JP5315408B2 - Positioning method and optical module - Google Patents

Positioning method and optical module Download PDF

Info

Publication number
JP5315408B2
JP5315408B2 JP2011284038A JP2011284038A JP5315408B2 JP 5315408 B2 JP5315408 B2 JP 5315408B2 JP 2011284038 A JP2011284038 A JP 2011284038A JP 2011284038 A JP2011284038 A JP 2011284038A JP 5315408 B2 JP5315408 B2 JP 5315408B2
Authority
JP
Japan
Prior art keywords
positioning
hole
optical path
glass substrate
positioning pin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011284038A
Other languages
Japanese (ja)
Other versions
JP2013134348A (en
Inventor
進 岡部
佐和子 山井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2011284038A priority Critical patent/JP5315408B2/en
Priority to CN201510065614.2A priority patent/CN104614820B/en
Priority to CN201280004149.6A priority patent/CN103282814B/en
Priority to PCT/JP2012/077438 priority patent/WO2013099415A1/en
Publication of JP2013134348A publication Critical patent/JP2013134348A/en
Priority to US13/974,232 priority patent/US8842952B2/en
Application granted granted Critical
Publication of JP5315408B2 publication Critical patent/JP5315408B2/en
Priority to US14/293,548 priority patent/US9453978B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Couplings Of Light Guides (AREA)

Description

本発明は、位置決め方法及び光モジュールに関する。   The present invention relates to a positioning method and an optical module.

2つの部材を位置決めする際に、一方の部材に位置決め穴を形成し、他方の部材に位置決めピンを形成し、位置決め穴に位置決めピンを挿入することによって位置決めを行うことが知られている。例えば、光通信に用いられる光モジュールの分野では、光電変換素子を搭載した透明基板と、光ファイバの端部を支持する支持部材とを位置決めする際に、位置決め穴と位置決めピンとを用いることが知られている(例えば特許文献1、2参照)。   When positioning two members, it is known to perform positioning by forming a positioning hole in one member, forming a positioning pin in the other member, and inserting the positioning pin into the positioning hole. For example, in the field of optical modules used for optical communication, it is known that positioning holes and positioning pins are used when positioning a transparent substrate on which a photoelectric conversion element is mounted and a support member that supports an end of an optical fiber. (See, for example, Patent Documents 1 and 2).

特開2004−240220号公報JP 2004-240220 A 特開2005−17684号公報JP 2005-17684 A

特許文献1では、位置決め穴(ガイド孔)が貫通穴として形成されている。但し、貫通穴を形成すると、部材の両面に開口ができてしまい、部材表面を有効利用することができなくなる。例えば、特許文献1のように透明基板に貫通穴を形成すると、貫通穴の開口には光電変換素子や配線を配置できなくなってしまう。   In Patent Document 1, a positioning hole (guide hole) is formed as a through hole. However, when the through hole is formed, openings are formed on both surfaces of the member, and the member surface cannot be effectively used. For example, when a through hole is formed in a transparent substrate as in Patent Document 1, it is impossible to arrange a photoelectric conversion element or a wiring in the opening of the through hole.

特許文献2には、位置決め穴を非貫通穴とすることが記載されている。但し、特許文献2の非貫通穴は、径が一定の穴になっている。しかし、非貫通穴を形成する際に、加工上の都合により、径が一定にならず、奥の窄まった非貫通穴が形成されることがある。   Patent Document 2 describes that the positioning hole is a non-through hole. However, the non-through hole of Patent Document 2 is a hole having a constant diameter. However, when the non-through hole is formed, the non-through hole with a narrowed back may be formed due to processing reasons.

本発明は、奥の窄まった非貫通の位置決め穴を用いて高精度に位置決めすることを目的とする。   An object of the present invention is to perform positioning with high accuracy using a non-penetrating positioning hole with a deep back.

上記目的を達成するための主たる発明は、第1の部材と第2の部材とを位置決めする位置決め方法であって、前記第1の部材には、奥の窄まった非貫通の位置決め穴が形成されており、前記第2の部材には、円錐台形状の位置決めピンが形成されているとともに、前記位置決めピンの根元の回りに凹部が形成されており、前記第2の部材を樹脂で一体成形することによって、前記位置決めピンが形成されており、前記位置決め穴に前記位置決めピンを挿入することによって、前記第1の部材と前記第2の部材が位置決めされることを特徴とする位置決め方法である。

A main invention for achieving the above object is a positioning method for positioning a first member and a second member, wherein the first member is formed with a non-penetrating positioning hole with a deep back. The second member is formed with a truncated cone-shaped positioning pin, and a recess is formed around the root of the positioning pin, and the second member is integrally molded with resin. In this positioning method, the positioning pin is formed , and the first member and the second member are positioned by inserting the positioning pin into the positioning hole. .

本発明の他の特徴については、後述する明細書及び図面の記載により明らかにする。   Other characteristics of the present invention will be made clear by the description and drawings described later.

本発明によれば、奥の窄まった非貫通の位置決め穴を用いて高精度に位置決めすることができる。   According to the present invention, positioning can be performed with high accuracy using a non-penetrating positioning hole with a deep back.

図1は、第1実施形態のプラガブル光トランシーバの説明図である。FIG. 1 is an explanatory diagram of a pluggable optical transceiver according to the first embodiment. 図2Aは、光モジュール1のハウジング1A内の回路基板等を斜め上から見た斜視図である。図2Bは、斜め下から見た斜視図である。FIG. 2A is a perspective view of the circuit board and the like in the housing 1A of the optical module 1 as viewed from obliquely above. FIG. 2B is a perspective view seen from obliquely below. 図3は、ケージ2に挿入された光モジュール1の概略構成図である。FIG. 3 is a schematic configuration diagram of the optical module 1 inserted into the cage 2. 図4は、光路変換器40を固定するための固定具62の斜視図である。FIG. 4 is a perspective view of a fixture 62 for fixing the optical path changer 40. 図5Aは、本実施形態の回路基板10、ガラス基板20、駆動素子32及び光路変換器40の配置の説明図である。図5Bは、第1参考例の配置の説明図である。図5Cは、第2参考例の配置の説明図である。FIG. 5A is an explanatory diagram of the arrangement of the circuit board 10, the glass substrate 20, the drive element 32, and the optical path converter 40 according to the present embodiment. FIG. 5B is an explanatory diagram of the arrangement of the first reference example. FIG. 5C is an explanatory diagram of the arrangement of the second reference example. 図6Aは、光路変換器40のレンズ部41の曲率半径Rの説明図である。図6Bは、光ファイバのコアと光のスポットとの関係の説明図である。FIG. 6A is an explanatory diagram of the radius of curvature R of the lens portion 41 of the optical path changer 40. FIG. 6B is an explanatory diagram of the relationship between the core of the optical fiber and the light spot. 図7Aは、レンズ部41の光軸に垂直なY方向にガラス基板20と光路変換器40とをずらした場合のずれ量(μm)と光結合効率(%)との関係のグラフである。図7Bは、レンズ部41の光軸に平行なZ方向にガラス基板20と光路変換器40とをずらした場合のずれ量(μm)と光結合効率(%)との関係のグラフである。FIG. 7A is a graph of the relationship between the shift amount (μm) and the optical coupling efficiency (%) when the glass substrate 20 and the optical path changer 40 are shifted in the Y direction perpendicular to the optical axis of the lens unit 41. FIG. 7B is a graph of the relationship between the shift amount (μm) and the optical coupling efficiency (%) when the glass substrate 20 and the optical path changer 40 are shifted in the Z direction parallel to the optical axis of the lens unit 41. 図8Aは、第1実施形態の位置決め穴23の説明図である。図8Bは、比較例の位置決め穴23’の説明図である。FIG. 8A is an explanatory diagram of the positioning hole 23 of the first embodiment. FIG. 8B is an explanatory diagram of the positioning hole 23 ′ of the comparative example. 図9Aは、第1実施形態の位置決めピン43の説明図である。図9Bは第1比較例の位置決めピン43’の説明図である。図9Cは第2比較例の位置決めピン43”の説明図である。FIG. 9A is an explanatory diagram of the positioning pin 43 of the first embodiment. FIG. 9B is an explanatory diagram of the positioning pin 43 ′ of the first comparative example. FIG. 9C is an explanatory diagram of the positioning pin 43 ″ of the second comparative example. 図10A及び図10Bは、第1実施形態の位置決め穴23と位置決めピン43との嵌合の様子の説明図である。FIG. 10A and FIG. 10B are explanatory views showing a state of fitting between the positioning hole 23 and the positioning pin 43 of the first embodiment. 図11Aは、第1実施形態の位置決めピン43の根元近傍の拡大図である。図11Bは、参考例の位置決めピン43の根元近傍の拡大図である。FIG. 11A is an enlarged view of the vicinity of the root of the positioning pin 43 of the first embodiment. FIG. 11B is an enlarged view of the vicinity of the root of the positioning pin 43 of the reference example. 図12Aは、第1実施形態の位置決め穴23の説明図である。図12Bは、第2実施形態の位置決め穴の説明図である。FIG. 12A is an explanatory diagram of the positioning hole 23 of the first embodiment. FIG. 12B is an explanatory diagram of a positioning hole according to the second embodiment. 図13は、第3実施形態の光モジュールの概略構成図である。FIG. 13 is a schematic configuration diagram of an optical module according to the third embodiment. 図14は、変形例の固定具62’の斜視図である。FIG. 14 is a perspective view of a modified fixture 62 '.

後述する明細書及び図面の記載から、少なくとも以下の事項が明らかとなる。   At least the following matters will be apparent from the description and drawings described below.

第1の部材と第2の部材とを位置決めする位置決め方法であって、前記第1の部材には、奥の窄まった非貫通の位置決め穴が形成されており、前記第2の部材には、円錐台形状の位置決めピンが形成されており、前記位置決め穴に前記位置決めピンを挿入することによって、前記第1の部材と前記第2の部材が位置決めされることを特徴とする位置決め方法が明らかとなる。
このような位置決め方法によれば、奥の窄まった非貫通の位置決め穴を用いて高精度に位置決めすることができる。
A positioning method for positioning a first member and a second member, wherein the first member is formed with a non-penetrating positioning hole with a deep back, and the second member The positioning method is characterized in that a positioning pin having a truncated cone shape is formed, and the first member and the second member are positioned by inserting the positioning pin into the positioning hole. It becomes.
According to such a positioning method, positioning can be performed with high accuracy using a non-penetrating positioning hole with a deep back.

前記位置決め穴は、ブラスト加工により形成されていることが望ましい。ブラスト加工により位置決め穴を形成した場合、位置決め穴の奥が窄まった形状になるため、このような場合に特に有利である。   The positioning hole is preferably formed by blasting. When the positioning hole is formed by blasting, the shape of the positioning hole is narrowed, which is particularly advantageous in such a case.

前記位置決めピンの根元の回りに凹部が形成されていることが望ましい。これにより、位置決めピンの製造時に位置決めピンの根元の角部が丸みを帯びてしまっても、角部の丸みの影響を受けずに高精度な位置決めが可能になる。   It is desirable that a recess is formed around the base of the positioning pin. As a result, even when the corner portion of the positioning pin is rounded when the positioning pin is manufactured, high-precision positioning is possible without being affected by the roundness of the corner portion.

前記第2の部材を樹脂で一体成形することによって、前記位置決めピンが形成されていることが望ましい。第2の部材を樹脂で一体成形する際に位置決めピンの根元の角部が丸みを帯びやすいため、このような場合に特に有利である。   The positioning pin is preferably formed by integrally molding the second member with resin. When the second member is integrally formed of resin, the corner of the base of the positioning pin is easily rounded, which is particularly advantageous in such a case.

前記第1の部材には、前記位置決め穴として基準穴及び長穴が形成されており、前記長穴は、その長手方向が前記基準穴と前記長穴とを結ぶ線に沿うように形成されており、前記第2の部材には、円錐台形状の前記位置決めピンが2つ形成されており、2つの位置決めピンのうちの一方を基準穴に挿入し、他方を長穴に挿入することによって、前記第1の部材と前記第2の部材が位置決めされることが望ましい。これにより、2つの位置決め穴の間隔と2つの位置決めピンの間隔がずれても、高精度に位置決めが可能である。   In the first member, a reference hole and a long hole are formed as the positioning hole, and the long hole is formed so that a longitudinal direction thereof is along a line connecting the reference hole and the long hole. In the second member, two frustoconical positioning pins are formed, and one of the two positioning pins is inserted into a reference hole, and the other is inserted into a long hole, It is desirable that the first member and the second member are positioned. Thereby, even if the interval between the two positioning holes and the interval between the two positioning pins are shifted, positioning can be performed with high accuracy.

前記位置決め穴及び前記位置決めピンの軸方向に許容される位置決め誤差は、前記軸方向に垂直な方向に許容される位置決め誤差よりも大きいことが望ましい。このような場合に円錐台形状の位置決めピンを用いることが特に有利になる。   It is desirable that a positioning error allowed in the axial direction of the positioning hole and the positioning pin is larger than a positioning error allowed in a direction perpendicular to the axial direction. In such a case, it is particularly advantageous to use a frustoconical positioning pin.

前記第1の部材は、光を透過可能な透明基板であり、前記第2の部材は、光を伝送する光ファイバを支持する支持部材であり、前記透明基板には、前記透明基板に向かって光を発光し若しくは前記透明基板を透過した光を受光する光電変換素子が搭載されており、前記支持部材は、前記光電変換素子と前記光ファイバとの間の光路を前記透明基板とともに形成しており、前記透明基板の前記位置決め穴に前記支持部材の前記位置決めピンを挿入することによって、前記透明基板と前記支持部材が位置決めされることが望ましい。このような場合、光軸方向の位置決め誤差が光軸方向と垂直な方向の位置決め誤差よりも大きくても許容されるため、円錐台形状の位置決めピンを用いることが特に有利になる。   The first member is a transparent substrate that can transmit light, the second member is a support member that supports an optical fiber that transmits light, and the transparent substrate faces the transparent substrate. A photoelectric conversion element that emits light or receives light that has passed through the transparent substrate is mounted, and the support member forms an optical path between the photoelectric conversion element and the optical fiber together with the transparent substrate. It is preferable that the transparent substrate and the support member are positioned by inserting the positioning pins of the support member into the positioning holes of the transparent substrate. In such a case, since a positioning error in the optical axis direction is allowed to be larger than a positioning error in a direction perpendicular to the optical axis direction, it is particularly advantageous to use a frustoconical positioning pin.

前記透明基板と前記支持部材とが密着した状態で前記光電変換素子から発した光が前記光ファイバの端面よりも遠方で集束するように、前記支持部材の光学系が構成されていることが望ましい。これにより、透明基板と支持部材とが若干離れて位置決めされても、光結合効率を低下させずに済む(円錐台形状の位置決めピンを用いて位置決めした場合には、透明基板と支持部材とが若干離れて位置決めされることがある)。   It is desirable that the optical system of the support member is configured so that light emitted from the photoelectric conversion element is focused farther than the end face of the optical fiber in a state where the transparent substrate and the support member are in close contact with each other. . As a result, even if the transparent substrate and the support member are positioned slightly apart from each other, it is not necessary to reduce the optical coupling efficiency (when the positioning is performed using the truncated cone-shaped positioning pin, the transparent substrate and the support member are May be positioned slightly apart).

前記透明基板は、前記支持部材よりも硬いことが望ましい。支持部材の位置決めピンが位置決め穴との接触によって変形しても、透明基板と支持部材が密着した段階で位置決めピンの変形が止まるため、このように構成しても許容される。   The transparent substrate is preferably harder than the support member. Even if the positioning pin of the support member is deformed by contact with the positioning hole, the deformation of the positioning pin stops when the transparent substrate and the support member are in close contact with each other.

