JP5315477B1 - Silica particles, method for producing the same, and resin composition - Google Patents

Silica particles, method for producing the same, and resin composition Download PDF

Info

Publication number
JP5315477B1
JP5315477B1 JP2013502734A JP2013502734A JP5315477B1 JP 5315477 B1 JP5315477 B1 JP 5315477B1 JP 2013502734 A JP2013502734 A JP 2013502734A JP 2013502734 A JP2013502734 A JP 2013502734A JP 5315477 B1 JP5315477 B1 JP 5315477B1
Authority
JP
Japan
Prior art keywords
silicon
particles
silica particles
reaction
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013502734A
Other languages
Japanese (ja)
Other versions
JPWO2013171812A1 (en
Inventor
亘孝 冨田
武 楊原
尚 吉口
賛 安部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Admatechs Co Ltd
Original Assignee
Admatechs Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Admatechs Co Ltd filed Critical Admatechs Co Ltd
Priority to JP2013502734A priority Critical patent/JP5315477B1/en
Application granted granted Critical
Publication of JP5315477B1 publication Critical patent/JP5315477B1/en
Publication of JPWO2013171812A1 publication Critical patent/JPWO2013171812A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

新規なシリカ粒子の製造方法を提供すること。
ケイ素含有粒子と酸素との反応でシリカ粒子を製造する際に、ケイ素元素よりも電子親和力が小さい金属元素を含有させることにより、ケイ素含有粒子と酸素との反応が抑制されるために反応時における温度上昇も抑制される。結果、シリカ粒子が形成されるときの反応条件が相対的に穏やかになることで生成したシリカ粒子の内部に空隙が形成されがたくなる。金属ケイ素を主成分とするケイ素含有粒子と酸素とを反応させて得られるシリカ粒子であって、前記ケイ素含有粒子は鉄元素、リン元素、及びアルミニウム元素からなる反応抑制元素を含有する合金又は金属間化合物であり、自身を構成する一次粒子の少なくとも一部はケイ素元素及び前記反応抑制元素の双方を含有することを特徴とする。
To provide a novel method for producing silica particles.
When producing silica particles by reaction of silicon-containing particles and oxygen, by containing a metal element having an electron affinity smaller than that of silicon elements, the reaction between silicon-containing particles and oxygen is suppressed. Temperature rise is also suppressed. As a result, it is difficult for voids to be formed inside the silica particles produced by relatively mild reaction conditions when the silica particles are formed. Silica particles obtained by reacting silicon-containing particles containing metal silicon as a main component with oxygen, wherein the silicon-containing particles include an alloy or metal containing a reaction-inhibiting element composed of an iron element, a phosphorus element, and an aluminum element It is an intermetallic compound, and at least a part of primary particles constituting itself contains both silicon element and the reaction suppressing element.

Description

本発明は、シリカ粒子及びその製造方法、並びに樹脂組成物に関し、特に中実により近いシリカ粒子に関する。   The present invention relates to silica particles, a method for producing the same, and a resin composition, and particularly relates to silica particles closer to solid.

従来、熱硬化性樹脂などの樹脂中にシリカ粒子を含有させた樹脂組成物が知られている。樹脂中にシリカ粒子を含有・分散させることにより樹脂組成物に対して耐熱性を向上したり、物理的強度を向上したりできる。   Conventionally, a resin composition in which silica particles are contained in a resin such as a thermosetting resin is known. By including and dispersing silica particles in the resin, the heat resistance of the resin composition can be improved and the physical strength can be improved.

特開平6−298521号公報JP-A-6-298521 特開2006−290724号公報JP 2006-290724 A

ところで、金属ケイ素粉末を酸素と反応させてシリカ粒子を製造する方法(VMC法)が知られている。VMC法によると比表面積が大きく且つアモルファス状のシリカを得ることができる。VMC法は、酸素を含む雰囲気中でバーナーにより化学炎(天然ガスやプロパンガスなどの可燃性ガスを用いて形成できる)を形成し、この化学炎中に金属ケイ素粉末を粉塵雲が形成される程度の量投入し、爆燃を起こして球状の酸化物粒子を得る方法である。   By the way, a method of producing silica particles by reacting metal silicon powder with oxygen (VMC method) is known. According to the VMC method, amorphous silica having a large specific surface area can be obtained. In the VMC method, a chemical flame (which can be formed using a combustible gas such as natural gas or propane gas) is formed by a burner in an oxygen-containing atmosphere, and a dust cloud is formed of metal silicon powder in the chemical flame. This is a method in which a certain amount is added and deflagration is caused to obtain spherical oxide particles.

ここで、樹脂組成物中に分散させるシリカ粒子としては一次粒子の内部においても空隙が生じていないものを利用することが望ましい場合がある。中実な粒子は比重が大きくなり物理的特性も特有のものを持つことになる。VMC法は爆発的な燃焼によりシリカを生成する方法であるため、急激な温度変化によって一次粒子内に空隙が生じることがある。   Here, as the silica particles dispersed in the resin composition, it may be desirable to use those in which no voids are formed even inside the primary particles. Solid particles have a higher specific gravity and specific physical properties. Since the VMC method is a method of generating silica by explosive combustion, voids may be generated in the primary particles due to a rapid temperature change.

