JP2014515720A5 - - Google Patents

Download PDF

Info

Publication number
JP2014515720A5
JP2014515720A5 JP2013558343A JP2013558343A JP2014515720A5 JP 2014515720 A5 JP2014515720 A5 JP 2014515720A5 JP 2013558343 A JP2013558343 A JP 2013558343A JP 2013558343 A JP2013558343 A JP 2013558343A JP 2014515720 A5 JP2014515720 A5 JP 2014515720A5
Authority
JP
Japan
Prior art keywords
silicon
mixed oxide
aluminum
sicl
oxide powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013558343A
Other languages
Japanese (ja)
Other versions
JP2014515720A (en
JP5808438B2 (en
Filing date
Publication date
Priority claimed from EP11158474.4A external-priority patent/EP2500090B1/en
Application filed filed Critical
Publication of JP2014515720A publication Critical patent/JP2014515720A/en
Publication of JP2014515720A5 publication Critical patent/JP2014515720A5/ja
Application granted granted Critical
Publication of JP5808438B2 publication Critical patent/JP5808438B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明のさらなる対象は、本発明によるケイ素−アルミニウム混合酸化物粉末の製造方法であって、
a)CH3SiCl3、(CH32SiCl2、(CH33SiClおよび(n−C37)SiCl3からなる群から選択される1つまたは複数のケイ素化合物を含んでいる蒸気、ならびに加水分解可能およびは酸化可能のアルミニウム化合物の蒸気を、別個または一緒に、キャリアガスを用いて混合室に移し、ここで、アルミニウム化合物(Al23として算出)のケイ素化合物(SiO2として算出)に対する質量比は0.003〜0.05であり、
b)それとは別に、少なくとも1つの燃ガスおよび空気を前記混合室に移し、ここで、空気中の酸素の総量は、燃ガスならびにケイ素化合物およびアルミニウム化合物を完全に燃焼させるために少なくとも充分であり、
c)前記ケイ素化合物およびアルミニウム化合物の蒸気、燃ガスおよび空気からの混合物を燃焼装置内で点火して、この火炎を反応室内に入れて燃焼させ、
d)引き続き前記固体をガス状物質から分離し、その後この固体を水蒸気で処理する、
前記方法である。
A further subject of the present invention is a process for producing a silicon-aluminum mixed oxide powder according to the invention,
a) including one or more silicon compounds selected from the group consisting of CH 3 SiCl 3 , (CH 3 ) 2 SiCl 2 , (CH 3 ) 3 SiCl and (n-C 3 H 7 ) SiCl 3 Vapor and vapors of hydrolyzable and oxidizable aluminum compounds are transferred, separately or together, to the mixing chamber using a carrier gas, where silicon compounds (SiO 2 ) of aluminum compounds (calculated as Al 2 O 3 ) The mass ratio to (calculated as 2 ) is 0.003 to 0.05,
b) Alternatively, at least one fuel gas and air is transferred to the mixing chamber, wherein the total amount of oxygen in the air is at least sufficient to completely combust the fuel gas and silicon compound and an aluminum compound And
c) vapor of the silicon compound and aluminum compound, and ignites the mixture from fuel gas and air in the combustion device, is burned to put the flame into the reaction chamber,
d) subsequently separating the solid from the gaseous substance and then treating the solid with steam;
Said method.

前記方法は、ケイ素化合物の蒸気がSiCl4を40質量%まで含んでいてよいように実施することもできる。特に好ましくは、CH3SiCl3 65〜80質量%とSiCl4 20〜35質量%とからの混合物であってよい。アルミニウム化合物として、好ましくは塩化アルミニウムが好適である。前記燃ガスは、水素、メタン、エタン、プロパンおよびそれらの混合物からなる群から選択されるのが好ましい。特に好ましいのは、水素である。前記混合室に導入された空気は、少なくとも前記燃ガスおよびケイ素化合物およびアルミニウム化合物を完全に燃焼させるに充分である。通常、過剰の空気が使用される。水蒸気での処理は、粒子に付着した塩化物残留物を可能な限り除去する目的のために用いられ、その結果、前記粉末は、塩化物を1質量%以下、好ましくは塩化物を0.2質量%以下含んでいる。 The method can also be carried out such that the silicon compound vapor may contain up to 40% by weight of SiCl 4 . Particularly preferably, it may be a mixture of 65 to 80% by mass of CH 3 SiCl 3 and 20 to 35% by mass of SiCl 4 . As the aluminum compound, aluminum chloride is preferable. The fuel gas is hydrogen, methane, ethane, be selected from the group consisting of propane and mixtures thereof. Particularly preferred is hydrogen. The air introduced into the mixing chamber is sufficient to completely burn at least the fuel gas and the silicon compound and aluminum compound. Usually excess air is used. The treatment with water vapor is used for the purpose of removing as much as possible chloride residue adhering to the particles, so that the powder contains less than 1% by weight of chloride, preferably 0.2% of chloride. Contains less than mass%.