光を透過可能な透明基板と、前記透明基板に搭載され、前記透明基板に向かって光を発光し若しくは前記透明基板を透過した光を受光する光電変換素子と、光を伝送する光ファイバを支持し、前記光電変換素子と前記光ファイバとの間の光路を前記透明基板とともに形成する支持部材と、を備えた光モジュールであって、前記透明基板には、奥の窄まった非貫通の位置決め穴が形成されており、前記支持部材には、円錐台形状の位置決めピンが形成されており、前記位置決め穴に前記位置決めピンを挿入することによって、前記透明基板と前記支持部材が位置決めされていることを特徴とする光モジュールが明らかとなる。
このような光モジュールによれば、奥の窄まった非貫通の位置決め穴を用いて透明基板と支持部材とを高精度に位置決めすることができる。
Supports a transparent substrate that can transmit light, a photoelectric conversion element that is mounted on the transparent substrate, emits light toward the transparent substrate, or receives light transmitted through the transparent substrate, and an optical fiber that transmits the light And a support member that forms an optical path between the photoelectric conversion element and the optical fiber together with the transparent substrate, and the transparent substrate has a non-penetrating positioning with a deep back. A hole is formed, and a frustoconical positioning pin is formed on the support member, and the transparent substrate and the support member are positioned by inserting the positioning pin into the positioning hole. The optical module characterized by this will become clear.
According to such an optical module, it is possible to position the transparent substrate and the support member with high accuracy using the non-penetrating positioning hole with a deep back.

===概要===
図8Aは、本実施形態の位置決め穴23の説明図である。図に示すように、本実施形態では、ガラス基板20(第1の部材)には、奥の窄まった非貫通の位置決め穴23が形成されている。例えばサンドブラスト加工によってガラス基板20に非貫通穴を形成すると、図8Bのように径の一定の穴にはならず、奥の窄まった形状になる。
=== Overview ===
FIG. 8A is an explanatory diagram of the positioning hole 23 of the present embodiment. As shown in the figure, in the present embodiment, a non-penetrating positioning hole 23 with a deep back is formed in the glass substrate 20 (first member). For example, when a non-through hole is formed in the glass substrate 20 by sandblasting, the hole does not have a constant diameter as shown in FIG.

図9Aは、本実施形態の位置決めピン43の説明図である。図に示すように、本実施形態では、光路変換器40(第2の部材、支持部材)には、円錐台形状の位置決めピン43が形成されている。   FIG. 9A is an explanatory diagram of the positioning pin 43 of the present embodiment. As shown in the drawing, in the present embodiment, a truncated cone-shaped positioning pin 43 is formed in the optical path changer 40 (second member, support member).

図10A及び図10Bは、本実施形態の位置決め穴23に位置決めピン43を挿入した様子の説明図である。本実施形態によれば、円錐台形状の位置決めピン43のテーパ面が位置決め穴23と隙間無く接触できるので(位置決め穴の縁と隙間無く接触できるので)、ガラス基板20(第1の部材)と光路変換器40(第2の部材)とを精度良く位置決めできる。   10A and 10B are explanatory views showing a state in which the positioning pins 43 are inserted into the positioning holes 23 of the present embodiment. According to the present embodiment, since the tapered surface of the truncated conical positioning pin 43 can contact the positioning hole 23 without any gap (because it can contact the edge of the positioning hole without any gap), the glass substrate 20 (first member) and The optical path converter 40 (second member) can be accurately positioned.

なお、図9Bのように位置決めピン43’が円錐形状の場合、位置決めピン43’を奥の窄まった位置決め穴23に挿入すると、位置決めピン43’の先端(頂点)が位置決め穴23の底に接触するおそれがある。また、図9Cのように位置決めピン43”が円柱形状の場合には、奥の窄まった位置決め穴23に挿入すること自体が困難である。   9B, when the positioning pin 43 ′ has a conical shape, when the positioning pin 43 ′ is inserted into the positioning hole 23 that is narrow in the back, the tip (vertex) of the positioning pin 43 ′ is placed at the bottom of the positioning hole 23. There is a risk of contact. In addition, when the positioning pin 43 ″ has a cylindrical shape as shown in FIG.

ところで、図8Bのような径の一定の位置決め穴23’に図9Cのような円柱形状の位置決めピン43”を挿入して位置決めすることは可能であるが、この場合、はめあい公差により、位置決め穴23’と位置決めピン43”との間に隙間が必要であるため、この隙間の分だけ位置決め誤差が生じてしまう。これに対し、図10A及び図10Bに示すように、本実施形態によれば、位置決め穴や位置決めピンの寸法に公差を設定しても、円錐台形状の位置決めピン43のテーパ面が位置決め穴23と隙間無く接触でき、ガラス基板20(第1の部材)と光路変換器40(第2の部材)とを精度良く位置決めできる。   By the way, it is possible to position by positioning a cylindrical positioning pin 43 ″ as shown in FIG. 9C into a positioning hole 23 ′ having a constant diameter as shown in FIG. 8B. Since a gap is required between 23 ′ and the positioning pin 43 ″, a positioning error is caused by this gap. On the other hand, as shown in FIGS. 10A and 10B, according to the present embodiment, the tapered surface of the frustoconical positioning pin 43 is positioned in the positioning hole 23 even if a tolerance is set in the dimensions of the positioning hole and the positioning pin. The glass substrate 20 (first member) and the optical path converter 40 (second member) can be positioned with high accuracy.

===第1実施形態===
<全体構成>
図1は、プラガブル光トランシーバの説明図である。なお、光送信器と光受信機の両方を備えるものを光トランシーバと呼ぶことがあるが、ここでは一方のみ備えるものも光トランシーバと呼ぶ。図中のプラガブル光トランシーバは、MSA(Multi Source Agreement)で規定されたQSFPタイプ(QSFP:Quad Small Form Factor Pluggable)のものである。プラガブル光トランシーバは、光モジュール1と、ケージ2とを有する。
=== First Embodiment ===
<Overall configuration>
FIG. 1 is an explanatory diagram of a pluggable optical transceiver. An optical transceiver having both an optical transmitter and an optical receiver is sometimes referred to as an optical transceiver, but here, an optical transceiver having only one is also referred to as an optical transceiver. The pluggable optical transceiver in the figure is of the QSFP type (QSFP: Quad Small Form Factor Pluggable) defined by MSA (Multi Source Agreement). The pluggable optical transceiver has an optical module 1 and a cage 2.

図中には、2種類の光モジュール1が描かれている。図に示すように、光モジュール1には、光ファイバ(コードを含む)が固定されていても良いし、着脱可能でも良い。図中の2つのケージ2のうちの一方は、ヒートシンク3が取り外されるとともに、内部が見えるように一部破断されて、描かれている。   In the drawing, two types of optical modules 1 are depicted. As shown in the drawing, an optical fiber (including a cord) may be fixed to the optical module 1 or may be detachable. One of the two cages 2 in the figure is drawn with the heat sink 3 removed and partially broken so that the inside can be seen.

以下の説明では、図1に示すように、前後、上下及び左右を定義する。すなわち、光モジュール1を挿入するケージ2の挿入口側を「前」とし、逆側を「後」とする。光モジュール1においては、光ファイバ(コードを含む)が延び出る側を「前」とし、逆側を「後」とする。また、ケージ2が設けられるメイン基板から見て、ケージ2が設けられる面の側を「上」とし、逆側を「下」とする。また、前後方向と上下方向と直交する方向を「左右」とする。   In the following description, as shown in FIG. 1, front and rear, up and down, and left and right are defined. That is, the insertion port side of the cage 2 into which the optical module 1 is inserted is referred to as “front” and the opposite side is referred to as “rear”. In the optical module 1, the side from which the optical fiber (including the cord) extends is referred to as “front”, and the opposite side is referred to as “rear”. Further, when viewed from the main board on which the cage 2 is provided, the side of the surface on which the cage 2 is provided is “upper”, and the opposite side is “lower”. Also, the direction orthogonal to the front-rear direction and the up-down direction is defined as “left-right”.

通信機器側(ホスト側)のメイン基板上にはケージ2が設置されている。ケージ2は、例えばデータセンター内のブレードサーバのメイン基板上に設けられる。   A cage 2 is installed on the main board on the communication device side (host side). The cage 2 is provided on a main board of a blade server in the data center, for example.

光モジュール1は、ケージ2に着脱可能に挿入される。光モジュール1は、ハウジング1A内に光電変換素子31や回路基板10を内蔵しており、光ファイバで送受される光信号と、通信機器側のメイン基板で処理される電気信号とを相互に変換する。   The optical module 1 is detachably inserted into the cage 2. The optical module 1 includes a photoelectric conversion element 31 and a circuit board 10 in a housing 1A, and mutually converts an optical signal transmitted / received by an optical fiber and an electric signal processed by a main board on a communication device side. To do.

ケージ2は、光モジュール1を着脱可能に収容する。ケージ2は、光モジュール1を挿入するための挿入口を前側に備え、前後方向に長い断面矩形の箱形部材である。このケージ2は、前側を開放するように金属板を折り曲げ加工して形成される。金属板が断面矩形状に折り曲げ加工されることにより、光モジュール1を収容するための収容部がケージ2内に形成されている。ケージ2の内部の後側には、コネクタ2Aが設けられている。光モジュール1がケージ2に挿入されると、ケージ2内のコネクタ2Aに対して光モジュール1内の回路基板が電気的・機械的に接続される。これにより、光モジュール1とメイン基板との間で電気信号が伝送される。   The cage 2 accommodates the optical module 1 in a detachable manner. The cage 2 is a box-shaped member having a rectangular section in the front-rear direction with an insertion slot for inserting the optical module 1 on the front side. The cage 2 is formed by bending a metal plate so as to open the front side. An accommodating portion for accommodating the optical module 1 is formed in the cage 2 by bending the metal plate into a rectangular cross section. A connector 2 </ b> A is provided on the rear side inside the cage 2. When the optical module 1 is inserted into the cage 2, the circuit board in the optical module 1 is electrically and mechanically connected to the connector 2 </ b> A in the cage 2. Thereby, an electrical signal is transmitted between the optical module 1 and the main board.

ケージ2の上面には開口部があり、その開口部を塞ぐようにヒートシンク3が取り付けられている。ヒートシンク3は、ケージ2に挿入された光モジュール1の熱を外部に放熱するための多数の放熱フィン(放熱ピン)を備えている。   The upper surface of the cage 2 has an opening, and a heat sink 3 is attached so as to close the opening. The heat sink 3 includes a large number of heat radiation fins (heat radiation pins) for radiating the heat of the optical module 1 inserted into the cage 2 to the outside.

<光モジュール1の内部構成>
図2Aは、光モジュール1のハウジング1A内の回路基板10等を斜め上から見た斜視図である。図2Bは、斜め下から見た斜視図である。図3は、ケージ2に挿入された光モジュール1の概略構成図である。
<Internal configuration of optical module 1>
FIG. 2A is a perspective view of the circuit board 10 and the like in the housing 1A of the optical module 1 as viewed obliquely from above. FIG. 2B is a perspective view seen from obliquely below. FIG. 3 is a schematic configuration diagram of the optical module 1 inserted into the cage 2.

図に示すように、光モジュール1は、ハウジング1A内に、回路基板10と、ガラス基板20と、発光部31と、光路変換器40とを備えている。   As shown in the figure, the optical module 1 includes a circuit board 10, a glass substrate 20, a light emitting unit 31, and an optical path converter 40 in a housing 1A.

回路基板10は、電子回路を構成する板状のプリント基板である。回路基板10の後側端部には、ケージ2内のコネクタ2A(コネクタソケット)と接続するための接続部11(カードエッジコネクタ)が形成されている。接続部11は回路基板10の上下両面に形成されており、多数の端子が左右方向に並んで形成されている。   The circuit board 10 is a plate-like printed board that constitutes an electronic circuit. A connection portion 11 (card edge connector) for connecting to a connector 2A (connector socket) in the cage 2 is formed at the rear end portion of the circuit board 10. The connection portion 11 is formed on both upper and lower surfaces of the circuit board 10 and a large number of terminals are formed side by side in the left-right direction.

回路基板10には、光路変換器40を収容するための収容窓12が形成されている。また、この収容窓12を囲むように、回路基板10の上面には回路基板側電極13が形成されている。回路基板10の上側には、収容窓12を塞ぐように、ガラス基板20が搭載されている。言い換えると、ガラス基板20の下側に回路基板10の収容窓12が位置しており、ガラス基板20の下面で回路基板10の収容窓12が塞がれている。なお、ガラス基板20の下面にはガラス基板側電極22が形成されており、回路基板側電極13とガラス基板側電極22とを接続しつつ、回路基板10の収容窓12を塞ぐようにガラス基板20を回路基板10に搭載している。   An accommodation window 12 for accommodating the optical path converter 40 is formed in the circuit board 10. A circuit board side electrode 13 is formed on the upper surface of the circuit board 10 so as to surround the housing window 12. A glass substrate 20 is mounted on the upper side of the circuit board 10 so as to close the housing window 12. In other words, the housing window 12 of the circuit board 10 is positioned below the glass substrate 20, and the housing window 12 of the circuit board 10 is closed by the lower surface of the glass substrate 20. A glass substrate side electrode 22 is formed on the lower surface of the glass substrate 20, and the glass substrate so as to close the housing window 12 of the circuit substrate 10 while connecting the circuit substrate side electrode 13 and the glass substrate side electrode 22. 20 is mounted on the circuit board 10.

収容窓12は、回路基板10に形成された矩形状の貫通穴である。この収容窓12に光路変換器40の上側が挿入されている。光路変換器40の下側は収容窓12から下側に突出しており、この突出した部分から前側に光ファイバ50が延び出ている。但し、光路変換器40が回路基板10より薄い場合、光路変換器40の下側は収容窓12から下側に突出しない。この場合、反射部42が光を鈍角に反射するように構成されると、光路変換器40から光ファイバ50を引き出しやすくなる。   The housing window 12 is a rectangular through hole formed in the circuit board 10. The upper side of the optical path changer 40 is inserted into the accommodation window 12. The lower side of the optical path changer 40 protrudes downward from the receiving window 12, and the optical fiber 50 extends forward from the protruding portion. However, when the optical path changer 40 is thinner than the circuit board 10, the lower side of the optical path changer 40 does not protrude downward from the receiving window 12. In this case, if the reflecting portion 42 is configured to reflect light at an obtuse angle, the optical fiber 50 can be easily pulled out from the optical path converter 40.

ガラス基板20は、光を透過可能な透明なガラス製基板である。ガラス基板20には、回路基板10の収容窓12の形状に沿って、複数の貫通ビア21が形成されている。   The glass substrate 20 is a transparent glass substrate that can transmit light. A plurality of through vias 21 are formed in the glass substrate 20 along the shape of the receiving window 12 of the circuit board 10.

ガラス基板20の下面(発光部31を搭載する搭載面とは反対側の面)には、ガラス基板側電極22が形成されている。ガラス基板側電極22は、貫通ビア21の外側に形成されている。また、ガラス基板側電極22は、回路基板10の収容窓12の外側に沿うように、形成されている。ガラス基板側電極22は、回路基板10の上面の回路基板側電極13と電気的に接続されることになる。貫通ビア21は、ガラス基板側電極22と発光部31及び駆動素子32との間の配線に用いられている。   A glass substrate side electrode 22 is formed on the lower surface of the glass substrate 20 (the surface opposite to the mounting surface on which the light emitting unit 31 is mounted). The glass substrate side electrode 22 is formed outside the through via 21. Further, the glass substrate side electrode 22 is formed along the outside of the accommodation window 12 of the circuit board 10. The glass substrate side electrode 22 is electrically connected to the circuit substrate side electrode 13 on the upper surface of the circuit substrate 10. The through via 21 is used for wiring between the glass substrate side electrode 22, the light emitting unit 31, and the driving element 32.