本発明は上記実情に鑑み完成したものであり、新規なシリカ粒子とその製造方法並びにそのシリカ粒子を含有する樹脂組成物を提供することを解決すべき課題とする。   This invention is completed in view of the said situation, and makes it the problem which should be solved to provide the novel silica particle, its manufacturing method, and the resin composition containing the silica particle.

上記課題を解決する目的で本発明者らは鋭意検討を行った結果、金属ケイ素が主成分であるケイ素含有粒子と酸素との反応を利用してシリカ粒子を製造するVMC法において、ケイ素元素よりも電子親和力が小さい金属元素を合金又は金属間化合物として含有させることにより、ケイ素含有粒子と酸素との反応が、ケイ素元素のみからケイ素含有粒子が構成されているときと比べて抑制されるために反応時における温度上昇も抑制されることとなる。結果、シリカ粒子が形成されるときの反応条件が相対的に穏やかになることで生成したシリカ粒子の内部に空隙が形成されがたくなる(すなわち、中実な粒子に近くなる)ことを発見し、その知見に基づき以下の発明を完成した。なお、「金属ケイ素が主成分である」とは金属元素の含有量がケイ素含有粒子全体の質量を基準として50%以上であるか、又は、後述する反応抑制元素以外の組成が不可避不純物を除いて金属ケイ素であることをいう。   In order to solve the above problems, the present inventors have conducted intensive studies. As a result, in the VMC method for producing silica particles by utilizing the reaction between silicon-containing particles containing metal silicon as a main component and oxygen, In addition, by containing a metal element having a small electron affinity as an alloy or an intermetallic compound, the reaction between the silicon-containing particles and oxygen is suppressed compared to the case where the silicon-containing particles are composed of only silicon elements. The temperature rise during the reaction is also suppressed. As a result, it was discovered that the reaction conditions when the silica particles are formed are relatively gentle, so that voids are less likely to be formed inside the generated silica particles (that is, close to solid particles). Based on the findings, the following invention has been completed. “Metal silicon is the main component” means that the content of the metal element is 50% or more based on the total mass of the silicon-containing particles, or the composition other than the reaction-suppressing element described later excludes inevitable impurities. It means metallic silicon.

(1)上記課題を解決するシリカ粒子は、金属ケイ素を主成分とするケイ素含有粒子と酸素とを反応させて得られるシリカ粒子であって、
前記ケイ素含有粒子は鉄元素及びリン元素のうちの少なくとも1つを含む反応抑制元素を含有し、得られるシリカ粒子全体の質量を基準として、鉄元素が0.01%以上1.5%未満の範囲で含有するか、又はリン元素が0.01%超0.026%未満の範囲で含有する合金又は金属間化合物であり、
自身を構成する一次粒子の少なくとも一部はケイ素元素及び前記反応抑制元素の双方を含有し、
球相当径が20μm以上の粒子の質量が4.0×10−6 mgより大きいことを特徴とする。(2)(1)に記載のシリカ粒子は、前記ケイ素含有粒子が、得られるシリカ粒子全体の質量を基準として、鉄元素が0.01%以上1.5%未満の範囲で含有する構成を採用できる。(3)上記課題を解決するシリカ粒子の製造方法は、金属ケイ素を主成分とするケイ素含有粒子と酸素とを反応させてシリカ粒子を製造する方法であって、
前記ケイ素含有粒子は鉄元素及びリン元素のうちの少なくとも1つを含む反応抑制元素を含有し、得られるシリカ粒子全体の質量を基準として、鉄元素が0.01%以上1.5%未満の範囲で含有するか、又はリン元素が0.01%超0.026%未満の範囲で含有する合金又は金属間化合物であり、
金属ケイ素と酸素とを反応させて得られたシリカ粒子は自身を構成する一次粒子の少なくとも一部はケイ素元素及び前記反応抑制元素の双方を含有し、球相当径が20μm以上の粒子の質量が4.0×10−6 mgより大きいことを特徴とする。(4)上記課題を解決するシリカ含有樹脂組成物は、(1)又は(2)に記載のシリカ粒子と、前記シリカ粒子を分散する樹脂組成物とを有することを特徴とする。
(1) Silica particles that solve the above problems are silica particles obtained by reacting silicon-containing particles containing metal silicon as a main component with oxygen,
The silicon-containing particles contain a reaction-suppressing element containing at least one of iron element and phosphorus element, and the iron element content is 0.01% or more and less than 1.5% based on the total mass of the obtained silica particles. An alloy or an intermetallic compound containing in a range or containing phosphorus in a range of more than 0.01% and less than 0.026%,
At least a part of the primary particles constituting the self contains both the silicon element and the reaction suppressing element,
The mass of particles having a sphere equivalent diameter of 20 μm or more is larger than 4.0 × 10 −6 mg . (2) The silica particles according to (1) have a configuration in which the silicon-containing particles contain an iron element in a range of 0.01% or more and less than 1.5% based on the mass of the entire silica particles obtained. Can be adopted. (3) A method for producing silica particles that solves the above problems is a method for producing silica particles by reacting silicon-containing particles containing metal silicon as a main component with oxygen,
The silicon-containing particles contain a reaction-suppressing element containing at least one of iron element and phosphorus element, and the iron element content is 0.01% or more and less than 1.5% based on the total mass of the obtained silica particles. An alloy or an intermetallic compound containing in a range or containing phosphorus in a range of more than 0.01% and less than 0.026%,
Silica particles obtained by reacting metallic silicon with oxygen contain at least part of the primary particles constituting both the silicon element and the reaction-suppressing element, and the mass of particles having a sphere equivalent diameter of 20 μm or more. It is characterized by being larger than 4.0 × 10 −6 mg . (4) A silica-containing resin composition that solves the above problems includes the silica particles according to (1) or (2) and a resin composition in which the silica particles are dispersed.

