JP5314181B1 - Sliding member, half sliding bearing using the same, and method for manufacturing half sliding bearing - Google Patents

Sliding member, half sliding bearing using the same, and method for manufacturing half sliding bearing Download PDF

Info

Publication number
JP5314181B1
JP5314181B1 JP2012178208A JP2012178208A JP5314181B1 JP 5314181 B1 JP5314181 B1 JP 5314181B1 JP 2012178208 A JP2012178208 A JP 2012178208A JP 2012178208 A JP2012178208 A JP 2012178208A JP 5314181 B1 JP5314181 B1 JP 5314181B1
Authority
JP
Japan
Prior art keywords
narrow
sliding member
area
bearing
wide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012178208A
Other languages
Japanese (ja)
Other versions
JP2014035055A (en
Inventor
晃 野上
和昭 戸田
忠利 長崎
直久 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Metal Co Ltd
Original Assignee
Daido Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2012178208A priority Critical patent/JP5314181B1/en
Application filed by Daido Metal Co Ltd filed Critical Daido Metal Co Ltd
Priority to PCT/JP2013/055664 priority patent/WO2014024507A1/en
Priority to DE112013003034.9T priority patent/DE112013003034B4/en
Priority to CN201380000937.2A priority patent/CN103732932B/en
Priority to KR1020137025257A priority patent/KR101355142B1/en
Priority to CH01930/14A priority patent/CH708455B8/en
Priority to ATA9234/2013A priority patent/AT514906B1/en
Priority to DK201370533A priority patent/DK177846B1/en
Application granted granted Critical
Publication of JP5314181B1 publication Critical patent/JP5314181B1/en
Publication of JP2014035055A publication Critical patent/JP2014035055A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/24Brasses; Bushes; Linings with different areas of the sliding surface consisting of different materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • F16C17/022Sliding-contact bearings for exclusively rotary movement for radial load only with a pair of essentially semicircular bearing sleeves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/106Details of distribution or circulation inside the bearings, e.g. details of the bearing surfaces to affect flow or pressure of the liquid
    • F16C33/108Details of distribution or circulation inside the bearings, e.g. details of the bearing surfaces to affect flow or pressure of the liquid with a plurality of elements forming the bearing surfaces, e.g. bearing pads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/106Details of distribution or circulation inside the bearings, e.g. details of the bearing surfaces to affect flow or pressure of the liquid
    • F16C33/1085Channels or passages to recirculate the liquid in the bearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/122Multilayer structures of sleeves, washers or liners
    • F16C33/125Details of bearing layers, i.e. the lining
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/14Special methods of manufacture; Running-in
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C5/00Crossheads; Constructions of connecting-rod heads or piston-rod connections rigid with crossheads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C9/00Bearings for crankshafts or connecting-rods; Attachment of connecting-rods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2202/00Solid materials defined by their properties
    • F16C2202/02Mechanical properties
    • F16C2202/04Hardness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2220/00Shaping
    • F16C2220/40Shaping by deformation without removing material
    • F16C2220/44Shaping by deformation without removing material by rolling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2223/00Surface treatments; Hardening; Coating
    • F16C2223/30Coating surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2226/00Joining parts; Fastening; Assembling or mounting parts
    • F16C2226/30Material joints
    • F16C2226/36Material joints by welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/42Groove sizes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/60Thickness, e.g. thickness of coatings

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Sliding-Contact Bearings (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Abstract

【課題】大型化しても加工および精度の確保が容易な摺動部材、これを用いた半割すべり軸受、および半割すべり軸受の製造方法を提供する。
【解決手段】半割状のすべり軸受に用いられる板状の摺動部材10である。摺動部材10は、広域部11、12、13と、狭域部21、22とを備える。狭域部21、22は、広域部11、12、13の間に挟まれており、幅方向の全長が広域部11、12、13よりも狭く、広域部11、12、13よりも硬度が高い。板厚方向における一方の端部を一端部とし、板厚方向における他方の端部を他端部とするとき、狭域部21、22は、一端部に露出する一方側端面211、221と、他端側端面212、222とを有する。他端側端面212、222は、他端部に露出しており、一方側端面211、221よりも露出面積が小さい。
【選択図】図1
Provided are a sliding member that can be easily processed and ensured accuracy even when the size is increased, a half sliding bearing using the sliding member, and a method for manufacturing the half sliding bearing.
A plate-like sliding member 10 used in a half-shaped slide bearing. The sliding member 10 includes wide areas 11, 12, 13 and narrow areas 21, 22. The narrow area parts 21 and 22 are sandwiched between the wide area parts 11, 12, and 13, the overall length in the width direction is narrower than the wide area parts 11, 12, and 13, and the hardness is greater than that of the wide area parts 11, 12, and 13. high. When one end portion in the plate thickness direction is one end portion and the other end portion in the plate thickness direction is the other end portion, the narrow areas 21 and 22 are one end surfaces 211 and 221 exposed at one end portion, The other end side end surfaces 212 and 222 are provided. The other end side end surfaces 212 and 222 are exposed at the other end portion, and the exposed area is smaller than the one side end surfaces 211 and 221.
[Selection] Figure 1

Description

本発明は、摺動部材、これを用いる半割すべり軸受、および半割すべり軸受の製造方法に関する。   The present invention relates to a sliding member, a half sliding bearing using the sliding member, and a method for manufacturing the half sliding bearing.

従来、例えば船舶用のような大型のクロスヘッド型のエンジンは、クロスヘッドを支持するクロスヘッド軸受を備えている。このクロスヘッド軸受は、エンジンの出力の向上にともなって、大型化が求められているとともに、信頼性の向上および更なる精度の向上が求められている。一般にクロスヘッド軸受などに用いられる半円筒形状の半割軸受は、板部材を円筒状に曲げ加工することにより製造されている。この板部材は、基材となる裏金層と、この裏金層の軸側に形成される軸受合金層とを有している。   2. Description of the Related Art Conventionally, large crosshead engines such as those for ships are provided with a crosshead bearing that supports the crosshead. The crosshead bearing is required to be increased in size as the output of the engine is improved, and to be improved in reliability and further in accuracy. A semi-cylindrical half bearing generally used for a crosshead bearing or the like is manufactured by bending a plate member into a cylindrical shape. This plate member has a back metal layer as a base material and a bearing alloy layer formed on the shaft side of the back metal layer.

しかしながら、上述のように半割軸受の大型化にともない、材料となる板部材は大型化する。そのため、板部材への裏金層および軸受合金層の均一な積層は、大型化にともない困難となっている。また、加工の対象となる板部材が大型化するほど、板部材から半割軸受の曲げ加工は難しくなるという問題がある。   However, as described above, the plate member as a material increases in size with the increase in the size of the half bearing. Therefore, uniform lamination of the back metal layer and the bearing alloy layer on the plate member becomes difficult as the size increases. Further, there is a problem that the bending of the half bearing from the plate member becomes more difficult as the plate member to be processed becomes larger.

特開2010−32055号公報JP 2010-32055 A

そこで、本発明の目的は、大型化しても加工および精度の確保が容易な摺動部材、これを用いた半割すべり軸受、および半割すべり軸受の製造方法を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide a sliding member that can be easily processed and ensured accuracy even when the size is increased, a half sliding bearing using the sliding member, and a method for manufacturing the half sliding bearing.

本実施形態の摺動部材は、半割状のすべり軸受に用いられる平板形状の摺動部材である。この摺動部材は、少なくとも二つ以上の広域部と、前記広域部の間に挟まれ、幅方向の全長が前記広域部よりも狭く、前記広域部よりも硬度が高いすなわち硬い狭域部と、を備えている。そして、板厚方向における一方の端部を一端部とし、板厚方向における他方の端部を他端部とするとき、前記狭域部は、前記一端部に露出する一方側端面と、前記他端部に露出し、前記一方側端面よりも露出面積が小さい他方側端面と、を有する。本実施形態において、幅方向とは、広域部、狭域部、広域部と進む方向をいう。狭域部が複数ある場合、それぞれの狭域部の幅方向の全長は、最も幅方向の全長が狭い広域部よりも狭い。本実施形態では、狭域部の硬さは、広域部よりも硬い。   The sliding member of the present embodiment is a flat plate-shaped sliding member used for a half-shaped slide bearing. This sliding member is sandwiched between at least two or more wide area parts and the wide area part, and the overall length in the width direction is narrower than the wide area part, that is, the hard narrow area part having a higher hardness than the wide area part, It is equipped with. Then, when one end in the thickness direction is one end and the other end in the thickness direction is the other end, the narrow area includes the one end face exposed at the one end and the other And the other end face exposed at the end and having a smaller exposed area than the one end face. In the present embodiment, the width direction refers to a direction that proceeds with a wide area portion, a narrow area portion, and a wide area portion. When there are a plurality of narrow areas, the overall length in the width direction of each narrow area is narrower than the wide area where the overall length in the width direction is the narrowest. In the present embodiment, the hardness of the narrow area is harder than that of the wide area.

このように、本実施形態の摺動部材は、平板形状であり、広域部の間に狭域部を備えている。狭域部は、広域部よりも硬度が高く設定されている。そのため、広域部と狭域部とを備える摺動部材は、硬度の異なる狭域部と広域部との境界、つまり幅方向において狭域部の両端に硬度的に不連続な部分が形成される。これにより、摺動部材を曲げ加工するとき、この硬度的な不連続な部分が支点となって変形する。そして、この狭域部は、板厚方向において他方側端面の露出面積が一方側端面の露出面積よりも小さい。狭域部は、その長手方向にわたって他方側端面の幅方向の全長が一方側端面の幅方向の全長よりも狭いことが望ましい。そのため、摺動部材は、他端部が内側となるように曲げ加工することにより、この露出面積の小さい他方側端面の狭域部の両端を支点として変形する。その結果、摺動部材の変形が容易になり、円筒形状に曲げ加工するとき曲率半径の微小な調整も容易になる。したがって、大型化しても摺動部材から半割すべり軸受に容易に加工することができるとともに、精度の確保を容易にすることができる。また、広域部の間に狭域部を挟み込まれた構造とすることにより、摺動部材の材料として小型化された板部材を複数用いて、大型の平板形状の摺動部材とすることができる。したがって、上述により、大型の半割すべり軸受用の摺動部材であっても容易に形成することができる。   Thus, the sliding member of the present embodiment has a flat plate shape and includes a narrow area between the wide areas. The narrow area is set to have higher hardness than the wide area. Therefore, the sliding member having the wide area portion and the narrow area portion has a boundary between the narrow area portion and the wide area portion having different hardnesses, that is, a portion having a discontinuity in hardness at both ends of the narrow area portion in the width direction. . Thereby, when bending a sliding member, this hardness discontinuous part deform | transforms as a fulcrum. And this narrow area part has the exposed area of the other side end surface smaller than the exposed area of the one side end surface in the thickness direction. It is desirable that the narrow portion has a total length in the width direction of the other side end surface that is narrower than a total length in the width direction of the one side end surface over the longitudinal direction. For this reason, the sliding member is bent so that the other end portion is on the inner side, thereby deforming the both ends of the narrow portion of the other end surface with a small exposed area as fulcrums. As a result, the deformation of the sliding member is facilitated, and fine adjustment of the curvature radius is facilitated when bending into a cylindrical shape. Therefore, even if the size is increased, the sliding member can be easily processed into a half-slide bearing, and the accuracy can be easily ensured. Further, by adopting a structure in which the narrow area portion is sandwiched between the wide area portions, a plurality of miniaturized plate members can be used as the material of the sliding member, and a large flat plate-shaped sliding member can be obtained. . Therefore, according to the above, even a sliding member for a large half-slide bearing can be easily formed.