ガラス基板20の下面には、光路変換器40を位置決めするための2つの位置決め穴23が形成されている。この位置決め穴23は、ガラス基板20を貫通しておらず、非貫通穴となるように形成されている。位置決め穴23を非貫通穴にすることによって、位置決め穴23の上側に部品(例えば駆動素子32)を搭載したり、その部品への配線を配置したりすることが可能になり、ガラス基板20の上面における部品搭載や配線の自由度が高くなる。また、この結果、ガラス基板20の小型化も可能となる。なお、位置決め穴23の形状等については、後述する。   Two positioning holes 23 for positioning the optical path changer 40 are formed on the lower surface of the glass substrate 20. The positioning hole 23 does not penetrate the glass substrate 20 and is formed to be a non-through hole. By making the positioning hole 23 a non-through hole, it becomes possible to mount a component (for example, the drive element 32) on the upper side of the positioning hole 23 and to arrange a wiring to the component. The degree of freedom of component mounting and wiring on the upper surface is increased. As a result, the glass substrate 20 can be downsized. The shape and the like of the positioning hole 23 will be described later.

ガラス基板20の上面には、発光部31が実装されている。また、発光部31を駆動するための駆動素子32も、ガラス基板20の上面(発光部31の搭載面)に実装されている。発光部31と駆動素子32は、貫通ビア21の内側に配置されている。言い換えると、発光部31と駆動素子32は、回路基板10の収容窓12の上側に位置するように、ガラス基板20の上面に実装されている。   A light emitting unit 31 is mounted on the upper surface of the glass substrate 20. A driving element 32 for driving the light emitting unit 31 is also mounted on the upper surface of the glass substrate 20 (the mounting surface of the light emitting unit 31). The light emitting unit 31 and the driving element 32 are disposed inside the through via 21. In other words, the light emitting unit 31 and the driving element 32 are mounted on the upper surface of the glass substrate 20 so as to be positioned above the receiving window 12 of the circuit board 10.

発光部31は、光信号と電気信号とを変換する光電変換素子である。ここでは、発光部31として、基板に垂直な光を出射するVCSEL(Vertical Cavity Surface Emitting Laser:垂直共振器面発光レーザ)が採用されている。なお、光電変換素子として、光信号を電気信号に変換する受光部がガラス基板20に実装されても良い。また、発光部と受光部の両方がガラス基板20に実装されても良い。   The light emitting unit 31 is a photoelectric conversion element that converts an optical signal and an electrical signal. Here, a VCSEL (Vertical Cavity Surface Emitting Laser) that emits light perpendicular to the substrate is employed as the light emitting unit 31. Note that a light receiving unit that converts an optical signal into an electrical signal may be mounted on the glass substrate 20 as a photoelectric conversion element. Further, both the light emitting unit and the light receiving unit may be mounted on the glass substrate 20.

発光部31の発光部側電極31Aと発光面31Bは、ガラス基板20の側となる下面に形成されている。発光部31は、ガラス基板20にフリップチップ実装されており、ガラス基板20に向かって光を照射する。発光部31の発光部側電極31Aと発光面31Bが同じ側(ガラス基板20の側となる下面)に位置しているため、発光部31をガラス基板20にフリップチップ実装すれば、発光面31Bがガラス基板20の側を向き、発光面31Bが外部に露出しないことになる。   The light emitting unit side electrode 31 </ b> A and the light emitting surface 31 </ b> B of the light emitting unit 31 are formed on the lower surface on the glass substrate 20 side. The light emitting unit 31 is flip-chip mounted on the glass substrate 20 and irradiates light toward the glass substrate 20. Since the light emitting unit side electrode 31A and the light emitting surface 31B of the light emitting unit 31 are located on the same side (the lower surface on the side of the glass substrate 20), if the light emitting unit 31 is flip-chip mounted on the glass substrate 20, the light emitting surface 31B. Faces the glass substrate 20, and the light emitting surface 31B is not exposed to the outside.

なお、図3には発光部31の発光面31Bが1つ描かれているが、発光部31は、紙面と垂直な方向に並ぶ複数(例えば4つ)の発光面31Bを備えている。   3 shows one light emitting surface 31B of the light emitting unit 31, the light emitting unit 31 includes a plurality of (for example, four) light emitting surfaces 31B arranged in a direction perpendicular to the paper surface.

光路変換器40は、発光部31から照射された光の光路を変換する光学部材である。また、光路変換器40は、光ファイバ50の一端を支持し、発光部31と光ファイバ50との間の光路を透明基板と共に形成する支持部材としても機能する。光路変換器40は、レンズ部41と、反射部42とを備えている。レンズ部41は、光路変換器40の上面に形成されている。反射部42は、光路変換器40の下面に形成されている。   The optical path converter 40 is an optical member that converts the optical path of the light emitted from the light emitting unit 31. The optical path converter 40 also functions as a support member that supports one end of the optical fiber 50 and forms the optical path between the light emitting unit 31 and the optical fiber 50 together with the transparent substrate. The optical path changer 40 includes a lens unit 41 and a reflection unit 42. The lens unit 41 is formed on the upper surface of the optical path changer 40. The reflection part 42 is formed on the lower surface of the optical path changer 40.

レンズ部41は、光を集束させられるように凸レンズ状に形成された部位である。但し、レンズ部41は、光路変換器40の上面から突出しないように、上面から窪んだ凹部に形成されている(図6参照)。レンズ部41を光路変換器40の上面から窪ませて形成することによって、光路変換器40の上面とガラス基板20の下面とを面接触させることが可能になる。レンズ部41は、発光部31の照射した光を集束させて反射部42に導き、光を光ファイバ50に入射させる。ガラス基板20に受光部が実装されている場合には、レンズ部41は、反射部42から反射された光を受光部に集束させることになる。レンズ部41は、ガラス基板20を挟んで発光部31の発光面31Bと対向している。   The lens portion 41 is a portion formed in a convex lens shape so that light can be focused. However, the lens part 41 is formed in the recessed part dented from the upper surface so that it may not protrude from the upper surface of the optical path changer 40 (refer FIG. 6). By forming the lens portion 41 so as to be recessed from the upper surface of the optical path changer 40, the upper surface of the optical path changer 40 and the lower surface of the glass substrate 20 can be brought into surface contact. The lens unit 41 focuses the light emitted from the light emitting unit 31, guides the light to the reflecting unit 42, and causes the light to enter the optical fiber 50. When the light receiving unit is mounted on the glass substrate 20, the lens unit 41 focuses the light reflected from the reflecting unit 42 on the light receiving unit. The lens unit 41 faces the light emitting surface 31B of the light emitting unit 31 with the glass substrate 20 interposed therebetween.

反射部42は、光を反射させるための部位である。発光部31から照射された光の光軸は上下方向(回路基板10やガラス基板20などの基板に垂直な方向)であるが、反射部42で反射された光の光軸は前後方向(回路基板10やガラス基板20などの基板に平行な方向)になる。反射部42で反射された光は、光路変換器40に取り付けられた光ファイバ50に入射する。ガラス基板20に受光部が実装されている場合には、反射部42は、光ファイバ50から出射した光を反射してレンズ部41に導き、受光部に集束させることになる。   The reflection part 42 is a part for reflecting light. The optical axis of the light emitted from the light emitting unit 31 is the vertical direction (the direction perpendicular to the substrate such as the circuit board 10 or the glass substrate 20), but the optical axis of the light reflected by the reflecting unit 42 is the front-rear direction (circuit (Direction parallel to the substrate such as the substrate 10 or the glass substrate 20). The light reflected by the reflection unit 42 enters the optical fiber 50 attached to the optical path changer 40. When the light receiving part is mounted on the glass substrate 20, the reflecting part 42 reflects the light emitted from the optical fiber 50, guides it to the lens part 41, and focuses it on the light receiving part.

なお、図中の反射部42は、反射光の光軸が前後方向(回路基板10やガラス基板20などの基板に平行な方向)になるように描かれている。但し、反射部42は、90度に光を反射するものに限られない。反射部42が光を鈍角(例えば100度程度)に反射するように構成されていても良い。光軸が上下方向(回路基板10やガラス基板20などの基板に垂直な方向)であった光が前後方向(回路基板10やガラス基板20などの基板に平行な方向)の成分を持つように反射されれば良い。例えば、光ファイバ50の根元が光路変換器40の比較的上部にある場合や、光路変換器40の厚さが回路基板10の厚さよりも薄い場合に、光路変換器40から光ファイバ50を引き出しやすくするため、反射部42が光を鈍角に反射するように構成すると良い。   In addition, the reflection part 42 in a figure is drawn so that the optical axis of reflected light may become the front-back direction (direction parallel to substrates, such as the circuit board 10 and the glass substrate 20). However, the reflection part 42 is not restricted to what reflects light at 90 degree | times. The reflection unit 42 may be configured to reflect light at an obtuse angle (for example, about 100 degrees). The light whose optical axis is in the vertical direction (direction perpendicular to the substrate such as the circuit board 10 or the glass substrate 20) has a component in the front-rear direction (direction parallel to the circuit board 10 or the glass substrate 20). It only has to be reflected. For example, when the root of the optical fiber 50 is relatively above the optical path converter 40 or when the thickness of the optical path converter 40 is thinner than the thickness of the circuit board 10, the optical fiber 50 is pulled out from the optical path converter 40. In order to facilitate, it is preferable that the reflecting portion 42 be configured to reflect light at an obtuse angle.

光路変換器40のファイバ支持部44には光ファイバ50の一端が支持されており、光路変換器40の前側から光ファイバ50が延び出ている。光ファイバ50は、光路変換器40のレンズ部41及び反射部42に対して所定の位置関係になるように位置合わせされて取り付けられている。   One end of the optical fiber 50 is supported on the fiber support 44 of the optical path converter 40, and the optical fiber 50 extends from the front side of the optical path converter 40. The optical fiber 50 is aligned and attached so as to have a predetermined positional relationship with respect to the lens portion 41 and the reflecting portion 42 of the optical path changer 40.

図中の光路変換器40には、光が入射する部位だけにレンズ部41が設けられている。但し、光が出射する部位にもレンズ部を設け、光路変換器40が2つのレンズ部を備えても良い。そして、2つのレンズ部をコリメータレンズとすれば、光路変換器40の中で平行光を伝搬させることができる。   In the optical path changer 40 in the figure, a lens portion 41 is provided only at a site where light enters. However, a lens part may be provided also in the part which emits light, and optical path changer 40 may be provided with two lens parts. If the two lens portions are collimator lenses, parallel light can be propagated in the optical path changer 40.

光路変換器40の上面には、ガラス基板20の位置決め穴23に挿入するための2つの位置決めピン43が突出して形成されている。光路変換器40の位置決めピン43がガラス基板20の位置決め穴23に嵌合することによって、光路変換器40のレンズ部41の光軸とガラス基板20に実装された発光部31の光軸との位置合わせが行われる。位置決めピン43の形状等については、後述する。   On the upper surface of the optical path changer 40, two positioning pins 43 for insertion into the positioning holes 23 of the glass substrate 20 are formed so as to protrude. The positioning pin 43 of the optical path converter 40 is fitted into the positioning hole 23 of the glass substrate 20, whereby the optical axis of the lens unit 41 of the optical path converter 40 and the optical axis of the light emitting unit 31 mounted on the glass substrate 20. Alignment is performed. The shape and the like of the positioning pin 43 will be described later.

光路変換器40は、樹脂により一体成形されている。つまり、光路変換器40のレンズ部41、反射部42、位置決めピン43及びファイバ支持部44は、樹脂により一体的に形成されている。   The optical path converter 40 is integrally formed of resin. That is, the lens part 41, the reflection part 42, the positioning pin 43, and the fiber support part 44 of the optical path changer 40 are integrally formed of resin.

図3に示すように、発光部31及び駆動素子32の上側には、放熱シート61が配置されている。放熱シート61は、熱伝導率の高い材質で構成されており、発光部31や駆動素子32から発生した熱をケージ2のヒートシンク3に伝導する。   As shown in FIG. 3, a heat dissipation sheet 61 is disposed above the light emitting unit 31 and the drive element 32. The heat radiation sheet 61 is made of a material having high thermal conductivity, and conducts heat generated from the light emitting unit 31 and the driving element 32 to the heat sink 3 of the cage 2.

図4は、光路変換器40を固定するための固定具62の斜視図である。固定具62は、断面U字状に金属板を折り曲げた本体63と、引っ掛け板64とから構成されている。断面U字状の本体63の一端には引っ掛け板64が固定されており、本体63の他端には引っ掛け板64を引っ掛けるための係合部63Aが形成されている。   FIG. 4 is a perspective view of a fixture 62 for fixing the optical path changer 40. The fixture 62 includes a main body 63 obtained by bending a metal plate in a U-shaped cross section and a hook plate 64. A hook plate 64 is fixed to one end of the U-shaped main body 63, and an engaging portion 63 </ b> A for hooking the hook plate 64 is formed on the other end of the main body 63.

断面U字状の本体63は、回路基板10を左右方向から跨ぎ放熱シート61を上側から覆い被せるように配置されており、両端は回路基板10の下側から突出している。そして、引っ掛け板64は、光路変換器40の下面を押さえながら、本体63の係合部63Aに引っ掛けられている。引っ掛け板64を本体63の係合部63Aに引っ掛けると、固定具62は、本体63の内側の部材(ガラス基板20、発光部31、光路変換器40及び放熱シート61など)を上下方向から締め付ける。   The U-shaped main body 63 is disposed so as to straddle the circuit board 10 from the left-right direction and cover the heat radiation sheet 61 from above, and both ends protrude from the lower side of the circuit board 10. The hook plate 64 is hooked on the engaging portion 63 </ b> A of the main body 63 while pressing the lower surface of the optical path converter 40. When the hook plate 64 is hooked on the engaging portion 63A of the main body 63, the fixture 62 tightens members inside the main body 63 (the glass substrate 20, the light emitting portion 31, the optical path changer 40, the heat radiation sheet 61, and the like) from above and below. .

固定具62は、引っ掛け板64によって光路変換器40を上側に向かって付勢するとともに、本体63によって放熱シート61を介してガラス基板20を下側に向かって付勢する。つまり、固定具62は、ガラス基板20の位置決め穴23に光路変換器40の位置決めピン43を挿入する方向に力を付勢する付勢部材として機能する。これにより、ガラス基板20の位置決め穴23と光路変換器40の位置決めピン43との嵌合が確実なものとなり、外れにくくなる。   The fixture 62 urges the optical path converter 40 upward by the hook plate 64 and urges the glass substrate 20 downward by the main body 63 via the heat dissipation sheet 61. That is, the fixture 62 functions as a biasing member that biases a force in a direction in which the positioning pin 43 of the optical path converter 40 is inserted into the positioning hole 23 of the glass substrate 20. Thereby, fitting with the positioning hole 23 of the glass substrate 20 and the positioning pin 43 of the optical path changer 40 becomes reliable, and it becomes difficult to remove | deviate.

また、固定具62の引っ掛け板64が、光路変換器40の反射部42の外側を覆っている。これにより、反射部42へのゴミの侵入を防ぐことができる。もし仮に反射部42にゴミが付着すると、反射部42の光学的な特性が変化するおそれがあるが、引っ掛け板64が反射部42の外側を覆うことによって、反射部42の光学的な特性の変化を予防できる。   In addition, the hook plate 64 of the fixture 62 covers the outside of the reflecting portion 42 of the optical path converter 40. Thereby, it is possible to prevent dust from entering the reflecting portion 42. If dust adheres to the reflector 42, the optical characteristics of the reflector 42 may change. However, the hook plate 64 covers the outside of the reflector 42, so that the optical characteristics of the reflector 42 are improved. Change can be prevented.

また、固定具62は、発光部31や駆動素子32と放熱シート61とを密着させる方向に力を付勢する付勢部材として機能する。これにより、発光部31や駆動素子32から発生した熱が放熱シート61に伝導しやすくなる。   Further, the fixture 62 functions as a biasing member that biases a force in a direction in which the light emitting unit 31 or the driving element 32 and the heat dissipation sheet 61 are brought into close contact with each other. Thereby, the heat generated from the light emitting unit 31 and the drive element 32 is easily conducted to the heat radiating sheet 61.