本発明のシリカ粒子及びその製造方法は上記構成を有することにより、中実なシリカ粒子を提供することが可能になる。更には付随的な効果として、接触した物に対する付着性を低減することができる。   Since the silica particles and the method for producing the same of the present invention have the above configuration, solid silica particles can be provided. Furthermore, as an incidental effect, the adhesion to the contacted object can be reduced.

本発明の一実施例で用いた製造装置の全体構成説明図である。BRIEF DESCRIPTION OF THE DRAWINGS It is explanatory drawing of the whole structure of the manufacturing apparatus used in one Example of this invention. 図1の装置の燃焼器部分の要部拡大断面図である。It is a principal part expanded sectional view of the combustor part of the apparatus of FIG.

本発明のシリカ粒子及びその製造方法、並びに、シリカ含有樹脂組成物について実施形態に基づき以下詳細に説明を行う。   The silica particles of the present invention, the production method thereof, and the silica-containing resin composition will be described in detail below based on the embodiments.

(シリカ粒子)
本実施形態のシリカ粒子は金属ケイ素を主成分とするケイ素含有粒子と酸素とを反応させて得られるシリカ粒子である。この方法は前述したようにVMC法と称される方法であり、真球度が高い粒子を効率よく製造することができる方法である。VMC法にて製造された直後において、製造されたシリカ粒子は粒径(球相当径)が20μm以上の粒子の質量が4.0×10−6 mgより大きい。
(Silica particles)
The silica particles of the present embodiment are silica particles obtained by reacting silicon-containing particles containing metal silicon as a main component with oxygen. As described above, this method is called a VMC method, and can efficiently produce particles having a high sphericity. Immediately after being produced by the VMC method, the produced silica particles have a particle size (sphere equivalent diameter) of 20 μm or more and a mass of more than 4.0 × 10 −6 mg .

ケイ素含有粒子は金属ケイ素の他、反応抑制元素を含有する。反応抑制元素は鉄元素及びリン元素のうちの少なくとも1つを含む。反応抑制元素は、鉄元素が0.01%以上1.5%未満の範囲で含有するか、又はリン元素が0.01%超0.026%未満の範囲で含有する。併せて、アルミニウム元素を反応抑制元素に加えることも可能であり、その場合にシリカ粒子全体の質量を基準として0.03%以上0.243%未満の範囲で含有することが好ましい。   The silicon-containing particles contain a reaction suppressing element in addition to metal silicon. The reaction suppressing element includes at least one of iron element and phosphorus element. The reaction suppressing element contains an iron element in a range of 0.01% or more and less than 1.5%, or a phosphorus element in a range of more than 0.01% and less than 0.026%. In addition, it is also possible to add an aluminum element to the reaction-suppressing element. In that case, it is preferable that the aluminum element is contained in a range of 0.03% or more and less than 0.243% based on the mass of the entire silica particles.

ケイ素元素と反応抑制元素とは合金乃至は金属間化合物として存在する。反応抑制元素とケイ素元素とが原子レベルで混合することにより、ケイ素と酸素との反応を抑制して穏やかな反応条件を実現することができる。   The silicon element and the reaction suppressing element exist as an alloy or an intermetallic compound. By mixing the reaction-suppressing element and the silicon element at the atomic level, it is possible to suppress the reaction between silicon and oxygen and realize mild reaction conditions.