Claims (6)

大部分またはすべてが、凝集一次粒子の形状で存在するケイ素−アルミニウム混合酸化物粉末であって、
a.一次粒子全体における質量比(Al23/SiO2ttlが0.003〜0.05であり、
b.厚さ5nmの表面に近い層内の一次粒子の質量比(Al23/SiO2表面が、一次粒子全体におけるよりも小さく、および
c.BET表面積が50〜250m2/gである、
ことを特徴とする前記混合酸化物粉末。
A majority or all of a silicon-aluminum mixed oxide powder present in the form of agglomerated primary particles,
a. The mass ratio (Al 2 O 3 / SiO 2 ) ttl in the whole primary particles is 0.003 to 0.05,
b. The primary particle mass ratio (Al 2 O 3 / SiO 2 ) surface in a layer close to a 5 nm thick surface is smaller than in the entire primary particle, and c. The BET surface area is 50-250 m 2 / g,
The mixed oxide powder characterized by the above.
(Al23/SiO2ttl/(Al23/SiO2表面が、1.3〜20であることを特徴とする、請求項1に記載のケイ素−アルミニウム混合酸化物粉末。 2. The silicon-aluminum mixed oxide powder according to claim 1, wherein the surface of (Al 2 O 3 / SiO 2 ) ttl / (Al 2 O 3 / SiO 2 ) is 1.3 to 20. 3 . ジブチルフタレートg/混合酸化物100gで表されるジブチルフタレート数が、300〜350であることを特徴とする、請求項1または2に記載のケイ素−アルミニウム混合酸化物粉末。   3. The silicon-aluminum mixed oxide powder according to claim 1, wherein the number of dibutyl phthalates represented by g of dibutyl phthalate / 100 g of mixed oxide is 300 to 350. 4. 請求項1から3までのいずれか1項に記載のケイ素−アルミニウム混合酸化物粉末の製造方法において、
a)CH3SiCl3、(CH32SiCl2、(CH33SiClおよび(n−C37)SiCl3からなる群から選択される1つまたは複数のケイ素化合物を含んでいる蒸気、ならびに加水分解可能および/または酸化可能のアルミニウム化合物の蒸気を、別個または一緒に、キャリアガスを用いて混合室に移し、ここで、Al23として算出されるアルミニウム化合物の、SiO2として算出されるケイ素化合物に対する質量比は、0.003〜0.05であり、
b)前記とは別に、少なくとも1つの燃ガスおよび空気を前記混合室に移し、ここで、空気中の酸素の総量は、燃ガスならびにケイ素化合物およびアルミニウム化合物を完全に燃焼させるために少なくとも充分であり、
c)前記ケイ素化合物およびアルミニウム化合物の蒸気、燃ガスおよび空気からの混合物を燃焼装置内で点火して、該火炎を反応室内に入れて燃焼させ、
d)引き続き前記固体をガス状物質から分離し、その後該固体を水蒸気で処理する、
ことを特徴とする前記方法。
In the manufacturing method of the silicon-aluminum mixed oxide powder according to any one of claims 1 to 3,
a) including one or more silicon compounds selected from the group consisting of CH 3 SiCl 3 , (CH 3 ) 2 SiCl 2 , (CH 3 ) 3 SiCl and (n-C 3 H 7 ) SiCl 3 Vapor and vapors of the hydrolyzable and / or oxidizable aluminum compound are transferred separately or together to the mixing chamber using a carrier gas, where SiO 2 of the aluminum compound calculated as Al 2 O 3 The mass ratio to the silicon compound calculated as is 0.003 to 0.05,
b) separately from the transferred at least one fuel gas and air into the mixing chamber, wherein the total amount of oxygen in the air, at least in order to completely burn fuel gas and silicon compound and an aluminum compound Enough,
c) vapor of the silicon compound and aluminum compound, and ignites the mixture from fuel gas and air in the combustion device, is combusted placed in the reaction chamber to the flame,
d) subsequently separating the solid from the gaseous substance and then treating the solid with steam;
Said method.
前記ケイ素化合物の蒸気が、SiCl4を40質量%まで含んでいることを特徴とする、請求項4に記載の方法。 Vapor of the silicon compound, characterized in that it contains SiCl 4 to 40 wt%, The method of claim 4. 請求項1から3までのいずれか1項に記載のケイ素−アルミニウム混合酸化物粉末の触媒としての使用。   Use of the silicon-aluminum mixed oxide powder according to any one of claims 1 to 3 as a catalyst.
JP2013558343A 2011-03-16 2012-02-03 Silicon-aluminum mixed oxide powder Active JP5808438B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP11158474.4A EP2500090B1 (en) 2011-03-16 2011-03-16 Silicon-aluminium mixed oxide powder
EP11158474.4 2011-03-16
PCT/EP2012/051839 WO2012123185A1 (en) 2011-03-16 2012-02-03 Silicon-aluminum mixed oxide powder