なお、位置決めピン43が位置決め穴23に挿入された状態が固定具62によって保持されているため、固定具62を外せば、ガラス基板20から光路変換器40を外すことが可能である。つまり、着脱可能になるように、位置決め穴23に位置決めピン43を挿入することによって、ガラス基板20と光路変換器40とが位置決めされている。このため、第1実施形態における光路変換器40をガラス基板20に取り付ける工程は、接着固定する場合と比べて、簡易なものとなる。また、光路変換器40を着脱可能に取り付けているため、光路変換器40に故障が生じても、交換が可能である。(これに対し、光路変換器40をガラス基板20に接着固定した場合には、光路変換器40が故障してしまうと、ガラス基板20(及び回路基板10)も交換する必要が生じるため、コストがかかってしまう。)
<回路基板10、ガラス基板20、駆動素子32及び光路変換器40の配置>
図5Aは、回路基板10、ガラス基板20、駆動素子32及び光路変換器40の配置の説明図である。
Since the state in which the positioning pin 43 is inserted into the positioning hole 23 is held by the fixture 62, the optical path converter 40 can be removed from the glass substrate 20 by removing the fixture 62. That is, the glass substrate 20 and the optical path changer 40 are positioned by inserting the positioning pins 43 into the positioning holes 23 so as to be detachable. For this reason, the process of attaching the optical path changer 40 in the first embodiment to the glass substrate 20 is simpler than the case of bonding and fixing. Further, since the optical path changer 40 is detachably attached, it can be replaced even if a failure occurs in the optical path changer 40. (On the other hand, when the optical path converter 40 is bonded and fixed to the glass substrate 20, if the optical path converter 40 breaks down, the glass substrate 20 (and the circuit board 10) also needs to be replaced. It will take.)
<Arrangement of the circuit board 10, the glass substrate 20, the drive element 32, and the optical path changer 40>
FIG. 5A is an explanatory diagram of the arrangement of the circuit board 10, the glass substrate 20, the drive element 32, and the optical path converter 40.

図5Aに示すように、回路基板10には収容窓12が形成されていると共に、この収容窓12を塞ぐように回路基板10の上側にガラス基板20が搭載されている。また、ガラス基板20の上面には駆動素子32(及び発光部31)が実装され、ガラス基板20の下面には光路変換器40が取り付けられている。そして、光路変換器40の上側は、回路基板10の収容窓12に挿入されており、光路変換器40の下側は、回路基板10の下面よりも下側に突出している。但し、光路変換器40が回路基板10より薄い場合、光路変換器40の下側は収容窓12から下側に突出しない。この場合、反射部42が光を鈍角に反射するように構成されると、光路変換器40から光ファイバ50を引き出しやすくなる。   As shown in FIG. 5A, an accommodation window 12 is formed on the circuit board 10, and a glass substrate 20 is mounted on the upper side of the circuit board 10 so as to close the accommodation window 12. The driving element 32 (and the light emitting unit 31) is mounted on the upper surface of the glass substrate 20, and the optical path converter 40 is attached to the lower surface of the glass substrate 20. The upper side of the optical path changer 40 is inserted into the receiving window 12 of the circuit board 10, and the lower side of the optical path changer 40 protrudes below the lower surface of the circuit board 10. However, when the optical path changer 40 is thinner than the circuit board 10, the lower side of the optical path changer 40 does not protrude downward from the receiving window 12. In this case, if the reflecting portion 42 is configured to reflect light at an obtuse angle, the optical fiber 50 can be easily pulled out from the optical path converter 40.

図に示すように、回路基板10の厚さ(上下方向の寸法)は1.0mm、ガラス基板20の厚さは0.7mm、駆動素子32の厚さは0.3mm、光路変換器40の厚さは1.8mmである。発光部31は駆動素子32よりも薄い部品なので、ここでは発光部31は無視することにする。但し、仮に発光部31が駆動素子32よりも厚ければ、駆動素子32の代わりに発光部31の厚さを考慮することになる。   As shown in the figure, the thickness (dimension in the vertical direction) of the circuit board 10 is 1.0 mm, the thickness of the glass substrate 20 is 0.7 mm, the thickness of the driving element 32 is 0.3 mm, and the optical path converter 40 The thickness is 1.8 mm. Since the light emitting unit 31 is thinner than the drive element 32, the light emitting unit 31 is ignored here. However, if the light emitting unit 31 is thicker than the driving element 32, the thickness of the light emitting unit 31 is considered instead of the driving element 32.

光路変換器40は、反射部42の寸法を確保するため、また、光ファイバ50の端部を接続するための寸法を確保するため、他と比べると一番厚い部品になっている。そして、第1実施形態では、厚みのある光路変換器40を回路基板10の収容窓12に挿入させて配置することによって、全体の低背化を図っている。具体的には、第1実施形態では、1.0mmの厚さの回路基板10に0.7mmのガラス基板20を搭載し、そのガラス基板20に厚さ1.8mmの光路変換器40を取り付けているにも関わらず、全体の厚さは、3.5mm(=1.0mm+0.7mm+1.8mm)よりも薄い2.8mm(=1.8mm+0.7mm+0.3mm)になっている。   The optical path changer 40 is the thickest part compared to the other parts in order to ensure the dimensions of the reflecting portion 42 and to ensure the dimensions for connecting the end of the optical fiber 50. In the first embodiment, the entire optical path changer 40 is inserted into the accommodating window 12 of the circuit board 10 and arranged to reduce the overall height. Specifically, in the first embodiment, a glass substrate 20 having a thickness of 0.7 mm is mounted on a circuit substrate 10 having a thickness of 1.0 mm, and an optical path converter 40 having a thickness of 1.8 mm is attached to the glass substrate 20. Nevertheless, the total thickness is 2.8 mm (= 1.8 mm + 0.7 mm + 0.3 mm), which is thinner than 3.5 mm (= 1.0 mm + 0.7 mm + 1.8 mm).

ところで、収容窓12に駆動素子32等を挿入した場合、発熱体でもある駆動素子32や発光部31が回路基板10の近傍に配置されることになり、回路基板10に搭載された他の部品に寿命劣化等の影響を及ぼすおそれがあり、仮に影響が及ばないように他の部品の配置を考慮しても回路基板10の回路設計の自由度が低減してしまう。また、収容窓12に駆動素子32等を挿入した場合、収容窓12の中に放熱シート等を取り付ける必要があり、放熱処理が困難になる。これに対し、光路変換器40を収容窓12に挿入した場合、光路変換器40は受動的な部品であり、発熱はしないため、このような問題は生じない。   By the way, when the drive element 32 or the like is inserted into the housing window 12, the drive element 32 or the light emitting unit 31, which is also a heating element, is arranged in the vicinity of the circuit board 10, and other components mounted on the circuit board 10. The life of the circuit board 10 may be affected, and the degree of freedom in the circuit design of the circuit board 10 is reduced even if the arrangement of other components is taken into consideration so as not to be affected. Moreover, when the drive element 32 etc. are inserted in the accommodation window 12, it is necessary to attach a heat radiating sheet etc. in the accommodation window 12, and a heat dissipation process becomes difficult. On the other hand, when the optical path changer 40 is inserted into the receiving window 12, the optical path changer 40 is a passive component and does not generate heat, so such a problem does not occur.

このように、第1実施形態では、回路基板10に収容窓12を形成し、ガラス基板20の両面に取り付けられた部品のうち一方の面に取り付けられた部品(ここでは光路変換器40)を収容窓12に挿入することによって、低背化を図っている。   Thus, in 1st Embodiment, the accommodation window 12 is formed in the circuit board 10, and the components (here optical path changer 40) attached to one side among the components attached to both surfaces of the glass substrate 20 are used. By inserting it into the receiving window 12, the height is reduced.

また、ガラス基板20の両面に取り付けられた部品(ここでは駆動素子32と光路変換器40)のうち、厚い部品の方を収容窓12に挿入すれば、効果的に低背化を図ることが可能である。つまり、収容窓12に挿入される方の部品(ここでは光路変換器40)が、ガラス基板20の上面に取り付けられた部品(ここでは駆動素子32)よりも厚ければ、更に効果的に低背化を図ることが可能である。特に、ガラス基板20の一方の面に取り付けられた部品(ここでは光路変換器40)が回路基板10よりも厚く、ガラス基板20の他方の面に取り付けられた部品(ここでは駆動素子32)が回路基板10よりも薄い場合には、厚い部品の方を収容窓12に挿入することによって、効果的に低背化を図ることができる。   In addition, among the components (here, the drive element 32 and the optical path converter 40) attached to both surfaces of the glass substrate 20, if the thicker component is inserted into the receiving window 12, the height can be effectively reduced. Is possible. That is, if the component (here, the optical path changer 40) to be inserted into the receiving window 12 is thicker than the component (here, the drive element 32) attached to the upper surface of the glass substrate 20, it is more effectively reduced. It is possible to achieve a height change. In particular, a component (here, the optical path changer 40) attached to one surface of the glass substrate 20 is thicker than the circuit substrate 10, and a component (here, the driving element 32) attached to the other surface of the glass substrate 20 is. If it is thinner than the circuit board 10, it is possible to effectively reduce the height by inserting a thicker part into the receiving window 12.

更に第1実施形態では、発熱する駆動素子32(及び発光部31)がガラス基板20の上側になるように、回路基板10、ガラス基板20、駆動素子32及び光路変換器40を配置している。これにより、ケージ2の上側のヒートシンク3に熱を逃がしやすい構成になる。   Furthermore, in the first embodiment, the circuit board 10, the glass substrate 20, the drive element 32, and the optical path changer 40 are arranged so that the drive element 32 (and the light emitting unit 31) that generates heat is on the upper side of the glass substrate 20. . As a result, the heat can be easily released to the heat sink 3 on the upper side of the cage 2.

なお、図5Bは、第1参考例の配置の説明図である。この配置は、前述の特許文献1(特開2004−240220号公報)の図6に示された配置とほぼ同様である。ガラス基板20’は信号処理チップ101’と一体にモールドされて、混成集積回路100’が構成されている。回路基板10’にはソケット102’が配置されており、混成集積回路100’が固定されている。ガラス基板20’の下側であって、混成集積回路100’と回路基板10’の間には、光ファイバ50’を支持する光路変換器40’が取り付けられている。第1参考例の配置では、各部材(回路基板10’、ガラス基板20’、駆動素子32’及び光路変換器40’)が単に積み重ねられたように配置されている。また、ソケット102’や信号処理チップ101’などを介在させてガラス基板20’が回路基板10’に間接的に接続されており、ガラス基板20’は回路基板10’に直接的には接続されていない。この結果、第1参考例の配置の場合、少なくとも全体の厚さが回路基板10’、ガラス基板20’、駆動素子32’及び光路変換器40’の厚さの合計値以上になるため、低背化を図ることができない。   FIG. 5B is an explanatory diagram of the arrangement of the first reference example. This arrangement is almost the same as the arrangement shown in FIG. 6 of the aforementioned Patent Document 1 (Japanese Patent Laid-Open No. 2004-240220). The glass substrate 20 'is molded integrally with the signal processing chip 101' to constitute a hybrid integrated circuit 100 '. A socket 102 'is disposed on the circuit board 10', and the hybrid integrated circuit 100 'is fixed. An optical path changer 40 ′ for supporting the optical fiber 50 ′ is attached below the glass substrate 20 ′ and between the hybrid integrated circuit 100 ′ and the circuit substrate 10 ′. In the arrangement of the first reference example, the members (the circuit board 10 ′, the glass board 20 ′, the drive element 32 ′, and the optical path changer 40 ′) are arranged so as to be simply stacked. Further, the glass substrate 20 ′ is indirectly connected to the circuit board 10 ′ via the socket 102 ′, the signal processing chip 101 ′, etc., and the glass substrate 20 ′ is directly connected to the circuit board 10 ′. Not. As a result, in the case of the arrangement of the first reference example, at least the total thickness is equal to or greater than the total thickness of the circuit board 10 ′, the glass substrate 20 ′, the drive element 32 ′, and the optical path changer 40 ′. Cannot be turned upside down.

図5Cは、第2参考例の配置の説明図である。この配置は、前述の特許文献1(特開2004−240220号公報)の図7に示された配置とほぼ同様である。この配置においても、各部材(回路基板10”、ガラス基板20”、駆動素子32”及び光路変換器40”)が単に積み重ねられたように配置されている。また、信号処理チップ101”などを介在させてガラス基板20”が回路基板10”に間接的に接続されており、ガラス基板20”は回路基板10”に直接的には接続されていない。この結果、第2参考例の配置の場合も、少なくとも全体の厚さが回路基板10”、ガラス基板20”、駆動素子32”及び光路変換器40”の厚さの合計値以上になるため、低背化を図ることができない。   FIG. 5C is an explanatory diagram of the arrangement of the second reference example. This arrangement is almost the same as the arrangement shown in FIG. 7 of the aforementioned Patent Document 1 (Japanese Patent Laid-Open No. 2004-240220). Also in this arrangement, each member (the circuit board 10 ″, the glass substrate 20 ″, the driving element 32 ″, and the optical path changer 40 ″) is arranged as simply stacked. Further, the glass substrate 20 ″ is indirectly connected to the circuit substrate 10 ″ with the signal processing chip 101 ″ interposed therebetween, and the glass substrate 20 ″ is not directly connected to the circuit substrate 10 ″. As a result, even in the arrangement of the second reference example, at least the overall thickness is equal to or greater than the total thickness of the circuit board 10 ″, the glass substrate 20 ″, the drive element 32 ″, and the optical path changer 40 ″, so that the low Cannot be turned upside down.

上記の第1参考例及び第2参考例と比べて理解できるように、図5Aに示す配置では、低背化を実現できる。   As can be understood from the first reference example and the second reference example, the arrangement shown in FIG. 5A can reduce the height.

<ガラス基板20と光路変換器40との許容位置決め誤差>
図6Aは、光路変換器40のレンズ部41の曲率半径Rの説明図である。既に説明した通り、レンズ部41は、光路変換器40の上面から突出しないように形成された凸レンズ状の部位である。図6Bは、光ファイバ50のコアと光のスポットとの関係の説明図である。図中の点線は光ファイバ50のコアを示しており、ハッチングの施された領域は、光ファイバ50の端面における光のスポットを示している。ここでは、3種類の曲率半径R(300μm、350μm、400μm)のレンズ部41の光結合の効率について検討した。
<Allowable positioning error between glass substrate 20 and optical path changer 40>
FIG. 6A is an explanatory diagram of the radius of curvature R of the lens portion 41 of the optical path changer 40. As already described, the lens portion 41 is a convex lens-shaped portion formed so as not to protrude from the upper surface of the optical path changer 40. FIG. 6B is an explanatory diagram of the relationship between the core of the optical fiber 50 and the light spot. The dotted line in the figure indicates the core of the optical fiber 50, and the hatched area indicates a light spot on the end face of the optical fiber 50. Here, the efficiency of optical coupling of the lens portion 41 having three types of curvature radii R (300 μm, 350 μm, and 400 μm) was examined.

図6Bに示すように、曲率半径Rの小さいレンズ部41ほど、光ファイバ50の端面の位置で光のスポットが絞り込まれており、光結合効率が高くなる。具体的には、R=300μmでは光結合効率は81%であり、R=350μmでは光結合効率は33%であり、R=400μmでは光結合効率は22%になる。曲率半径Rが300μmの場合に焦点(ここでは、発光部31から照射された光が収束する点)が光ファイバ50の端面近傍に位置する。これに対し、曲率半径Rが350μm及び400μmの場合には、曲率半径Rが300μmの場合と比べて、焦点が光ファイバ50の端面から離れて位置する(いわゆる後ピンの状態)。このため、曲率半径Rが350μm及び400μmの場合には、曲率半径Rが300μmの場合と比べて、光のスポットが広がっている。   As shown in FIG. 6B, the light spot is narrowed at the position of the end face of the optical fiber 50 as the lens portion 41 has a smaller radius of curvature R, and the optical coupling efficiency becomes higher. Specifically, when R = 300 μm, the optical coupling efficiency is 81%, when R = 350 μm, the optical coupling efficiency is 33%, and when R = 400 μm, the optical coupling efficiency is 22%. When the radius of curvature R is 300 μm, the focal point (here, the point where the light emitted from the light emitting unit 31 converges) is located near the end face of the optical fiber 50. On the other hand, when the radius of curvature R is 350 μm and 400 μm, the focal point is located farther from the end face of the optical fiber 50 than when the radius of curvature R is 300 μm (so-called rear pin state). For this reason, when the radius of curvature R is 350 μm and 400 μm, the spot of light is wider than when the radius of curvature R is 300 μm.

