段があった。
【0006】
【発明が解決しようとする課題】
上記図7に示した設備では、ポンプ2の上流で水路の幅方向に強い流れの偏りが生じた場合は、ポンプ吸込管4の下部における流れの旋回が非常に強くなるために局所で渦が発生し、渦発生防止板18では期待した渦防止効果が得られない場合があった。
【0007】
また元来、ポンプ吸込水槽および吸込水路の形状は、例えば排水機場、プラントの立地条件に大きく左右され、水路の流れが理想的になるように形状を決定できることは稀である。上記図8に示した従来技術では、ポンプ吸込水槽1に水を導入する水路の閉水路6の部分が長い場合、すなわち開水路7から閉水路6への移行部とベルマウス3(ポンプ吸込口)までの距離がベルマウス3の口径の2.9倍以上であるときは渦発生防止板18の効果が期待できない。また、閉水路6中に屈曲部がある場合は効果がないことは言うまでもない。
【0008】
さらに、図9に示した従来技術のように、ポンプ吸込水槽1に水を導入する水路が分割壁9等により2つ以上に分割され、それぞれの水路の平均流速が上流の条件によつて異なっている場合は、遮水壁19を設けてもそれぞれの水路の平均流速は殆ど変化せず、流速差を保ったままポンプ吸込水槽1に流入するので、結果としてポンプ吸込管4付近において強い旋回流れから空気吸込渦や水中渦16が生じて渦防止効果が期待できない。
【0009】
さらに、遮水壁19の側面から見た断面形状が単に矩形で、ポンプ2と遮水壁19との距離が近い場合は、図10に示すように上流の開水路7からの偏流により遮水壁19の近傍上流側で一部流れが淀み、淀みのある遅い流速と早い流速との間に、流速差による剪断流に基づく旋回流17が生じ、それが空気吸込渦となつてポンプ2に吸い込まれる場合がある。これらの事が、更なるポンプ吸込水槽、水路の省スペース化、高流速化の妨げとなっていた。
【0010】
本発明は、上記従来技術の課題を解決するために為されたもので、本発明の目的は、天井があるポンプ吸込水槽においてポンプ近傍での渦の発生を防止し、安定したポンプの運転を維持し、且つポンプ吸込水槽の更なる小形化、高流速化を可能とし、設備全体の建設費を低減するポンプ吸込水槽の渦発生防止装置を提供することにある。
【0011】
【課題を解決するための手段】
上記目的を達成するために、本発明に係るポンプ吸込水槽の渦発生防止装置の第1の手段は、天井を有するポンプ吸込水槽と、このポンプ吸込水槽内に吸込口が開口して設置されたポンプと、前記ポンプ吸込水槽の上流にて開水路から天井を有する閉水路に移行したのち前記ポンプ吸込水槽に水を導入する水路と、前記開水路の上流から前記開水路から閉水路への移行部に及び前記ポンプ吸込水槽近傍まで存在して前記閉水路の天井を支持し、前記閉水路を二つ以上に分割する分割壁とを設けたポンプ吸込水槽設備において、前記ポンプの上流側で、前記ポンプから前記分割壁の後縁部までの区間のポンプ吸込水槽の天井部から、水路の一部を塞ぐ構造物を当該水路の幅方向に設けたものである。
【0012】
上記目的を達成するために、本発明に係るポンプ吸込水槽の渦発生防止装置の第2の手段は、上記第1の手段において、水路の一部を塞ぐ構造物は、該構造物の上流側の形状が構造物の下部端点を基点として上流側に傾斜していることを特徴とする。
【0013】
上記目的を達成する第3の手段は、上記第2の手段において、水路の一部を塞ぐ構造物は、該構造物の上流側の傾斜角度が25°〜60°であることを特徴とする。
【0014】
上記目的を達成する第の手段は、上記第または第の手段のいずれかにおいて、水路の一部を塞ぐ構造物は、該構造物の上流側の形状が構造物の下部端点を基点として上流側に傾斜した傾斜面を有するとともに、ポンプ吸込水槽の側壁との接合部がテーパー形状面を形成して、水槽上流から該構造物にかけて水路の上部を絞ったことを特徴とする。
【0015】
上記目的を達成する第の手段は、上記第4の手段において、水路の一部を塞ぐ構造物とポンプ吸込水槽の側壁との接合部のテーパー形状は、そのテーパー形状とポンプ吸込水槽の側壁とのなす角度が水路上部から見て15°〜45°であることを特徴とする。
【0016】
【発明の実施の形態】
以下、本発明の各実施の形態を図1ないし図5を参照して説明する。
〔実施の形態 1〕
図1は、本発明の第1の実施形態を示すポンプ吸込水槽の渦発生防止装置の図で、(a)は略示平面図、(b)は略示断面図である。図中、図8と同一符号のものは従来技術と同等部分を示す。
【0017】
図1において、1は、天井10を有するポンプ吸込水槽、2は、ポンプ吸込水槽1内にベルマウス3(吸込口)を開口して設置されたポンプで、このポンプ2は、例えばポンプ吸込管4がポンプ吸込水槽1内に直立する立軸ポンプである。5は、ポンプ吸込管4内に設けた羽根車を示す。6は、天井10を有する閉水路、7は、上部が開放された開水路である。
【0018】
8は、天井側突出構造物で、この天井側突出構造物8は、ポンプ2の上流側の該ポンプ近傍のポンプ吸込水槽1もしくは閉水路6の天井10部から水路の上部を塞ぐ構造物として、当該水路の幅方向に設けたものである。図1に示す天井側突出構造物8は、天井10からの突出断面が矩形状のものである。
【0019】
このように天井側突出構造物8を設けることで、ポンプ吸込水槽1上流の水路形状やその他の要因によって水路内に偏流が生じた場合でも、天井側突出構造物8の部分で水路が急縮され、縮流効果によってポンプ2の直前で偏流が整流される。その結果、ポンプ吸込管4の下部における旋回流れが抑制され、水路の平均流速が従来以上に増加しても渦の発生を防止することができる。
また、ポンプ吸込水槽1上流の閉水路6の距離が長い場合、閉水路6内に屈曲部等の偏流をもたらす要因がある場合でも、ポンプ2の上流側の近傍に天井側突出構造物8を設けることによつて渦防止効果を発揮することができる。
【0020】
〔実施の形態 2〕
図2は、本発明の第2の実施形態を示すポンプ吸込水槽の渦発生防止装置の図で、(a)は略示平面図、(b)は略示断面図である。図中、図9と同一符号のものは従来技術と同等部分を示す。
図2に示す設備では、ポンプ2の上流で分割壁9が設けられている。この分割壁9は、開水路7から閉水路6への移行部からポンプ吸込水槽1近傍まで存在して、前記閉水路6を二つ以上に分割するものである。
【0021】
このようなポンプ吸込水槽1において、本実施形態では、ポンプ吸込水槽1あるいは閉水路6の、ポンプ吸込管4から分割壁9の終端部までの区間に、天井10から水路を一部塞ぐ天井側突出構造物8を水路の幅方向に設けた。分割壁9は、閉水路6の天井10を支える目的で設けられる場合が多く、分割された2水路の上流側ではそれぞれ水門が設けられ、水路の流量を制御するとか、あるいは点検等の目的でポンプ運転中に片方の水門を閉める等の場合があり得る。
【0022】
その場合は、分割されている2水路の流量に差が生じ、2水路の平均流速がV1,V2と異なり、その結果、ポンプ2直前の2水路の合流部では、水路幅方向に大きな偏流が生じて、ポンプ吸込管4の下部で強い旋回流の存在を促し、渦が発生しやすくなる。しかし、このような場合でも、図2のように天井側突出構造物8を設けることで、2水路の流量差に起因して生じる偏流が、水路急縮による縮流効果によってポンプ2の直前で整流される。その結果、ポンプ吸込管4の下部における旋回流れの強さが抑制され、2水路の平均流速V1,V2が従来以上に増加しても渦の発生を防止することができる。
【0023】
〔実施の形態 3〕
図3は、本発明の第3の実施形態を示すポンプ吸込水槽の渦発生防止装置の図で、(a)は略示平面図、(b)は略示断面図である。図中、図2と同一符号のものは先の実施形態と同等部分を示す。
図3に示す設備が図2に示す実施形態と相違するところは、図2の天井側突出構造物8が天井10からの突出断面が矩形状であったのに対し、図3に示す天井側突出構造物21は、構造物の下部端点を基点として上流側に傾斜した傾斜面21aを有することである。
【0024】
このようにすることで、水路上流から天井側突出構造物21の下部端点までの水路断面変化が連続的となり、天井側突出構造物21の上流近傍での流れの淀みが減少し、特に上流で偏流が生じている場合でも、図10に示した旋回流17のような渦を防止する事が可能となる。また、水路断面変化が連続的であるため、水路の抵抗が小さくなり、ポンプ2の運転に要する負荷を小さくすることができる。ここで、前記傾斜面21aの傾斜角度θ1は25°〜60°とすることでその効果を最大限に発揮できる。θ1が25°未満では傾斜が急で傾斜面21aを形成した効果が乏しい。また、θ1が25°を超える緩い傾斜では偏流に対し流れを均一化する効果がなくなるものである。
【0025】
図4は、本発明の各実施形態における効果を説明する渦発生の限界水路流速の線図である。
図4の線図は、上記の渦発生防止効果を裏付けるために、上流に水路幅方向に偏流が生じている場合の天井側突出構造物の渦発生防止効果について実験を行った結果を示す。天井側突出構造物およびポンプの位置関係は全て同一である。また、ポンプ吸込管4の下部には渦発生防止板18が設けられている。
【0026】
図4の線図において、横軸は水路の幅方向の2水路の偏流の割合V1:V2、縦軸は渦が発生する限界となる限界水路流速Vsをとり、実線は天井側突出構造物のない場合、大きい破線は天井側突出構造物(断面矩形)のある場合、一点鎖線は天井側突出構造物(傾斜有り)のある場合のそれぞれの限界水路流速Vsである。
図4の線図では、それぞれの線より流速が大きい場合には水中渦が発生することを表わす。
【0027】
上流での水路の幅方向の偏流の割合V1:V2が大きくなるほど、限界水路流速Vsは小さくなる傾向にあり、水中渦が発生しやすくなる傾向にある。図4に明らかなように、それぞれ天井側突出構造物のない場合、矩形状の天井側突出構造物を設けた場合、天井側突出構造物の上流側に傾斜面を設けた場合の順に、水中渦発生限界水路流速Vsが向上しており、天井側突出構造物の存在によって渦が発生し難くなっていることが判る。また、天井側突出構造物の傾斜角度θ1は25°〜60°の範囲で殆ど有意差がなかった。
【0028】
以上の実験結果から従来以上にポンプ吸込水槽、水路の高流速化、省スペース化が可能となり、ポンプシステム全体として建設費を縮小することができる。
【0029】
〔実施の形態 4〕
図5は、本発明の第4の実施形態を示すポンプ吸込水槽の渦発生防止装置の図で、(a)は略示平面図、(b)は略示断面図である。図中、図3と同一符号のものは先の実施形態と同等部分を示す。
図5に示す実施形態では、天井側突出構造物22は、構造物の下部端点を基点として上流側に傾斜した傾斜面22aを有するとともに、ポンプ吸込水槽1の側壁との接合部がテーパー形状面23を形成して、水路上流から天井側突出構造物22にかけて水路の上部の流路を絞っている。
【0030】
偏流の有無に関わらず、天井側突出構造物22の上流近傍で発生する渦は殆どポンプ吸込水槽1の側壁付近で生じることが判っている。これは、天井側突出構造物22と側壁とのコーナーにおいて流れの淀みが発生しやすく、流速差による剪断流れによって渦が発生するためである。そこで、天井側突出構造物22の側壁とのコーナー部をテーパー形状面23とすることで、天井側突出構造物22の上流側近傍の水路側壁付近に生じる流れの淀みの発生を抑制し、水中渦の発生を防止することができる。
【0031】
この天井側突出構造物22と側壁とのコーナー部のテーパー形状は、天井側突出構造物の断面形状が矩形の場合でも傾斜角度が設けてある場合でも渦抑制効果が向上することは同じである。さらに、天井側突出構造物22の側壁との接合部のテーパー形状面23のテーパー角度θ2は、水路上部から見て15°〜45°のとき、最適な渦発生防止効果が得られる。θ2が15°未満では傾斜が緩くテーパー形状面23を形成した効果が乏しい。また、θ2が45°を超える急な傾斜では、天井側突出構造物22と側壁とのコーナーにおいて流れの淀みが発生しやすく、渦発生を抑制する効果がなくなるものである。
【0032】
【発明の効果】
以上詳細に説明したように、本発明によれば、天井があるポンプ吸込水槽においてポンプ近傍での渦の発生を防止し、安定したポンプの運転を維持し、且つポンプ吸込水槽の更なる小形化、高流速化を可能とし、設備全体の建設費を低減するポンプ吸込水槽の渦発生防止装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態を示すポンプ吸込水槽の渦発生防止装置の図で、(a)は略示平面図、(b)は略示断面図である。
【図2】本発明の第2の実施形態を示すポンプ吸込水槽の渦発生防止装置の図で、(a)は略示平面図、(b)は略示断面図である。
【図3】本発明の第3の実施形態を示すポンプ吸込水槽の渦発生防止装置の図で、(a)は略示平面図、(b)は略示断面図である。
【図4】本発明の各実施形態における効果を説明する渦発生の限界水路流速の線図である。
【図5】本発明の第4の実施形態を示すポンプ吸込水槽の渦発生防止装置の図で、(a)は略示平面図、(b)は略示断面図である。
【図6】従来のポンプ吸込水槽の課題を説明する略示断面図である。
【図7】従来の天井を有するポンプ吸込水槽の一形状を示す略示断面図である。
【図8】従来の遮水壁を有するポンプ吸込水槽の一形状を示す図で、(a)は略示平面図、(b)は略示断面図である。
【図9】従来の分割壁を有するポンプ吸込水槽の課題を説明する図で、(a)は略示平面図、(b)は略示断面図である。
【図10】従来のポンプ吸込水槽の課題を説明する図で、(a)は略示平面図、(b)は略示断面図である。
【符号の説明】
1…ポンプ吸込水槽、2…ポンプ、3…ベルマウス、4…ポンプ吸込管、6…閉水路、7…開水路、8,21,22…天井側突出構造物、9…分割壁、10…天井、21a,22a…傾斜面、23…テーパー形状面。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vortex generation prevention device for a pump suction water tank, and more particularly to a vortex generation prevention device for a pump suction water tank suitable for preventing the generation of a submerged vortex.
[0002]
[Prior art]
First, the prior art will be described with reference to FIGS.
6 is a schematic cross-sectional view illustrating a problem of a conventional pump suction water tank, FIG. 7 is a schematic cross-sectional view illustrating one shape of a pump suction water tank having a conventional ceiling, and FIG. 8 is a conventional water shielding wall. It is a figure which shows one shape of the pump suction water tank which has this, (a) is a schematic plan view, (b) is a schematic sectional drawing, FIG. 9 is a figure explaining the subject of the pump suction water tank which has the conventional dividing wall. (A) is a schematic plan view, (b) is a schematic cross-sectional view, FIG. 10 is a diagram for explaining the problems of a conventional pump suction tank, (a) is a schematic plan view, and (b) is a schematic plan view. It is a schematic sectional drawing.
[0003]
In FIG. 6, 1A is a pump suction water tank without a ceiling having an open channel 7 upstream, and 2 is a pump installed by opening a bell mouth 3 (suction port) in the pump suction water tank 1A. Is a vertical shaft pump in which the pump suction pipe 4 stands upright in the pump suction water tank 1A.
When the pump 2 installed with the bell mouth 3 (suction port) opened in the pump suction water tank 1A shown in FIG. 6 is operated, a vortex may be generated in the vicinity of the bell mouth 3. When a cavity is generated at the center of this vortex, it becomes a vortex called an air suction vortex 15, a submerged vortex 16, etc., and this has an adverse effect on the pump 2 such as vibration and noise.
[0004]
In addition, these vortices are more likely to occur as the flow velocity Vb in the bell mouth 3 of the pump 2 and the flow velocity Vs in the water channel or the pump suction water tank 1A increase, which hinders space saving of the pump suction water tank.
In order to prevent such vortices, conventionally, for example, various vortex prevention devices such as those shown in “Explanation Table 3.1” on page 25 of “Japan Society of Mechanical Engineers Standard JSME004-1984” published by the Japan Society of Mechanical Engineers have been used. Have been used.
[0005]
The pump suction water tank 1 shown in FIG. 7 has a structure having a ceiling 10 and a water channel that moves from the open water channel 7 to the closed water channel 6 on the upstream side. A vortex generation preventing plate 18 is provided from the bottom of the water tank to the end wall of the water tank against the vortex generated at the lower part of the pump suction pipe 4 to suppress the generation of the vortex.
In addition, when there is a bent portion in the upstream portion of the pump suction water tank 1 such as a transition from the open water passage 7 to the closed water passage 6, as shown in, for example, Japanese Utility Model Publication No. 1-30640, the closed water passage shown in FIG. 6 is provided with a water-impervious wall 19 orthogonal to the water channel at the frontmost part of the inlet side, and the ratio of the diameter of the bell mouth 3 of the pump 2 to the distance from the bell mouth 3 to the impermeable wall 19 is 1.1 to 2.9 There have been means for preventing the generation of underwater vortices caused by the drift in the width direction of the water channel caused by the bent portion.
[0006]
[Problems to be solved by the invention]
In the equipment shown in FIG. 7, when a strong flow bias occurs in the width direction of the water channel upstream of the pump 2, the swirl of the flow in the lower part of the pump suction pipe 4 becomes very strong, and thus a vortex is locally generated. In some cases, the vortex generation preventing plate 18 cannot obtain the expected vortex prevention effect.
[0007]
Originally, the shapes of the pump suction water tank and the suction water channel are greatly influenced by the location conditions of the drainage station and the plant, for example, and it is rare that the shape can be determined so that the flow of the water channel becomes ideal. In the prior art shown in FIG. 8, when the closed channel 6 of the channel for introducing water into the pump suction tank 1 is long, that is, the transition from the open channel 7 to the closed channel 6 and the bell mouth 3 (pump suction port). ) Is more than 2.9 times the diameter of the bell mouth 3, the effect of the vortex generation preventing plate 18 cannot be expected. Needless to say, there is no effect when there is a bent portion in the closed channel 6.
[0008]
Furthermore, as in the prior art shown in FIG. 9, the water channel for introducing water into the pump suction tank 1 is divided into two or more by the dividing wall 9 or the like, and the average flow velocity of each water channel varies depending on the upstream conditions. In this case, even if the water shielding wall 19 is provided, the average flow velocity of each water channel hardly changes and flows into the pump suction water tank 1 while maintaining the flow velocity difference. As a result, strong swirling in the vicinity of the pump suction pipe 4 The air suction vortex and the underwater vortex 16 are generated from the flow, and the vortex prevention effect cannot be expected.
[0009]
Furthermore, when the cross-sectional shape seen from the side surface of the impermeable wall 19 is simply rectangular and the distance between the pump 2 and the impermeable wall 19 is short, the impermeable flow from the upstream open channel 7 as shown in FIG. A part of the flow stagnates in the vicinity of the wall 19, and a swirling flow 17 based on a shear flow due to a difference in flow velocity is generated between the stagnation slow flow velocity and the fast flow velocity, which becomes an air suction vortex and enters the pump 2. May be inhaled. These things hindered further pump-suction water tanks, space savings in waterways, and higher flow rates.
[0010]
The present invention has been made to solve the above-described problems of the prior art, and the object of the present invention is to prevent the generation of vortices in the vicinity of the pump in a pump suction water tank with a ceiling, and to operate the pump stably. An object of the present invention is to provide an apparatus for preventing vortex generation of a pump suction water tank that can be maintained and can further reduce the size and speed of the pump suction water tank and reduce the construction cost of the entire facility.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, the first means of the vortex generation prevention device for a pump suction water tank according to the present invention is a pump suction water tank having a ceiling, and a suction port is installed in the pump suction water tank. A pump, a water channel for introducing water into the pump suction water tank after the transition from the open water channel to the closed water channel upstream of the pump suction water tank, and a transition from the upstream of the open water channel to the closed water channel In the pump suction water tank facility provided with a dividing wall that divides the closed water channel into two or more, supporting the ceiling of the closed water channel existing in the vicinity of the pump suction water tank, and on the upstream side of the pump , A structure that closes a part of the water channel is provided in the width direction of the water channel from the ceiling of the pump suction water tank in the section from the pump to the rear edge of the dividing wall .
[0012]
In order to achieve the above object, the second means of the vortex generation preventing device for a pump suction water tank according to the present invention is characterized in that, in the first means, the structure that blocks a part of the water channel is upstream of the structure. The shape is inclined to the upstream side from the lower end point of the structure.
[0013]
A third means for achieving the above object is characterized in that, in the second means, the structure that blocks a part of the water channel has an inclination angle of 25 ° to 60 ° on the upstream side of the structure. .
[0014]
The fourth means for achieving the above object is that, in any one of the second and third means, the structure for blocking a part of the water channel is such that the upstream shape of the structure is based on the lower end point of the structure. In addition, the upper surface of the water channel is squeezed from the upstream of the water tank to the structure by forming a tapered surface at the joint with the side wall of the pump suction water tank.
[0015]
A fifth means for achieving the above object is that, in the fourth means, the taper shape of the joint portion between the structure blocking a part of the water channel and the side wall of the pump suction water tank is the taper shape and the side wall of the pump suction water tank. And the angle between the top and the bottom of the water channel is 15 ° to 45 °.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to FIGS.
[Embodiment 1]
1A and 1B are views of a vortex generation preventing device for a pump suction water tank according to a first embodiment of the present invention, wherein FIG. 1A is a schematic plan view and FIG. 1B is a schematic cross-sectional view. In the figure, the same reference numerals as those in FIG.
[0017]
In FIG. 1, 1 is a pump suction water tank having a ceiling 10, and 2 is a pump installed by opening a bell mouth 3 (suction port) in the pump suction water tank 1. The pump 2 is, for example, a pump suction pipe Reference numeral 4 denotes a vertical shaft pump which stands upright in the pump suction water tank 1. Reference numeral 5 denotes an impeller provided in the pump suction pipe 4. 6 is a closed channel having a ceiling 10, and 7 is an open channel having an open top.
[0018]
8 is a ceiling-side protruding structure, and this ceiling-side protruding structure 8 is a structure that closes the upper part of the water channel from the pump suction water tank 1 near the pump upstream of the pump 2 or the ceiling 10 of the closed channel 6. , Provided in the width direction of the water channel. The ceiling-side protruding structure 8 shown in FIG. 1 has a rectangular cross section protruding from the ceiling 10.
[0019]
By providing the ceiling-side protruding structure 8 in this way, even if a drift occurs in the water channel due to the shape of the water channel upstream of the pump suction water tank 1 or other factors, the water channel rapidly contracts at the portion of the ceiling-side protruding structure 8. The drift is rectified immediately before the pump 2 by the contraction effect. As a result, the swirling flow in the lower part of the pump suction pipe 4 is suppressed, and the generation of vortices can be prevented even if the average flow velocity of the water channel increases more than before.
In addition, when the distance of the closed water channel 6 upstream of the pump suction water tank 1 is long, the ceiling-side protruding structure 8 is provided in the vicinity of the upstream side of the pump 2 even if there is a factor causing a drift such as a bent portion in the closed water channel 6. By providing, the vortex prevention effect can be exhibited.
[0020]
[Embodiment 2]
FIGS. 2A and 2B are views of a vortex generation preventing device for a pump suction water tank according to a second embodiment of the present invention, wherein FIG. 2A is a schematic plan view and FIG. 2B is a schematic cross-sectional view. In the figure, the same reference numerals as those in FIG. 9 denote the same parts as in the prior art.
In the facility shown in FIG. 2, a dividing wall 9 is provided upstream of the pump 2. This dividing wall 9 exists from the transition part from the open water channel 7 to the closed water channel 6 to the pump suction water tank 1 vicinity, and divides the said closed water channel 6 into two or more.
[0021]
In such a pump suction water tank 1, in this embodiment, in the pump suction water tank 1 or the closed channel 6, the section from the pump suction pipe 4 to the terminal portion of the dividing wall 9 partially closes the water channel from the ceiling 10. The protruding structure 8 was provided in the width direction of the water channel. In many cases, the dividing wall 9 is provided for the purpose of supporting the ceiling 10 of the closed channel 6, and a sluice is provided on the upstream side of the two divided channels to control the flow rate of the channel or for the purpose of inspection or the like. There may be cases where one of the sluices is closed while the pump is running.
[0022]
In that case, there is a difference in the flow rates of the divided two water channels, and the average flow velocity of the two water channels is different from V 1 and V 2, and as a result, the confluence of the two water channels immediately before the pump 2 is large in the water channel width direction. A drift occurs, and the presence of a strong swirling flow is promoted at the lower part of the pump suction pipe 4 so that a vortex is easily generated. However, even in such a case, by providing the ceiling side protruding structure 8 as shown in FIG. 2, the uneven flow caused by the flow rate difference between the two water channels is caused immediately before the pump 2 by the contraction effect by the water channel rapid contraction. Rectified. As a result, the strength of the swirling flow in the lower part of the pump suction pipe 4 is suppressed, and the occurrence of vortices can be prevented even if the average flow velocities V 1 and V 2 of the two water channels increase more than before.
[0023]
[Embodiment 3]
Drawing 3 is a figure of the eddy generation prevention device of the pump suction cistern showing the 3rd embodiment of the present invention, (a) is a schematic plan view and (b) is a schematic sectional view. In the figure, the same reference numerals as those in FIG. 2 denote the same parts as in the previous embodiment.
The installation shown in FIG. 3 differs from the embodiment shown in FIG. 2 in that the ceiling-side protruding structure 8 in FIG. 2 has a rectangular cross-section protruding from the ceiling 10, whereas the ceiling side shown in FIG. The protruding structure 21 has an inclined surface 21a that is inclined upstream from the lower end point of the structure.
[0024]
By doing so, the cross-sectional change of the water channel from the upstream of the water channel to the lower end point of the ceiling-side protruding structure 21 becomes continuous, and the stagnation of the flow in the vicinity of the upstream of the ceiling-side protruding structure 21 is reduced. Even when there is a drift, vortices such as the swirl flow 17 shown in FIG. 10 can be prevented. Moreover, since the channel cross-sectional change is continuous, the resistance of the water channel is reduced, and the load required for the operation of the pump 2 can be reduced. Here, the inclination angle θ1 of the inclined surface 21a can be maximized by setting the inclination angle θ1 to 25 ° to 60 °. When θ1 is less than 25 °, the inclination is steep and the effect of forming the inclined surface 21a is poor. In addition, when the inclination of θ1 exceeds 25 °, the effect of making the flow uniform with respect to the drift is lost.
[0025]
FIG. 4 is a diagram of the vortex generation limit channel flow velocity for explaining the effect in each embodiment of the present invention.
The diagram of FIG. 4 shows the results of an experiment conducted on the vortex generation preventing effect of the ceiling-side protruding structure in the case where a drift occurs upstream in the channel width direction in order to support the above vortex generation preventing effect. The positional relationship between the ceiling-side protruding structure and the pump is all the same. A vortex generation preventing plate 18 is provided at the lower part of the pump suction pipe 4.
[0026]
In the diagram of FIG. 4, the horizontal axis represents the ratio V1: V2 of the drift of the two channels in the width direction of the channel, the vertical axis represents the critical channel flow velocity Vs at which the vortex is generated, and the solid line represents the ceiling-side protruding structure. In the case where there is not, the large broken line indicates the limit channel flow velocity Vs when the ceiling-side protruding structure (with a rectangular cross section) is present, and the alternate long and short dash line indicates the limit channel flow velocity Vs when there is the ceiling-side protruding structure (with inclination).
The diagram of FIG. 4 shows that underwater vortices are generated when the flow velocity is larger than each line.
[0027]
As the ratio V1: V2 of the drift in the width direction of the upstream water channel increases, the critical water channel flow velocity Vs tends to decrease, and a submerged vortex tends to occur. As apparent from FIG. 4, when there is no ceiling-side protruding structure, when a rectangular ceiling-side protruding structure is provided, and when an inclined surface is provided on the upstream side of the ceiling-side protruding structure, The vortex generation limit water channel flow velocity Vs is improved, and it can be seen that vortices are hardly generated due to the presence of the ceiling-side protruding structure. In addition, the inclination angle θ1 of the ceiling-side protruding structure was not significantly different in the range of 25 ° to 60 °.
[0028]
From the above experimental results, it becomes possible to increase the flow velocity of the pump suction water tank and water channel and to save space more than before, and the construction cost can be reduced as a whole pump system.
[0029]
[Embodiment 4]
5A and 5B are diagrams of a vortex generation preventing device for a pump suction water tank according to a fourth embodiment of the present invention. FIG. 5A is a schematic plan view, and FIG. 5B is a schematic cross-sectional view. In the figure, the same reference numerals as those in FIG. 3 denote the same parts as in the previous embodiment.
In the embodiment shown in FIG. 5, the ceiling-side protruding structure 22 has an inclined surface 22 a that is inclined upstream from the lower end point of the structure, and the joint with the side wall of the pump suction water tank 1 is a tapered surface. 23 is formed, and the upper channel of the water channel is narrowed from the upstream of the water channel to the ceiling-side protruding structure 22.
[0030]
It is known that vortices generated near the upstream side of the ceiling-side protruding structure 22 are mostly generated near the side wall of the pump suction water tank 1 regardless of the presence or absence of drift. This is because the stagnation of the flow is likely to occur at the corner between the ceiling-side protruding structure 22 and the side wall, and the vortex is generated by the shear flow due to the flow velocity difference. Therefore, by forming the corner portion with the side wall of the ceiling-side protruding structure 22 as a tapered surface 23, it is possible to suppress the occurrence of stagnation of the flow generated in the vicinity of the water channel side wall near the upstream side of the ceiling-side protruding structure 22. The generation of vortices can be prevented.
[0031]
The taper shape of the corner portion between the ceiling-side protruding structure 22 and the side wall is the same in that the vortex suppressing effect is improved regardless of whether the cross-sectional shape of the ceiling-side protruding structure is rectangular or an inclination angle is provided. . Furthermore, when the taper angle θ2 of the taper-shaped surface 23 of the joint with the side wall of the ceiling-side protruding structure 22 is 15 ° to 45 ° when viewed from the upper part of the water channel, an optimal vortex generation preventing effect is obtained. If θ2 is less than 15 °, the inclination is gentle and the effect of forming the tapered surface 23 is poor. In addition, if the angle of inclination θ2 exceeds 45 °, a stagnation of the flow tends to occur at the corner between the ceiling-side protruding structure 22 and the side wall, and the effect of suppressing vortex generation is lost.
[0032]
【The invention's effect】
As described above in detail, according to the present invention, in a pump suction water tank with a ceiling, the generation of vortex in the vicinity of the pump is prevented, stable operation of the pump is maintained, and the pump suction water tank is further miniaturized. In addition, it is possible to provide a vortex generation prevention device for a pump suction water tank that can increase the flow velocity and reduce the construction cost of the entire facility.
[Brief description of the drawings]
1A and 1B are diagrams of a vortex generation preventing device for a pump suction water tank according to a first embodiment of the present invention, wherein FIG. 1A is a schematic plan view and FIG. 1B is a schematic cross-sectional view.
FIGS. 2A and 2B are diagrams of a vortex generation preventing device for a pump suction water tank according to a second embodiment of the present invention, in which FIG. 2A is a schematic plan view and FIG. 2B is a schematic cross-sectional view.
FIGS. 3A and 3B are diagrams of a vortex generation preventing device for a pump suction water tank according to a third embodiment of the present invention, wherein FIG. 3A is a schematic plan view, and FIG. 3B is a schematic cross-sectional view.
FIG. 4 is a diagram of the vortex generation limit channel flow velocity for explaining the effect in each embodiment of the present invention.
FIGS. 5A and 5B are views of a vortex generation preventing device for a pump suction water tank according to a fourth embodiment of the present invention, wherein FIG. 5A is a schematic plan view and FIG. 5B is a schematic cross-sectional view.
FIG. 6 is a schematic cross-sectional view for explaining a problem of a conventional pump suction water tank.
FIG. 7 is a schematic cross-sectional view showing one shape of a conventional pump suction water tank having a ceiling.
8A and 8B are views showing a shape of a conventional pump suction water tank having a water-impervious wall, wherein FIG. 8A is a schematic plan view and FIG. 8B is a schematic cross-sectional view.
FIGS. 9A and 9B are diagrams for explaining a problem of a pump suction water tank having a conventional dividing wall, where FIG. 9A is a schematic plan view and FIG. 9B is a schematic cross-sectional view.
10A and 10B are diagrams for explaining the problems of a conventional pump suction water tank, in which FIG. 10A is a schematic plan view, and FIG. 10B is a schematic cross-sectional view.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Pump suction water tank, 2 ... Pump, 3 ... Bell mouth, 4 ... Pump suction pipe, 6 ... Closed channel, 7 ... Open channel, 8, 21, 22 ... Ceiling side protruding structure, 9 ... Dividing wall, 10 ... Ceiling, 21a, 22a ... inclined surface, 23 ... tapered surface.

Claims (5)

天井を有するポンプ吸込水槽と、このポンプ吸込水槽内に吸込口が開口して設置されたポンプと、前記ポンプ吸込水槽の上流にて開水路から天井を有する閉水路に移行したのち前記ポンプ吸込水槽に水を導入する水路と、前記開水路の上流から前記開水路から天井を有する閉水路への移行部に及び前記ポンプ吸込水槽近傍まで存在して前記閉水路の天井を支持し、前記閉水路を二つ以上に分割する分割壁とを設けたポンプ吸込水槽設備において、
前記ポンプの上流側で、前記ポンプから前記分割壁の後縁部までの区間のポンプ吸込水槽の天井部から、水路の一部を塞ぐ構造物を当該水路の幅方向に設けたことを特徴とするポンプ吸込水槽の渦発生防止装置。
A pump suction water tank having a ceiling, a pump installed with a suction port opened in the pump suction water tank, and the pump suction water tank after moving from an open channel to a closed water channel having a ceiling upstream of the pump suction water tank A water channel that introduces water into the water channel, a transition portion from the upstream of the open water channel to the closed water channel having a ceiling and the vicinity of the pump suction water tank to support the ceiling of the closed water channel, the closed water channel In the pump suction water tank equipment provided with a dividing wall that divides the
A structure for closing a part of the water channel is provided in the width direction of the water channel from the ceiling of the pump suction water tank in a section from the pump to the rear edge of the dividing wall on the upstream side of the pump. The vortex generation prevention device for the pump suction water tank.
水路の一部を塞ぐ構造物は、該構造物の上流側の形状が構造物の下部端点を基点として上流側に傾斜していることを特徴とする請求項1に記載のポンプ吸込水槽の渦発生防止装置。 The pump suction water tank vortex according to claim 1, wherein the structure that blocks a part of the water channel has an upstream shape of the structure that is inclined upstream from a lower end point of the structure. Occurrence prevention device. 水路の一部を塞ぐ構造物は、該構造物の上流側の傾斜角度が25°〜60°であることを特徴とする請求項2記載のポンプ吸込水槽の渦発生防止装置。The apparatus for preventing vortex generation in a pump suction water tank according to claim 2 , wherein the structure that blocks a part of the water channel has an inclination angle of 25 to 60 degrees on the upstream side of the structure. 水路の一部を塞ぐ構造物は、該構造物の上流側の形状が構造物の下部端点を基点として上流側に傾斜した傾斜面を有するとともに、ポンプ吸込水槽の側壁との接合部がテーパー形状面を形成して、水槽上流から該構造物にかけて水路の上部を絞ったことを特徴とする請求項2または3に記載のポンプ吸込水槽の渦発生防止装置。The structure that closes a part of the water channel has an inclined surface in which the upstream shape of the structure is inclined upstream from the lower end point of the structure, and the junction with the side wall of the pump suction tank is tapered The vortex generation preventing device for a pump suction water tank according to claim 2 or 3, wherein a surface is formed and the upper part of the water channel is narrowed from the upstream of the water tank to the structure . 水路の一部を塞ぐ構造物とポンプ吸込水槽の側壁との接合部のテーパー形状は、そのテーパー形状とポンプ吸込水槽の側壁とのなす角度が水路上部から見て15°〜45°であることを特徴とする請求項4記載のポンプ吸込水槽の渦発生防止装置。 The taper shape of the joint part between the structure that closes a part of the water channel and the side wall of the pump suction water tank is such that the angle between the taper shape and the side wall of the pump suction water tank is 15 ° to 45 ° when viewed from the upper part of the water channel. The vortex generation preventing apparatus for a pump suction water tank according to claim 4 .
JP18550898A 1998-07-01 1998-07-01 Device for preventing vortex generation in pump suction tank Expired - Lifetime JP4277328B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18550898A JP4277328B2 (en) 1998-07-01 1998-07-01 Device for preventing vortex generation in pump suction tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18550898A JP4277328B2 (en) 1998-07-01 1998-07-01 Device for preventing vortex generation in pump suction tank

Publications (2)

Publication Number Publication Date
JP2000018199A JP2000018199A (en) 2000-01-18
JP4277328B2 true JP4277328B2 (en) 2009-06-10

Family

ID=16172019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18550898A Expired - Lifetime JP4277328B2 (en) 1998-07-01 1998-07-01 Device for preventing vortex generation in pump suction tank

Country Status (1)

Country Link
JP (1) JP4277328B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103547810A (en) * 2011-05-27 2014-01-29 斯奈克玛 Liquid suction device comprising a tip reducing the formation of a suction vortex

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6533543B2 (en) * 2000-02-02 2003-03-18 Ebara Corporation Vortex prevention apparatus in pump
JP4042375B2 (en) * 2001-10-10 2008-02-06 株式会社日立プラントテクノロジー Vertical pump suction tank
JP4569870B2 (en) * 2005-01-24 2010-10-27 株式会社石垣 Foreign matter discharge method and foreign matter discharge device for pump well
JP5102561B2 (en) * 2007-08-21 2012-12-19 株式会社荏原製作所 Suction tank
JP6268742B2 (en) * 2013-04-12 2018-01-31 三菱重工業株式会社 Pump water tank

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103547810A (en) * 2011-05-27 2014-01-29 斯奈克玛 Liquid suction device comprising a tip reducing the formation of a suction vortex

Also Published As

Publication number Publication date
JP2000018199A (en) 2000-01-18

Similar Documents

Publication Publication Date Title
JP4277328B2 (en) Device for preventing vortex generation in pump suction tank
US4505612A (en) Air admission apparatus for water control gate
JP2009047082A (en) Intake tank and pump gate
JP4566852B2 (en) Horizontal axis pump, pump gate equipment, drainage station
JP2004360503A (en) Suction cover structure of horizontal pump
KR20200115062A (en) Suction cover, horizontal shaft pump, pump gate, and pump gate operating method
KR102621165B1 (en) Bell mouth
CN216810161U (en) Drainage system for dock pump house
JP3347978B2 (en) Underwater vortex prevention device for closed pump suction tank
JPH0234480Y2 (en)
KR102550970B1 (en) A pipe coupling device for increasing the flow rate of a fluid discharged from a fluid storage device and a pipe including the same
JP2000303549A (en) Suction passage for pump
JP2005320931A (en) Suction cover structure of horizontal shaft pump
JP4754199B2 (en) Drainage pipe fitting
JP4116228B2 (en) Pump water intake path
JPS6329920Y2 (en)
JP2001090169A (en) Rainwater drain pipe
JP2807178B2 (en) Drainage collecting pipe
JPS631040Y2 (en)
JP4122561B2 (en) Vortex generation prevention device for pump suction tank
JPH10266996A (en) Supply channel for pump
JP2001041200A (en) Pump apparatus having vortex generation preventing device
JP4042375B2 (en) Vertical pump suction tank
JP2023124666A (en) rainwater drainage structure
AU2021305079A1 (en) System and method for prevention of backflow in vertical rainwater drainage pipe with multiple side branches

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040709

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050615

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050615

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090217

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090302

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4