また、本実施形態の摺動部材は、同一の金属成分からなる前記広域部および前記狭域部を有し、前記一端部側に前記一方側端面が形成されている裏金層と、前記裏金層よりも前記他端部側に位置する軸受合金層と、を備える。
裏金層の他端部側に軸受合金層を備える摺動部材は、半円筒形状の半割すべり軸受に加工したとき、軸受合金層が円筒形状の内周側となるように曲げられる。摺動部材は、上述のように曲率半径の微小な調整が容易であり、形状の精度の確保が容易である。そのため、加工した半割すべり軸受を外部のハウジングに取り付けたとき、半割すべり軸受とハウジングとは密に接する。その結果、半割すべり軸受は、ハウジングに取り付けたときの変形が低減される。これにより、ハウジングに取り付けられた半割すべり軸受は、軸受合金層の摺動対象となる軸部材側への局所的な突出や変形が低減される。したがって、軸部材との局所的な接触が低減され、軸受合金層の摩耗や損傷を低減することができる。また、半割すべり軸受の変形の低減によって、半割すべり軸受とハウジングとの間の微小な振動が低減される。したがって、微小な振動にともなうフレッチングによる損傷も低減される。裏金層と軸受合金層との間には、中間層を設けてもよい。
Further, the sliding member of the present embodiment has a back metal layer having the wide area portion and the narrow area portion made of the same metal component, and the one end face is formed on the one end side, and the back metal layer And a bearing alloy layer positioned on the other end side.
When a sliding member having a bearing alloy layer on the other end side of the back metal layer is processed into a semi-cylindrical half-sliding bearing, the sliding member is bent so that the bearing alloy layer is on the inner peripheral side of the cylindrical shape. As described above, the sliding member is easy to finely adjust the curvature radius, and it is easy to ensure the accuracy of the shape. Therefore, when the processed half slide bearing is attached to the external housing, the half slide bearing and the housing are in close contact with each other. As a result, the half sliding bearing is reduced in deformation when attached to the housing. As a result, the half sliding bearing attached to the housing reduces local protrusion and deformation of the bearing alloy layer toward the shaft member that is a sliding target. Therefore, local contact with the shaft member is reduced, and wear and damage of the bearing alloy layer can be reduced. Further, the minute vibration between the half sliding bearing and the housing is reduced by reducing the deformation of the half sliding bearing. Therefore, damage caused by fretting caused by minute vibration is also reduced. An intermediate layer may be provided between the back metal layer and the bearing alloy layer.

本実施形態の摺動部材では、前記狭域部は、前記裏金層に設けられ、前記軸受合金層は、前記狭域部の前記他端部側で分断されている。
これにより、狭域部の他端部側で分断されている軸受合金層は、摺動部材を半割すべり軸受に曲げ加工するとき、曲げにともなう変形がこの分断されている部分で逃がされる。その結果、摺動部材を曲げ加工しても、軸受合金層の変形は小さくなる。したがって、軸部材との局所的な接触が低減され、軸受合金層の摩耗や損傷を低減することができる。
In the sliding member of the present embodiment, the narrow area portion is provided on the back metal layer, and the bearing alloy layer is divided on the other end side of the narrow area portion.
As a result, when the bearing alloy layer divided on the other end side of the narrow area portion is bent into a half-sliding bearing, the deformation accompanying the bending is released at the divided portion. As a result, even if the sliding member is bent, the deformation of the bearing alloy layer is reduced. Therefore, local contact with the shaft member is reduced, and wear and damage of the bearing alloy layer can be reduced.

本実施形態の摺動部材では、分断されている隣り合う軸受合金層の間隔の最短距離すなわち幅方向距離は、前記狭域部において板厚方向に垂直な幅方向における最も大きな最長部の0.5〜1.8倍であることが好ましい。
また、本実施形態の摺動部材では、分断されている隣り合う軸受合金層の間隔の最短距離すなわち幅方向距離は、前記最長部の1.0〜1.8倍であることがより好ましい。
さらに、本実施形態の摺動部材では、前記狭域部の平均硬さは、前記広域部の平均硬さの1.1〜1.7倍であり、前記狭域部の最大硬さは、前記広域部の平均硬さの1.3〜1.9倍であることが好ましい。
In the sliding member of the present embodiment, the shortest distance between adjacent divided bearing alloy layers, that is, the distance in the width direction is 0. 0 of the largest longest portion in the width direction perpendicular to the plate thickness direction in the narrow portion. It is preferably 5 to 1.8 times.
Moreover, in the sliding member of this embodiment, it is more preferable that the shortest distance between the separated bearing alloy layers, that is, the distance in the width direction is 1.0 to 1.8 times the longest portion.
Furthermore, in the sliding member of the present embodiment, the average hardness of the narrow area is 1.1 to 1.7 times the average hardness of the wide area, and the maximum hardness of the narrow area is The average hardness of the wide area is preferably 1.3 to 1.9 times.

本実施形態の摺動部材では、前記狭域部における前記一方側端面の面積の総和は、前記狭域部における前記他方側端面の面積の総和の1.3〜9.0倍であることが好ましい。
本実施形態の摺動部材では、板厚方向における前記狭域部の全長は、板厚の0.60〜0.95倍であることが好ましい。ここで、板厚方向における狭域部の全長とは、この狭域部における一方側端面と他方側端面との最短距離をいう。
本実施形態の摺動部材では、前記狭域部は、最大の硬さすなわち最大硬さが320〜400HVであり、板厚方向において前記一方側端面から板厚の0.50〜0.95倍の範囲に最も硬い最硬部が位置することが好ましい。
本実施形態の前記狭域部は、この狭域部の長手方向に垂直な面での形状が台形形状、または板厚方向へ台形を対称に重ねた鼓形状である。
これにより、一方側端面と他方側端面との間に面積の差を確保しやすくすることができる。
In the sliding member of the present embodiment, the sum of the areas of the one end face in the narrow area is 1.3 to 9.0 times the sum of the areas of the other end face in the narrow area. preferable.
In the sliding member of this embodiment, it is preferable that the total length of the narrow area portion in the plate thickness direction is 0.60 to 0.95 times the plate thickness. Here, the total length of the narrow area in the thickness direction means the shortest distance between the one end face and the other end face in the narrow area.
In the sliding member of the present embodiment, the narrow portion has a maximum hardness, that is, a maximum hardness of 320 to 400 HV, and is 0.50 to 0.95 times the plate thickness from the one end face in the plate thickness direction. It is preferable that the hardest hardest part is located in the range.
The narrow area of the present embodiment has a trapezoidal shape in a plane perpendicular to the longitudinal direction of the narrow area, or a drum shape in which trapezoids are stacked symmetrically in the thickness direction.
Thereby, it is possible to easily ensure a difference in area between the one side end surface and the other side end surface.

本実施形態の半割すべり軸受は、上述の摺動部材を備えている。摺動部材は、狭域部の長手方向が軸線方向の好ましくは10°以内になるように平板形状から半円筒形状に成形されており、周方向に並列する前記広域部の間に、軸線方向へ延びる前記狭域部が設けられ、前記一端部は径方向外側の外周面を形成し、前記他端部は径方向内側の内周面を形成している。
このように、本実施形態の半割すべり軸受は、一方側端面が外周面側となり、他方側端面が内周面側となる。そして、広域部は半割すべり軸受の周方向で並列しており、この並列する広域部の間に狭域部が挟まれている。そのため、この狭域部は、半割すべり軸受の軸線方向へ延びることになる。したがって、軸線方向へ延びる狭域部の周方向の両端を支点として半円筒形状に曲げ加工されて、この半割すべり軸受は、良好な精度が確保されている。
本実施形態の半割すべり軸受は、同一の金属成分からなる広域部および狭域部を有し、外周面側である一端部側に一方側端面が形成されている裏金層と、裏金層よりも内周面側である他端部側に位置する軸受合金層と、を備えたものとすることができる。
The half plain bearing of this embodiment includes the above-described sliding member. The sliding member is formed from a flat plate shape to a semi-cylindrical shape so that the longitudinal direction of the narrow area portion is preferably within 10 ° of the axial direction, and between the wide area portions arranged in parallel in the circumferential direction, the axial direction The narrow portion extending in the direction is provided, the one end portion forming a radially outer peripheral surface, and the other end portion forming a radially inner peripheral surface.
As described above, in the half plain bearing of the present embodiment, one end surface is the outer peripheral surface side, and the other end surface is the inner peripheral surface side. And the wide area part is paralleled in the circumferential direction of a half slide bearing, and the narrow area part is pinched | interposed between this parallel wide area part. Therefore, this narrow area portion extends in the axial direction of the half slide bearing. Therefore, it is bent into a semi-cylindrical shape with both ends in the circumferential direction of the narrow portion extending in the axial direction as fulcrums, and this half-slide bearing is ensured with good accuracy.
The half plain bearing of this embodiment has a wide part and a narrow part made of the same metal component, and a back metal layer in which one end face is formed on one end side which is an outer peripheral surface side, and a back metal layer And a bearing alloy layer located on the other end side which is the inner peripheral surface side.

本実施形態の半割すべり軸受では、前記狭域部は、周方向に二本以上設けられている。
これにより、摺動部材から半割すべり軸受を曲げ加工するとき、摺動部材は二本以上の狭域部の周方向の両端を支点として変形する。したがって、半割すべり軸受は、容易に曲げ加工されているとともに、容易に精度を確保されている。
In the half slide bearing of the present embodiment, two or more narrow regions are provided in the circumferential direction.
Thereby, when bending a half-sliding bearing from a sliding member, a sliding member deform | transforms by using the both ends of the circumferential direction of two or more narrow areas as a fulcrum. Therefore, the half plain bearing is easily bent and the accuracy is easily ensured.

本実施形態の半割すべり軸受では、前記狭域部の径方向内側に、軸線方向へ延びる溝を備える。
この軸線方向へ延びる溝は、半割すべり軸受と軸部材とを潤滑する例えば潤滑油などの潤滑剤の通路とすることができる。また、狭域部の径方向内側に溝を形成することにより、軸受合金層を狭域部の内側で分断させることができる。その場合、曲げ加工するとき、変形の支点となる狭域部の周方向の両端部において径方向内側には軸受合金層が存在しない。したがって、曲げ加工に伴う軸受合金層の無用な変形を低減することができ、容易に精度を確保することができる。半割すべり軸受の製造にともなう軸受合金層への影響を最小限に抑えることができる。
In the half plain bearing of the present embodiment, a groove extending in the axial direction is provided on the radially inner side of the narrow portion.
The groove extending in the axial direction can be used as a passage for a lubricant such as a lubricating oil for lubricating the half-slide bearing and the shaft member. Further, by forming a groove on the radially inner side of the narrow area, the bearing alloy layer can be divided on the inner side of the narrow area. In that case, when bending is performed, there is no bearing alloy layer on the radially inner side at both ends in the circumferential direction of the narrow region serving as a fulcrum of deformation. Therefore, useless deformation of the bearing alloy layer accompanying bending can be reduced, and accuracy can be easily ensured. It is possible to minimize the influence on the bearing alloy layer due to the manufacture of the half sliding bearing.

本実施形態の平板形状の摺動部材の製造方法は、二つ以上の板状部材を並べる工程と、並べられた前記板状部材が接している部分に板厚と垂直な方向へ線状に急加熱急冷加工を施し、急加熱急冷加工が施された狭域部、および前記狭域部を挟む広域部を形成する工程と、を含む。
これにより、大型化しても加工および精度の確保が容易な半割すべり軸受を製造することができる。
The flat plate-shaped sliding member manufacturing method according to the present embodiment includes a step of arranging two or more plate-like members, and a linear shape in a direction perpendicular to the plate thickness at a portion where the arranged plate-like members are in contact with each other. Performing a rapid heating and quenching process, and forming a narrow area part subjected to the rapid heating and quenching process and a wide area part sandwiching the narrow area part.
As a result, it is possible to manufacture a half-slide bearing that can be easily processed and ensure accuracy even when the size is increased.

本実施形態の半割すべり軸受の製造方法では、前記急加熱急冷加工が施された板状部材を、前記狭域部が軸線方向へ延びる半円筒形状に曲げる工程を含み、前記急加熱急冷加工は、半円筒形状に曲げたとき、外周面となる側に施す。
これにより、急加熱急冷加工は、外周面となる一方側端面からのみ施される。そのため、板厚方向の一方からのみ急加熱急冷加工を施すことができ、加工を容易かつ工数の低減を図ることができる。
In the method of manufacturing a half plain bearing according to the present embodiment, the rapid heating and quenching process includes a step of bending the plate-like member subjected to the rapid heating and quenching process into a semi-cylindrical shape in which the narrow portion extends in the axial direction. Is applied to the outer peripheral surface when bent into a semi-cylindrical shape.
Thereby, rapid heating rapid cooling processing is performed only from the one side end surface used as an outer peripheral surface. Therefore, rapid heating and rapid cooling processing can be performed only from one side in the plate thickness direction, and processing can be facilitated and man-hours can be reduced.

本実施形態の半割すべり軸受の製造方法では、前記板状部材は、裏金層および軸受合金層を有し、半円筒形状に曲げたとき、外周側に前記裏金層が位置するとともに、内周側に前記軸受合金層が位置する。
これにより、急加熱急冷加工が施されるのは裏金層側からである。したがって、急加熱急冷加工にともなう軸受合金層の変形や損傷を低減することができる。
半割すべり軸受を製造する場合、急加熱急冷加工を実行する前に、急加熱急冷加工が施される箇所の近辺には軸受合金層が存在しない状態にしておくのが好ましい。これにより、急加熱急冷加工や曲げ加工にともなう軸受合金層の変形や損傷を容易に低減することができる。
裏金層と軸受合金層との間には、中間層を設けてもよい。また、本実施形態の半割すべり軸受を製造した後、表面に金属や樹脂からなる表面被覆層を設けてもよい。
本実施形態の半割すべり軸受の製造方法では、前記急加熱急冷加工は、二つ以上の前記板状部材を溶接する溶接加工である。これにより、広域部とこれら広域部の間に挟まれた狭域部とを容易に形成することができる。溶接加工は、溶接の幅や深さの制御の面から電子ビーム溶接で施すことが好ましい。
In the method for manufacturing a half plain bearing of the present embodiment, the plate-like member has a back metal layer and a bearing alloy layer, and when bent into a semi-cylindrical shape, the back metal layer is located on the outer peripheral side, The bearing alloy layer is located on the side.
As a result, the rapid heating and quenching process is performed from the back metal layer side. Therefore, deformation and damage of the bearing alloy layer accompanying rapid heating and rapid cooling can be reduced.
When manufacturing a half-sliding bearing, it is preferable that a bearing alloy layer is not present in the vicinity of the place where the rapid heating / cooling process is performed before the rapid heating / cooling process is performed. Thereby, the deformation | transformation and damage of the bearing alloy layer accompanying rapid heating rapid cooling process and bending process can be reduced easily.
An intermediate layer may be provided between the back metal layer and the bearing alloy layer. Moreover, after manufacturing the half slide bearing of this embodiment, you may provide the surface coating layer which consists of a metal or resin on the surface.
In the method for manufacturing a half plain bearing according to the present embodiment, the rapid heating and quenching process is a welding process for welding two or more plate-like members. Thereby, a wide area part and the narrow area part pinched | interposed between these wide area parts can be formed easily. The welding process is preferably performed by electron beam welding from the viewpoint of controlling the width and depth of welding.

一実施形態による摺動部材の断面を示す模式図The schematic diagram which shows the cross section of the sliding member by one Embodiment 一実施形態による摺動部材を示す概略斜視図The schematic perspective view which shows the sliding member by one Embodiment 図1のIIIを拡大した断面図1 is an enlarged sectional view of III in FIG. 一実施形態による摺動部材を用いた半割すべり軸受を示す概略斜視図The schematic perspective view which shows the half slide bearing using the sliding member by one Embodiment 一実施形態による摺動部材の製造手順を示す模式図The schematic diagram which shows the manufacturing procedure of the sliding member by one Embodiment. 一実施形態による半割すべり軸受の真円度を示す概略図Schematic showing the roundness of a half plain bearing according to one embodiment 比較例の半割すべり軸受の真円度を示す概略図Schematic showing the roundness of the half plain bearing of the comparative example 他の実施形態による摺動部材の図3に相当する図The figure equivalent to FIG. 3 of the sliding member by other embodiment 他の実施形態による摺動部材の図3に相当する図The figure equivalent to FIG. 3 of the sliding member by other embodiment 他の実施形態による摺動部材の図3に相当する図The figure equivalent to FIG. 3 of the sliding member by other embodiment 他の実施形態による摺動部材の図3に相当する図The figure equivalent to FIG. 3 of the sliding member by other embodiment 他の実施形態による摺動部材の図3に相当する図The figure equivalent to FIG. 3 of the sliding member by other embodiment 他の実施形態による摺動部材の図3に相当する図The figure equivalent to FIG. 3 of the sliding member by other embodiment 他の実施形態による摺動部材の図3に相当する図The figure equivalent to FIG. 3 of the sliding member by other embodiment

以下、摺動部材、およびこれを用いた半割すべり軸受の実施形態を図面に基づいて説明する。
図1および図2に示すように、摺動部材10は、広域部11、12、13および狭域部21、22を備えている。図1および図2に示す例の場合、摺動部材10は、三つの広域部11、12、13を備えている。そして、摺動部材10は、広域部11と広域部12との間に狭域部21、および広域部12と広域部13との間に狭域部22を備えている。このように、摺動部材10は、隣り合う広域部11、12、13の間に狭域部21、22が設けられている。隣り合う広域部11、12、13は、急加熱急冷加工が施された狭域部21、22によって接合されている。本実施形態の場合、急加熱急冷加工は、溶接加工である。すなわち、隣り合う広域部11、12、13は、溶接加工を施すことによって狭域部21、22で接合される。
Hereinafter, embodiments of a sliding member and a half plain bearing using the sliding member will be described with reference to the drawings.
As shown in FIGS. 1 and 2, the sliding member 10 includes wide areas 11, 12, 13 and narrow areas 21, 22. In the case of the example shown in FIGS. 1 and 2, the sliding member 10 includes three wide-area portions 11, 12, and 13. The sliding member 10 includes a narrow area portion 21 between the wide area section 11 and the wide area section 12 and a narrow area section 22 between the wide area section 12 and the wide area section 13. Thus, the sliding member 10 is provided with the narrow areas 21 and 22 between the adjacent wide areas 11, 12 and 13. Adjacent wide areas 11, 12, 13 are joined by narrow areas 21, 22 that have been subjected to rapid heating and quenching. In the case of this embodiment, the rapid heating rapid cooling process is a welding process. That is, the adjacent wide areas 11, 12, and 13 are joined by the narrow areas 21 and 22 by performing welding.

摺動部材10の幅方向を図1および図2に示すように定義したとき、狭域部21、22の幅は広域部11、12、13に比較して幅方向に十分に狭く設定されている。また、狭域部21、22は、広域部11、12、13よりも硬度が高く設定されている。この場合、狭域部21、22それぞれの平均硬さは、広域部11、12、13それぞれの平均硬さの平均の1.1〜1.7倍に設定することが好ましい。そして、狭域部21、22それぞれの最大硬さは、広域部11、12、13それぞれの平均硬さの平均の1.3〜1.9倍に設定することが好ましい。   When the width direction of the sliding member 10 is defined as shown in FIGS. 1 and 2, the width of the narrow areas 21 and 22 is set to be sufficiently narrow in the width direction compared to the wide areas 11, 12, and 13. Yes. Further, the narrow areas 21 and 22 are set to have higher hardness than the wide areas 11, 12 and 13. In this case, the average hardness of each of the narrow areas 21 and 22 is preferably set to 1.1 to 1.7 times the average of the average hardness of each of the wide areas 11, 12 and 13. The maximum hardness of each of the narrow areas 21 and 22 is preferably set to 1.3 to 1.9 times the average of the average hardness of each of the wide areas 11, 12 and 13.

摺動部材10は、図1に示すように板厚方向の一方の端部を一端部とし、他方の端部を他端部と定義する。このとき、狭域部21は、図1に示すように摺動部材10の一端部に露出する一方側端面211と、他端部に露出する他方側端面212とを有している。同様に、狭域部22は、一方側端面221と他方側端面222とを有している。狭域部21、22の他方側端面212、222は、一方側端面211、221よりも露出面積が小さく設定されている。すなわち、狭域部21、22は、一方側端面211、221の面積と他方側端面212、222の面積とが異なっている。具体的には、狭域部21、22における一方側端面211、221の面積の総和は、他方側端面212、222の面積の総和の1.3〜9.0倍に設定することが好ましい。本実施形態の場合、隣り合う広域部11、12、13は溶接加工による狭域部21、22によって接合される。このとき、溶接加工は、板厚方向の一方の端部側、具体的には一端部側から施される。そのため、狭域部21、22は、図1に示すような断面視において、一端部から他端部にかけて幅が縮小する台形形状に形成される。   As shown in FIG. 1, the sliding member 10 defines one end in the thickness direction as one end and the other end as the other end. At this time, as shown in FIG. 1, the narrow area portion 21 has one end face 211 exposed at one end of the sliding member 10 and the other end face 212 exposed at the other end. Similarly, the narrow area 22 has a first side end surface 221 and a second side end surface 222. The other side end surfaces 212 and 222 of the narrow areas 21 and 22 are set to have a smaller exposed area than the one side end surfaces 211 and 221. That is, the narrow areas 21 and 22 are different in the area of the one side end surfaces 211 and 221 and the area of the other side end surfaces 212 and 222. Specifically, the sum of the areas of the one side end faces 211 and 221 in the narrow areas 21 and 22 is preferably set to 1.3 to 9.0 times the sum of the areas of the other side end faces 212 and 222. In the case of this embodiment, the adjacent wide area parts 11, 12, and 13 are joined by the narrow area parts 21 and 22 by welding. At this time, the welding process is performed from one end side in the plate thickness direction, specifically, from one end side. Therefore, the narrow areas 21 and 22 are formed in a trapezoidal shape whose width decreases from one end to the other end in a cross-sectional view as shown in FIG.

摺動部材10は、図1および図2に示すように板厚方向に積層されている裏金層31および軸受合金層32を有している。裏金層31は、例えば鋼などで形成されており、広域部11、12、13および狭域部21、22を同一の金属成分で形成している。この裏金層31は、一端部に端面41を形成している。この端面41は、狭域部21、22の一方側端面211、221と同一の面となる端面を形成している。軸受合金層32は、この裏金層31の他端部側に積層されている。軸受合金層32は、例えばAl、Cu、Sn、Agなどの金属、またはこれらの金属に各種の元素を添加した合金で形成されている。本実施形態の場合、軸受合金層32は、狭域部21、22の他端部側で分断されている。すなわち、軸受合金層32は、狭域部21、22の他端部に積層されていない。   The sliding member 10 has a backing metal layer 31 and a bearing alloy layer 32 that are laminated in the thickness direction as shown in FIGS. The back metal layer 31 is made of, for example, steel, and the wide areas 11, 12, 13 and the narrow areas 21, 22 are formed of the same metal component. The back metal layer 31 has an end face 41 at one end. The end surface 41 forms an end surface that is the same surface as the one side end surfaces 211, 221 of the narrow areas 21, 22. The bearing alloy layer 32 is laminated on the other end side of the back metal layer 31. The bearing alloy layer 32 is formed of, for example, a metal such as Al, Cu, Sn, or Ag, or an alloy obtained by adding various elements to these metals. In the case of the present embodiment, the bearing alloy layer 32 is divided at the other end side of the narrow regions 21 and 22. That is, the bearing alloy layer 32 is not laminated on the other end of the narrow areas 21 and 22.

この分断されている隣り合う軸受合金層32の間隔の最短距離は、狭域部21、22の幅方向における最長部を基準として設定されている。図3を用いて狭域部21を例に説明する。なお、狭域部22については図示しての説明をしていないが、狭域部21と同様である。   The shortest distance between the separated bearing alloy layers 32 is set with reference to the longest portion in the width direction of the narrow regions 21 and 22. The narrow area 21 will be described as an example with reference to FIG. The narrow area 22 is not illustrated and described, but is the same as the narrow area 21.

狭域部21は、上述のように一方側端面211と他方側端面212とで露出面積が異なっている。具体的には、狭域部21は、一方側端面211の面積が他方側端面212よりも大きい。そのため、狭域部21は、板厚方向に垂直な幅方向において、その幅が異なっている。すなわち、本実施形態では、狭域部21の幅は、一方側端面211に近いほど大きく、他方側端面212に近いほど小さくなる傾向にある。この狭域部21のうち最大の幅は、最長部Wmと定義する。最長部Wmは、摺動部材10の幅方向の全長の0.1〜5.0%が半割すべり軸受を製造する上で好ましく、0.5〜2.0%が更に好ましい。軸受合金層32は、狭域部21の他端部側で分断されているため、他端部側で幅方向の間隔Dを形成している。このとき、分断されている隣り合う軸受合金層32の間隔の最短距離すなわち間隔Dは、この最長部Wmの0.5〜1.8倍に設定されている。特に、軸受合金層32の間隔Dは、最長部Wmの1.0〜1.8倍に設定することが好ましい。このように、軸受合金層32が狭域部21の他端部側で分断されているため、板厚方向における狭域部21の全長Tsは摺動部材10の全体の板厚Tよりも小さい。このとき、板厚方向における狭域部21の全長Tsは、摺動部材10の板厚Tの0.60〜0.95倍に設定されている。   As described above, the exposed area of the narrow area 21 is different between the one end face 211 and the other end face 212. Specifically, in the narrow area 21, the area of the one side end surface 211 is larger than that of the other side end surface 212. Therefore, the narrow portion 21 has a different width in the width direction perpendicular to the plate thickness direction. In other words, in the present embodiment, the width of the narrow area 21 tends to be larger as it is closer to the one side end surface 211 and smaller as it is closer to the other side end surface 212. The maximum width of the narrow portion 21 is defined as the longest portion Wm. The longest portion Wm is preferably 0.1 to 5.0% of the entire length of the sliding member 10 in the width direction for manufacturing a half-sliding bearing, and more preferably 0.5 to 2.0%. Since the bearing alloy layer 32 is divided at the other end portion side of the narrow area portion 21, a width direction interval D is formed at the other end portion side. At this time, the shortest distance between the separated bearing alloy layers 32, that is, the distance D is set to 0.5 to 1.8 times the longest portion Wm. In particular, the interval D between the bearing alloy layers 32 is preferably set to 1.0 to 1.8 times the longest portion Wm. Thus, since the bearing alloy layer 32 is divided on the other end side of the narrow area portion 21, the total length Ts of the narrow area portion 21 in the thickness direction is smaller than the overall plate thickness T of the sliding member 10. . At this time, the total length Ts of the narrow portion 21 in the plate thickness direction is set to 0.60 to 0.95 times the plate thickness T of the sliding member 10.

図1および図2に示す狭域部21、22は、場所により硬さに差が生じ得る。特に、本実施形態のように一端部から溶接加工を施すことによって狭域部21、22を形成する場合、狭域部21、22は板厚方向へ硬さに分布を生じる。本実施形態の場合、狭域部21、22は、最大の硬さがHv320〜400に設定されている。狭域部21、22において最大の硬さとなる部分は、最硬部である。この最硬部は、板厚方向において一方側端面211、221から板厚Tの0.50〜0.95倍の範囲に位置している。   The narrow areas 21 and 22 shown in FIG. 1 and FIG. In particular, when the narrow areas 21 and 22 are formed by welding from one end as in this embodiment, the narrow areas 21 and 22 are distributed in hardness in the thickness direction. In the case of this embodiment, the narrow areas 21 and 22 have a maximum hardness set to Hv 320 to 400. The portion having the maximum hardness in the narrow areas 21 and 22 is the hardest part. The hardest part is located in the range of 0.50 to 0.95 times the plate thickness T from the one side end surfaces 211 and 221 in the plate thickness direction.

次に、上記の摺動部材10を用いた半割すべり軸受について説明する。
上述のように、摺動部材10は、複数の広域部11、12、13と、この広域部11、12、13に挟まれた狭域部21、22とを備える平板形状に形成される。この平板形状に形成された摺動部材10は、図4に示すように半円筒形状に加工することにより半割すべり軸受50に形成される。半割すべり軸受50は、船舶用などの大型のエンジンのクロスヘッド軸受として適用される。このような用途の半割すべり軸受50は、例えば外径が約500mm、軸線方向の全長が約500mm、厚さが約15mmに設定されている。本実施形態の場合、狭域部21、22は、半円筒形状の半割すべり軸受50の中心軸と平行に延びている。これにより、本実施形態の半割すべり軸受50は、周方向へ並列する広域部11、12、13の間に軸線方向へ延びる狭域部21、22が設けられている。そして、このとき、半割すべり軸受50は、摺動部材10の軸受合金層32が内周側となるように半円筒形状に曲げられる。そのため、摺動部材10の一端部側の端面41は、半割すべり軸受50の外周面を形成する。一方、摺動部材10の軸受合金層32の表面は、半割すべり軸受50の内周面を形成する。
Next, a half slide bearing using the sliding member 10 will be described.
As described above, the sliding member 10 is formed in a flat plate shape including a plurality of wide area portions 11, 12, 13 and narrow area portions 21, 22 sandwiched between the wide area portions 11, 12, 13. The sliding member 10 formed in a flat plate shape is formed in a half slide bearing 50 by processing it into a semi-cylindrical shape as shown in FIG. The half-slide bearing 50 is applied as a crosshead bearing for a large engine such as for ships. For example, the half-slide bearing 50 for such an application has an outer diameter of about 500 mm, an axial length of about 500 mm, and a thickness of about 15 mm. In the case of the present embodiment, the narrow areas 21 and 22 extend in parallel with the central axis of the semi-cylindrical half-sliding bearing 50. Thereby, the half-sliding bearing 50 of this embodiment is provided with the narrow areas 21 and 22 extending in the axial direction between the wide areas 11, 12, and 13 parallel in the circumferential direction. At this time, the half sliding bearing 50 is bent into a semi-cylindrical shape so that the bearing alloy layer 32 of the sliding member 10 is on the inner peripheral side. Therefore, the end surface 41 on the one end portion side of the sliding member 10 forms the outer peripheral surface of the half slide bearing 50. On the other hand, the surface of the bearing alloy layer 32 of the sliding member 10 forms the inner peripheral surface of the half slide bearing 50.

図1および図2に示すように三つの広域部11、12、13の間に二つの狭域部21、22を備える摺動部材10の場合、半割すべり軸受50に加工したとき、図4に示すように周方向において二本の狭域部21、22が設けられる。このように、狭域部21、22は、周方向において二本以上設けることが好ましい。また、軸受合金層32が狭域部21、22の他端部側で分断されているとき、摺動部材10を半割すべり軸受50に加工すると、半割すべり軸受50は狭域部21、22の径方向内側に軸線方向へ延びる溝51、52を備えることになる。この溝51、52は、半割すべり軸受50と相手部材となる図示しない軸部材とが摺動するとき、これらの摺動を潤滑する潤滑剤の通路として用いることができる。   As shown in FIGS. 1 and 2, in the case of the sliding member 10 having two narrow areas 21, 22 between the three wide areas 11, 12, 13, when processed into a half slide bearing 50, FIG. As shown in FIG. 2, two narrow regions 21 and 22 are provided in the circumferential direction. Thus, it is preferable to provide two or more narrow areas 21 and 22 in the circumferential direction. Further, when the bearing alloy layer 32 is divided on the other end side of the narrow area portions 21 and 22, when the sliding member 10 is processed into the half slide bearing 50, the half slide bearing 50 is converted into the narrow area portion 21, The grooves 51 and 52 extending in the axial direction are provided on the radially inner side of 22. The grooves 51 and 52 can be used as a passage for a lubricant that lubricates the sliding when the half-sliding bearing 50 and a shaft member (not shown) as a mating member slide.

次に、上記の摺動部材10および半割すべり軸受50の製造方法について図5に基づいて説明する。
摺動部材10を製造する場合、ステップ(A)に示すようにまず二つ以上の矩形の板状部材60が用意される。この板状部材60は、裏金層61および軸受合金層62が積層されたいわゆるバイメタルである。本実施形態の場合、裏金層61は鋼であり、軸受合金層62はアルミニウム合金である。そして、板状部材60は、ステップ(B)に示すように所望の摺動部材10および半割すべり軸受50の寸法にあわせて予め整形される。このとき、軸受合金層62の一部を除去することができる。軸受合金層62の一部を除去することにより、摺動部材10を形成したとき、軸受合金層62は狭域部21、22の他端部側で分断される。
Next, the manufacturing method of said sliding member 10 and the half slide bearing 50 is demonstrated based on FIG.
When manufacturing the sliding member 10, two or more rectangular plate-shaped members 60 are prepared first as shown in step (A). The plate-like member 60 is a so-called bimetal in which a back metal layer 61 and a bearing alloy layer 62 are laminated. In this embodiment, the back metal layer 61 is steel, and the bearing alloy layer 62 is an aluminum alloy. And the plate-shaped member 60 is shape | molded previously according to the dimension of the desired sliding member 10 and the half slide bearing 50, as shown to step (B). At this time, a part of the bearing alloy layer 62 can be removed. When the sliding member 10 is formed by removing a part of the bearing alloy layer 62, the bearing alloy layer 62 is divided at the other end portions of the narrow regions 21 and 22.

整形された板状部材60は、ステップ(C)に示すように互いに隣り合うように並べられる。そして、この板状部材60が互いに隣り合っている部分に例えば電子ビームによる溶接加工が施される。溶接加工は、隣り合う板状部材60を接合するように直線状に施される。溶接加工は、板状部材60の一端部に相当する側、すなわち裏金層61側から一方向へ施される。このとき、一端部側から照射された電子ビームは、裏金層61の他端部側まで貫く。これにより、三つの板状部材60は、接合され、一体の摺動部材10を形成する。この摺動部材10は、溶接が施された部分が狭域部21、22となり、その他の部分が広域部11、12、13となる。上述のように板状部材60の軸受合金層62は、狭域部21、22の他端部側に相当する位置で分断されている。そのため、一端部側から電子ビームを照射して溶接加工を施したとき、軸受合金層62には溶接時の熱的な影響が及ばない。その結果、軸受合金層62は、変質などの特性の変化を低減することができる。   The shaped plate-like members 60 are arranged adjacent to each other as shown in step (C). And the welding process by an electron beam is given to the part which this plate-shaped member 60 mutually adjoins, for example. The welding process is performed linearly so as to join adjacent plate-like members 60. The welding process is performed in one direction from the side corresponding to one end of the plate-like member 60, that is, from the back metal layer 61 side. At this time, the electron beam irradiated from one end side penetrates to the other end side of the back metal layer 61. Thereby, the three plate-like members 60 are joined to form the integral sliding member 10. In the sliding member 10, the welded portions are narrow regions 21 and 22, and the other portions are wide regions 11, 12, and 13. As described above, the bearing alloy layer 62 of the plate-like member 60 is divided at a position corresponding to the other end side of the narrow areas 21 and 22. Therefore, when welding is performed by irradiating an electron beam from one end, the bearing alloy layer 62 does not have a thermal influence during welding. As a result, the bearing alloy layer 62 can reduce changes in characteristics such as alteration.

形成された摺動部材10は、曲げ加工によって半円筒形状の半割すべり軸受50に加工される。具体的には、摺動部材10は、図1および図2に示す狭域部21、22が半割すべり軸受50の軸と平行になるように曲げ加工が施される。また、このとき、摺動部材10は、軸受合金層32が内周側となるように曲げられる。その結果、図4に示すように、半割すべり軸受50は、外周側に一方側端面211が形成されている裏金層31が面し、内周側に裏金層31に積層された軸受合金層32が面する。曲げ加工が施された摺動部材10は、外周側および内周側に必要な加工が施され、図4に示すような半割すべり軸受となる。   The formed sliding member 10 is processed into a half-cylindrical half-slide bearing 50 by bending. Specifically, the sliding member 10 is bent so that the narrow areas 21 and 22 shown in FIGS. 1 and 2 are parallel to the axis of the half slide bearing 50. At this time, the sliding member 10 is bent so that the bearing alloy layer 32 is on the inner peripheral side. As a result, as shown in FIG. 4, the half slide bearing 50 has a bearing alloy layer in which the back metal layer 31 having the one end face 211 formed on the outer peripheral side faces and is laminated on the inner metal side on the back metal layer 31. 32 faces. The sliding member 10 subjected to the bending process is subjected to necessary processes on the outer peripheral side and the inner peripheral side, and becomes a half-slide bearing as shown in FIG.

本実施形態のように隣り合う広域部11、12、13の間には狭域部21、22が設けられている。そのため、接合された摺動部材10を、狭域部21、22が軸と平行となるように円筒形状に加工するとき、周方向において狭域部21、22の両端部が支点となる。具体的には、図3に示す例の場合、広域部11と広域部12に挟まれている狭域部21は、周方向の両端に位置する境界部71および境界部72で広域部11および広域部12とそれぞれ接合している。上述のように広域部11、12と狭域部21とは互いに硬さが異なっている。すなわち、広域部11、12と狭域部21との間には硬さが不連続な部分が形成される。そのため、摺動部材10は、この硬さが不連続な広域部11、12と狭域部21との境界部71、72を支点として曲げられる。このとき、狭域部21は、内周側となる他端部側は、一端部側に比較して幅が狭い。その結果、摺動部材10は、二つの境界部71、72の幅方向に距離が短い方を曲げ中心側として曲げやすくなることから、曲率半径の微小な制御が容易になる。このように本実施形態の摺動部材10は、曲率半径の微小な制御が容易になることから、高い精度で半円筒形状の半割すべり軸受50に加工することができる。   As in the present embodiment, narrow areas 21 and 22 are provided between adjacent wide areas 11, 12, and 13. Therefore, when the joined sliding member 10 is processed into a cylindrical shape so that the narrow areas 21 and 22 are parallel to the axis, both ends of the narrow areas 21 and 22 serve as fulcrums in the circumferential direction. Specifically, in the case of the example shown in FIG. 3, the narrow area portion 21 sandwiched between the wide area section 11 and the wide area section 12 is a boundary section 71 and a boundary section 72 located at both ends in the circumferential direction. It joins with the wide area part 12, respectively. As described above, the wide areas 11 and 12 and the narrow area 21 are different in hardness. That is, a portion where the hardness is discontinuous is formed between the wide areas 11 and 12 and the narrow area 21. Therefore, the sliding member 10 is bent using the boundary portions 71 and 72 between the wide-area portions 11 and 12 and the narrow-area portion 21 where the hardness is discontinuous as fulcrums. At this time, the narrow area portion 21 has a narrower width on the other end side, which is the inner peripheral side, compared to the one end side. As a result, the sliding member 10 is easy to bend with the shorter distance in the width direction of the two boundary portions 71 and 72 as the bending center side, so that it is easy to finely control the curvature radius. As described above, the sliding member 10 according to the present embodiment can be easily processed into the semi-cylindrical half-sliding bearing 50 with high accuracy because minute control of the radius of curvature is facilitated.

図6に示すように、本実施形態の摺動部材10から加工した半割すべり軸受50は、外周面の真円度が0.21mmであった。真円度は、外径が450mmの半割すべり軸受50を用いて測定した。真円度は、真円に対する誤差を示すものであり、数値が小さくなるほど真円度が高い。比較例として、従来の一体型材を用いた半割すべり軸受は、真円度が0.27mmであった。このことからも、本実施形態の摺動部材10およびこの摺動部材10を用いた半割すべり軸受50は、形状精度、特に真円度が従来に比較して向上していることがわかる。このように形状精度の高い半割すべり軸受50は、クロスヘッド軸受のハウジングに組み付けたとき、外周側でハウジングとの片当たりやがたつきが低減される。その結果、半割すべり軸受50とハウジングとの間におけるフレッチングの発生を低減することができる。   As shown in FIG. 6, the half-slide bearing 50 machined from the sliding member 10 of this embodiment had a roundness of the outer peripheral surface of 0.21 mm. The roundness was measured using a half slide bearing 50 having an outer diameter of 450 mm. The roundness indicates an error with respect to the perfect circle, and the roundness is higher as the numerical value is smaller. As a comparative example, a half-slide bearing using a conventional integral material had a roundness of 0.27 mm. This also shows that the sliding member 10 of this embodiment and the half-slide bearing 50 using the sliding member 10 have improved shape accuracy, particularly roundness, as compared with the prior art. Thus, when the half-slide bearing 50 with high shape accuracy is assembled to the housing of the crosshead bearing, rattling with the housing on the outer peripheral side is reduced. As a result, it is possible to reduce the occurrence of fretting between the half plain bearing 50 and the housing.

また、本実施形態の摺動部材10は、溶接加工によって狭域部21、22を形成している。これにより、狭域部21、22は、広域部11、12、13よりも容易に硬くすることができる。そのため、狭域部21、22と広域部11、12、13との境界部で硬さを不連続とすることが容易にでき、摺動部材10は境界部を支点として曲げられて半円筒形状に精度よく加工される。狭域部21、22と広域部11、12、13との境界部を支点として曲げる場合、狭域部21、22と広域部11、12、13との間の硬さの差が大きいほど曲げ加工が容易になる傾向があった。一方、狭域部21、22と広域部11、12、13との硬さの差が過大になると、半割すべり軸受50の外形を最終的に仕上げ加工するとき、硬さに応じて加工器具を交換する必要が生じて汎用性が低下したり、加工器具の寿命の低下を招く。そこで、本実施形態では、狭域部21、22の硬さを広域部11、12、13の1.1〜1.9倍に設定することにより、硬さの差による曲げの支点として機能を確保しつつ、同一の加工器具での切削加工が可能となる。したがって、例えばバイトなどの切削加工器具の汎用性を高めつつ、切削加工器具の寿命を延長することができる。   Moreover, the sliding member 10 of this embodiment forms the narrow areas 21 and 22 by welding. Thereby, the narrow areas 21 and 22 can be hardened more easily than the wide areas 11, 12, and 13. Therefore, it is easy to make the hardness discontinuous at the boundary between the narrow areas 21, 22 and the wide areas 11, 12, 13, and the sliding member 10 is bent with the boundary as a fulcrum to form a semi-cylindrical shape. To be processed with high accuracy. When bending with the boundaries between the narrow areas 21, 22 and the wide areas 11, 12, 13 as fulcrums, the larger the difference in hardness between the narrow areas 21, 22 and the wide areas 11, 12, 13, the greater the bending There was a tendency to facilitate processing. On the other hand, when the difference in hardness between the narrow areas 21 and 22 and the wide areas 11, 12, and 13 becomes excessive, when the outer shape of the half slide bearing 50 is finally finished, a processing tool is used according to the hardness. Need to be replaced, and the versatility is reduced, or the life of the processing tool is reduced. Therefore, in the present embodiment, by setting the hardness of the narrow areas 21 and 22 to 1.1 to 1.9 times that of the wide areas 11, 12, and 13, the function as a fulcrum for bending due to the difference in hardness is achieved. Cutting can be performed with the same processing tool while ensuring. Therefore, the lifetime of the cutting tool can be extended while enhancing the versatility of the cutting tool such as a cutting tool.

本実施形態では、分断されている軸受合金層32の間隔Dは、狭域部21、22の最長部Wmの0.5〜1.8倍に設定している。また、狭域部21、22の面積は、一方側端面211、221の総和を他方側端面212、222の総和の1.3〜9.0倍に設定している。さらに、狭域部21、22は、それぞれの平均硬さを広域部11、12、13それぞれの平均硬さの平均の1.1〜1.7倍に設定し、それぞれの最大硬さを広域部11、12、13それぞれの平均硬さの平均の1.3〜1.9倍に設定している。これらのように分断されている軸受合金層32の間隔D、狭域部21、22の面積比率、および狭域部21、22の硬さの比率などを設定することにより、半割すべり軸受50の形状精度のみならず、狭域部21、22の内周側に形成される溝51、52における形状精度が維持される。すなわち、これら軸受合金層32の間隔D、狭域部21、22の面積比率および狭域部21、22の硬さの比率が設定した範囲に制御すると、摺動部材10から半円筒形状に加工した半割すべり軸受50は真円度をより向上させることができる。狭域部21における不均等な変形を抑制することにより、加工された半割すべり軸受50と外周側のハウジングとの局部的な接触が低減される。半割すべり軸受50とハウジングとの間の局部的な接触は、軸受合金層32が形成する内周面の凹凸となって投影されることがある。その結果、半割すべり軸受50とハウジングとの間に局部的な接触が生じると、半割すべり軸受50と相手部材であるクロスヘッドピンとの間での摺動によって、半割すべり軸受50の軸受合金層32に局所的な疲労や損傷を招くことになる。本実施形態では、上記のように各部の要素を規定することにより、半割すべり軸受50とハウジングとの局所的な接触、およびこれにともなう半割すべり軸受50の背面フレッチングによる損傷や軸受合金層の局所的な疲労や損傷を低減することができる。   In the present embodiment, the interval D between the divided bearing alloy layers 32 is set to 0.5 to 1.8 times the longest portion Wm of the narrow regions 21 and 22. The area of the narrow areas 21 and 22 is set such that the sum of the one side end faces 211 and 221 is 1.3 to 9.0 times the sum of the other side end faces 212 and 222. Furthermore, the narrow areas 21 and 22 are set to have an average hardness 1.1 to 1.7 times the average of the average hardness of each of the wide areas 11, 12 and 13, and each maximum hardness is set to a wide area. The average hardness of each of the parts 11, 12, 13 is set to 1.3 to 1.9 times the average. By setting the distance D between the bearing alloy layers 32 divided as described above, the area ratio of the narrow regions 21 and 22, the ratio of the hardness of the narrow regions 21 and 22, and the like, the half-slide bearing 50 is provided. In addition to the shape accuracy, the shape accuracy in the grooves 51 and 52 formed on the inner peripheral side of the narrow areas 21 and 22 is maintained. That is, when the distance D between the bearing alloy layers 32, the area ratio of the narrow areas 21 and 22 and the hardness ratio of the narrow areas 21 and 22 are controlled to the set ranges, the sliding member 10 is processed into a semicylindrical shape. The halved plain bearing 50 can further improve the roundness. By suppressing unequal deformation in the narrow area 21, local contact between the processed half-slide bearing 50 and the outer housing is reduced. The local contact between the half-slide bearing 50 and the housing may be projected as irregularities on the inner peripheral surface formed by the bearing alloy layer 32. As a result, when local contact occurs between the half sliding bearing 50 and the housing, the sliding of the half sliding bearing 50 is caused by sliding between the half sliding bearing 50 and the cross head pin which is the counterpart member. The alloy layer 32 is locally fatigued and damaged. In the present embodiment, by defining the elements of the respective parts as described above, local contact between the half-slide bearing 50 and the housing, and accompanying damage due to back fretting of the half-slide bearing 50 and bearing alloy layers Local fatigue and damage can be reduced.

本実施形態では、狭域部21、22の全長Tsは摺動部材10および半割すべり軸受50の板厚Tの0.60〜0.95倍に設定している。また、溶接によって形成される狭域部21、22は、最大の硬さがHv320〜400であり、板厚方向において一方側端面211から板厚Tの0.50〜0.95倍の範囲に最硬部が位置している。半割すべり軸受50は、使用時の動荷重環境下において繰り返し変形が生じる。本実施形態では、上述のように狭域部21、22の全長、硬さ、および最硬部の位置などを設定することにより、繰り返し変形が生じても強度が維持される。したがって、高負荷の環境下においても耐久性を維持することができる。   In this embodiment, the total length Ts of the narrow areas 21 and 22 is set to 0.60 to 0.95 times the plate thickness T of the sliding member 10 and the half sliding bearing 50. In addition, the narrow areas 21 and 22 formed by welding have a maximum hardness of Hv320 to 400, and are within a range of 0.50 to 0.95 times the plate thickness T from the one end surface 211 in the plate thickness direction. The hardest part is located. The half sliding bearing 50 is repeatedly deformed under a dynamic load environment during use. In the present embodiment, the strength is maintained even when repeated deformation occurs by setting the overall length, hardness, and position of the hardest portion of the narrow areas 21 and 22 as described above. Therefore, durability can be maintained even in a high load environment.

(その他の実施形態)
以上説明した本発明は、上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々の実施形態に適用可能である。
摺動部材10は、図8に示すように軸受合金層32が分断されていなくてもよい。この場合、狭域部21は、摺動部材10の板厚方向において裏金層31の端面から軸受合金層32の端面まで貫いている。また、摺動部材10は、図9から図11に示すように分断された軸受合金層32によって形成される溝51の形状を溝511、512、513のように任意に設定することができる。さらに、摺動部材10は、軸受合金層32だけでなく裏金層31の一部を削除してもよい。すなわち、図9から図11に示す摺動部材10の場合、溝51は軸受合金層32だけでなく裏金層31の一部にも形成されている。
(Other embodiments)
The present invention described above is not limited to the above-described embodiment, and can be applied to various embodiments without departing from the gist thereof.
In the sliding member 10, the bearing alloy layer 32 may not be divided as shown in FIG. 8. In this case, the narrow portion 21 penetrates from the end surface of the back metal layer 31 to the end surface of the bearing alloy layer 32 in the plate thickness direction of the sliding member 10. Further, in the sliding member 10, the shape of the groove 51 formed by the bearing alloy layer 32 divided as shown in FIGS. 9 to 11 can be arbitrarily set as grooves 511, 512, and 513. Furthermore, the sliding member 10 may delete not only the bearing alloy layer 32 but also a part of the back metal layer 31. That is, in the case of the sliding member 10 shown in FIGS. 9 to 11, the groove 51 is formed not only in the bearing alloy layer 32 but also in a part of the back metal layer 31.

摺動部材10は、図12に示すように溝51と狭域部21との幅方向に対する中心がずれていてもよい。また、摺動部材10は、図13に示すように狭域部21が板厚方向に対して傾斜したり、曲がっていたりしてもよい。これらのように、狭域部21は、溝51との関係および板厚方向との関係を任意に設定することができる。   As shown in FIG. 12, in the sliding member 10, the center of the groove 51 and the narrow portion 21 in the width direction may be shifted. Moreover, as shown in FIG. 13, as for the sliding member 10, the narrow area part 21 may incline with respect to a plate | board thickness direction, or may be bent. As described above, the narrow area 21 can arbitrarily set the relationship with the groove 51 and the relationship with the plate thickness direction.

さらに、摺動部材10は、図14に示すように狭域部81を鼓形状に形成してもよい。この場合、狭域部81は、板厚方向の両端部から溶接加工を施すことで、鼓形状に形成される。鼓形状は、板厚方向で台形を対象に重ねた形状である。すなわち、狭域部81は、板厚方向において一方側端面811と他方側端面812との間でくびれている。このように狭域部81を鼓形状に形成する場合でも、一方側端面811は他方側端面812よりも露出面積すなわち板厚方向での投影面積が大きく設定されている。ただし、曲げ加工の精度向上や溶接ボイドの残存低減を鑑みると、外周側となる側からのみの溶接加工を施し、狭域部を、当該狭域部の長手方向に垂直な面の形状が台形形状であることが好ましい。さらには、溝51と狭域部との幅方向に対する中心が揃っていることがより好ましい。   Furthermore, as shown in FIG. 14, the sliding member 10 may form the narrow portion 81 in a drum shape. In this case, the narrow area 81 is formed in a drum shape by performing welding from both ends in the plate thickness direction. The drum shape is a shape in which a trapezoid is overlapped in the thickness direction. That is, the narrow portion 81 is constricted between the one side end surface 811 and the other side end surface 812 in the plate thickness direction. In this way, even when the narrow area 81 is formed in a drum shape, the one side end surface 811 is set to have a larger exposed area, that is, a projected area in the thickness direction than the other side end surface 812. However, in view of improving the accuracy of bending and reducing the residual weld voids, welding is performed only from the outer peripheral side, and the shape of the surface perpendicular to the longitudinal direction of the narrow region is trapezoidal. The shape is preferred. Furthermore, it is more preferable that the center with respect to the width direction of the groove 51 and the narrow portion is aligned.

以上説明した実施形態では、摺動部材10および半割すべり軸受50は、三つの広域部11、12、13と二つの狭域部21、22とを備える例について説明した。しかし、摺動部材10および半割すべり軸受50は、広域部および狭域部の数を任意に設定することができる。また、複数の摺動部材10および半割すべり軸受50に複数の狭域部を設ける場合、これら複数の狭域部のすべてが上述の条件を満たす構成でもよく、複数の狭域部のうち少なくとも一つが上述の条件を満たす構成でもよい。   In the embodiment described above, the example in which the sliding member 10 and the half plain bearing 50 are provided with the three wide areas 11, 12, 13 and the two narrow areas 21, 22 has been described. However, the sliding member 10 and the half slide bearing 50 can arbitrarily set the number of wide-area portions and narrow-area portions. Further, when a plurality of narrow regions are provided in the plurality of sliding members 10 and the half slide bearing 50, all of the plurality of narrow regions may be configured to satisfy the above-described condition, and at least of the plurality of narrow regions One may satisfy the above conditions.

図面中、10は摺動部材、11、12、13は広域部、21、22は狭域部、31、61は裏金層、32、62は軸受合金層、50は半割すべり軸受、51、511、512、513は溝、60は板状部材、211、221、811は一方側端面、212、222、812は他方側端面を示す。   In the drawings, 10 is a sliding member, 11, 12 and 13 are wide areas, 21 and 22 are narrow areas, 31 and 61 are back metal layers, 32 and 62 are bearing alloy layers, 50 is a half plain bearing, 51, Reference numerals 511, 512, and 513 denote grooves, 60 denotes a plate-like member, 211, 221, and 811 denote one end face, and 212, 222, and 812 denote the other end face.

Claims (18)

半割状のすべり軸受に用いられる平板形状の摺動部材であって、
少なくとも二つ以上の広域部と、
前記広域部の間に挟まれ、幅方向の全長が前記広域部よりも狭く、前記広域部よりも硬度が高い狭域部と、を備え、
板厚方向における一方の端部を一端部とし、板厚方向における他方の端部を他端部とするとき、
前記狭域部は、
前記一端部に露出する一方側端面と、
前記他端部に露出し、前記一方側端面よりも露出面積が小さい他方側端面と、を有し、
その長手方向にわたって前記他方側端面の幅方向の全長が前記一方側端面の幅方向の全長よりも狭く、
最大の幅が前記広域部及び前記狭域部を含む幅方向の全長の0.1〜5.0%である摺動部材。
A flat plate-shaped sliding member used for a half-shaped slide bearing,
At least two wide areas,
Sandwiched between the wide area parts, the overall length in the width direction is narrower than the wide area part, the narrow area part having a higher hardness than the wide area part,
When one end in the thickness direction is one end and the other end in the thickness direction is the other end,
The narrow area is
One end face exposed at the one end,
The other end face exposed at the other end, and having an exposed area smaller than the one end face ,
The overall length in the width direction of the other side end surface over the longitudinal direction is narrower than the overall length in the width direction of the one side end surface,
The sliding member whose maximum width is 0.1 to 5.0% of the total length in the width direction including the wide area portion and the narrow area portion .
同一の金属成分からなる前記広域部および前記狭域部を有し、前記一端部側に前記一方側端面が形成されている裏金層と、
前記裏金層よりも前記他端部側に位置する軸受合金層と、
を備える請求項1記載の摺動部材。
A back metal layer having the wide-area portion and the narrow-area portion made of the same metal component, wherein the one end face is formed on the one end side;
A bearing alloy layer located on the other end side of the back metal layer;
A sliding member according to claim 1.
前記狭域部は、前記裏金層に設けられ、
前記軸受合金層は、前記狭域部の前記他端部側で分断されている請求項2記載の摺動部材。
The narrow area portion is provided in the back metal layer,
The sliding member according to claim 2, wherein the bearing alloy layer is divided at the other end portion side of the narrow area portion.
分断されている隣り合う軸受合金層の間隔の最短距離は、前記狭域部において板厚方向に垂直な前記狭域部の幅方向における最も大きな最長部の0.5〜1.8倍である請求項3記載の摺動部材。   The shortest distance between the adjacent bearing alloy layers that are divided is 0.5 to 1.8 times the largest longest portion in the width direction of the narrow portion perpendicular to the plate thickness direction in the narrow portion. The sliding member according to claim 3. 分断されている隣り合う軸受合金層の間隔の最短距離は、前記最長部の1.0〜1.8倍である請求項4記載の摺動部材。   The sliding member according to claim 4, wherein the shortest distance between adjacent bearing alloy layers that are divided is 1.0 to 1.8 times the longest portion. 前記狭域部の平均硬さは、前記広域部の平均硬さの1.1〜1.7倍であり、
前記狭域部の最大硬さは、前記広域部の平均硬さの1.3〜1.9倍である請求項1から5のいずれか一項記載の摺動部材。
The average hardness of the narrow area is 1.1 to 1.7 times the average hardness of the wide area,
The sliding member according to any one of claims 1 to 5, wherein a maximum hardness of the narrow portion is 1.3 to 1.9 times an average hardness of the wide portion.
前記狭域部における前記一方側端面の面積の総和は、前記狭域部における前記他方側端面の面積の総和の1.3〜9.0倍である請求項1から6のいずれか一項記載の摺動部材。   7. The total area of the one end face in the narrow area is 1.3 to 9.0 times the total area of the other end face in the narrow area. The sliding member. 板厚方向における前記狭域部の全長は、板厚の0.60〜0.95倍である請求項1から7のいずれか一項記載の摺動部材。   The sliding member according to any one of claims 1 to 7, wherein an overall length of the narrow area portion in a plate thickness direction is 0.60 to 0.95 times a plate thickness. 前記狭域部は、最大硬さが320〜400HVであり、板厚方向において前記一方側端面から板厚の0.50〜0.95倍の範囲に最も硬い最硬部が位置する請求項1から8のいずれか一項記載の摺動部材。   2. The narrowest portion has a maximum hardness of 320 to 400 HV, and the hardest hardest portion is located in a range of 0.50 to 0.95 times the plate thickness from the one end face in the plate thickness direction. The sliding member according to any one of 1 to 8. 前記狭域部は、この狭域部の長手方向に垂直な面での形状が台形形状である請求項1から9のいずれか一項記載の摺動部材。   The sliding member according to any one of claims 1 to 9, wherein the narrow portion has a trapezoidal shape in a plane perpendicular to the longitudinal direction of the narrow portion. 前記狭域部は、この狭域部の長手方向に垂直な面での形状が板厚方向へ台形を対称に重ねた鼓形状である請求項1から9のいずれか一項記載の摺動部材。   The sliding member according to any one of claims 1 to 9, wherein the narrow portion has a drum shape in which a shape of the narrow portion in a plane perpendicular to the longitudinal direction is formed by symmetrically overlapping trapezoids in a plate thickness direction. . 請求項1から11のいずれか一項記載の摺動部材を備える半割すべり軸受であって、
周方向に並列する前記広域部の間に、軸線方向へ延びる前記狭域部が設けられ、
前記一端部は径方向外側の外周面を形成し、前記他端部は径方向内側の内周面を形成する半割すべり軸受。
A half-sliding bearing comprising the sliding member according to any one of claims 1 to 11,
The narrow portion extending in the axial direction is provided between the wide portions parallel in the circumferential direction,
The one end portion forms a radially outer peripheral surface, and the other end portion forms a radially inner circumferential surface.
前記狭域部は、周方向に二本以上設けられている請求項12記載の半割すべり軸受。   The half-slide bearing according to claim 12, wherein two or more narrow regions are provided in the circumferential direction. 前記狭域部の径方向内側に、軸線方向へ延びる溝を備える請求項12または13記載の半割すべり軸受。   The half slide bearing according to claim 12 or 13, comprising a groove extending in the axial direction on the radially inner side of the narrow area portion. 二つ以上の板状部材を並べる工程と、
並べられた前記板状部材が接している部分に板厚と垂直な方向へ線状に急加熱急冷加工を施し、急加熱急冷加工が施された狭域部、および前記狭域部を挟む広域部を形成する工程と、を含み、
前記狭域部は、
その長手方向にわたって前記他方側端面の幅方向の全長が前記一方側端面の幅方向の全長よりも狭く、
最大の幅が前記広域部及び前記狭域部を含む幅方向の全長の0.1〜5.0%である、半円筒形状に曲げる工程を経て半割すべり軸受とする平板形状の摺動部材の製造方法。
Arranging two or more plate-shaped members;
A narrow area subjected to rapid heating and quenching linearly in a direction perpendicular to the plate thickness at the portion where the plate-shaped members arranged are in contact, and a wide area sandwiching the narrow area Forming a part, and
The narrow area is
The overall length in the width direction of the other side end surface over the longitudinal direction is narrower than the overall length in the width direction of the one side end surface,
A flat plate-shaped sliding member having a maximum width of 0.1 to 5.0% of the entire length in the width direction including the wide area portion and the narrow area portion, and a half-slide bearing through a step of bending into a semicylindrical shape Manufacturing method.
前記急加熱急冷加工が施された板状部材を、前記狭域部が軸線方向へ延びる半円筒形状に曲げる工程を含み、
前記急加熱急冷加工は、半円筒形状に曲げたとき、外周面となる側に施す請求項15記載の摺動部材を用いる半割すべり軸受の製造方法。
Bending the plate-like member subjected to the rapid heating / cooling process into a semi-cylindrical shape in which the narrow portion extends in the axial direction;
The method of manufacturing a half-slide bearing using a sliding member according to claim 15, wherein the rapid heating and rapid cooling process is performed on a side that becomes an outer peripheral surface when bent into a semicylindrical shape.
前記板状部材は、裏金層および軸受合金層を有し、半円筒形状に曲げたとき、外周側に前記裏金層が位置するとともに、内周側に前記軸受合金層が位置する請求項15または16記載の半割すべり軸受の製造方法。   The plate-like member has a back metal layer and a bearing alloy layer, and when bent into a semi-cylindrical shape, the back metal layer is located on the outer peripheral side and the bearing alloy layer is located on the inner peripheral side. 16. A method for producing a half plain bearing according to 16. 前記急加熱急冷加工は、二つ以上の前記板状部材を溶接する溶接加工である請求項15から17のいずれか一項記載の半割すべり軸受の製造方法。   The method of manufacturing a half plain bearing according to any one of claims 15 to 17, wherein the rapid heating and rapid cooling process is a welding process of welding two or more plate-like members.
JP2012178208A 2012-08-10 2012-08-10 Sliding member, half sliding bearing using the same, and method for manufacturing half sliding bearing Active JP5314181B1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2012178208A JP5314181B1 (en) 2012-08-10 2012-08-10 Sliding member, half sliding bearing using the same, and method for manufacturing half sliding bearing
DE112013003034.9T DE112013003034B4 (en) 2012-08-10 2013-03-01 Sliding element, Gleitlagerhalbschale using this, and manufacturing method for plain bearing half shell
CN201380000937.2A CN103732932B (en) 2012-08-10 2013-03-01 Sliding component and its manufacture method
KR1020137025257A KR101355142B1 (en) 2012-08-10 2013-03-01 Sliding member, semi-cylindrical sliding bearing using the same, and method of manufacturing the semi-cylindrical sliding bearing
PCT/JP2013/055664 WO2014024507A1 (en) 2012-08-10 2013-03-01 Sliding member, plain half bearing using same, and manufacturing method for plain half bearing
CH01930/14A CH708455B8 (en) 2012-08-10 2013-03-01 Sliding element, semi-cylindrical sliding bearing with it and method of manufacturing a sliding element.
ATA9234/2013A AT514906B1 (en) 2012-08-10 2013-03-01 Sliding element and semi-cylindrical plain bearing
DK201370533A DK177846B1 (en) 2012-08-10 2013-09-25 Sliding member, semi-cylindrical sliding bearing using the same, and method of manufacturing the semi-cylindrical sliding bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012178208A JP5314181B1 (en) 2012-08-10 2012-08-10 Sliding member, half sliding bearing using the same, and method for manufacturing half sliding bearing

Publications (2)

Publication Number Publication Date
JP5314181B1 true JP5314181B1 (en) 2013-10-16
JP2014035055A JP2014035055A (en) 2014-02-24

Family

ID=49595712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012178208A Active JP5314181B1 (en) 2012-08-10 2012-08-10 Sliding member, half sliding bearing using the same, and method for manufacturing half sliding bearing

Country Status (8)

Country Link
JP (1) JP5314181B1 (en)
KR (1) KR101355142B1 (en)
CN (1) CN103732932B (en)
AT (1) AT514906B1 (en)
CH (1) CH708455B8 (en)
DE (1) DE112013003034B4 (en)
DK (1) DK177846B1 (en)
WO (1) WO2014024507A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015113532A1 (en) * 2014-01-29 2015-08-06 Schaeffler Technologies AG & Co. KG Aerodynamic air bearing and method for producing same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITUB20161058A1 (en) * 2016-02-25 2017-08-25 Bosch Gmbh Robert PUMPING GROUP FOR FUEL SUPPLEMENTATION, PREFERABLY GASOIL, TO AN INTERNAL COMBUSTION ENGINE
AT521882B1 (en) * 2018-12-13 2021-05-15 Miba Gleitlager Austria Gmbh Plain bearings, in particular for a gearbox of a wind turbine
AT521885B1 (en) 2018-12-13 2020-09-15 Miba Gleitlager Austria Gmbh Gondola for a wind turbine
AT521775B1 (en) 2018-12-13 2020-06-15 Miba Gleitlager Austria Gmbh Planetary gear for a wind turbine
AT521884B1 (en) 2018-12-13 2020-10-15 Miba Gleitlager Austria Gmbh Method for changing a slide bearing element of a rotor bearing of a wind turbine, as well as a nacelle for a wind turbine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB549433A (en) * 1941-11-20 1942-11-20 Glacier Co Ltd Improvements in or relating to bearings
JPS5072038A (en) * 1973-08-15 1975-06-14
JP2012002359A (en) * 2010-06-18 2012-01-05 Miba Gleitlager Gmbh Plain bearing

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2249629A (en) * 1938-03-02 1941-07-15 Kellogg M W Co Armored article
US3464802A (en) * 1969-01-22 1969-09-02 Nooter Corp Joint for joining clad materials
DE3639403A1 (en) * 1986-11-18 1988-05-26 Siemens Ag Process for improving the corrosion resistance of welded workpieces of stainless steel, and correspondingly produced workpiece
DE3728951A1 (en) * 1987-08-29 1989-03-09 Kolbenschmidt Ag ROLLED BUSHING FOR SLIDING BEARINGS
DE69835137T2 (en) * 1998-01-16 2007-06-14 Daido Metal Co. Ltd., Nagoya Slide bearing and its manufacturing process
JP2000283166A (en) * 1999-03-31 2000-10-13 Daido Metal Co Ltd Manufacturing method of winding bush
JP2001153142A (en) * 1999-11-25 2001-06-08 Oiles Ind Co Ltd Doublelayer cylindrical winding bearing and method of manufacture therefor
JP2001240968A (en) * 2000-02-29 2001-09-04 Sumitomo Electric Ind Ltd Sliding part and its manufacturing method
US6485186B2 (en) * 2000-12-01 2002-11-26 The Torrington Company Split bearing ring and method for manufacturing same
DE102006027500A1 (en) * 2006-06-14 2007-12-20 Federal-Mogul Wiesbaden Gmbh Axialgleitlagerring
JP2008082355A (en) * 2006-09-26 2008-04-10 Daido Metal Co Ltd Slide bearing
JP5227277B2 (en) * 2009-09-07 2013-07-03 エムエーエヌ・ディーゼル・アンド・ターボ・フィリアル・アフ・エムエーエヌ・ディーゼル・アンド・ターボ・エスイー・ティスクランド Crosshead bearing for large two-cycle diesel engines

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB549433A (en) * 1941-11-20 1942-11-20 Glacier Co Ltd Improvements in or relating to bearings
JPS5072038A (en) * 1973-08-15 1975-06-14
JP2012002359A (en) * 2010-06-18 2012-01-05 Miba Gleitlager Gmbh Plain bearing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015113532A1 (en) * 2014-01-29 2015-08-06 Schaeffler Technologies AG & Co. KG Aerodynamic air bearing and method for producing same

Also Published As

Publication number Publication date
CH708455B8 (en) 2016-08-15
DK201370533A (en) 2014-02-13
JP2014035055A (en) 2014-02-24
AT514906A1 (en) 2015-04-15
DE112013003034T5 (en) 2015-04-16
CN103732932A (en) 2014-04-16
KR101355142B1 (en) 2014-01-27
CH708455B1 (en) 2016-04-15
AT514906B1 (en) 2016-11-15
DE112013003034B4 (en) 2017-08-24
CN103732932B (en) 2017-04-05
DK177846B1 (en) 2014-09-15
WO2014024507A1 (en) 2014-02-13

Similar Documents

Publication Publication Date Title
JP5314181B1 (en) Sliding member, half sliding bearing using the same, and method for manufacturing half sliding bearing
US10670153B2 (en) Pressure pumping valves and methods of making such valves
KR101564355B1 (en) Radial foil bearing
JP4746155B1 (en) Method for manufacturing half-slide bearing and half-slide bearing
US20110091144A1 (en) Roller bearing cage, roller bearing, and method for producing roller bearing cage
JPH11201145A (en) Half trust bearing
JP2011162187A (en) Control arm with bearing journal and method for manufacturing control arm
US9194427B2 (en) Bearing device
JP2002106551A (en) Half thrust bearing
KR101764727B1 (en) Bearing device and half bearing used for the same
US11339828B2 (en) Method of manufacturing washer and washer
CN112805487A (en) Disc spring, disc spring device, and method for manufacturing disc spring
JP2007032584A (en) Structure of sliding part
WO2006043653A1 (en) Induction hardening method and tool for hardening
JP6513501B2 (en) Washer manufacturing method and washer
US8834034B2 (en) Outer ring for a shell-type radial needle bearing and manufacturing method thereof
JP5897625B2 (en) Plain bearing
JP7034875B2 (en) Waveform cage
JP4968119B2 (en) Brake disc for railway vehicles
JP2007170562A (en) Shell type roller bearing for laminated connecting rod and connecting rod assembly
JP2012031991A (en) Method of manufacturing halved slide bearing and halved slide bearing
JP2009074667A (en) Connecting rod assembly
JP2017003077A (en) Washer and manufacturing method of the same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130704

R150 Certificate of patent or registration of utility model

Ref document number: 5314181

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250