光結合効率は、ガラス基板20と光路変換器40との相対的な位置関係がずれると、変化する。また、ずれる方向によって、光結合効率の変化の度合いが異なることになる。以下、この点について説明する。   The optical coupling efficiency changes when the relative positional relationship between the glass substrate 20 and the optical path changer 40 shifts. In addition, the degree of change in optical coupling efficiency varies depending on the direction of deviation. Hereinafter, this point will be described.

図7Aは、レンズ部41の光軸に垂直なY方向(前後方向又は左右方向)にガラス基板20と光路変換器40とをずらした場合のずれ量(μm)と光結合効率(%)との関係のグラフである。ずれる方向がレンズ部41の光軸に垂直な方向の場合には、光ファイバ50のコアから外れるように光のスポットがずれることになる。このため、Y方向のずれ量がコアの径(およそ50μm)の半分程度に達すると、光結合効率がおよそほぼゼロになってしまう。また、ずれ量に対する光結合効率の変化は、レンズ部41の曲率半径Rが小さいほど顕著になる。このため、Y方向の位置ずれは、許容され難い。   FIG. 7A shows the shift amount (μm) and optical coupling efficiency (%) when the glass substrate 20 and the optical path changer 40 are shifted in the Y direction (front-rear direction or left-right direction) perpendicular to the optical axis of the lens unit 41. It is a graph of the relationship. When the direction of deviation is a direction perpendicular to the optical axis of the lens unit 41, the light spot is deviated from the core of the optical fiber 50. For this reason, when the amount of deviation in the Y direction reaches about half of the core diameter (approximately 50 μm), the optical coupling efficiency becomes approximately zero. Further, the change in the optical coupling efficiency with respect to the shift amount becomes more significant as the radius of curvature R of the lens unit 41 is smaller. For this reason, misalignment in the Y direction is difficult to tolerate.

図7Bは、レンズ部41の光軸に平行なZ方向(上下方向)にガラス基板20と光路変換器40とをずらした場合のずれ量(μm)と光結合効率(%)との関係のグラフである。ずれる方向がレンズ部41の光軸と平行な場合には、光のスポットの大きさが変化しても、光のスポットは光ファイバ50のコアからは外れるわけではない。このため、Z方向のずれ量が大きくても、例えばZ方向のずれ量がコアの径の半分程度に達しても、光結合効率はゼロにはならない。このため、Z方向の位置ずれは、許容され易い。   FIG. 7B shows the relationship between the shift amount (μm) and the optical coupling efficiency (%) when the glass substrate 20 and the optical path changer 40 are shifted in the Z direction (vertical direction) parallel to the optical axis of the lens unit 41. It is a graph. When the direction of deviation is parallel to the optical axis of the lens unit 41, the light spot does not deviate from the core of the optical fiber 50 even if the size of the light spot changes. For this reason, even if the amount of deviation in the Z direction is large, for example, even if the amount of deviation in the Z direction reaches about half the diameter of the core, the optical coupling efficiency does not become zero. For this reason, misalignment in the Z direction is easily allowed.

以上の通り、ガラス基板20と光路変換器40との相対的な位置ずれは、レンズ部41の光軸に垂直なY方向には許容され難く、レンズ部41の光軸に平行なZ方向には許容され易い。このことは、ガラス基板20と光路変換器40とを位置決めする際に、ガラス基板20の表面と平行な方向(Y方向に相当)の位置決め誤差は許容され難く、ガラス基板20の表面に垂直な方向(Z方向に相当)の位置決め誤差は許容され易いことを意味している。   As described above, the relative displacement between the glass substrate 20 and the optical path changer 40 is hardly allowed in the Y direction perpendicular to the optical axis of the lens unit 41, and in the Z direction parallel to the optical axis of the lens unit 41. Is easy to tolerate. This means that when positioning the glass substrate 20 and the optical path changer 40, a positioning error in a direction parallel to the surface of the glass substrate 20 (corresponding to the Y direction) is hardly allowed and is perpendicular to the surface of the glass substrate 20. This means that positioning errors in the direction (corresponding to the Z direction) are easily tolerated.

したがって、ガラス基板20と光路変換器40との位置決めは、Z方向よりもY方向の精度を高くすることが求められる。第1実施形態では、後述するように、Y方向に高い精度で位置決めできるように、ガラス基板20の位置決め穴23と、光路変換器40の位置決めピン43を構成している。   Therefore, the positioning of the glass substrate 20 and the optical path changer 40 is required to have higher accuracy in the Y direction than in the Z direction. In the first embodiment, as will be described later, the positioning hole 23 of the glass substrate 20 and the positioning pin 43 of the optical path converter 40 are configured so that the positioning can be performed with high accuracy in the Y direction.

ところで、図7Bに示すように、第1実施形態の光路変換器40では、レンズ部41の曲率半径Rが350μm及び400μmでは、Z方向のずれ量が増えるほど、光結合効率が増えている。この理由は、以下のように考えられる。この光路変換器40は、曲率半径Rが300μmのレンズ部41の場合に焦点(ここでは、発光部31から照射された光が収束する点)が光ファイバ50の端面近傍に位置するように、形成されている。曲率半径が長くなると焦点距離が長くなるため、この光路変換器40において曲率半径Rが350μm及び400μmの場合には、焦点は光ファイバ50の端面よりも遠方に位置することになる(いわゆる後ピンの状態)。このように光路変換器40が構成されているため、曲率半径Rが350μm及び400μmの場合には、ガラス基板20と光路変換器40が離れると(ガラス基板20に搭載された発光部31とレンズ部41との距離が長くなると)、焦点が光ファイバ50の端面に近づき、光結合効率が向上していると考えられる。   Incidentally, as shown in FIG. 7B, in the optical path converter 40 of the first embodiment, when the radius of curvature R of the lens portion 41 is 350 μm and 400 μm, the optical coupling efficiency increases as the amount of deviation in the Z direction increases. The reason is considered as follows. In the case of the lens unit 41 having a curvature radius R of 300 μm, the optical path changer 40 is arranged so that the focal point (here, the point where the light emitted from the light emitting unit 31 converges) is located near the end face of the optical fiber 50. Is formed. When the radius of curvature increases, the focal length increases. Therefore, when the radius of curvature R is 350 μm and 400 μm in this optical path converter 40, the focal point is located farther from the end face of the optical fiber 50 (so-called rear pin). State). Since the optical path converter 40 is configured in this manner, when the radius of curvature R is 350 μm and 400 μm, the glass substrate 20 and the optical path converter 40 are separated (the light emitting unit 31 and the lens mounted on the glass substrate 20). When the distance to the portion 41 is increased), it is considered that the focal point approaches the end face of the optical fiber 50 and the optical coupling efficiency is improved.

後述するように、位置決め穴23に位置決めピン43を嵌合すると、ガラス基板20と光路変換器40とがZ方向に若干離れて位置決めされることがある。このように位置決めされることを考慮すると、ガラス基板20の下面と光路変換器40の上面が密着した状態(Z方向のずれ量がゼロ)において発光部31から照射された光の収束する点(焦点)が光ファイバ50の端面よりも遠方に位置するように、光路変換器40の光学系(レンズ部41及び反射部42など)が構成されていることが望ましい。これにより、ガラス基板20と光路変換器40とがZ方向に若干離れて位置決めされたときに、少なくとも光結合効率を低下させずに済む。   As will be described later, when the positioning pin 43 is fitted into the positioning hole 23, the glass substrate 20 and the optical path converter 40 may be positioned slightly apart in the Z direction. In consideration of the positioning as described above, the light irradiated from the light emitting unit 31 converges in a state where the lower surface of the glass substrate 20 and the upper surface of the optical path converter 40 are in close contact (the shift amount in the Z direction is zero) ( It is desirable that the optical system (lens unit 41, reflection unit 42, etc.) of the optical path changer 40 be configured so that the focal point is located farther from the end face of the optical fiber 50. Thereby, when the glass substrate 20 and the optical path changer 40 are positioned slightly apart in the Z direction, at least the optical coupling efficiency does not need to be lowered.

<位置決め穴23と位置決めピン43>
図8Aは、第1実施形態の位置決め穴23の説明図である。図8Bは、比較例の位置決め穴23’の説明図である。第1実施形態では、ガラス基板20に位置決め穴23として非貫通穴を形成している。非貫通穴にする理由は、位置決め穴23を非貫通穴にすることによって、ガラス基板20の上面における部品搭載や配線の自由度が高くなるからである。
<Positioning hole 23 and positioning pin 43>
FIG. 8A is an explanatory diagram of the positioning hole 23 of the first embodiment. FIG. 8B is an explanatory diagram of a positioning hole 23 ′ of a comparative example. In the first embodiment, a non-through hole is formed as a positioning hole 23 in the glass substrate 20. The reason for making the non-through hole is that by making the positioning hole 23 a non-through hole, the degree of freedom of component mounting and wiring on the upper surface of the glass substrate 20 increases.

ガラス基板20に非貫通穴を形成する方法として、ドリルによる加工方法が考えられる。ドリルによって非加工穴を形成した場合には、図8Bに示すように、深さによらず径が一定の穴がガラス基板20’に形成される。但し、ドリルによる加工は、コストがかかることがある。そこで、第1実施形態では、低コストに非貫通穴を形成できるサンドブラスト加工を採用している。但し、サンドブラスト加工によって非貫通穴を形成した場合、ガラス基板20の表面での穴径(開口径)は精度良く形成できるものの、奥の窄まった形状になる(図8A参照)。このため、穴の奥では、穴径と深さの寸法精度は極めて低い状態になる。   As a method for forming the non-through hole in the glass substrate 20, a processing method using a drill is conceivable. When the non-processed hole is formed by the drill, as shown in FIG. 8B, a hole having a constant diameter regardless of the depth is formed in the glass substrate 20 '. However, machining with a drill may be costly. Therefore, in the first embodiment, sandblasting that can form non-through holes at low cost is employed. However, when the non-through hole is formed by sandblasting, the hole diameter (opening diameter) on the surface of the glass substrate 20 can be formed with high accuracy, but it has a constricted shape (see FIG. 8A). For this reason, the dimensional accuracy of the hole diameter and depth is extremely low at the back of the hole.

図9Aは、第1実施形態の位置決めピン43の説明図である。図9Bは第1比較例の位置決めピン43’の説明図である。図9Cは第2比較例の位置決めピン43”の説明図である。   FIG. 9A is an explanatory diagram of the positioning pin 43 of the first embodiment. FIG. 9B is an explanatory diagram of the positioning pin 43 ′ of the first comparative example. FIG. 9C is an explanatory diagram of the positioning pin 43 ″ of the second comparative example.

図9Cに示す第2比較例の位置決めピン43”は、ピン径が一定の円柱形状(寸胴形状)である。このような円柱形状の位置決めピン43”の場合、図9Aのような奥の窄まった位置決め穴23に挿入して位置決めを行うことができない。また、仮に位置決め穴23が図8Bのような形状の場合には、図9Cに示す第2比較例の位置決めピン43”を挿入して位置決めを行うことは可能かもしれないが、この場合、はめあい公差により、位置決め穴23’と位置決めピン43”との間に隙間が必要であるため、この隙間の分だけ位置決め誤差が生じてしまう。(既に説明した通り、位置決め穴23や位置決めピン43の軸方向に垂直な方向(ガラス基板20の表面と平行な方向、Y方向)の位置決め誤差は許容され難い。)
図9Bに示す第1比較例の位置決めピン43’は、円錐形状になっている。このような形状の位置決めピン43’を図8Aのような奥の窄まった位置決め穴23に挿入すると、位置決めピン43’の先端が位置決め穴23の底に接触する可能性があり、この場合には位置決めを行うことができない。
The positioning pin 43 ″ of the second comparative example shown in FIG. 9C has a cylindrical shape (dimension cylinder shape) with a constant pin diameter. In the case of such a cylindrical positioning pin 43 ″, a deep constriction as shown in FIG. It cannot be positioned by being inserted into the remaining positioning hole 23. Further, if the positioning hole 23 has a shape as shown in FIG. 8B, it may be possible to perform positioning by inserting the positioning pin 43 ″ of the second comparative example shown in FIG. 9C. Due to the tolerance, a gap is required between the positioning hole 23 ′ and the positioning pin 43 ″, and a positioning error is generated by this gap. (As already described, positioning errors in a direction perpendicular to the axial direction of the positioning holes 23 and the positioning pins 43 (a direction parallel to the surface of the glass substrate 20 and the Y direction) are difficult to tolerate.)
The positioning pin 43 ′ of the first comparative example shown in FIG. 9B has a conical shape. When the positioning pin 43 ′ having such a shape is inserted into the positioning hole 23 having a narrow back as shown in FIG. 8A, the tip of the positioning pin 43 ′ may come into contact with the bottom of the positioning hole 23. Cannot perform positioning.

なお、第1比較例の位置決めピン43’の高さを低くして、位置決めピン43’の先端が位置決め穴23の底に接触しないように構成することは可能である。但し、この場合、テーパ面の角度が小さくなってしまうため(位置決めピン43’が全体的に平坦な形状になってしまうため)、位置決め穴23へ挿入し難くなったり、位置決め穴23への嵌入性が悪くなったりする等の結果、光軸がずれるおそれが生じてしまう。   It is possible to reduce the height of the positioning pin 43 ′ of the first comparative example so that the tip of the positioning pin 43 ′ does not contact the bottom of the positioning hole 23. However, in this case, since the angle of the tapered surface becomes small (because the positioning pin 43 ′ has a flat shape as a whole), it becomes difficult to insert into the positioning hole 23 or fit into the positioning hole 23. As a result, the optical axis may be shifted.

これに対し、第1実施形態の位置決めピン43は、図9Aに示すように、円錐台形状になっている。つまり、第1実施形態の位置決めピン43は、円錐を底面に平行な面で切り、頂部を含む部分を除いたような形状になっている。位置決めピン43が円錐台形状であるため、図8Aのような奥の窄まった位置決め穴23に挿入しても、位置決めピン43の先端が位置決め穴23の底に接触し難い。また、円錐台形状のテーパ面43Aの角度を大きくしても、位置決めピン43の先端が位置決め穴23の底に接触し難い。   On the other hand, the positioning pin 43 of the first embodiment has a truncated cone shape as shown in FIG. 9A. That is, the positioning pin 43 of the first embodiment has a shape such that a cone is cut by a plane parallel to the bottom surface and a portion including the top portion is excluded. Since the positioning pin 43 has a truncated cone shape, the tip of the positioning pin 43 is unlikely to contact the bottom of the positioning hole 23 even if the positioning pin 43 is inserted into the narrowed positioning hole 23 as shown in FIG. 8A. Even if the angle of the truncated cone-shaped tapered surface 43 </ b> A is increased, the tip of the positioning pin 43 is difficult to contact the bottom of the positioning hole 23.

また、第1実施形態の位置決めピン43によれば、円錐台形状のテーパ面43Aがガラス基板20の表面において位置決め穴23と隙間無く接触できるので(位置決め穴23の縁と隙間無く接触できるので)、位置決め誤差を抑制できる。これにより、第1実施形態では、位置決め穴23や位置決めピン43の軸方向に垂直な方向(ガラス基板20の表面と平行な方向、Y方向)の位置決め精度を高くできる。   Further, according to the positioning pin 43 of the first embodiment, the truncated conical tapered surface 43A can contact the positioning hole 23 on the surface of the glass substrate 20 without any gap (because it can contact the edge of the positioning hole 23 without any gap). , Positioning errors can be suppressed. Thereby, in 1st Embodiment, the positioning accuracy of the direction (direction parallel to the surface of the glass substrate 20, Y direction) perpendicular | vertical to the axial direction of the positioning hole 23 or the positioning pin 43 can be made high.