Publications (3)

Publication Number Publication Date
JP2014515720A JP2014515720A (en) 2014-07-03
JP2014515720A5 true JP2014515720A5 (en) 2015-07-23
JP5808438B2 JP5808438B2 (en) 2015-11-10

Family

ID=44515134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013558343A Active JP5808438B2 (en) 2011-03-16 2012-02-03 Silicon-aluminum mixed oxide powder

Country Status (6)

Country Link
US (1) US8980784B2 (en)
EP (1) EP2500090B1 (en)
JP (1) JP5808438B2 (en)
KR (1) KR101569601B1 (en)
CN (1) CN103370129B (en)
WO (1) WO2012123185A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5910598B2 (en) * 2013-10-07 2016-04-27 トヨタ自動車株式会社 Mobile body equipped with a fuel cell
CN107922199B (en) 2015-07-10 2021-12-07 赢创运营有限公司 SiO-containing compounds with high salt stability2Of (2) a dispersion
EP3319906B1 (en) 2015-07-10 2021-09-22 Evonik Operations GmbH Sio2 containing dispersion with high salt stability
US10920084B2 (en) 2015-07-10 2021-02-16 Evonik Operations Gmbh Metal oxide-containing dispersion with high salt stability
US10767103B2 (en) 2015-10-26 2020-09-08 Evonik Operations Gmbh Method of obtaining mineral oil using a silica fluid
CN106345513B (en) * 2016-07-28 2018-10-26 青岛经济技术开发区润乾高新材料研究所 A kind of mesoporous Si-Al material and its preparation method and application
CN114761372A (en) 2019-11-14 2022-07-15 赢创运营有限公司 Process for the heterogeneous isomerisation of alpha-olefins
CN112028097B (en) * 2020-08-19 2023-10-17 南通江山农药化工股份有限公司 Method for preparing nano alumina-silicon dioxide composite powder and product thereof

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4243828A (en) * 1963-02-27 1981-01-06 Mobil Oil Corporation Alkylation of aromatics using a high silica zeolite
IT1096758B (en) 1978-06-22 1985-08-26 Snam Progetti PROCESS FOR THE PREPARATION OF TERTIARY OLEFINS
DE2931585A1 (en) 1979-08-03 1981-02-12 Degussa TEMPERATURE-STABILIZED, PYROGEN-PRODUCED ALUMINUM OXIDE MIXED OXIDE, THE METHOD FOR THE PRODUCTION AND USE THEREOF
US4254290A (en) 1979-12-20 1981-03-03 General Electric Company Acidic mixed oxide catalytic de-alkylation of tertiary-alkyl-ether-alkanols
JPS5728012A (en) 1980-07-25 1982-02-15 Mitsubishi Gas Chem Co Inc Preparation of tertiary olefin
JPS59146925A (en) * 1983-02-09 1984-08-23 Toa Nenryo Kogyo Kk Novel crystalline aluminosilicate and its production and converting method of organic raw material using crystalline aluminosilicate
DE4228711A1 (en) 1992-08-28 1994-03-03 Degussa Silicon-aluminum mixed oxide
JP3092385B2 (en) 1992-09-21 2000-09-25 住友化学工業株式会社 Silicon-aluminum catalyst and method for producing tertiary olefin using the catalyst
DE19650500A1 (en) 1996-12-05 1998-06-10 Degussa Doped, pyrogenic oxides
DE19847161A1 (en) * 1998-10-14 2000-04-20 Degussa Fumed silica doped with aerosol
DE10123950A1 (en) 2001-05-17 2002-11-28 Degussa Granules based on pyrogenic silicon dioxide doped with aluminum oxide by means of aerosol, process for their production and their use
DE10225565A1 (en) 2002-06-10 2003-12-18 Oxeno Olefinchemie Gmbh Supported catalyst, for the hydrogenation of aromatic compounds to the corresponding alicyclic compounds, contains at least one Group 8 metal and has an average pore diameter of 25-50 nm and a specific surface area of greater than 30 m2/g
DE10232868A1 (en) 2002-07-19 2004-02-05 Oxeno Olefinchemie Gmbh Fine-pore catalyst and process for the hydrogenation of aromatic compounds
DE102006040430B4 (en) 2006-08-29 2022-06-15 Evonik Operations Gmbh MTBE cleavage process
DE102006040434A1 (en) 2006-08-29 2008-03-06 Oxeno Olefinchemie Gmbh Process for cleaving MTBE
DE102006040433A1 (en) 2006-08-29 2008-03-13 Oxeno Olefinchemie Gmbh Process for the preparation of isoolefins
DE102006040431A1 (en) 2006-08-29 2008-03-20 Oxeno Olefinchemie Gmbh Process for cleaving MTBE
DE102006040432A1 (en) 2006-08-29 2008-03-20 Oxeno Olefinchemie Gmbh Catalyst and process for the preparation of isoolefins
US8395008B2 (en) * 2008-01-14 2013-03-12 Catalytic Distillation Technologies Process and catalyst for cracking of ethers and alcohols
DE102008040511A1 (en) 2008-07-17 2010-01-21 Evonik Oxeno Gmbh Process for the preparation of isobutene by cleavage of MTBE-containing mixtures
EP2358637A1 (en) 2008-12-17 2011-08-24 Evonik Degussa GmbH Process for preparing an aluminium oxide powder having a high alpha-al2o3 content
DE102009027404A1 (en) 2009-07-01 2011-01-05 Evonik Oxeno Gmbh Preparation of isobutene by cleavage of MTBE

Similar Documents

Publication Publication Date Title
JP2014515720A5 (en)
DE502005010213D1 (en) Pyrogenic silica powder
CN104556969B (en) A kind of preparation method of hydrophobic type aerosil heat insulation composite material
JP2011516373A5 (en)
EP2610219A3 (en) Process for the preparation of a pyrogenic silicon-titanium mixed oxide powder
UA86789C2 (en) Aluminium oxide powder produced by flame hydrolysis, the process for its preparation and use
Echavarria et al. Burnout of soot particles in a two-stage burner with a JP-8 surrogate fuel
JP2006193403A (en) Pyrogenically produced silicon dioxide powder
JP2012503545A (en) Bromine chloride composition for removing mercury from emissions generated during fuel combustion
CN104023824A (en) Multi-functional composition of matter for removal of mercury from a flue gas
JP2010158747A5 (en)
JP2008291354A5 (en)
DE602005002265D1 (en) SILICON TITANIUM MIXED OXIDE POWDER PRODUCED BY FLAME HYDROLYSIS
ATE480503T1 (en) YTTRIUM ZIRCONIUM MIXED OXIDE POWDER
JP2018526309A (en) Method for producing metal oxide powders using flame spray pyrolysis
Zhang et al. Study on the preparation of novel FR-245/MCM-41 suppressant and its inhibition mechanism on oil shale deflagration flame
JP2013536750A (en) Improved bromide adsorbent for removal of mercury from emissions generated during fuel combustion
JP4843674B2 (en) photocatalyst
JP5823026B2 (en) Silicon dioxide powder with large pore length
JP5621653B2 (en) A modified coal for producing sintered ore and a method for producing a sintered ore using the modified coal.
TH80966A (en) Pyrogenetic silicon dioxide powder And the silicone sealing compound containing this powder
TH37948B (en) Pyrogenetic silicon dioxide powder And the silicone sealing compound containing this powder
Orlovskaya et al. Carbon particles mass concentration effect on dusts ignition and burning parameters
US20210147229A1 (en) Porous wall reactor for generating hydrogen and solid carbon
TH80797A (en) Pyrogenetic silicon dioxide powder