反応抑制元素全体の和について、望ましい下限としては0.05%、0.2%、0.4%が挙げられ、望ましい上限としては3%、1.3%が挙げられる。反応抑制元素はケイ素元素よりも電子親和力が小さい元素であり、特に鉄を含有させることが望ましい。反応抑制元素はケイ素元素と共に、生成したシリカ粒子を構成する一次粒子内に取り込まれる。生成したシリカ粒子中において、ケイ素元素と反応抑制元素とは原子レベルで混合するものである。   With respect to the sum of all reaction-suppressing elements, desirable lower limits include 0.05%, 0.2%, and 0.4%, and desirable upper limits include 3% and 1.3%. The reaction inhibiting element is an element having an electron affinity smaller than that of silicon element, and it is particularly desirable to contain iron. The reaction suppressing element is taken together with the silicon element into primary particles constituting the generated silica particles. In the produced silica particles, the silicon element and the reaction suppressing element are mixed at the atomic level.

本実施形態のシリカ粒子は体積平均粒径が0.1μmから5μmであることが望ましい。そして、最大粒径が20μm以下であることが望ましく、更に小さな上限を設定することもできる。最大粒径の制御はVMC法の反応条件(ケイ素含有粒子と酸素と可燃性ガスとの混合比;ケイ素含有粒子の供給速度、供給量など)を変化させたり、VMC法によりシリカ粒子を製造した後、必要な目開きをもつ篩によって篩分けすることも可能である。体積平均粒径の測定はレーザ散乱法にて測定したものである。体積平均粒径として好ましい下限としては0.2μm、0.3μm、0.4μmが挙げられ、好ましい上限としては1.2μm、0.9μm、0.7μmが挙げられる。   The silica particles of this embodiment preferably have a volume average particle size of 0.1 μm to 5 μm. The maximum particle size is desirably 20 μm or less, and a smaller upper limit can be set. The maximum particle size is controlled by changing the reaction conditions of the VMC method (mixing ratio of silicon-containing particles, oxygen and combustible gas; supply rate of silicon-containing particles, supply amount, etc.), or producing silica particles by the VMC method Later, it is also possible to screen with a sieve having the required openings. The volume average particle size is measured by a laser scattering method. Preferred lower limits for the volume average particle diameter include 0.2 μm, 0.3 μm, and 0.4 μm, and preferred upper limits include 1.2 μm, 0.9 μm, and 0.7 μm.

本実施形態のシリカ粒子は真球度が0.9以上であることが望ましく、0.95以上であることが更に望ましい。真球度の測定は、SEMで写真を撮り、その観察される粒子の面積と周囲長から、(真球度)={4π×(面積)÷(周囲長)2}で算出される値として算出する。1に近づくほど真球に近い。具体的には画像処理装置(シスメックス株式会社:FPIA−3000)を用い、無作為に抽出した100個の粒子について測定した平均値を採用する。   The silica particles of the present embodiment preferably have a sphericity of 0.9 or more, and more preferably 0.95 or more. The sphericity is measured by taking a photograph with an SEM, and calculating the value of (sphericity) = {4π × (area) ÷ (perimeter) 2} from the area and circumference of the observed particle. calculate. The closer to 1, the closer to a true sphere. Specifically, an average value measured for 100 particles randomly extracted using an image processing apparatus (Sysmex Corporation: FPIA-3000) is employed.

(シリカ粒子の製造方法)
本実施形態のシリカ粒子の製造方法は上述した本実施形態のシリカ粒子を製造する方法である。本製造方法はケイ素含有粒子と酸素とを反応させることによりシリカ粒子を製造する。製造されたシリカ粒子は粒径(球相当径)が20μm以上の粒子の質量が4.0×10−6 mgより大きい。この範囲にはいるようであると、そのシリカ粒子が中実に近いことが裏付けられる。
(Method for producing silica particles)
The manufacturing method of the silica particle of this embodiment is a method of manufacturing the silica particle of this embodiment mentioned above. This production method produces silica particles by reacting silicon-containing particles with oxygen. The produced silica particles have a particle size (equivalent sphere diameter) of 20 μm or more, and the mass of the particles is larger than 4.0 × 10 −6 mg . If it seems to be in this range, it is confirmed that the silica particles are almost solid.

ケイ素含有粒子は金属ケイ素を主成分とする他、反応抑制元素をケイ素との合金乃至は金属間化合物として含有している。ケイ素含有粒子における組成(不純物の量など)がそのまま製造されるシリカ粒子の組成に反映されるので必要な組成(純度など)になるように精製などを行う。   The silicon-containing particles contain metal silicon as a main component and also contain a reaction suppressing element as an alloy or intermetallic compound with silicon. Since the composition (such as the amount of impurities) in the silicon-containing particles is reflected as it is in the composition of the silica particles produced as it is, purification and the like are performed so that the necessary composition (such as purity) is obtained.

(シリカ含有樹脂組成物)
本実施形態のシリカ含有樹脂組成物は上述のシリカ粒子と樹脂組成物とを混合したものである。シリカ粒子と樹脂組成物との混合比は特に限定しないが、シリカ粒子の量が多い方が熱的安定性に優れたものになる。
(Silica-containing resin composition)
The silica-containing resin composition of the present embodiment is a mixture of the above-described silica particles and a resin composition. The mixing ratio of the silica particles and the resin composition is not particularly limited, but the larger the amount of silica particles, the better the thermal stability.

樹脂組成物は何らかの条件下で硬化可能な組成物である。例えば、プレポリマーと硬化剤との混合物である。硬化剤は硬貨直前に混合しても良い。樹脂組成物としてはその種類は特に限定しない。例えば、エポキシ基、オキセタン基、水酸基、ブロックされたイソシアネート基、アミノ基、ハーフエステル基、アミック基、カルボキシ基及び炭素-炭素二重結合基を化学構造中に有することが望ましい。これらの官能基は好適な反応条件を設定することで互いに結合可能な官能基(重合性官能基)であり、適正な反応条件を選択することにより樹脂組成物を硬化させることができる。硬化させるための好適な反応条件としては単純に加熱や光照射を行ったり、熱や光照射によりラジカルやイオン(アニオン、カチオン)などの反応性種を生成したり、それらの官能基間を結合する反応開始剤(重合開始剤)を添加して加熱や光照射を行うことなどである。重合反応に際して必要な化合物を硬化剤として添加したり、その反応に対する触媒を添加することもできる。   The resin composition is a composition that can be cured under some conditions. For example, a mixture of a prepolymer and a curing agent. The curing agent may be mixed immediately before the coin. The type of the resin composition is not particularly limited. For example, it is desirable to have an epoxy group, oxetane group, hydroxyl group, blocked isocyanate group, amino group, half ester group, amic group, carboxy group and carbon-carbon double bond group in the chemical structure. These functional groups are functional groups (polymerizable functional groups) that can be bonded to each other by setting suitable reaction conditions, and the resin composition can be cured by selecting appropriate reaction conditions. Suitable reaction conditions for curing include simple heating and light irradiation, generation of reactive species such as radicals and ions (anions and cations) by heat and light irradiation, and bonding between these functional groups. For example, adding a reaction initiator (polymerization initiator) to perform heating or light irradiation. A compound necessary for the polymerization reaction can be added as a curing agent, or a catalyst for the reaction can be added.

樹脂組成物としては重合により高分子材料を形成する単量体や、上述したような重合性官能基により修飾した高分子材料が好ましいものとして挙げられる。例えば、硬化前の、エポキシ樹脂、アクリル樹脂、ウレタン樹脂などのプレポリマーが好適である。特に熱的安定性の高いものにする場合にはエポキシ樹脂を主体として組成物を構成することが望ましい。   Preferred examples of the resin composition include a monomer that forms a polymer material by polymerization and a polymer material modified with a polymerizable functional group as described above. For example, a prepolymer such as an epoxy resin, an acrylic resin, or a urethane resin before curing is suitable. In particular, when the thermal stability is high, it is desirable that the composition is composed mainly of an epoxy resin.

本発明のシリカ粒子及びその製造方法について実施例に基づき詳細に説明を行う。   The silica particles of the present invention and the production method thereof will be described in detail based on examples.

・製造装置の説明
図1に本試験で用いた製造装置を示す。この製造装置は反応室10をもつ反応容器1と、反応容器1の上部に設けられ反応室10に開口する燃焼器2と、反応容器10の下部側壁に設けられ反応室10と連通する補修装置3と、ホッパー4と、ホッパー4内の原料粉末を燃焼器2に供給する粉末供給装置5とから構成される。
-Description of manufacturing apparatus The manufacturing apparatus used in this test is shown in FIG. This manufacturing apparatus includes a reaction vessel 1 having a reaction chamber 10, a combustor 2 provided at an upper portion of the reaction vessel 1 and opening to the reaction chamber 10, and a repair device provided at a lower side wall of the reaction vessel 10 and communicating with the reaction chamber 10. 3, a hopper 4, and a powder supply device 5 that supplies raw powder in the hopper 4 to the combustor 2.

燃焼器2は、図2に拡大して示すように、軸中心に設けられ反応室10に開口する粉末供給路20と、粉末供給路20と同軸的に設けられ反応室10にリング状に開口する可燃ガス供給路21と、可燃ガス供給路21と同軸的且つ外側に設けられ反応室10にリング状に開口する酸素供給路22とから構成される。   As shown in an enlarged view in FIG. 2, the combustor 2 is provided with a powder supply path 20 provided in the center of the shaft and opened in the reaction chamber 10, and provided coaxially with the powder supply path 20 and opened in a ring shape in the reaction chamber 10. A combustible gas supply path 21 and an oxygen supply path 22 provided coaxially and outside of the combustible gas supply path 21 and opening in the reaction chamber 10 in a ring shape.

捕集器3は、反応室10に開口する排気管30と、排気管30の他端に接続されたバグフィルタ31と、ブロア32とからなり、ブロア32の駆動により反応室10内の燃焼排気ガスを吸引して排気すると共に、生成したシリカ粒子を捕集する。なお、ブロア32の吸引により反応室10内は負圧に保たれる。   The collector 3 includes an exhaust pipe 30 opened to the reaction chamber 10, a bag filter 31 connected to the other end of the exhaust pipe 30, and a blower 32, and combustion exhaust in the reaction chamber 10 is driven by the blower 32. While sucking and exhausting the gas, the generated silica particles are collected. The inside of the reaction chamber 10 is kept at a negative pressure by the suction of the blower 32.

・シリカ粒子の製造
上記した製造装置を用い、以下のように本実施例の製造方法によりシリカ粒子を製造した。ケイ素含有粒子としては得られるシリカ粒子全体の質量を基準として、鉄元素が4ppm(試料1)、132ppm(試料2)、1600ppm(試料3)、3200ppm(試料4)、15000ppm(試料5);リン元素が6ppm(試料1)、16ppm(試料2)、105ppm(試料3)、121ppm(試料4)、260ppm(試料5);アルミニウム元素が102ppm(試料1)、398ppm(試料2)、1050ppm(試料3)、1210ppm(試料4)、2430ppm(試料5);反応抑制元素(鉄元素、リン元素、及びアルミニウム元素の和)が112ppm(試料1)、546ppm(試料2)、2755ppm(試料3)、4531ppm(試料4)、17690ppm(試料5)であるものをそれぞれ採用した。
-Manufacture of silica particles Silica particles were manufactured by the manufacturing method of a present Example as follows using the manufacturing apparatus mentioned above. As the silicon-containing particles, based on the mass of the entire silica particles obtained, iron element is 4 ppm (sample 1), 132 ppm (sample 2), 1600 ppm (sample 3), 3200 ppm (sample 4), 15000 ppm (sample 5); phosphorus Element 6 ppm (sample 1), 16 ppm (sample 2), 105 ppm (sample 3), 121 ppm (sample 4), 260 ppm (sample 5); Aluminum element 102 ppm (sample 1), 398 ppm (sample 2), 1050 ppm (sample) 3), 1210 ppm (sample 4), 2430 ppm (sample 5); reaction inhibitory elements (sum of iron element, phosphorus element, and aluminum element) are 112 ppm (sample 1), 546 ppm (sample 2), 2755 ppm (sample 3), What is 4531 ppm (sample 4), 17690 ppm (sample 5) It was adopted.

それぞれのケイ素含有粒子をホッパ4内に投入し、粉末供給装置5を用いて空気と共に反応室10内に供給した。このときにケイ素含有粒子は80kg/時間の速度で供給された。このときに搬送空気の供給速度としては20Nm/時間とした。また、可燃性ガスの供給速度は7Nm/時間とした。また、酸素ガスの供給速度は140Nm/時間とした。 Each silicon-containing particle was put into the hopper 4 and supplied into the reaction chamber 10 together with air using the powder supply device 5. At this time, the silicon-containing particles were supplied at a rate of 80 kg / hour. At this time, the supply speed of the carrier air was 20 Nm 3 / hour. The supply rate of the combustible gas was 7 Nm 3 / hour. The oxygen gas supply rate was 140 Nm 3 / hour.

そして、可燃性ガスに着火して化学炎を形成している中に、粉末供給装置5により燃焼器2に到達したケイ素含有粒子は酸素ガスと連続的に反応し、爆発的に反応して火炎を形成した。結果、シリカ粒子が生成するので、補修装置3により回収した。   While the combustible gas is ignited to form a chemical flame, the silicon-containing particles that have reached the combustor 2 by the powder supply device 5 continuously react with the oxygen gas and react explosively to the flame. Formed. As a result, silica particles were generated, and were collected by the repair device 3.

得られたシリカ粒子のそれぞれについて、分級を行い、20μm以上の粒子を得た。得られた粒子の質量を測定し、含まれる粒子の数で除することで粒子の粒1つ当たりの質量を求めた。その結果、試料1では1.6×10−6mg、試料2では4.2×10−6mg、試料3では7.8×10−6mg、試料4では9.7×10−6mg、試料5では2.5×10−5mgであった。つまり、鉄などの反応抑制元素の含有量が多くなるにつれて1個あたりの質量が大きくなった。これは反応抑制元素を含有させることにより、得られるシリカ粒子が中実に近づいたために、粒子1個あたりの質量が大きくなったものと思われる。また、鉄元素の含有量が大きくなるほど、ケイ素含有粒子及び得られたシリカ粒子の設備(搬送路など)への付着が抑制できることを確認した。 Each of the obtained silica particles was classified to obtain particles of 20 μm or more. The mass of the obtained particles was measured and divided by the number of contained particles to determine the mass per particle of the particles. As a result, 1.6 × 10 −6 mg for sample 1, 4.2 × 10 −6 mg for sample 2, 7.8 × 10 −6 mg for sample 3, and 9.7 × 10 −6 mg for sample 4 In Sample 5, it was 2.5 × 10 −5 mg. That is, the mass per piece increased as the content of reaction-inhibiting elements such as iron increased. This is probably because the silica particles obtained became closer to solid by containing a reaction suppressing element, and the mass per particle was increased. Moreover, it confirmed that adhesion to the facilities (a conveyance path etc.) of a silicon containing particle and the obtained silica particle could be suppressed, so that content of an iron element became large.

本発明のシリカ粒子及びその製造方法は中実なシリカ粒子を提供することが可能になる。更には付随的な効果として、接触した物に対する付着性を低減することができる。   The silica particles and the production method thereof of the present invention can provide solid silica particles. Furthermore, as an incidental effect, the adhesion to the contacted object can be reduced.

Claims (4)

金属ケイ素を主成分とするケイ素含有粒子と酸素とを反応させて得られるシリカ粒子であって、
前記ケイ素含有粒子は鉄元素及びリン元素のうちの少なくとも1つを含む反応抑制元素を含有し、得られるシリカ粒子全体の質量を基準として、鉄元素0.01%以上1.5%未満の範囲で含有するか、又はリン元素0.01%超0.026%未満の範囲で含有する合金又は金属間化合物であり、
自身を構成する一次粒子の少なくとも一部はケイ素元素及び前記反応抑制元素の双方を含有し、
球相当径が20μm以上の粒子の質量が4.0×10−6mgより大きいことを特徴とするシリカ粒子。
Silica particles obtained by reacting silicon-containing particles containing metal silicon as a main component with oxygen,
The silicon-containing particles contain inhibiter element comprising at least one of the iron element and phosphorus element, based on the weight of the entire resulting silica particles, the elemental iron less than 1.5% or more 0.01% An alloy or an intermetallic compound containing in a range or containing phosphorus element in a range of more than 0.01% and less than 0.026%,
At least a part of the primary particles constituting the self contains both the silicon element and the reaction suppressing element,
Silica particles, wherein the mass of particles having a sphere equivalent diameter of 20 μm or more is greater than 4.0 × 10 −6 mg.
前記ケイ素含有粒子は、得られるシリカ粒子全体の質量を基準として、鉄元素0.01%以上1.5%未満の範囲で含有する請求項1に記載のシリカ粒子。 The silica particles according to claim 1, wherein the silicon-containing particles contain an iron element in a range of 0.01% or more and less than 1.5% based on the mass of the entire silica particles to be obtained. 金属ケイ素を主成分とするケイ素含有粒子と酸素とを反応させてシリカ粒子を製造する方法であって、
前記ケイ素含有粒子は鉄元素及びリン元素のうちの少なくとも1つを含む反応抑制元素を含有し、得られるシリカ粒子全体の質量を基準として、鉄元素0.01%以上1.5%未満の範囲で含有するか、又はリン元素0.01%超0.026%未満の範囲で含有する合金又は金属間化合物であり、
金属ケイ素と酸素とを反応させて得られたシリカ粒子は自身を構成する一次粒子の少なくとも一部はケイ素元素及び前記反応抑制元素の双方を含有し、球相当径が20μm以上の粒子の質量が4.0×10−6mgより大きいことを特徴とするシリカ粒子の製造方法。
A method of producing silica particles by reacting silicon-containing particles containing metal silicon as a main component and oxygen,
The silicon-containing particles contain inhibiter element comprising at least one of the iron element and phosphorus element, based on the weight of the entire resulting silica particles, the elemental iron less than 1.5% or more 0.01% An alloy or an intermetallic compound containing in a range or containing phosphorus element in a range of more than 0.01% and less than 0.026%,
Silica particles obtained by reacting metallic silicon with oxygen contain at least part of the primary particles constituting both the silicon element and the reaction-suppressing element, and the mass of particles having a sphere equivalent diameter of 20 μm or more. The manufacturing method of the silica particle characterized by being larger than 4.0 * 10 <-6> mg.
請求項1又は2に記載のシリカ粒子と、
前記シリカ粒子を分散する樹脂組成物と、
を有することを特徴とするシリカ含有樹脂組成物。
Silica particles according to claim 1 or 2,
A resin composition in which the silica particles are dispersed;
A silica-containing resin composition characterized by comprising:
JP2013502734A 2012-05-14 2012-07-20 Silica particles, method for producing the same, and resin composition Active JP5315477B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013502734A JP5315477B1 (en) 2012-05-14 2012-07-20 Silica particles, method for producing the same, and resin composition

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012110840 2012-05-14
JP2012110840 2012-05-14
PCT/JP2012/004637 WO2013171812A1 (en) 2012-05-14 2012-07-20 Silica particles, method for producing same, and resin composition
JP2013502734A JP5315477B1 (en) 2012-05-14 2012-07-20 Silica particles, method for producing the same, and resin composition

Publications (2)

Publication Number Publication Date
JP5315477B1 true JP5315477B1 (en) 2013-10-16
JPWO2013171812A1 JPWO2013171812A1 (en) 2016-01-07

Family

ID=49583260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013502734A Active JP5315477B1 (en) 2012-05-14 2012-07-20 Silica particles, method for producing the same, and resin composition

Country Status (3)

Country Link
JP (1) JP5315477B1 (en)
CN (1) CN103687809B (en)
WO (1) WO2013171812A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6506940B2 (en) * 2014-10-15 2019-04-24 株式会社アドマテックス Method of producing inorganic filler, method of producing resin composition, and method of producing molded article
JP7543117B2 (en) 2020-12-10 2024-09-02 キヤノン株式会社 Two-component developer, replenishment developer, and image forming method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003221218A (en) * 2002-01-30 2003-08-05 Admatechs Co Ltd Spherical silica particles containing fine particles of iron-based oxide and manufacturing method therefor
JP2008247726A (en) * 2007-03-30 2008-10-16 Admatechs Co Ltd Metallic silicon powder and method for manufacturing the same, spherical silica powder, and resin composition

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58110414A (en) * 1981-12-23 1983-07-01 Tokuyama Soda Co Ltd Inorganic oxide and its manufacture
JPH08217615A (en) * 1995-02-15 1996-08-27 Terumo Corp Dental composite resin
JPH08333210A (en) * 1995-06-07 1996-12-17 Cataler Kogyo Kk Antimicrobial agent and its production
WO2007026680A1 (en) * 2005-08-31 2007-03-08 Kurimoto, Ltd. Amorphous silicon oxide powder and method for production thereof
JP5094183B2 (en) * 2007-03-30 2012-12-12 株式会社アドマテックス Metallic silicon powder and method for producing the same, spherical silica powder and resin composition
KR101565513B1 (en) * 2008-02-12 2015-11-03 닛산 가가쿠 고교 가부시키가이샤 Colloidal Silica Particles, Process for Producing the Same, and Silica Sol in Organic Solvent, Silica Sol in Polymerizable Compound, and Silica Sol in Dicarboxylic Anhydride Each Obtained from the Same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003221218A (en) * 2002-01-30 2003-08-05 Admatechs Co Ltd Spherical silica particles containing fine particles of iron-based oxide and manufacturing method therefor
JP2008247726A (en) * 2007-03-30 2008-10-16 Admatechs Co Ltd Metallic silicon powder and method for manufacturing the same, spherical silica powder, and resin composition

Also Published As

Publication number Publication date
JPWO2013171812A1 (en) 2016-01-07
CN103687809B (en) 2016-03-23
CN103687809A (en) 2014-03-26
WO2013171812A1 (en) 2013-11-21

Similar Documents

Publication Publication Date Title
AU2022283742B2 (en) Reactive metal powders in-flight heat treatment processes
CN101084080B (en) Method for producing superfine metal powder
JP6483205B2 (en) Method for producing surface-modified silica particles and method for producing filler-containing composition
JP5315477B1 (en) Silica particles, method for producing the same, and resin composition
JP6771078B1 (en) Alumina particle material and its manufacturing method
JP6595137B1 (en) Method for producing metal oxide particulate material
WO2018079334A1 (en) Fumed silica and production method therefor
JP2014515720A5 (en)
CN112591756A (en) High-purity low-radioactivity spherical silicon micro powder and preparation method thereof
JPWO2016080528A1 (en) Silver fine particles
JP5573777B2 (en) Sintered ore cooling method, sintered ore sorting method, and sintered ore sorting apparatus
CN109702214A (en) A kind of aluminium Zinc-based multi-element alloy spherical powder and the preparation method and application thereof
JP6558383B2 (en) Method for reforming coal ash and manufacturing fly ash for concrete admixture
JP2021161008A (en) Silica particle, method of producing the same, and slurry composition
CN108190848B (en) It is a kind of multistage fragmentation, particle screen selecting prepare compound powder method
JP2016079061A (en) Inorganic filler and method for producing the same, resin composition and molded article
CN113264543A (en) Control method for maximum particle size of spherical alumina
JP2014197649A (en) Three-dimensional mount type semiconductor device, resin composition and method for manufacturing the same
CN107500780A (en) Method for synthesizing ceramic material by supersonic speed air flow collision gas-solid reaction
JP2016079278A (en) Inorganic filler and method for producing the same, resin composition and molded article
JP6221182B2 (en) Inorganic spheroidized particle manufacturing apparatus and inorganic spheroidized particle manufacturing method
WO2023013046A1 (en) Particle material, method for manufacturing same, filler for semiconductor mounting material, slurry material, and semicondutor mounting material
JP5798896B2 (en) Method for producing spherical silica particles, method for producing filler-containing resin composition, and method for producing integrated circuit sealing material
Tropin Influence of inert particles on detonation wave parameters in silane/hydrogen/air mixtures
RU2007123092A (en) DEVICE FOR PRODUCING ULTRA-DISPERSED POWDERS BY METHOD OF BURNING GAS-WEIGHT OF METAL PARTICLES

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130708

R150 Certificate of patent or registration of utility model

Ref document number: 5315477

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250