図10A及び図10Bは、第1実施形態の位置決め穴23と位置決めピン43との嵌合の様子の説明図である。図10Aは、位置決め穴23の開口径(ガラス基板20の下面での位置決め穴23の開口径)が最大(=1.01mm)であり、位置決めピン43の根元の径(光路変換器40の上面と同じ平面内でのテーパ面43Aの径)が最小(=1.01mm)の場合の嵌合の様子を示している。図10Bは、位置決め穴23の開口径が最小(=0.99mm)であり、位置決めピン43の根元の径が最大(=1.03mm)の場合の嵌合の様子を示している。   FIG. 10A and FIG. 10B are explanatory views showing a state of fitting between the positioning hole 23 and the positioning pin 43 of the first embodiment. FIG. 10A shows that the opening diameter of the positioning hole 23 (the opening diameter of the positioning hole 23 on the lower surface of the glass substrate 20) is the maximum (= 1.01 mm), and the root diameter of the positioning pin 43 (the upper surface of the optical path converter 40). The diameter of the taper surface 43A in the same plane as that in FIG. FIG. 10B shows a state of fitting when the opening diameter of the positioning hole 23 is the minimum (= 0.99 mm) and the base diameter of the positioning pin 43 is the maximum (= 1.03 mm).

ここでは、位置決め穴23は、開口径が1.00mmであり、公差が±0.01mmである(つまり、位置決め穴23の開口径の最大径は1.01mmであり、最小径は0.99mmである)。また、位置決めピン43は、根元の径が1.02mmであり、公差が0.01mmである(つまり、位置決めピン43の根元の最大径は1.03mmであり、最小径は1.01mmである)。また、位置決め穴23の開口径の最大径が位置決めピン43の根元の最小径を超えないように、位置決め穴23や位置決めピン43のそれぞれの径及び公差が設定されている。なお、位置決めピン43のテーパ面43Aを形成する母線は、光路変換器40の上面に対して50度傾いている。   Here, the positioning hole 23 has an opening diameter of 1.00 mm and a tolerance of ± 0.01 mm (that is, the maximum diameter of the positioning hole 23 is 1.01 mm and the minimum diameter is 0.99 mm). Is). Further, the positioning pin 43 has a root diameter of 1.02 mm and a tolerance of 0.01 mm (that is, the maximum diameter of the positioning pin 43 is 1.03 mm and the minimum diameter is 1.01 mm). ). Further, the diameters and tolerances of the positioning holes 23 and the positioning pins 43 are set so that the maximum diameter of the positioning holes 23 does not exceed the minimum diameter of the positioning pins 43. The bus forming the tapered surface 43 </ b> A of the positioning pin 43 is inclined by 50 degrees with respect to the upper surface of the optical path converter 40.

図10Aに示す状態では、ガラス基板20の下面と光路変換器40の上面が密着しつつ、位置決め穴23の開口部(位置決め穴23の縁)と位置決めピン43のテーパ面43Aとが接触する。この状態を基準(Y方向のずれ量をゼロ、Z方向のずれ量をゼロ)として、図10Bの位置決め精度について検討する。図10Bは、位置決め穴23及び位置決めピン43の径が最悪の条件(位置決め精度が一番低い条件)のときの嵌合の様子を示していることになる。   10A, the opening of the positioning hole 23 (the edge of the positioning hole 23) and the tapered surface 43A of the positioning pin 43 are in contact with each other while the lower surface of the glass substrate 20 and the upper surface of the optical path changer 40 are in close contact with each other. With this state as a reference (the displacement amount in the Y direction is zero and the displacement amount in the Z direction is zero), the positioning accuracy in FIG. 10B is examined. FIG. 10B shows a state of fitting when the diameter of the positioning hole 23 and the positioning pin 43 is the worst condition (the condition where the positioning accuracy is the lowest).

図10Bに示す状態では、位置決めピン43は、位置決め穴23の開口径と同じ径のテーパ面43Aで、位置決め穴23と接触する。つまり、テーパ面43Aの径が0.99mmとなる周囲で位置決め穴23と接触する。但し、位置決めピン43と位置決め穴23の軸は同じ位置である。言い換えると、径が0.99mmとなるテーパ面43Aの断面(円形状)の中心位置は、位置決め穴23の開口部(円形状)の中心位置と一致している。したがって、この条件で位置決め穴23と位置決めピン43を嵌合させた場合においても、位置決め穴23や位置決めピン43の軸方向に垂直な方向(ガラス基板20の表面と平行な方向、Y方向)のずれ量はゼロである。   In the state shown in FIG. 10B, the positioning pin 43 is in contact with the positioning hole 23 with a tapered surface 43 </ b> A having the same diameter as the opening diameter of the positioning hole 23. That is, the taper surface 43A comes into contact with the positioning hole 23 around the diameter of 0.99 mm. However, the axes of the positioning pin 43 and the positioning hole 23 are at the same position. In other words, the center position of the cross section (circular shape) of the tapered surface 43A having a diameter of 0.99 mm coincides with the central position of the opening portion (circular shape) of the positioning hole 23. Therefore, even when the positioning hole 23 and the positioning pin 43 are fitted under these conditions, the direction perpendicular to the axial direction of the positioning hole 23 and the positioning pin 43 (the direction parallel to the surface of the glass substrate 20 and the Y direction). The amount of deviation is zero.

また、図10Bに示す状態では、位置決めピン43の根元から0.024mmだけ上側において、位置決め穴23と接触することになる。したがって、この条件で位置決め穴23と位置決めピン43を嵌合させた場合、ガラス基板20の下面と光路変換器40の上面との間に0.024mmの隙間が生じることになる。但し、位置決め穴23や位置決めピン43の軸方向に平行な方向(ガラス基板20の表面と垂直な方向、Z方向)の24μm程度のずれ量は、既に説明した通り、許容範囲内である。   Further, in the state shown in FIG. 10B, the positioning hole 23 comes into contact with the positioning pin 43 on the upper side by 0.024 mm from the root. Therefore, when the positioning hole 23 and the positioning pin 43 are fitted under these conditions, a gap of 0.024 mm is generated between the lower surface of the glass substrate 20 and the upper surface of the optical path converter 40. However, the deviation amount of about 24 μm in the direction parallel to the axial direction of the positioning hole 23 and the positioning pin 43 (the direction perpendicular to the surface of the glass substrate 20 and the Z direction) is within the allowable range as already described.

このように、第1実施形態の位置決め穴23と位置決めピン43によれば、位置決め穴23や位置決めピン43の軸方向に平行な方向(ガラス基板20の表面と垂直な方向、Z方向)の位置決め誤差が許容される際に、位置決め穴23や位置決めピン43の軸方向に垂直な方向(ガラス基板20の表面と平行な方向、Y方向)に高精度な位置決めを行うことができる。   Thus, according to the positioning hole 23 and the positioning pin 43 of the first embodiment, the positioning in the direction parallel to the axial direction of the positioning hole 23 and the positioning pin 43 (direction perpendicular to the surface of the glass substrate 20, Z direction). When the error is allowed, highly accurate positioning can be performed in a direction perpendicular to the axial direction of the positioning hole 23 and the positioning pin 43 (a direction parallel to the surface of the glass substrate 20 and the Y direction).

ところで、ガラス(ガラス基板20)は樹脂(光路変換器40)よりも硬いため、図10Bに示す状態のときに、位置決めピン43が位置決め穴23の開口部との接触部において変形することがある。但し、図10Bに示す状態から位置決めピン43が変形しても、最終的にはガラス基板20の下面と光路変換器40の上面が密着した段階で位置決めピン43の変形は止まるため、位置決めピン43の変形に伴うZ方向のずれは問題にならない。また、光路変換器40は着脱可能に取り付けられているため、変形した位置決めピン43を交換したければ、光路変換器40を交換すれば良い。   By the way, since glass (glass substrate 20) is harder than resin (optical path converter 40), the positioning pin 43 may be deformed at the contact portion with the opening of the positioning hole 23 in the state shown in FIG. 10B. . However, even if the positioning pin 43 is deformed from the state shown in FIG. 10B, the deformation of the positioning pin 43 stops when the lower surface of the glass substrate 20 and the upper surface of the optical path changer 40 are in close contact with each other. The shift in the Z direction due to the deformation of is not a problem. Since the optical path converter 40 is detachably attached, if the deformed positioning pin 43 is to be replaced, the optical path converter 40 may be replaced.

図11Aは、第1実施形態の位置決めピン43の根元近傍の拡大図である。図11Bは、参考例の位置決めピン43の根元近傍の拡大図である。
一般的に、樹脂を成型する際に樹脂が収縮するため、樹脂成型品の表面形状は、金型の内面の形状をそのまま反映するわけではない。例えば、成型品の角部が丸みを帯びることがある。
既に説明したように、第1実施形態の光路変換器40は透明樹脂によって一体的に成形されており、位置決めピン43も光路変換器40の他の部位と一体的に成形されている。そして、図11Bに示す参考例のように、位置決めピン43の根元の角部(図中の矢印で示す部分)が丸みを帯びてしまうことがある。この丸みは、位置決めピン43の周囲に均等に形成されるわけではないため(位置決めピン43の根元の丸みは制御できないため)、この部分が位置決め穴23に接触すると、位置決め穴23や位置決めピン43の軸方向に平行な方向(ガラス基板20の表面と垂直な方向、Z方向)の位置ずれだけでなく、位置決め穴23や位置決めピン43の軸方向に垂直な方向(ガラス基板20の表面と平行な方向、Y方向)の位置ずれの要因になり得る。
FIG. 11A is an enlarged view of the vicinity of the root of the positioning pin 43 of the first embodiment. FIG. 11B is an enlarged view of the vicinity of the root of the positioning pin 43 of the reference example.
Generally, since the resin shrinks when the resin is molded, the surface shape of the resin molded product does not directly reflect the shape of the inner surface of the mold. For example, the corner of the molded product may be rounded.
As already described, the optical path changer 40 of the first embodiment is formed integrally with a transparent resin, and the positioning pins 43 are also formed integrally with other parts of the optical path changer 40. And the corner | angular part (part shown by the arrow in a figure) of the base of the positioning pin 43 may become round like the reference example shown to FIG. 11B. Since this roundness is not formed uniformly around the positioning pin 43 (because the roundness at the base of the positioning pin 43 cannot be controlled), when this portion comes into contact with the positioning hole 23, the positioning hole 23 or the positioning pin 43 In addition to the positional deviation in the direction parallel to the axial direction (direction perpendicular to the surface of the glass substrate 20, Z direction), the direction perpendicular to the axial direction of the positioning holes 23 and positioning pins 43 (parallel to the surface of the glass substrate 20). May be a factor of misalignment in the right direction and the Y direction).

そこで、図11Aに示すように、第1実施形態では、位置決めピン43の根元の回りを囲むように環状に凹部43Bが形成されている。更に、凹部43Bの内側の側壁面は、円錐台形状の位置決めピン43のテーパ面43Aの延長面になっている。つまり、位置決めピン43のテーパ面43Aが光路変換器40の上面よりも内側(位置決めピン43の突出する側と反対側)まで形成されている。これにより、位置決めピン43の根元の角部が丸みを帯びても、その部分は光路変換器40の上面よりも内側に位置することになる。このため、仮にガラス基板20の下面と光路変換器40の上面とが密着するまで位置決め穴23に位置決めピン43が挿入されても、位置決めピン43の根元の丸みを帯びた角部は、位置決め穴23に接触しない。このように、第1実施形態では、位置決めピン43の根元に環状の凹部43Bを形成することによって、位置決め精度が向上する。   Therefore, as shown in FIG. 11A, in the first embodiment, a recess 43 </ b> B is formed in an annular shape so as to surround the base of the positioning pin 43. Furthermore, the inner side wall surface of the recess 43 </ b> B is an extended surface of the tapered surface 43 </ b> A of the truncated conical positioning pin 43. That is, the taper surface 43 </ b> A of the positioning pin 43 is formed to the inner side (the side opposite to the side where the positioning pin 43 protrudes) from the upper surface of the optical path converter 40. Thereby, even if the corner portion of the base of the positioning pin 43 is rounded, the portion is positioned inside the upper surface of the optical path changer 40. For this reason, even if the positioning pin 43 is inserted into the positioning hole 23 until the lower surface of the glass substrate 20 and the upper surface of the optical path changer 40 are in close contact with each other, the rounded corner portion of the positioning pin 43 remains at the positioning hole 43. 23 does not touch. As described above, in the first embodiment, by forming the annular recess 43 </ b> B at the base of the positioning pin 43, the positioning accuracy is improved.

なお、径が一定の位置決め穴(図8B参照)に凹部43Bを備えた円錐台形状の位置決めピン43を挿入する場合においても、位置決めピンの根元の角部の丸みの影響を受けずに位置決めを行うことは可能である。同様に、非貫通穴でなく貫通穴に凹部43を備えた円錐台形状の位置決めピン43を挿入する場合においても、位置決めピンの根元の角部の丸みの影響を受けずに位置決めを行うことは可能である。(但し、本実施形態では、位置決め穴は奥の窄まった形状であることを前提としている。)
===第2実施形態===
図12Aは、第1実施形態の位置決め穴23の説明図である。
Even when a truncated cone-shaped positioning pin 43 having a recess 43B is inserted into a positioning hole having a constant diameter (see FIG. 8B), positioning is not affected by the roundness at the corner of the positioning pin. It is possible to do. Similarly, even when inserting a truncated cone-shaped positioning pin 43 having a recess 43 in a through-hole instead of a non-through-hole, positioning is not affected by the roundness of the corner at the base of the positioning pin. Is possible. (However, in this embodiment, it is assumed that the positioning hole has a constricted shape at the back.)
=== Second Embodiment ===
FIG. 12A is an explanatory diagram of the positioning hole 23 of the first embodiment.

第1実施形態では、ガラス基板20の2つの位置決め穴23の間隔Lが、製造誤差等の影響によって、変動することがある。又は、不図示の光路変換器40の2つの位置決めピン43の間隔が、製造誤差等の影響によって、変動することもある。若しくは、ガラス(ガラス基板20)と樹脂(光路変換器40)との熱膨張係数の違いにより、温度変化によって2つの位置決め穴23の間隔と2つの位置決めピン43の間隔がずれることもあり得る。このように、2つの位置決め穴23の間隔と2つの位置決めピン43の間隔がずれた場合、位置決め穴23の径や位置決めピン43の径が設計通りの寸法に収まっていても、両方の位置決めピン43が両方の位置決め穴23に正常に挿入されず、ガラス基板20と光路変換器40との間に想定以上の位置ずれが生じるおそれがある。   In the first embodiment, the distance L between the two positioning holes 23 of the glass substrate 20 may fluctuate due to the influence of manufacturing errors and the like. Or the space | interval of the two positioning pins 43 of the optical path changer 40 not shown may change by the influence of a manufacturing error etc. Alternatively, due to a difference in thermal expansion coefficient between glass (glass substrate 20) and resin (optical path converter 40), the interval between the two positioning holes 23 and the interval between the two positioning pins 43 may be shifted due to a temperature change. As described above, when the distance between the two positioning holes 23 and the distance between the two positioning pins 43 are deviated from each other, even if the diameter of the positioning hole 23 and the diameter of the positioning pin 43 are within the designed dimensions, both positioning pins 43 is not normally inserted into both positioning holes 23, and there is a possibility that a position shift more than expected occurs between the glass substrate 20 and the optical path converter 40.

図12Bは、第2実施形態の位置決め穴の説明図である。第2実施形態では、2つの位置決め穴のうちの一方を基準穴23Aとし、他方を長穴23Bとしている。基準穴23Aは、第1実施形態の位置決め穴23と同じ形状である。なお、基準穴23A及び長穴23Bに挿入される2つの位置決めピン43は、前述の第1実施形態の位置決めピン43と同じ形状である(つまり、2つの位置決めピン43とも円錐台形状である)。   FIG. 12B is an explanatory diagram of a positioning hole according to the second embodiment. In the second embodiment, one of the two positioning holes is a reference hole 23A, and the other is a long hole 23B. The reference hole 23A has the same shape as the positioning hole 23 of the first embodiment. Note that the two positioning pins 43 inserted into the reference hole 23A and the long hole 23B have the same shape as the positioning pin 43 of the first embodiment described above (that is, the two positioning pins 43 have a truncated cone shape). .

長穴23Bは、基準穴23Aと同様に、非貫通穴である。長穴23Bもサンドブラスト加工により形成されているため、奥の窄まった形状になっている。長穴23Bの幅は、基準穴23Aの径と同じ長さである。長穴23Bの長手方向は、2つの位置決め穴(基準穴23Aと長穴23B)を結ぶ線に沿っている。   The long hole 23B is a non-through hole similarly to the reference hole 23A. Since the long hole 23B is also formed by sandblasting, it has a deep shape. The width of the long hole 23B is the same length as the diameter of the reference hole 23A. The longitudinal direction of the long hole 23B is along a line connecting the two positioning holes (the reference hole 23A and the long hole 23B).

光路変換器40の2つの位置決めピン43の一方は基準穴23Aに挿入され、他方は長穴23Bに挿入されることになる。長穴23Bの側では、位置決めピン43は、長穴23Bによって左右方向からは拘束されるが、前後方向からは拘束されないことになる。但し、基準穴23Aの側では、位置決めピン43の円錐台形状のテーパ面43Aが基準穴23Aと隙間無く接触するため、位置決めピン43は、基準穴23Aに対して、位置決めピン43の軸方向に垂直な前後方向及び左右方向(ガラス基板20の表面と平行な方向)に拘束されることになる。このため、長穴23Bに挿入された位置決めピン43が長穴23Bに対して前後方向に動くことはなく、ガラス基板20と光路変換器40は、位置決めピン43と位置決め穴23によって、ガラス基板20の表面と平行な方向に対して高精度に位置決めされる。   One of the two positioning pins 43 of the optical path changer 40 is inserted into the reference hole 23A, and the other is inserted into the long hole 23B. On the side of the long hole 23B, the positioning pin 43 is restrained from the left-right direction by the long hole 23B, but is not restrained from the front-rear direction. However, on the side of the reference hole 23A, the truncated conical tapered surface 43A of the positioning pin 43 is in contact with the reference hole 23A without a gap, so that the positioning pin 43 is in the axial direction of the positioning pin 43 with respect to the reference hole 23A. It is restrained in the vertical front-rear direction and the left-right direction (direction parallel to the surface of the glass substrate 20). For this reason, the positioning pin 43 inserted into the elongated hole 23B does not move in the front-rear direction with respect to the elongated hole 23B, and the glass substrate 20 and the optical path changer 40 are connected to the glass substrate 20 by the positioning pin 43 and the positioning hole 23. It is positioned with high accuracy with respect to the direction parallel to the surface.

なお、第2実施形態の場合、ガラス基板20に搭載される発光部31(又は受光部)は、基準穴23Aを基準にして所定の位置関係になるように配置されると良い。同様に、光路変換器40に形成されるレンズ部41(不図示)は、基準穴23Aに挿入される位置決めピン43を基準にして所定の位置関係になるように配置されると良い。これにより、発光部31とレンズ部41が高精度に位置決めされる。   In the case of the second embodiment, the light emitting unit 31 (or the light receiving unit) mounted on the glass substrate 20 is preferably arranged so as to have a predetermined positional relationship with reference to the reference hole 23A. Similarly, a lens portion 41 (not shown) formed in the optical path changer 40 is preferably arranged so as to have a predetermined positional relationship with reference to the positioning pin 43 inserted into the reference hole 23A. Thereby, the light emission part 31 and the lens part 41 are positioned with high precision.

===第3実施形態===
前述の第1実施形態の光モジュール1は、QSFPタイプのものであり、ハウジング1Aの中に回路基板10を1枚備えるタイプである。但し、光モジュールの備える回路基板の数は、1枚に限られるものではない。
=== Third Embodiment ===
The optical module 1 of the first embodiment described above is of the QSFP type, and is a type that includes one circuit board 10 in the housing 1A. However, the number of circuit boards included in the optical module is not limited to one.

図13は、第3実施形態の光モジュールの概略構成図である。第2実施形態の光モジュールは、CXPタイプのものであり、ハウジング1Aの中に回路基板10を2枚備えるタイプである。   FIG. 13 is a schematic configuration diagram of an optical module according to the third embodiment. The optical module of the second embodiment is of the CXP type, and is a type that includes two circuit boards 10 in the housing 1A.

図に示すように、回路基板10、ガラス基板20及び光路変換器40から構成されたユニットが2つ設けられている。上側の第1ユニットは、送信側のユニットであり、前述の第1実施形態の回路基板10、ガラス基板20、発光部31及び光路変換器40と同様に構成されている。下側の第2ユニットは、第1ユニットと同様に構成された回路基板10、ガラス基板20及び光路変換器40の上下を反転させて配置したものである。下側の第2ユニットは受信側のユニットであるため、第2ユニットのガラス基板20には、発光部32の代わりに受光部33が実装されている。なお、上側のユニットを受信側のユニットとし、下側のユニットを送信側のユニットとして構成することも可能である。   As shown in the figure, two units each including a circuit board 10, a glass substrate 20, and an optical path changer 40 are provided. The upper first unit is a transmission-side unit, and is configured in the same manner as the circuit board 10, the glass substrate 20, the light emitting unit 31, and the optical path converter 40 of the first embodiment described above. The lower second unit is configured by inverting the circuit board 10, the glass substrate 20, and the optical path converter 40 configured in the same manner as the first unit. Since the lower second unit is a receiving side unit, a light receiving unit 33 is mounted on the glass substrate 20 of the second unit instead of the light emitting unit 32. It is also possible to configure the upper unit as a receiving unit and the lower unit as a transmitting unit.

第2ユニットにおいても、回路基板10の収容窓12を塞ぐように回路基板10にガラス基板20が搭載されており、受光部33の搭載面(下面)と反対面(上面)において光路変換器40がガラス基板20に取り付けられるとともに、光路変換器40が回路基板10の収容窓12に挿入されて配置されている。これにより、第2ユニットの低背化を図ることができるとともに、第3実施形態の光モジュール全体の低背化を図ることができる。   Also in the second unit, the glass substrate 20 is mounted on the circuit board 10 so as to close the housing window 12 of the circuit board 10, and the optical path converter 40 is provided on the surface (lower surface) opposite to the mounting surface (lower surface) of the light receiving unit 33. Is attached to the glass substrate 20, and the optical path changer 40 is inserted into the accommodation window 12 of the circuit board 10. As a result, the height of the second unit can be reduced, and the overall height of the optical module of the third embodiment can be reduced.

第1ユニットの光路変換器40と第2ユニットの光路変換器40が対向している。そして、2つの光路変換器40の間にバネ65が配置されている。バネ65は、圧縮されており、双方のユニットのそれぞれの光路変換器40をガラス基板20に向かって付勢している。つまり、バネ65は、第1ユニットの光路変換器40をガラス基板20に向かって上側に付勢するとともに、第2ユニットの光路変換器40をガラス基板20に向かって下側に付勢している。これにより、双方のユニットにおいて、ガラス基板20の位置決め穴23と光路変換器40の位置決めピン43との嵌合が確実なものとなり、外れにくくなる。   The optical path converter 40 of the first unit and the optical path converter 40 of the second unit face each other. A spring 65 is disposed between the two optical path converters 40. The spring 65 is compressed and urges the optical path converters 40 of both units toward the glass substrate 20. That is, the spring 65 urges the optical path converter 40 of the first unit upward toward the glass substrate 20 and urges the optical path converter 40 of the second unit downward toward the glass substrate 20. Yes. Thereby, in both units, the fitting between the positioning hole 23 of the glass substrate 20 and the positioning pin 43 of the optical path changer 40 is ensured, and is difficult to come off.

なお、第3実施形態では、第1ユニットと第2ユニットの両方とも低背化を図っているため、狭いハウジング1A内において双方のユニットの光路変換器40を対向させて配置させることが可能になっている。そして、このような配置が可能になったからこそ、2つの光路変換器40の間にバネ65を配置することが可能になっている。   In the third embodiment, since both the first unit and the second unit are reduced in height, it is possible to arrange the optical path converters 40 of both units to face each other in the narrow housing 1A. It has become. And since such arrangement | positioning became possible, it becomes possible to arrange | position the spring 65 between the two optical path converters 40. FIG.

双方のユニットの発光部31及び駆動素子32の外側(ハウジング1Aの側)には、放熱シート61が配置されている。つまり、第1ユニットの発光部31及び駆動素子32の上側には、放熱シート61が配置されているとともに、第2ユニットの発光部31及び駆動素子32の下側にも、放熱シート61が配置されている。そして、バネ65は、光路変換器40をガラス基板20に向かって付勢するとともに、光電変換素子(発光部31又は受光部33)や駆動素子32と放熱シート61とを密着させる方向に力を付勢する付勢部材として機能する。これにより、光電変換素子や駆動素子32から発生した熱が放熱シートに伝導しやすくなる。   A heat radiating sheet 61 is disposed outside the light emitting section 31 and the drive element 32 of both units (on the housing 1A side). That is, the heat radiating sheet 61 is disposed above the light emitting unit 31 and the driving element 32 of the first unit, and the heat radiating sheet 61 is also disposed below the light emitting unit 31 and the driving element 32 of the second unit. Has been. The spring 65 urges the optical path converter 40 toward the glass substrate 20 and exerts a force in a direction in which the photoelectric conversion element (light emitting unit 31 or light receiving unit 33) or the driving element 32 and the heat dissipation sheet 61 are brought into close contact with each other. It functions as a biasing member that biases. Thereby, the heat generated from the photoelectric conversion element and the drive element 32 is easily conducted to the heat dissipation sheet.

また、バネ65は、光電変換素子(発光部31又は受光部33)や駆動素子32とハウジング1Aとの間に放熱シート61を挟み込むように、力を付勢している。これにより、光電変換素子や駆動素子32から発生した熱が放熱シートを介して外部(ケージ2、又はケージ2が設けられたメイン基板)に放熱されやすくなる。   Further, the spring 65 urges a force so that the heat dissipation sheet 61 is sandwiched between the photoelectric conversion element (the light emitting unit 31 or the light receiving unit 33) or the driving element 32 and the housing 1A. Thereby, the heat generated from the photoelectric conversion element and the drive element 32 is easily radiated to the outside (the cage 2 or the main board provided with the cage 2) via the heat dissipation sheet.

なお、バネ65は、コイルバネとして図示されているが、この態様に限られるものではない。例えば、板バネであっても良いし、他の形状のバネでも良い。また、第1実施形態の固定具62のようなものを用いて第1ユニット及び第2ユニットを外側から締め付けることによって、光路変換器40をガラス基板20に向かって付勢しても良い。   The spring 65 is illustrated as a coil spring, but is not limited to this mode. For example, a leaf spring may be used, and a spring having another shape may be used. Further, the optical path changer 40 may be urged toward the glass substrate 20 by tightening the first unit and the second unit from the outside by using a fixture 62 of the first embodiment.

===その他===
上記の実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更・改良され得ると共に、本発明には、その等価物が含まれることは言うまでもない。特に、以下に述べる形態であっても、本発明に含まれる。
=== Others ===
The above-described embodiments are for facilitating the understanding of the present invention, and are not intended to limit the present invention. The present invention can be modified and improved without departing from the gist thereof, and it goes without saying that the present invention includes equivalents thereof. In particular, the embodiments described below are also included in the present invention.

<回路基板>
前述の実施形態では、ガラス基板20が回路基板10の収容窓12を塞ぐように搭載されていた。但し、図5Bや図5Cに示すように、回路基板に収容窓12が形成されていない場合においても、ガラス基板20に奥の窄まった非貫通の位置決め穴が形成されており、光路変換器40に円錐台形状の位置決めピンが形成されていれば、位置決め穴に位置決めピンを挿入することによってガラス基板20と光路変換器40を位置決めすることが可能である。
<Circuit board>
In the above-described embodiment, the glass substrate 20 is mounted so as to close the housing window 12 of the circuit board 10. However, as shown in FIG. 5B and FIG. 5C, even when the accommodation window 12 is not formed on the circuit board, a non-penetrating positioning hole with a deep back is formed in the glass substrate 20, and the optical path converter If a truncated cone-shaped positioning pin is formed in 40, it is possible to position the glass substrate 20 and the optical path changer 40 by inserting the positioning pin into the positioning hole.

要するに、2つの部材の一方の部材(例えばガラス基板20)に奥の窄まった非貫通の位置決め穴が形成されており、他方の部材(例えば光路変換器40)に円錐台形状の位置決めピンが形成されており、位置決め穴に位置決めピンを挿入することによって2つの部材が位置決めされていればよい。このため、位置決め穴が形成される部材はガラス基板20に限られるものではない。また、位置決めピンが形成される部材は光路変換器40に限られるものではない。   In short, one of the two members (for example, the glass substrate 20) is formed with a deep non-penetrating positioning hole, and the other member (for example, the optical path converter 40) has a truncated cone-shaped positioning pin. It is only necessary that the two members are positioned by inserting the positioning pins into the positioning holes. For this reason, the member in which the positioning hole is formed is not limited to the glass substrate 20. Further, the member on which the positioning pin is formed is not limited to the optical path changer 40.

<位置決め穴と位置決めピン>
前述の位置決め穴は、サンドブラスト加工により形成されていたが、エッチング加工なのどの他の加工方法によって位置決め穴が形成されていても良い。他の加工方法であっても、位置決め穴が奥の窄まった形状であれば、円錐台形状の位置決めピンを挿入することによって、位置決め穴や位置決めピンの軸方向に垂直な方向(ガラス基板20の表面と平行な方向)の位置決め精度を高くできる。但し、奥の窄まっていない形状の位置決め穴を備えた部材との位置決めに、前述の円錐台形状の位置決めピンを備えた光路変換器が流用されても良い。
<Positioning hole and positioning pin>
The positioning hole is formed by sandblasting, but the positioning hole may be formed by any other processing method such as etching. Even in other processing methods, if the positioning hole has a constricted shape, a frustoconical positioning pin is inserted to thereby make a direction perpendicular to the axial direction of the positioning hole or the positioning pin (glass substrate 20 The positioning accuracy in the direction parallel to the surface of the surface can be increased. However, the optical path changer provided with the above-mentioned frustoconical positioning pin may be used for positioning with a member having a positioning hole with a shape that is not constricted in the back.

<光モジュールについて>
前述の実施形態では、QSFPタイプやCXPタイプの光モジュールを用いて説明したが、このタイプに限定されるものではない。他のタイプ(例えばSFPタイプなど)の光モジュールに適用することも可能である。
<About optical modules>
In the above-described embodiment, the QSFP type or CXP type optical module has been described. However, the present invention is not limited to this type. It is also possible to apply to other types (for example, SFP type) of optical modules.

<固定具>
図14は、変形例の固定具62’の斜視図である。固定具62’は、断面U字状に金属板を折り曲げた本体63’と、引っ掛けピン64’とから構成されている。断面U字状の本体63’の一端には引っ掛けピン64’が固定されており、本体63’の他端には引っ掛けピン64’を引っ掛けるための係合部63A’が形成されている。
<Fixing tool>
FIG. 14 is a perspective view of a modified fixture 62 ′. The fixture 62 ′ is composed of a main body 63 ′ obtained by bending a metal plate in a U-shaped cross section and a hook pin 64 ′. A hook pin 64 ′ is fixed to one end of the main body 63 ′ having a U-shaped cross section, and an engaging portion 63A ′ for hooking the hook pin 64 ′ is formed on the other end of the main body 63 ′.

断面U字状の本体63’は、回路基板10を左右方向から跨ぎ放熱シート61を上側から覆い被せるように配置されており、両端は回路基板10の下側から突出している。そして、引っ掛けピン64’は、光路変換器40の下面を押さえながら、本体63’の係合部63A’に引っ掛けられている。引っ掛けピン64’を本体63’の係合部63A’に引っ掛けると、固定具62’は、本体63’の内側の部材(ガラス基板20、発光部31、光路変換器40及び放熱シート61など)を上下方向から締め付ける。   The main body 63 ′ having a U-shaped cross section is disposed so as to straddle the circuit board 10 from the left and right directions and cover the heat radiation sheet 61 from above, and both ends protrude from the lower side of the circuit board 10. The hook pin 64 ′ is hooked on the engaging portion 63 </ b> A ′ of the main body 63 ′ while pressing the lower surface of the optical path converter 40. When the hook pin 64 ′ is hooked on the engaging portion 63A ′ of the main body 63 ′, the fixture 62 ′ is a member inside the main body 63 ′ (the glass substrate 20, the light emitting unit 31, the optical path changer 40, the heat radiation sheet 61, etc.). Tighten from above and below.

変形例の固定具62’は、光路変換器40の反射部42を外側から覆っていない。このため、光路変換器40の反射部42にゴミが付着するおそれがあり、反射部42の光学的な特性が変化するおそれがある。   The modified fixture 62 ′ does not cover the reflecting portion 42 of the optical path changer 40 from the outside. For this reason, there is a possibility that dust adheres to the reflection part 42 of the optical path changer 40, and there is a possibility that the optical characteristics of the reflection part 42 change.

但し、変形例の固定具62’においても、引っ掛けピン64’によって光路変換器40を上側に向かって付勢するとともに、本体63’によって放熱シート61を介してガラス基板20を下側に向かって付勢している。つまり、変形例の固定具62’は、ガラス基板20の位置決め穴23に光路変換器40の位置決めピン43を挿入する方向に力を付勢する付勢部材として機能する。これにより、ガラス基板20の位置決め穴23と光路変換器40の位置決めピン43との嵌合が確実なものとなり、外れにくくなる。   However, also in the fixture 62 ′ of the modified example, the optical path converter 40 is urged upward by the hook pin 64 ′, and the glass substrate 20 is directed downward by the main body 63 ′ via the heat radiation sheet 61. Energized. That is, the modified fixture 62 ′ functions as a biasing member that biases a force in a direction in which the positioning pin 43 of the optical path converter 40 is inserted into the positioning hole 23 of the glass substrate 20. Thereby, fitting with the positioning hole 23 of the glass substrate 20 and the positioning pin 43 of the optical path changer 40 becomes reliable, and it becomes difficult to remove | deviate.

また、変形例の固定具62’においても、発光部31や駆動素子32と放熱シート61とを密着させる方向に力を付勢する付勢部材として機能する。これにより、発光部31や駆動素子32から発生した熱が放熱シート61に伝導しやすくなる。   Further, the modified fixture 62 ′ also functions as a biasing member that biases the force in the direction in which the light emitting unit 31 or the driving element 32 and the heat dissipation sheet 61 are brought into close contact with each other. Thereby, the heat generated from the light emitting unit 31 and the drive element 32 is easily conducted to the heat radiating sheet 61.

1 光モジュール、1A ハウジング、
2 ケージ、2A コネクタ、3 ヒートシンク、
10 回路基板、11 接続部、12 収容窓、13 回路基板側電極、
20 ガラス基板(透明基板)、21 貫通ビア、22 ガラス基板側電極、
23 位置決め穴、23A 基準穴、23B 長穴、
31 発光部、31A 発光部側電極、31B 発光面、
32 駆動素子、33 受光部、
40 光路変換器(支持部材)、41 レンズ部、42 反射部、
43 位置決めピン、43A テーパ面、43B 凹部、44 ファイバ支持部、
50 光ファイバ、61 放熱シート、62 固定具、
63 本体、63A・63A’ 係合部、64 引っ掛けピン、64’ 引っ掛け板、
65 バネ
1 optical module, 1A housing,
2 cage, 2A connector, 3 heat sink,
10 circuit board, 11 connecting portion, 12 receiving window, 13 circuit board side electrode,
20 glass substrate (transparent substrate), 21 through via, 22 glass substrate side electrode,
23 positioning hole, 23A reference hole, 23B oblong hole,
31 light emitting part, 31A light emitting part side electrode, 31B light emitting surface,
32 drive element, 33 light receiving part,
40 optical path changer (supporting member), 41 lens part, 42 reflecting part,
43 Positioning pin, 43A Tapered surface, 43B Concave part, 44 Fiber support part,
50 optical fiber, 61 heat dissipation sheet, 62 fixture,
63 main body, 63A / 63A ′ engaging portion, 64 hook pin, 64 ′ hook plate,
65 Spring

Claims (11)

第1の部材と第2の部材とを位置決めする位置決め方法であって、
前記第1の部材には、奥の窄まった非貫通の位置決め穴が形成されており、
前記第2の部材には、円錐台形状の位置決めピンが形成されているとともに、前記位置決めピンの根元の回りに凹部が形成されており、
前記第2の部材を樹脂で一体成形することによって、前記位置決めピンが形成されており、
前記位置決め穴に前記位置決めピンを挿入することによって、前記第1の部材と前記第2の部材が位置決めされる
ことを特徴とする位置決め方法。
A positioning method for positioning a first member and a second member,
In the first member, a non-penetrating positioning hole with a narrow back is formed,
The second member is formed with a truncated cone-shaped positioning pin, and a recess is formed around the root of the positioning pin,
The positioning pin is formed by integrally molding the second member with resin,
A positioning method, wherein the first member and the second member are positioned by inserting the positioning pin into the positioning hole.
請求項1に記載の位置決め方法であって、
前記凹部の内側の側壁面は、円錐台形状の前記位置決めピンのテーパ面の延長面になっている
ことを特徴とする位置決め方法。
The positioning method according to claim 1,
The positioning method according to claim 1, wherein an inner side wall surface of the recess is an extended surface of a tapered surface of the positioning pin having a truncated cone shape.
請求項1又は2に記載の位置決め方法であって、
前記位置決め穴は、ブラスト加工により形成されている
ことを特徴とする位置決め方法。
The positioning method according to claim 1 or 2 ,
The positioning method, wherein the positioning hole is formed by blasting.
請求項1〜のいずれかに記載の位置決め方法であって、
前記第1の部材には、前記位置決め穴として基準穴及び長穴が形成されており、
前記長穴は、その長手方向が前記基準穴と前記長穴とを結ぶ線に沿うように形成されており、
前記第2の部材には、円錐台形状の前記位置決めピンが2つ形成されており、
2つの位置決めピンのうちの一方を基準穴に挿入し、他方を長穴に挿入することによって、前記第1の部材と前記第2の部材が位置決めされる
ことを特徴とする位置決め方法。
It is the positioning method in any one of Claims 1-3 ,
In the first member, a reference hole and a long hole are formed as the positioning hole,
The long hole is formed such that its longitudinal direction is along a line connecting the reference hole and the long hole,
Two positioning pins having a truncated cone shape are formed on the second member,
A positioning method, wherein the first member and the second member are positioned by inserting one of two positioning pins into a reference hole and inserting the other into a long hole.
請求項1〜のいずれかに記載の位置決め方法であって、
前記位置決め穴及び前記位置決めピンの軸方向に許容される位置決め誤差は、前記軸方向に垂直な方向に許容される位置決め誤差よりも大きい
ことを特徴とする位置決め方法。
The positioning method according to any one of claims 1 to 4 ,
A positioning error allowed in an axial direction of the positioning hole and the positioning pin is larger than a positioning error allowed in a direction perpendicular to the axial direction.
請求項1〜のいずれかに記載の位置決め方法であって、
前記第1の部材は、光を透過可能な透明基板であり、
前記第2の部材は、光を伝送する光ファイバを支持する支持部材であり、
前記透明基板には、前記透明基板に向かって光を発光し若しくは前記透明基板を透過した光を受光する光電変換素子が搭載されており、
前記支持部材は、前記光電変換素子と前記光ファイバとの間の光路を前記透明基板とともに形成しており、
前記透明基板の前記位置決め穴に前記支持部材の前記位置決めピンを挿入することによって、前記透明基板と前記支持部材が位置決めされる
ことを特徴とする位置決め方法。
A positioning method according to any one of claims 1 to 5 ,
The first member is a transparent substrate capable of transmitting light;
The second member is a support member that supports an optical fiber that transmits light,
The transparent substrate is mounted with a photoelectric conversion element that emits light toward the transparent substrate or receives light transmitted through the transparent substrate,
The support member forms an optical path between the photoelectric conversion element and the optical fiber together with the transparent substrate,
A positioning method, wherein the transparent substrate and the support member are positioned by inserting the positioning pins of the support member into the positioning holes of the transparent substrate.
請求項に記載の位置決め方法であって、
前記透明基板と前記支持部材とが密着した状態で前記光電変換素子から発した光が前記光ファイバの端面よりも遠方で集束するように、前記支持部材の光学系が構成されている
ことを特徴とする位置決め方法。
The positioning method according to claim 6 , comprising:
The optical system of the support member is configured so that light emitted from the photoelectric conversion element is focused farther than the end face of the optical fiber in a state where the transparent substrate and the support member are in close contact with each other. Positioning method.
請求項又はに記載の位置決め方法であって、
前記透明基板は、前記支持部材よりも硬い
ことを特徴とする位置決め方法。
The positioning method according to claim 6 or 7 ,
The positioning method, wherein the transparent substrate is harder than the support member.
請求項のいずれかに記載の位置決め方法であって、
前記位置決め穴に前記位置決めピンを挿入する方向に力を付勢する付勢部材を更に備え、
前記支持部材は、前記光路において前記光を反射する反射部を有しており、
前記付勢部材の少なくとも一部は、前記反射部の外側を覆っている
ことを特徴とする位置決め方法。
A positioning method according to any one of claims 6 to 8 , comprising:
A biasing member that biases force in a direction in which the positioning pin is inserted into the positioning hole;
The support member has a reflecting portion that reflects the light in the optical path;
At least a part of the urging member covers the outside of the reflecting portion.
光を透過可能な透明基板と、
前記透明基板に搭載され、前記透明基板に向かって光を発光し若しくは前記透明基板を透過した光を受光する光電変換素子と、
光を伝送する光ファイバを支持し、前記光電変換素子と前記光ファイバとの間の光路を前記透明基板とともに形成する支持部材と、
を備えた光モジュールであって、
前記透明基板には、奥の窄まった非貫通の位置決め穴が形成されており、
前記支持部材には、円錐台形状の位置決めピンが形成されているとともに、前記位置決めピンの根元の回りに凹部が形成されており、
前記支持部材を樹脂で一体成形することによって、前記位置決めピンが形成されており、
前記位置決め穴に前記位置決めピンを挿入することによって、前記透明基板と前記支持部材が位置決めされている
ことを特徴とする光モジュール。
A transparent substrate capable of transmitting light;
A photoelectric conversion element mounted on the transparent substrate and emitting light toward the transparent substrate or receiving light transmitted through the transparent substrate;
A support member that supports an optical fiber that transmits light, and that forms an optical path between the photoelectric conversion element and the optical fiber together with the transparent substrate;
An optical module comprising:
The transparent substrate is formed with a non-through positioning hole with a narrow back,
The support member is formed with a truncated cone-shaped positioning pin, and a recess is formed around the root of the positioning pin,
The positioning pin is formed by integrally molding the support member with resin,
An optical module, wherein the transparent substrate and the support member are positioned by inserting the positioning pins into the positioning holes.
請求項10に記載の光モジュールであって、
前記位置決め穴に前記位置決めピンを挿入する方向に力を付勢する付勢部材を更に備え、
前記支持部材は、前記光路において前記光を反射する反射部を有しており、
前記付勢部材の少なくとも一部は、前記反射部の外側を覆っている
ことを特徴とする光モジュール。
The optical module according to claim 10 , wherein
A biasing member that biases force in a direction in which the positioning pin is inserted into the positioning hole;
The support member has a reflecting portion that reflects the light in the optical path;
At least a part of the urging member covers the outside of the reflection portion.
JP2011284038A 2011-12-26 2011-12-26 Positioning method and optical module Expired - Fee Related JP5315408B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2011284038A JP5315408B2 (en) 2011-12-26 2011-12-26 Positioning method and optical module
CN201510065614.2A CN104614820B (en) 2011-12-26 2012-10-24 Optical module
CN201280004149.6A CN103282814B (en) 2011-12-26 2012-10-24 Optical module
PCT/JP2012/077438 WO2013099415A1 (en) 2011-12-26 2012-10-24 Optical module
US13/974,232 US8842952B2 (en) 2011-12-26 2013-08-23 Optical module
US14/293,548 US9453978B2 (en) 2011-12-26 2014-06-02 Optical module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011284038A JP5315408B2 (en) 2011-12-26 2011-12-26 Positioning method and optical module

Publications (2)

Publication Number Publication Date
JP2013134348A JP2013134348A (en) 2013-07-08
JP5315408B2 true JP5315408B2 (en) 2013-10-16

Family

ID=48911080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011284038A Expired - Fee Related JP5315408B2 (en) 2011-12-26 2011-12-26 Positioning method and optical module

Country Status (1)

Country Link
JP (1) JP5315408B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104662460B (en) 2012-09-27 2016-11-09 株式会社藤仓 Optical module

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2983105B2 (en) * 1992-02-10 1999-11-29 ローム株式会社 Semiconductor device and manufacturing method thereof
JP2004240220A (en) * 2003-02-06 2004-08-26 Seiko Epson Corp Optical module, its manufacturing method, hybrid integrated circuit, hybrid circuit board, electronic appliance, photoelectric hybrid device and its manufacturing method
JP2007272124A (en) * 2006-03-31 2007-10-18 Fujitsu Ltd Plug-in unit
JP4903120B2 (en) * 2007-10-03 2012-03-28 株式会社フジクラ Optical path changing member
JP2011033876A (en) * 2009-08-03 2011-02-17 Nitto Denko Corp Method of manufacturing optical sensor module and optical sensor module obtained thereby
JP5493744B2 (en) * 2009-11-12 2014-05-14 富士通株式会社 Opto-electric hybrid board and method for manufacturing opto-electric hybrid board
JP2011206980A (en) * 2010-03-29 2011-10-20 Maxell Finetech Ltd Optical element, molded article, and method for manufacturing optical element

Also Published As

Publication number Publication date
JP2013134348A (en) 2013-07-08

Similar Documents

Publication Publication Date Title
JP5314119B2 (en) Optical module
WO2013099415A1 (en) Optical module
JP5869686B2 (en) Optical module
CN105911652B (en) Optical transceiver with heat dissipation path from component substrate directly to top housing
EP3146372B1 (en) Vision-based passive alignment of an optical fiber subassembly to an optoelectronic device
EP2581776A1 (en) Optical connector with alignment element, optical unit and assembly method
US9726826B2 (en) Inter-lens adjusting method and photoelectric hybrid substrate
US20170097477A1 (en) Optical receptacle and optical module
JP2016057186A (en) Active optical cable inspecting method and active optical cable manufacturing method
JP5315408B2 (en) Positioning method and optical module
JP5391356B2 (en) Optical module
JP2014228585A (en) Method of manufacturing optical module, and optical module
JP5605382B2 (en) Optical module
JP5391355B2 (en) Optical module
JP5653983B2 (en) Module manufacturing method and module
JP7482230B2 (en) Fiber optic connectors
JP6085215B2 (en) Optical module
JP6085218B2 (en) Optical module
JP2015203830A (en) optical data link
JP5861753B2 (en) Optical module
JP2015099307A (en) Optical communication module and optical block for use in the same
JPWO2010107043A1 (en) Signal transmission apparatus and manufacturing method thereof

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20130408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130708

R151 Written notification of patent or utility model registration

Ref document number: 5315408

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees