JP5317283B2 - Treatment method of organic sludge - Google Patents
Treatment method of organic sludge Download PDFInfo
- Publication number
- JP5317283B2 JP5317283B2 JP2009223601A JP2009223601A JP5317283B2 JP 5317283 B2 JP5317283 B2 JP 5317283B2 JP 2009223601 A JP2009223601 A JP 2009223601A JP 2009223601 A JP2009223601 A JP 2009223601A JP 5317283 B2 JP5317283 B2 JP 5317283B2
- Authority
- JP
- Japan
- Prior art keywords
- sludge
- quicklime
- water
- dehydrated
- mass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000010802 sludge Substances 0.000 title claims description 168
- 238000000034 method Methods 0.000 title claims description 33
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 claims description 170
- 239000000292 calcium oxide Substances 0.000 claims description 85
- 235000012255 calcium oxide Nutrition 0.000 claims description 85
- 238000001035 drying Methods 0.000 claims description 71
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 61
- 238000006243 chemical reaction Methods 0.000 claims description 21
- 238000003756 stirring Methods 0.000 claims description 21
- 230000018044 dehydration Effects 0.000 claims description 20
- 238000006297 dehydration reaction Methods 0.000 claims description 20
- 238000001704 evaporation Methods 0.000 claims description 9
- 238000003672 processing method Methods 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 claims description 4
- 235000008733 Citrus aurantifolia Nutrition 0.000 claims description 2
- 235000011941 Tilia x europaea Nutrition 0.000 claims description 2
- 239000004571 lime Substances 0.000 claims description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 14
- 239000011575 calcium Substances 0.000 description 13
- 229910052791 calcium Inorganic materials 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 7
- 239000004572 hydraulic lime Substances 0.000 description 5
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 4
- 239000000920 calcium hydroxide Substances 0.000 description 4
- 235000011116 calcium hydroxide Nutrition 0.000 description 4
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000003763 carbonization Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000010865 sewage Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 239000010800 human waste Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/30—Wastewater or sewage treatment systems using renewable energies
- Y02W10/37—Wastewater or sewage treatment systems using renewable energies using solar energy
Landscapes
- Treatment Of Sludge (AREA)
Description
本発明は有機性汚泥の処理方法に関し、さらに詳しくは、下水処理汚泥、し尿処理汚泥などの有機性汚泥を生石灰を使用して乾燥する工程を含む処理方法に関する。 The present invention relates to a method for treating organic sludge, and more particularly to a treatment method including a step of drying organic sludge such as sewage treatment sludge and human waste treatment sludge using quick lime.
近年、エネルギー消費量の少ない有機性汚泥の処理方法として、酸素不存在下で汚泥を熱分解して燃料などの炭化物製品とすることが行われており、種々の炭化処理方法が提案されている(特許文献1および2参照)。 In recent years, as a method for treating organic sludge with low energy consumption, it has been carried out to pyrolyze sludge in the absence of oxygen into a carbide product such as fuel, and various carbonization treatment methods have been proposed. (See Patent Documents 1 and 2).
有機性汚泥から炭化物を得る場合には、炭化処理する前の汚泥を乾燥する必要がある。また、有機性汚泥を他の用途に供する場合においても、含水率が90〜100質量%程度である有機汚泥を乾燥して、含水率が20〜30質量%程度の乾燥汚泥を得る必要がある。 When obtaining a carbide from organic sludge, it is necessary to dry the sludge before carbonization. Moreover, when using organic sludge for another use, it is necessary to dry the organic sludge whose moisture content is about 90-100 mass%, and to obtain the dry sludge whose moisture content is about 20-30 mass%. .
有機性汚泥から乾燥汚泥を得る方法としては、通常、脱水機によって機械的に脱水して含水率が75質量%程度の脱水汚泥とし、この脱水汚泥を加熱乾燥することが行われている(特許文献1−3参照)。 As a method of obtaining dried sludge from organic sludge, it is usually carried out by mechanically dehydrating with a dehydrator to obtain a dehydrated sludge having a water content of about 75% by mass, and drying the dehydrated sludge by heating (patents). Reference 1-3).
ここに、脱水汚泥を加熱乾燥する方法としては、加熱式乾燥機などを用いて脱水汚泥に熱エネルギーを付与する方法、脱水汚泥に生石灰を接触させて、脱水汚泥中の水と生石灰との反応熱を利用して脱水汚泥中の水を蒸発させる方法がある。 Here, as a method of heating and drying the dehydrated sludge, a method of applying thermal energy to the dehydrated sludge using a heating dryer, etc., contacting the dehydrated sludge with quick lime, and the reaction between water and quick lime in the dehydrated sludge There is a method of evaporating water in dehydrated sludge using heat.
生石灰と水との反応熱を利用する乾燥処理は、脱水汚泥と生石灰とを攪拌混合機(反応器)に仕込み、脱水汚泥中の水と生石灰とを反応させ、その反応熱によって当該脱水汚泥中の水を蒸発させる。この乾燥処理は、通常、連続的に実施され、また、反応器内のみで実施することもできるが、反応器から排出後、二次乾燥(後乾燥)として、例えば屋外で更に行うこともできる。 In the drying process using the reaction heat between quicklime and water, dehydrated sludge and quicklime are charged into a stirring mixer (reactor), and the water and quicklime in the dehydrated sludge are reacted, and the reaction heat causes the dehydrated sludge to react with the dehydrated sludge. Evaporate the water. This drying treatment is usually carried out continuously and can also be carried out only in the reactor, but after discharging from the reactor, secondary drying (post-drying) can also be carried out, for example, outdoors. .
生石灰と水との反応熱を利用する乾燥処理は、熱エネルギーを外部から付与する必要がないために、エネルギーコストの点から有利である。
また、生石灰との反応によって汚泥がアルカリ性を示し、有機物に由来する臭気が低減される。特に、屋外において二次乾燥(例えば、天日乾燥)を行う場合に衛生面で有利である。
The drying process using reaction heat between quicklime and water is advantageous from the viewpoint of energy cost because it is not necessary to apply heat energy from the outside.
Moreover, sludge shows alkalinity by reaction with quicklime, and the odor derived from organic substance is reduced. In particular, it is advantageous in terms of hygiene when performing secondary drying (for example, sun drying) outdoors.
脱水汚泥中の水と生石灰との反応熱を利用する乾燥処理において、生石灰の添加量は、水との反応熱によって十分な乾燥(水分の蒸発)が実現されるように、脱水汚泥の処理量および含水率から決定される。
ここに、生石灰の添加量の一例を示すと、含水率75質量%程度の脱水汚泥100質量部に対して20質量部程度とされる。
In the drying process that uses the heat of reaction between water and quicklime in the dewatered sludge, the amount of quicklime added is such that sufficient drying (water evaporation) is achieved by the heat of reaction with water. And determined from the moisture content.
If an example of the addition amount of quicklime is shown here, it will be about 20 mass parts with respect to 100 mass parts of dehydrated sludge with a moisture content of about 75 mass%.
しかしながら、含水率が75質量%程度の脱水汚泥は粘土質の塊状物であるため、その内部に生石灰を浸透させることができず、このため、乾燥処理後の汚泥(塊状物)の表面に、未反応の生石灰が付着残留している一方で、当該汚泥(塊状物)の内部には依然として一定量の水分が残留したままとなって十分な乾燥が行われていないのが現実である。 However, since the dehydrated sludge having a moisture content of about 75% by mass is a clay-like lump, quick lime cannot be infiltrated therein, and therefore, on the surface of the sludge (lump) after drying treatment, While unreacted quicklime has adhered and remained, it is a reality that a certain amount of water still remains inside the sludge (lump) and sufficient drying has not been performed.
発熱反応に寄与できない未反応の生石灰は、処理コストの点から好ましくないばかりか、生石灰(カルシウム)の濃度が高くなることによって、得られる乾燥汚泥の用途が限定され、例えば、燃料などとして利用する炭化物製品を得ることができなくなる。
なお、未反応の生石灰が汚泥に残留することを防止するために、生石灰の添加量を低減すると、十分な乾燥(水分の蒸発)を実現することができなくなる。
Unreacted quicklime that cannot contribute to the exothermic reaction is not preferable from the viewpoint of processing cost, and the concentration of quicklime (calcium) is increased, so that the use of the obtained dried sludge is limited. For example, it is used as fuel. It becomes impossible to obtain a carbide product.
If the amount of quicklime added is reduced to prevent unreacted quicklime from remaining in the sludge, sufficient drying (water evaporation) cannot be realized.
このため、未反応の生石灰が乾燥汚泥に残留しない程度に少ない量の生石灰で、有機性汚泥を十分に乾燥することのできる処理方法が望まれていた。 For this reason, the processing method which can fully dry organic sludge with the quantity of quick lime so small that unreacted quick lime does not remain in dry sludge was desired.
本発明は以上のような事情に基いてなされたものである。
本発明の目的は、少ない量の生石灰によって有機性汚泥を十分に乾燥することができ、カルシウム含有率の低い乾燥汚泥を得ることができる有機性汚泥の処理方法を提供することにある。
The present invention has been made based on the above situation.
The objective of this invention is providing the processing method of the organic sludge which can fully dry organic sludge with a small amount of quicklime, and can obtain the dry sludge with a low calcium content rate.
第1の発明に係る有機性汚泥の処理方法は、脱水汚泥100質量部と生石灰5〜30質量部とを攪拌混合機に仕込み、前記脱水汚泥中の水と前記生石灰との反応熱によって当該脱水汚泥中の水を蒸発させるとともに、発生する水蒸気を前記攪拌混合機から回収して蒸気過熱装置で過熱し、得られる過熱水蒸気を前記攪拌混合機に供給して、前記脱水汚泥および前記生石灰と接触させる乾燥工程を含むことを特徴とする。 The organic sludge treatment method according to the first invention is a method in which 100 parts by mass of dehydrated sludge and 5 to 30 parts by mass of quick lime are charged into a stirring mixer, and the dehydration is performed by reaction heat between water in the dehydrated sludge and the quick lime. Water in the sludge is evaporated, and the generated steam is recovered from the stirring mixer and superheated with a steam superheater, and the resulting superheated steam is supplied to the stirring mixer to contact the dehydrated sludge and quicklime. Including a drying step.
このような処理方法によれば、
(1)過熱水蒸気は、塊状(ケーキ状)の脱水汚泥の内部に浸透し、当該脱水汚泥(塊状物)を軟化・崩壊させる。これにより、脱水汚泥の内部に存在していた水分が、攪拌混合機内の高温雰囲気と接触して水蒸気となり、これにより乾燥効率が向上する。
(2)過熱水蒸気による脱水汚泥の軟化・崩壊に伴って、その内部に存在していた水分の一部が、脱水汚泥の表面に付着していた生石灰と反応して発熱し、攪拌混合機内の温度を上昇させ、これにより乾燥効率が向上する。
(3)過熱水蒸気の凝縮水が、脱水汚泥(塊状物)の表面に付着している生石灰と反応して発熱し、攪拌混合機内の温度を上昇させ、これにより乾燥効率が向上する。
(4)過熱水蒸気の有する熱エネルギーが攪拌混合機の内部温度を上昇させ、これにより乾燥効率が向上する。
(5)過熱水蒸気は湿度が低いので、攪拌混合機内を湿潤化させることがない。
(6)過熱水蒸気により、生石灰と水(凝縮水および脱水汚泥の内部に存在していた水)との接触効率が格段に向上するので、攪拌混合機内への生石灰の仕込量を少なくしても、脱水汚泥を効率的に乾燥することができる。そして、生石灰の仕込量を少なくすることができるために、得られる乾燥汚泥中のカルシウム含有率を低くすることができる。
According to such a processing method,
(1) Superheated water vapor penetrates into the lump (cake-like) dehydrated sludge and softens / collapses the dehydrated sludge (lump). Thereby, the water | moisture content which existed inside the dehydration sludge contacts with the high temperature atmosphere in a stirring mixer, and becomes water vapor | steam, and, thereby, drying efficiency improves.
(2) Along with the softening and disintegration of dewatered sludge by superheated steam, a part of the water that was present inside reacts with quick lime adhering to the surface of the dewatered sludge and generates heat. The temperature is increased, thereby improving the drying efficiency.
(3) The condensed water of superheated steam reacts with quicklime adhering to the surface of the dehydrated sludge (lump) to generate heat and raise the temperature in the stirring mixer, thereby improving the drying efficiency.
(4) The thermal energy of the superheated steam increases the internal temperature of the stirring mixer, thereby improving the drying efficiency.
(5) Since the superheated steam has low humidity, the inside of the stirring mixer is not wetted.
(6) The contact efficiency between quick lime and water (condensed water and water present in the dewatered sludge) is greatly improved by the superheated steam, so even if the amount of quick lime charged into the stirring mixer is reduced The dehydrated sludge can be efficiently dried. And since the preparation amount of quicklime can be decreased, the calcium content rate in the dry sludge obtained can be made low.
第2の発明は、有機性汚泥を脱水して含水率が70〜90質量%の脱水汚泥を得る脱水工程と、
得られた脱水汚泥100質量部と生石灰5〜30質量部とを攪拌混合機に仕込み、前記脱水汚泥中の水と前記生石灰との反応熱によって当該脱水汚泥中の水を蒸発させるとともに、発生する水蒸気を前記攪拌混合機から回収して蒸気過熱装置で過熱し、得られる過熱水蒸気を前記攪拌混合機に供給して、前記脱水汚泥および前記生石灰と接触させる一次乾燥工程と、
前記一次乾燥工程を経た汚泥を前記攪拌混合機から取り出して乾燥する二次乾燥工程とを含むことを特徴とする。
The second invention is a dehydration step of dehydrating organic sludge to obtain a dehydrated sludge having a water content of 70 to 90% by mass;
The resulting charged into dewatered sludge 100 parts by mass lime 5 to 30 mass parts and a stirrer mixer, along with evaporating water in the dewatered sludge by reaction heat of the quicklime with water in the dewatered sludge, generated Steam is recovered from the stirring mixer and superheated with a steam superheater, and the resulting superheated steam is supplied to the stirring mixer to be brought into contact with the dehydrated sludge and quicklime;
And a secondary drying step in which the sludge that has undergone the primary drying step is taken out of the stirring mixer and dried.
このような処理方法によれば、二次乾燥工程を経て得られる乾燥汚泥中の含水率を十分に低いものとすることができる。
また、一次乾燥工程における過熱水蒸気の供給により、生石灰の仕込量を少なくすることができるので、得られる乾燥汚泥中のカルシウム含有率を低くすることができる。
さらに、一次乾燥工程を経た汚泥が、生石灰と水との反応によってアルカリ性を示し、有機物に由来する臭気を低減することができる。
According to such a treatment method, the moisture content in the dried sludge obtained through the secondary drying step can be made sufficiently low.
Moreover, since the preparation amount of quick lime can be decreased by supplying superheated steam in the primary drying step, the calcium content in the obtained dried sludge can be lowered.
Furthermore, the sludge which passed the primary drying process shows alkalinity by reaction with quick lime and water, and can reduce the odor derived from organic substance.
本発明の処理方法において、攪拌混合機に仕込まれる脱水汚泥と生石灰との仕込比率(質量)が100:10〜30であることが好ましい。 In the treatment method of the present invention, it is preferable that the charging ratio (mass) of dehydrated sludge and quicklime charged in the stirring mixer is 100: 10-30.
本発明の処理方法によれば、従来の使用量よりも少ない量の生石灰によって有機性汚泥(脱水汚泥)を効率的に乾燥することができる。
本発明の処理方法により処理された乾燥汚泥は、カルシウム含有率を低くすることができるので、種々の用途に適用することができる。
According to the treatment method of the present invention, organic sludge (dehydrated sludge) can be efficiently dried with quick lime in an amount smaller than the conventional usage.
Since the dry sludge treated by the treatment method of the present invention can reduce the calcium content, it can be applied to various applications.
図1において、1は脱水機、2はロータリーキルン(攪拌混合機)、3は蒸気過熱装置、4は循環用送風機、5は排気部、6は屋外乾燥場である。
本実施形態の処理方法は、脱水工程と、一次乾燥工程と、二次乾燥工程とを含む。
In FIG. 1, 1 is a dehydrator, 2 is a rotary kiln (stirring mixer), 3 is a steam superheater, 4 is a blower for circulation, 5 is an exhaust unit, and 6 is an outdoor drying place.
The processing method of this embodiment includes a dehydration step, a primary drying step, and a secondary drying step.
(1)脱水工程:
本実施形態の処理方法を構成する脱水工程は、脱水機1により有機性汚泥を脱水して含水率が70〜90質量%の脱水汚泥を得る工程である。
脱水工程に供される有機性汚泥は、下水処理場や食品製造工場から発生する汚泥であり、その含水率は、通常90〜100質量%程度とされ、具体的な一例を示せば95質量%である。
脱水機1としては、特に限定されるものではなく、従来公知の機械的な脱水機をすべて使用することができる。好適な脱水機1として遠心分離を利用するものを挙げることができる。
脱水工程を経て得られる脱水汚泥の含水率は70〜90質量%であり、好ましくは70〜80質量%とされ、具体的な一例を示せば75質量%である。
(1) Dehydration process:
The dehydration step constituting the treatment method of the present embodiment is a step of dehydrating organic sludge by the dehydrator 1 to obtain dehydrated sludge having a moisture content of 70 to 90% by mass.
The organic sludge used in the dehydration process is sludge generated from a sewage treatment plant or a food manufacturing factory, and its water content is usually about 90 to 100% by mass, and 95% by mass is a specific example. It is.
The dehydrator 1 is not particularly limited, and any conventionally known mechanical dehydrator can be used. An example of a suitable dehydrator 1 is one that utilizes centrifugation.
The water content of the dewatered sludge obtained through the dehydration step is 70 to 90% by mass, preferably 70 to 80% by mass, and 75% by mass as a specific example.
(2)一次乾燥工程:
本実施形態の処理方法を構成する一次乾燥工程は、脱水工程により得られた脱水汚泥と、生石灰とをロータリーキルン2に仕込み、脱水汚泥中の水と生石灰とを反応させ、その反応熱によって脱水汚泥中の水を蒸発させるとともに、発生する水蒸気をロータリーキルン2から回収し、その一部を蒸気過熱装置3で過熱し、得られる過熱水蒸気をロータリーキルン2に供給して(戻して)、脱水汚泥および生石灰と接触させる工程である。
(2) Primary drying process:
In the primary drying step constituting the treatment method of the present embodiment, the dehydrated sludge obtained by the dehydration step and quick lime are charged into the
本実施形態で使用するロータリーキルン2は、滞留物である脱水汚泥と生石灰とを混合するための攪拌混合機である。
脱水汚泥および生石灰は、一定の比率で、ロータリーキルン2内に連続的に仕込まれる。
脱水汚泥および生石灰の仕込比率としては、脱水汚泥の含水率などによっても異なるが、例えば、脱水汚泥100質量部に対して生石灰が5〜30質量部であることが好ましく、更に好ましくは5〜20質量部とされる。
The
Dehydrated sludge and quicklime are continuously fed into the
The charge ratio of the dehydrated sludge and quick lime varies depending on the moisture content of the dehydrated sludge, but for example, the quick lime is preferably 5 to 30 parts by mass, more preferably 5 to 20 parts per 100 parts by mass of the dehydrated sludge. The mass part.
脱水汚泥に対する生石灰の仕込み量が過少である場合には、脱水汚泥中の水分との反応が十分に行われないために、ロータリーキルン2内の雰囲気温度を十分に上昇させることができず、効率的な乾燥処理を行うことができない。
一方、脱水汚泥に対する生石灰の仕込み量が過剰である場合には、最終的に得られる乾燥汚泥中におけるカルシウムの含有率が高くなり、乾燥汚泥の用途が制限される。
When the amount of quicklime added to the dewatered sludge is too small, the reaction with the moisture in the dewatered sludge is not sufficiently performed, so that the atmosphere temperature in the
On the other hand, when the amount of quicklime added to the dewatered sludge is excessive, the calcium content in the finally obtained dried sludge increases, and the use of the dried sludge is limited.
ロータリーキルン2内において、脱水汚泥中の水と生石灰とが反応して消石灰が生成され(CaO+H2 O→Ca(OH)2 )、そのときの反応熱によって脱水汚泥に含まれる水分が蒸発する。これにより発生する水蒸気の一部は、管路P1をとおって蒸気過熱装置3に供給され、水蒸気の残部は、管路P2を通って排気部5から排気される。
排気部5には、粉体を回収するフィルタ(図示省略)が設けられており、これにより、水蒸気とともに排気部5に流入した消石灰を分離して回収することができる。
消石灰が分離された後の水蒸気は、大気中に排気されるが、熱源として利用することも可能である。
In the
The exhaust part 5 is provided with a filter (not shown) for collecting powder, whereby slaked lime flowing into the exhaust part 5 together with water vapor can be separated and recovered.
The water vapor after the slaked lime is separated is exhausted into the atmosphere, but can also be used as a heat source.
一方、蒸気過熱装置3に供給された水蒸気は、蒸気過熱装置3で過熱されて過熱水蒸気となり、管路P3を通ってロータリーキルン2に供給され、脱水汚泥および生石灰と接触する。
蒸気過熱装置3から排出された直後の過熱水蒸気の温度は、例えば200〜350℃とされ、ロータリーキルン2内に供給されるときには150〜170℃程度に維持されている。
On the other hand, the steam supplied to the steam superheater 3 is superheated by the steam superheater 3 to become superheated steam, is supplied to the
The temperature of the superheated steam immediately after being discharged from the steam superheater 3 is, for example, 200 to 350 ° C., and is maintained at about 150 to 170 ° C. when supplied into the
ロータリーキルン2内に滞留する脱水汚泥に過熱水蒸気を接触させることにより、湿度の低い過熱水蒸気は、脱水汚泥の表面を濡らすことなく、脱水汚泥の内部に浸透する。
そして、過熱水蒸気が浸透した後の脱水汚泥は、軟化してほぐされた状態(沸騰状態)となって崩壊する。これに伴って、脱水汚泥の内部に閉じ込められていた水分が、ロータリーキルン2内の高温雰囲気と接触し、加熱されて水蒸気となる。
また、軟化・崩壊する前の脱水汚泥(塊状物)の内部に閉じ込められていた水分の一部が、脱水汚泥(塊状物)の表面に付着していた生石灰と反応して発熱し、ロータリーキルン2内の温度を更に上昇させる。
また、過熱水蒸気の凝縮水が、脱水汚泥(塊状物)の表面に付着している生石灰と反応して発熱し、ロータリーキルン2内の温度をさらに上昇させる。
また、過熱水蒸気自体の有する熱エネルギーがロータリーキルン2の内部温度をさらに上昇させる。
なお、過熱水蒸気は湿度が低いために、供給された過熱水蒸気がロータリーキルン2内を湿潤化することはない。
以上のように、ロータリーキルン2に供給される過熱水蒸気は、脱水汚泥に含まれる水分を蒸発させるための熱エネルギーの供給源として機能するのみでなく、脱水汚泥の塊状物を崩壊させることによって内部に閉じ込められていた水分を蒸発させたり、生石灰と反応させたりする機能と、脱水汚泥の塊状物に付着していた生石灰と発熱反応する凝縮水の供給源としての機能とを兼ね備えている。そして、これらの相乗効果により、過熱水蒸気を供給しないときと比較して脱水汚泥の乾燥効率が格段に向上する。
By bringing the superheated steam into contact with the dewatered sludge staying in the
Then, the dewatered sludge after permeation of superheated steam is softened and loosened (boiling state) and collapses. Along with this, the water trapped inside the dewatered sludge comes into contact with the high temperature atmosphere in the
In addition, a part of the water confined in the dehydrated sludge (lump) before softening / disintegration reacts with the quicklime adhering to the surface of the dehydrated sludge (lump) to generate heat, and the
Moreover, the condensed water of superheated steam reacts with quicklime adhering to the surface of the dehydrated sludge (lump) and generates heat, further raising the temperature in the
Further, the thermal energy of the superheated steam itself further increases the internal temperature of the
In addition, since the superheated steam has a low humidity, the supplied superheated steam does not wet the
As described above, the superheated steam supplied to the
ここに、過熱水蒸気の代わりに常圧水蒸気(100℃)を使用する場合には、常圧水蒸気が脱水汚泥の塊状物の表面で凝縮してしまい、内部に浸透することはできない。このため、脱水汚泥の内部に閉じ込められた水分を蒸発させたり、生石灰と反応させたりすることは不可能である。また、常圧水蒸気は、脱水汚泥の塊状物の表面を濡らしてしまうとともに、ロータリーキルン内を湿潤化してしまう。従って、常圧水蒸気をロータリーキルン内に常圧蒸気が存在しても、乾燥効率の向上を十分に図ることができない。 When normal pressure steam (100 ° C.) is used instead of superheated steam, the normal pressure steam is condensed on the surface of the dehydrated sludge mass and cannot penetrate inside. For this reason, it is impossible to evaporate the moisture confined in the dehydrated sludge or to react with quick lime. In addition, the atmospheric water vapor wets the surface of the dehydrated sludge lump and wets the rotary kiln. Therefore, even if atmospheric steam exists in the rotary kiln, the drying efficiency cannot be sufficiently improved.
また、本実施形態の処理方法によれば、過熱水蒸気を供給することにより、生石灰と水(過熱水蒸気の凝縮水および脱水汚泥内部に閉じ込められていた水)との接触効率を格段に向上させることができるので、ロータリーキルン内への生石灰の仕込量を少なくしても、脱水汚泥を十分に乾燥することができる。そして、生石灰の仕込量を少なくすることができるので、得られる乾燥汚泥中のカルシウム含有率(未反応の生石灰および反応後の消石灰に由来するカルシウムの合計含有率)を低くすることができる。 Moreover, according to the processing method of this embodiment, by supplying superheated steam, the contact efficiency between quick lime and water (condensed water of superheated steam and water confined in dehydrated sludge) is significantly improved. Therefore, even if the amount of quick lime charged into the rotary kiln is reduced, the dehydrated sludge can be sufficiently dried. And since the preparation amount of quicklime can be decreased, the calcium content rate (total content rate of the calcium derived from unreacted quicklime and the slaked lime after reaction) in the dry sludge obtained can be made low.
ロータリーキルン2から蒸気過熱装置3を経てロータリーキルン2に戻る(過熱)水蒸気の流量は、循環用送風機4への供給電力を調整することにより制御することができる。また、ロータリーキルン2へ供給される過熱水蒸気の温度および流量は、更に、蒸気過熱装置3への供給電力を調整することにより制御することができる。
循環用送風機4および蒸気過熱装置3への供給電力が大きいほど、過熱水蒸気による熱エネルギーが増大して効率的な乾燥を行うことができる。但し、供給電力が過大であると、この電力を得るために過大なエネルギーコストが発生する場合がある。
例えば、循環用送風機4への供給電力を0.75KW、蒸気過熱装置3への供給電力を1.5KWと設定することにより、150〜170℃程度の過熱水蒸気を3〜5kg/hrの流量でロータリーキルン2内に供給することができる。
The flow rate of the steam returning from the
As the power supplied to the
For example, by setting the supply power to the
ロータリーキルン2内における乾燥効率は、ロータリーキルン2内の雰囲気温度や滞留している汚泥の温度に依存する。
ここに、ロータリーキルン2内に滞留する汚泥の温度としては、脱水汚泥および生石灰の仕込量・仕込比率、過熱水蒸気の供給量などによっても異なるが、70℃以上であることが好ましく、過熱水蒸気を供給しない場合よりも5℃以上高いことが好ましい。
一次乾燥工程において、脱水汚泥および生石灰は、ロータリーキルン2に連続的に仕込まれ、一定時間滞留した後、ロータリーキルン2から排出される。
一次乾燥工程に要する時間、すなわち、ロータリーキルン2内での脱水汚泥および生石灰の滞留時間は3〜20分間であることが好ましく、更に好ましくは7〜9分間とされる。
一次乾燥工程を経てロータリーキルン2から排出される汚泥の含水率は20〜70質量%とされ、好ましく30〜50質量%とされる。
The drying efficiency in the
Here, the temperature of the sludge staying in the
In the primary drying step, the dehydrated sludge and quicklime are continuously charged into the
The time required for the primary drying step, that is, the residence time of dehydrated sludge and quicklime in the
The moisture content of the sludge discharged from the
(3)二次乾燥工程:
本実施形態の処理方法を構成する二次乾燥工程は、一次乾燥工程を経てロータリーキルンから取り出された汚泥を屋外で天日乾燥する工程である。この工程によって含水率の低い乾燥汚泥を確実に得ることができる。
本実施形態においては、過熱水蒸気を利用した効率的な乾燥処理が一次乾燥工程で実施されているので、二次乾燥工程における処理時間を短縮することができる。
また、一次乾燥工程を経た汚泥が、生石灰と水との反応によってアルカリ性を示すので、有機物に由来する臭気を低減することができる。
二次乾燥工程に要する時間は、温度・湿度などによっても異なるが、例えば8〜50時間とされる。
(3) Secondary drying process:
The secondary drying process which comprises the processing method of this embodiment is a process of sun-drying the sludge taken out from the rotary kiln through the primary drying process outdoors. By this step, dry sludge having a low water content can be obtained with certainty.
In this embodiment, since the efficient drying process using superheated steam is performed in the primary drying process, the processing time in the secondary drying process can be shortened.
Moreover, since the sludge which passed through the primary drying process shows alkalinity by reaction with quicklime and water, the odor derived from organic substance can be reduced.
The time required for the secondary drying step varies depending on temperature, humidity, etc., but is, for example, 8 to 50 hours.
本実施形態の処理方法で得られる乾燥汚泥の含水率は50質量%以下、好ましくは20〜30質量%とされる。
本実施形態の処理方法で得られる乾燥汚泥は、一次乾燥工程における生石灰の仕込量を少なくすることができることから、生石灰を利用した従来の処理方法で得られる乾燥汚泥と比較してカルシウムの含有率が低く、未反応の生石灰に由来するカルシウムの含有率は実質的に0である。このように低カルシウムの乾燥汚泥は種々の用途、例えばセメント原料、道路基材、化石燃料代替に適用することができる。
The moisture content of the dried sludge obtained by the treatment method of this embodiment is 50% by mass or less, preferably 20 to 30% by mass.
Since the dry sludge obtained by the treatment method of the present embodiment can reduce the amount of quick lime charged in the primary drying step, the calcium content compared to the dry sludge obtained by the conventional treatment method using quick lime. And the content of calcium derived from unreacted quicklime is substantially zero. Thus, the low calcium dry sludge can be applied to various uses such as cement raw materials, road base materials, and fossil fuel substitutes.
以下、本発明の実施例について説明するが本発明はこれらに限定されるものではない。なお、以下の実施例および比較例において、「部」および「%」は、それぞれ「質量部」および「質量%」を意味する。 Examples of the present invention will be described below, but the present invention is not limited thereto. In the following examples and comparative examples, “part” and “%” mean “part by mass” and “% by mass”, respectively.
<実施例1>
図1に示したような装置を使用して、脱水工程、一次乾燥工程および二次乾燥工程を実施した。
(1)脱水工程:
遠心分離機からなる脱水機1を使用して、含水率95%の有機性汚泥261tを8時間かけて連続的に脱水処理することにより含水率75%の脱水汚泥51tを得た。
<Example 1>
Using the apparatus as shown in FIG. 1, a dehydration process, a primary drying process, and a secondary drying process were performed.
(1) Dehydration process:
Using the dehydrator 1 comprising a centrifugal separator, the organic sludge 261t having a water content of 95% was continuously dehydrated over 8 hours to obtain a dehydrated sludge 51t having a water content of 75%.
(2)一次乾燥工程:
脱水工程を経て脱水機1から排出された脱水汚泥を、順次、生石灰と共にロータリーキルン2(直径=0.9m、長さ=5.5m)に仕込み、ロータリーキルン2内で脱水汚泥中の水と生石灰とを反応させ、その反応熱によって脱水汚泥中の水を蒸発させるとともに、発生した水蒸気をロータリーキルン2から回収し、回収した水蒸気の一部を循環用送風機4により蒸気過熱装置3に供給して過熱し、得られた過熱水蒸気をロータリーキルン2に供給して脱水汚泥および生石灰と接触させ、他方、回収した水蒸気の残部を排気部5から排気する操作を、脱水工程と並行して8時間にわたり連続的に行った。
(2) Primary drying process:
The dewatered sludge discharged from the dehydrator 1 after the dehydration process is sequentially charged into the rotary kiln 2 (diameter = 0.9 m, length = 5.5 m) together with quick lime, and the water and quick lime in the dehydrated sludge are mixed in the
ここに、ロータリーキルン2への脱水汚泥と生石灰との仕込比率は、平均で100:14.1(質量)であり、ロータリーキルン2内での脱水汚泥および生石灰の滞留時間を8分間とした。
また、循環用送風機4への供給電力を0.75kW、蒸気過熱装置3への供給電力を1.5kWとすることにより、150℃程度の過熱水蒸気を3kg/時間の流量でロータリーキルン2内に供給した。
一次乾燥工程での乾燥効率の指標として、ロータリーキルン2内に滞留する汚泥の温度を測定したところ60.8℃であった。
Here, the charging ratio of dehydrated sludge and quicklime to the
Further, by setting the supply power to the
As an index of drying efficiency in the primary drying step, the temperature of sludge staying in the
(3)二次乾燥工程:
一次乾燥工程を経てロータリーキルン2から排出された汚泥を屋外乾燥場6にて24時間にわたり天日乾燥を行い、含水率25%の乾燥汚泥28.8tを得た。二次乾燥工程中の最高気温は30℃(湿度68%)、最低気温は24℃(湿度90%)であった。
得られた乾燥汚泥において、未反応の生石灰によるカルシウムの残留は認められなかった。
(3) Secondary drying process:
The sludge discharged from the
In the obtained dried sludge, no calcium remained due to unreacted quicklime.
<比較例1>
(1)脱水工程:
遠心分離機からなる脱水機1を使用して、含水率95%の有機性汚泥288tを8時間かけて連続的に脱水処理することにより含水率75%の脱水汚泥56.4tを得た。
<Comparative Example 1>
(1) Dehydration process:
Using the dehydrator 1 comprising a centrifugal separator, organic sludge 288t having a moisture content of 95% was continuously dehydrated over 8 hours to obtain 56.4t of dehydrated sludge having a moisture content of 75%.
(2)一次乾燥工程:
脱水工程を経て脱水機1から排出された脱水汚泥を、順次、生石灰と共にロータリーキルン2に仕込み、ロータリーキルン2内で脱水汚泥中の水と生石灰とを反応させ、その反応熱によって脱水汚泥中の水を蒸発させ、発生した水蒸気を排気部5から排気する操作を、脱水工程と並行して8時間にわたり連続的に行った。
ここに、ロータリーキルン2への脱水汚泥と生石灰との仕込比率は、平均で100:17.0(質量)であり、ロータリーキルン2内での脱水汚泥および生石灰の滞留時間を8分間とした。
一次乾燥工程での乾燥効率の指標として、ロータリーキルン2内に滞留する汚泥の温度を測定したところ54.5℃であった。
(2) Primary drying process:
The dewatered sludge discharged from the dehydrator 1 after the dehydration process is sequentially charged into the
Here, the charging ratio of dehydrated sludge and quick lime to the
As an index of drying efficiency in the primary drying step, the temperature of sludge staying in the
(3)二次乾燥工程:
一次乾燥工程を経てロータリーキルン2から排出された汚泥を、実施例1(3)と同様の条件下で天日乾燥を行い、含水率35%の乾燥汚泥38.4tを得た。
得られた乾燥汚泥において、未反応の生石灰によるカルシウムの残留が認められた。
(3) Secondary drying process:
The sludge discharged from the
In the obtained dried sludge, calcium residue due to unreacted quicklime was observed.
この比較例1は、ロータリーキルン内への過熱水蒸気の供給を行わなわずに、生石灰の仕込比率を高くした比較例である。 This comparative example 1 is a comparative example in which the charging ratio of quicklime is increased without supplying superheated steam into the rotary kiln.
<比較例2>
(1)脱水工程:
遠心分離機からなる脱水機1を使用して、含水率95%の有機性汚泥270tを8時間かけて連続的に脱水処理することにより含水率75%の脱水汚泥52.9tを得た。
<Comparative example 2>
(1) Dehydration process:
Using the dehydrator 1 comprising a centrifugal separator, organic sludge 270t having a water content of 95% was continuously dehydrated over 8 hours to obtain 52.9t of dehydrated sludge having a water content of 75%.
(2)一次乾燥工程:
脱水工程を経て脱水機1から排出された脱水汚泥を、順次、生石灰と共にロータリーキルン2に仕込み、ロータリーキルン2内で脱水汚泥中の水と生石灰とを反応させ、その反応熱によって脱水汚泥中の水を蒸発させ、発生した水蒸気を排気部5から排気する操作を、脱水工程と並行して8時間にわたり連続的に行った。
ここに、ロータリーキルン2への脱水汚泥と生石灰との仕込比率は、平均で100:14.1(質量)であり、ロータリーキルン2内での脱水汚泥および生石灰の滞留時間を8分間とした。
一次乾燥工程での乾燥効率の指標として、ロータリーキルン2内に滞留する汚泥の温度を測定したところ15〜18℃と低いものであった。
(2) Primary drying process:
The dewatered sludge discharged from the dehydrator 1 after the dehydration process is sequentially charged into the
Here, the charging ratio of dehydrated sludge and quicklime to the
As an index of the drying efficiency in the primary drying step, the temperature of sludge staying in the
(3)二次乾燥工程:
一次乾燥工程を経てロータリーキルン2から排出された汚泥を、実施例1(3)と同様の条件下で天日乾燥を行い、含水率45%の乾燥汚泥21.5tを得た。
得られた乾燥汚泥において、未反応の生石灰によるカルシウムの残留が認められた。
この比較例2は、ロータリーキルン内への過熱水蒸気の供給を行わなかった比較例である。
以上の結果を表1にまとめて示す。
(3) Secondary drying process:
The sludge discharged from the
In the obtained dried sludge, calcium residue due to unreacted quicklime was observed.
This comparative example 2 is a comparative example in which superheated steam was not supplied into the rotary kiln.
The above results are summarized in Table 1.
1 脱水機
2 ロータリーキルン
3 蒸気過熱装置
4 循環用送風機
5 排気部
6 屋外乾燥場
DESCRIPTION OF SYMBOLS 1
Claims (3)
得られた脱水汚泥100質量部と生石灰5〜30質量部とを攪拌混合機に仕込み、前記脱水汚泥中の水と前記生石灰との反応熱によって当該脱水汚泥中の水を蒸発させるとともに、発生する水蒸気を前記攪拌混合機から回収して蒸気過熱装置で過熱し、得られる過熱水蒸気を前記攪拌混合機に供給して、前記脱水汚泥および前記生石灰と接触させる一次乾燥工程と、
前記一次乾燥工程を経た汚泥を前記攪拌混合機から取り出して乾燥する二次乾燥工程とを含むことを特徴とする有機性汚泥の処理方法。 A dehydration step of dehydrating the organic sludge to obtain a dehydrated sludge having a water content of 70 to 90% by mass;
The resulting charged into dewatered sludge 100 parts by mass lime 5 to 30 mass parts and a stirrer mixer, along with evaporating water in the dewatered sludge by reaction heat of the quicklime with water in the dewatered sludge, generated Steam is recovered from the stirring mixer and superheated with a steam superheater, and the resulting superheated steam is supplied to the stirring mixer to be brought into contact with the dehydrated sludge and quicklime;
And a secondary drying step of removing the sludge having undergone the primary drying step from the stirring mixer and drying the sludge.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009223601A JP5317283B2 (en) | 2009-09-29 | 2009-09-29 | Treatment method of organic sludge |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009223601A JP5317283B2 (en) | 2009-09-29 | 2009-09-29 | Treatment method of organic sludge |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011072852A JP2011072852A (en) | 2011-04-14 |
JP5317283B2 true JP5317283B2 (en) | 2013-10-16 |
Family
ID=44017432
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009223601A Active JP5317283B2 (en) | 2009-09-29 | 2009-09-29 | Treatment method of organic sludge |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5317283B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105417926A (en) * | 2015-12-31 | 2016-03-23 | 杭州隽琛环保有限公司 | Indirect sludge drying device adopting tubular rotary furnace |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104743765B (en) * | 2015-04-09 | 2016-08-17 | 北京建筑材料科学研究总院有限公司 | A kind of two-part drying and other treatment sludge method |
CN106430728A (en) * | 2016-11-15 | 2017-02-22 | 墨宝股份有限公司 | Sludge drying and sewage treatment method |
CN106396333A (en) * | 2016-11-15 | 2017-02-15 | 墨宝股份有限公司 | Dehydration method for sludge from sewage treatment |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54121558A (en) * | 1978-03-15 | 1979-09-20 | Tomoe Kogyo Kk | Method of treating centrifugal dehydrated cake and treatment device |
JPS5544338A (en) * | 1978-09-26 | 1980-03-28 | Akijirou Kameyama | Treating method of household sewage settling sludge and treated matter thereof |
JPS5845798A (en) * | 1981-09-14 | 1983-03-17 | Hisashi Nakabayashi | Treatment of organic or inorganic sludge |
JPS58101796A (en) * | 1981-12-14 | 1983-06-17 | Ebara Infilco Co Ltd | Treatment for organic sludge |
JPH0790240B2 (en) * | 1986-09-26 | 1995-10-04 | 日揮株式会社 | Sludge drying equipment |
US5200033A (en) * | 1991-09-09 | 1993-04-06 | Lwv Associates, Inc. | Method for removing organic contaminants from soils |
JP3356859B2 (en) * | 1994-02-28 | 2002-12-16 | 小野田ケミコ株式会社 | Sludge treatment method |
JPH09122700A (en) * | 1995-11-01 | 1997-05-13 | Tsukishima Kikai Co Ltd | Production of dried product of sludge cake |
JPH09243262A (en) * | 1996-03-13 | 1997-09-19 | Fuji Seikan Kk | Drying method of organic garbage, and drying apparatus therefor |
JPH09248600A (en) * | 1996-03-15 | 1997-09-22 | Ebara Corp | Method of utilizing sewage sludge as cement making material and fuel |
US5765293A (en) * | 1997-03-12 | 1998-06-16 | Haden, Inc. | Method for processing paint sludge |
JPH1135388A (en) * | 1997-07-14 | 1999-02-09 | Chichibu Onoda Cement Corp | Production of organic fertilizer |
JP3609636B2 (en) * | 1998-12-14 | 2005-01-12 | 株式会社東芝 | Sludge drying equipment |
JP4390524B2 (en) * | 2003-10-27 | 2009-12-24 | カワサキプラントシステムズ株式会社 | Organic waste treatment method and treatment system |
JP2008049318A (en) * | 2006-08-28 | 2008-03-06 | Kurimoto Ltd | Treatment method of sludge |
JP4756556B2 (en) * | 2007-03-28 | 2011-08-24 | 日本下水道事業団 | Sludge carbonization equipment |
JP2009202078A (en) * | 2008-02-27 | 2009-09-10 | Taiheiyo Cement Corp | Drying and granulation system of wet organic waste |
JP5311007B2 (en) * | 2008-08-06 | 2013-10-09 | 大旺新洋株式会社 | Heat treatment system and heat treatment method |
-
2009
- 2009-09-29 JP JP2009223601A patent/JP5317283B2/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105417926A (en) * | 2015-12-31 | 2016-03-23 | 杭州隽琛环保有限公司 | Indirect sludge drying device adopting tubular rotary furnace |
Also Published As
Publication number | Publication date |
---|---|
JP2011072852A (en) | 2011-04-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101628779B (en) | Method and device for drying sludge by utilizing high-temperature steam | |
CN101290121B (en) | Wet sludge anhydration burning processing system and process | |
RU2741550C2 (en) | Method of producing low-ash activated charcoal | |
JP5361401B2 (en) | Sludge drying apparatus and sludge drying method | |
JP5317283B2 (en) | Treatment method of organic sludge | |
RU2586332C1 (en) | Eco-friendly and highly effective method for preparing solid fuel using organic waste with high water content and combine thermoelectric power system operating with fuel described | |
KR910006272B1 (en) | Refuse incineration system | |
CN101532769B (en) | New dry heat reutilization method | |
JPH1160223A (en) | Production of activated carbon by sludge, apparatus therefor and sludge activated carbon | |
CN103588375A (en) | MVC (Mechanical Vapor Compression) sludge evaporating and drying system and sludge drying method thereof | |
US20090078610A1 (en) | Method of turning vegetable asphalt into superior boiler fuel | |
JP4231739B2 (en) | Sludge recycling method | |
JP2004123992A (en) | Carbonization treatment method and carbonization treatment system | |
JP6398745B2 (en) | Method for producing anhydrous gypsum | |
CN102897984A (en) | Energy-saving and environmental-friendly two-stage sludge drying method | |
JP2019141769A (en) | Plant, biomass fuel manufacturing system, biomass power generation facility, plant operating method, and biomass fuel manufacturing method | |
JP3666940B2 (en) | How to make sewage sludge into cement | |
CN102639452B (en) | Method for drying sludge | |
JP2008214486A (en) | Method and apparatus for producing carbonized fuel | |
JP5173263B2 (en) | Solid fuel mainly composed of sewage sludge and its production equipment | |
JP2004223315A (en) | Method for recovering phosphate and zeolite | |
JPS62160183A (en) | Method for treating excretion | |
JP2004203662A (en) | Method of manufacturing cement | |
JPS614795A (en) | Method for producing solid fuel from organic sludge | |
JPH1057998A (en) | Treatment of sludge and system therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120821 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130415 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130419 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130426 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130705 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130705 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5317283 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |