JP5303867B2 - Manufacturing method of exhaust gas purification catalyst - Google Patents

Manufacturing method of exhaust gas purification catalyst Download PDF

Info

Publication number
JP5303867B2
JP5303867B2 JP2007143493A JP2007143493A JP5303867B2 JP 5303867 B2 JP5303867 B2 JP 5303867B2 JP 2007143493 A JP2007143493 A JP 2007143493A JP 2007143493 A JP2007143493 A JP 2007143493A JP 5303867 B2 JP5303867 B2 JP 5303867B2
Authority
JP
Japan
Prior art keywords
catalyst
carrier
exhaust gas
mass
supported
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007143493A
Other languages
Japanese (ja)
Other versions
JP2008296111A (en
Inventor
伴和 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007143493A priority Critical patent/JP5303867B2/en
Publication of JP2008296111A publication Critical patent/JP2008296111A/en
Application granted granted Critical
Publication of JP5303867B2 publication Critical patent/JP5303867B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

この発明は、新規な排ガス浄化触媒の製造法および排ガス浄化触媒に関し、さらに詳しくは浄化能が改良された新規な排ガス浄化触媒の製造法および排ガス浄化触媒に関する。   The present invention relates to a novel method for producing an exhaust gas purification catalyst and an exhaust gas purification catalyst, and more particularly to a novel method for producing an exhaust gas purification catalyst and an exhaust gas purification catalyst with improved purification performance.

従来、自動車のガソリンエンジンジンなどの内燃機関から排出される排ガスに含まれる一酸化炭素(CO)、窒素酸化物(NO)、未燃焼の炭化水素(HC)を二酸化炭素、窒素、水に変換することにより排ガスを浄化するための三元触媒として、貴金属系触媒を酸化物担体に担持させた種々の担持触媒が知られている。
これらの担持触媒の触媒金属としては白金(Pt)、ロジウム(Rh)が、担体としてはSiO、アルミナ(Al)およびジルコニア(ZrO)などが知られている。
Conventionally, carbon monoxide (CO), nitrogen oxides (NO x ), and unburned hydrocarbons (HC) contained in exhaust gas discharged from an internal combustion engine such as an automobile gasoline engine gin are converted into carbon dioxide, nitrogen, and water. Various supported catalysts in which a noble metal catalyst is supported on an oxide carrier are known as three-way catalysts for purifying exhaust gas by conversion.
Platinum (Pt) and rhodium (Rh) are known as catalyst metals of these supported catalysts, and SiO 2 , alumina (Al 2 O 3 ), zirconia (ZrO 2 ) and the like are known as supports.

そして、これらの担持触媒は、従来は含浸法や共沈法によって調製されており、Rhは酸化物状態(Rh)であるため、メタル状態に比べて活性が低い。
また、これらの排ガス浄化担持触媒は高温の排ガスにより触媒金属のシンタリングが避けられずこのためトータルの触媒活性が低くなり、稀少な貴金属触媒の資源問題もあり浄化能の改善が求められている。
このため、触媒活性、担持触媒の耐熱性および触媒のシンタリングの改良を目的として異種の触媒を組み合わせたりあるいは担体に他の金属酸化物を添加する試みが提案されている(特許文献1〜3)。
These supported catalysts have been conventionally prepared by an impregnation method or a coprecipitation method. Since Rh is in an oxide state (Rh 2 O 3 ), its activity is lower than that in a metal state.
In addition, these exhaust gas purifying supported catalysts cannot avoid sintering of the catalyst metal due to the high temperature exhaust gas, so that the total catalytic activity is lowered, and there is a problem of rare noble metal catalyst resources, and improvement in purification performance is required. .
For this reason, attempts have been made to combine different kinds of catalysts or to add other metal oxides to the support in order to improve the catalytic activity, the heat resistance of the supported catalyst and the sintering of the catalyst (Patent Documents 1 to 3). ).

特開平10−216514号公報JP-A-10-216514 特開2002−282692号公報Japanese Patent Laid-Open No. 2002-282692 特開2006− 26556号公報JP 2006-26556 A

上記の特開平10−216514号公報には、アルミナとジルコニアとを含む担体にRhを担持した第1触媒粉末と、前記担体にPtを担持した第2触媒粉末とを混合することによって得られる排ガス浄化用触媒は触媒活性および耐久性に優れていることが記載されている。しかし、具体的に開示されている担体は酸性担体であるAlを主成分とするものでありシンタリング抑制効果には限界がある。また、AlとZrOとの相互作用については記載がない。 JP-A-10-216514 discloses an exhaust gas obtained by mixing a first catalyst powder supporting Rh on a support containing alumina and zirconia and a second catalyst powder supporting Pt on the support. It is described that the purification catalyst is excellent in catalytic activity and durability. However, the specifically disclosed carrier is mainly composed of Al 2 O 3 which is an acidic carrier, and there is a limit to the sintering suppression effect. Further, there is no description about the interaction of Al 2 O 3 and ZrO 2.

上記の特開2002−282692公報には、Al粉末とCeOおよびZrOの複合酸化物とアルミナゾルとから得られる酸化物担体にPtを担持させた下触媒層にLaなどのランタノイド元素を含む添加物を添加したZrO担体にRhを担持させた上触媒層を形成した2層の担持触媒からなる排ガス浄化用触媒は耐熱性および高い活性を示すことが記載されている。しかし、均一な担持触媒を製造するためには触媒の製造工程が複雑である。また、AlとZrOとの相互作用については記載がない。 In the above-mentioned Japanese Patent Application Laid-Open No. 2002-282692, La 2 O 3 or the like is formed on a lower catalyst layer in which Pt is supported on an oxide carrier obtained from Al 2 O 3 powder, a composite oxide of CeO 2 and ZrO 2 and alumina sol. It is described that an exhaust gas purifying catalyst comprising a two-layer supported catalyst in which an upper catalyst layer is formed by supporting Rh on a ZrO 2 support to which an additive containing a lanthanoid element is added exhibits heat resistance and high activity. . However, the production process of the catalyst is complicated in order to produce a uniform supported catalyst. Further, there is no description about the interaction of Al 2 O 3 and ZrO 2.

上記の特開2006−26556号公報には、SiOからなる担体上にRhとAl、Ce、Laやアルカリ土類金属を担持した触媒と、更にZrOにRhを担持した触媒とを混合した排ガス浄化用触媒はシンタリングが抑制されることが記載されている。しかし、担体の主成分は酸性担体であるSiOでありシンタリング抑制効果には限界がある。また、SiOとZrOとの相互作用については記載がない。 In the above Japanese Patent Application Laid-Open No. 2006-26556, Rh and a catalyst supporting Al, Ce, La or an alkaline earth metal on a support made of SiO 2 and a catalyst supporting Rh on ZrO 2 are mixed. It is described that the exhaust gas purifying catalyst suppresses sintering. However, the main component of the carrier is limited to a SiO 2 sintering inhibiting effect is acidic carrier. Moreover, there is no description about the interaction between SiO 2 and ZrO 2 .

この発明者らは、排ガス浄化用担持触媒の活性を改良することを目的として研究した結果、担体の酸点および塩基点が触媒のシンタリングおよび触媒活性に関係していることを見出しさらに研究を続けた結果、この発明を完成した。
従って、この発明の目的は、触媒活性が良好で浄化能が改良された排ガス浄化用触媒の製造法を提供することである。
As a result of research aimed at improving the activity of a supported catalyst for exhaust gas purification, the present inventors have found that the acid point and base point of the support are related to the sintering and catalyst activity of the catalyst. As a result of continuing, this invention was completed.
Accordingly, an object of the present invention is to provide a method for producing an exhaust gas purifying catalyst having good catalytic activity and improved purifying performance.

この発明は、塩基性担体原料の水酸化物と、排ガス浄化触媒全体に対するAl の割合が10〜30質量%となるアルミニウムの塩又はAl と溶媒とからなる混合物を加熱乾燥して溶媒を除去した後、焼成して担体を作製し、
得られた担体に、担持する貴金属としてRhを担体に対して0.025〜0.5質量%の割合で担持することを特徴とする排ガス浄化触媒の製造法に関する。
This invention heats a mixture of a hydroxide of a basic carrier material and an aluminum salt or Al 2 O 3 and a solvent in which the ratio of Al 2 O 3 to the exhaust gas purification catalyst is 10 to 30% by mass. After drying to remove the solvent, firing to produce a carrier,
The present invention relates to a method for producing an exhaust gas purifying catalyst, characterized in that Rh is supported as a noble metal to be supported on the obtained carrier at a ratio of 0.025 to 0.5% by mass with respect to the carrier .

この発明において塩基性担体とは、A.L.AllredとE.G.Rochowの近似(J.Inorg.Nucl.Chem.,1958,5264)を用いた電気陰性度(コットンウィルキンソンガウス基礎無機化学原書第2版p59)が、1.23より小さく、1.01より大きい元素の酸化物担体をいう。   In this invention, the basic carrier means A. L. Allred and E.M. G. Elements having an electronegativity (Cotton Wilkinson Gauss Fundamental Inorganic Chemistry Book 2nd edition p59) using the Rochow approximation (J. Inorg. Nucl. Chem., 1958, 5264) of less than 1.23 and greater than 1.01 An oxide support of

また、この発明において酸性担体とは、A.L.AllredとE.G.Rochowの近似(J.Inorg.Nucl.Chem.,1958,5264)を用いた電気陰性度(コットンウィルキンソンガウス基礎無機化学原書第2版p59)が、1.23以上の元素の酸化物担体をいう。複合酸化物の場合、X線光電子分光法(XPS)によって測定される複合酸化物の表面組成から算出した電気陰性度の平均値で示す。   In this invention, the acidic carrier means A. L. Allred and E.M. G. Electronegativity using the Rochow approximation (J. Inorg. Nucl. Chem., 1958, 5264) (Cotton Wilkinson Gauss Fundamental Inorganic Chemistry Book 2nd edition, p59) refers to an oxide support of an element having 1.23 or more. . In the case of a complex oxide, the average value of the electronegativity calculated from the surface composition of the complex oxide measured by X-ray photoelectron spectroscopy (XPS) is shown.

さらに、この発明においてX線回折分析で2θ(deg)が60.2°にピークを有し、少なくともアルミナ、ジルコニアからなる金属複合酸化物を含むとは、アルミナとジルコニアとの組成が変化してもX線回折分析で2θ(deg)が60.2°の一定の位置に明確なピークを有する金属複合酸化物を含むことを意味する。   Furthermore, in the present invention, 2θ (deg) has a peak at 60.2 ° by X-ray diffraction analysis, and that it contains a metal composite oxide composed of at least alumina and zirconia, the composition of alumina and zirconia changes. Means that a metal complex oxide having a clear peak at a constant position where 2θ (deg) is 60.2 ° in X-ray diffraction analysis is included.

この発明によれば、触媒のシンタリングが抑制されて良好な触媒活性を示し浄化能が改良された排ガス浄化触媒を簡単な方法で製造することができる。
また、この発明によれば、触媒のシンタリングが抑制されて良好な触媒活性を示し浄化能が改良された排ガス浄化触媒を得ることができる。
According to the present invention, it is possible to manufacture an exhaust gas purifying catalyst that suppresses sintering of the catalyst, exhibits good catalytic activity, and has improved purifying ability, by a simple method.
In addition, according to the present invention, it is possible to obtain an exhaust gas purifying catalyst that suppresses sintering of the catalyst, exhibits good catalytic activity, and has improved purifying ability.

この発明における好適な態様を次に示す。
1)前記担体にRhを担持する前記の製造法。
2)塩基性担体成分がZrOであり、酸性担体成分がAlであり、排ガス浄化触媒全体に対するAlの質量割合が10〜30%である前記の製造法。
A preferred embodiment of the present invention will be described below.
1) The said manufacturing method which carries | supports Rh on the said support | carrier.
2) a basic carrier component is ZrO 2, acidic support component is Al 2 O 3, wherein the process is 10-30% by weight ratio of Al 2 O 3 is for the entire exhaust gas purifying catalyst.

この発明においては、塩基性担体原料の水酸化物と酸性担体原料の塩又は酸性担体とを混合し、焼成して担体を作製することが必要である。
前記の塩基性担体原料の水酸化物を単独で使用しても塩基性担体をそのまま使用する場合に比べて効果はあるが十分ではなく、また酸性担体原料の塩又は酸性担体を単独で使用したのでは触媒活性が低く好ましくない。
In the present invention, it is necessary to prepare a carrier by mixing a hydroxide of a basic carrier material and a salt of an acidic carrier material or an acidic carrier and baking them.
Even if the hydroxide of the basic carrier raw material is used alone, there is an effect as compared with the case where the basic carrier is used as it is, but the salt of the acidic carrier raw material or the acidic carrier is used alone. In this case, the catalytic activity is low, which is not preferable.

前記の塩基性担体原料の水酸化物としては、排ガス浄化触媒用の塩基性担体を与える水酸化物であれば特に制限はなく、好適には水酸化ジルコニウムを挙げることができる。
また、塩基性担体原料としては、排ガス浄化触媒用の塩基性担体を与えかつ水酸化物となりえるものであれば特に制限はなく、オキシ硝酸ジルコニウム、酸塩化ジルコニウム、酸水酸化ジルコニウム、硫酸ジルコニウム、酢酸ジルコニウム、炭酸ジルコニウムアンモニウム、ステアリン酸ジルコニウム、オクチル酸ジルコニウムなどを挙げることができる。
The hydroxide of the basic carrier raw material is not particularly limited as long as it is a hydroxide that provides a basic carrier for an exhaust gas purification catalyst, and zirconium hydroxide can be preferably used.
The basic carrier material is not particularly limited as long as it can provide a basic carrier for an exhaust gas purification catalyst and can be a hydroxide, zirconium oxynitrate, zirconium oxychloride, zirconium oxyhydroxide, zirconium sulfate, Examples thereof include zirconium acetate, ammonium zirconium carbonate, zirconium stearate, and zirconium octylate.

前記の酸性担体原料の塩又は酸性担体としては、Al(NO、Al(SO、Al(SCN)、Al(C、Al、SiOなど、好適にはAl(NO、Al(SO、Al(SCN)、Al(C、Alなどを挙げることができる。 Examples of the salt of the acidic carrier raw material or the acidic carrier include Al (NO 3 ) 3 , Al 2 (SO 4 ) 3 , Al (SCN) 3 , Al (C 2 H 3 O 2 ) 3 , Al 2 O 3 , Examples thereof include SiO 2 , preferably Al (NO 2 ) 3 , Al 2 (SO 4 ) 3 , Al (SCN) 3 , Al (C 2 H 3 O 2 ) 3 , and Al 2 O 3 .

前記の酸性担体原料の塩又は酸性担体は単独で用いることが好ましいが、Ce、Laおよびアルカリ土類金属(Mg、Ca、Sr、Ba、Ra、Beなど)を加えてもよい。
これらのCe、Laおよびアルカリ土類金属はその硝酸塩などの金属塩を含浸法、イオン交換法、吸着法、還元析出法等によって添加することができる。
The above-mentioned salt or acidic carrier of the acidic carrier raw material is preferably used alone, but Ce, La and alkaline earth metals (Mg, Ca, Sr, Ba, Ra, Be, etc.) may be added.
These Ce, La and alkaline earth metals can be added by impregnation method, ion exchange method, adsorption method, reduction precipitation method and the like with a metal salt such as nitrate.

この発明においては、先ず前記の塩基性担体原料の水酸化物と酸性担体原料の塩又は酸性担体とを混合する。
前記の塩基性担体成分と酸性担体との割合は、塩基性担体が主成分となる割合、つまり触媒全体に対する酸性担体成分の質量%表示の割合[(酸性担体成分/触媒全体)x100%]が、100質量%未満、特に50質量%以下5質量%以上、その中でも10〜30質量%であることが好ましい。
特に、塩基性担体成分がZrOであり酸性担体成分がAlであり、触媒全体に対するAlの割合が10〜30質量%であることが好ましい。
In the present invention, first, the hydroxide of the basic carrier raw material and the salt of the acidic carrier raw material or the acidic carrier are mixed.
The ratio of the basic carrier component to the acidic carrier is the ratio of the basic carrier as the main component, that is, the ratio of the mass percentage of the acidic carrier component to the whole catalyst [(acidic carrier component / whole catalyst) × 100%]. , Less than 100% by mass, particularly 50% by mass or less, 5% by mass or more, and preferably 10 to 30% by mass.
In particular, it is preferable that the basic carrier component is ZrO 2 , the acidic carrier component is Al 2 O 3 , and the ratio of Al 2 O 3 to the entire catalyst is 10 to 30% by mass.

前記の塩基性担体原料の水酸化物は、前記の塩基性担体の出発原料とアンモニアとを均一混合した後、好適には濾過あるいは遠心分離などによって固形混合物を取得し、100℃以上、好適には100〜200℃で数時間〜1昼夜程度の時間加熱乾燥した後、必要であれば解砕することによって得ることができる。   The hydroxide of the basic carrier raw material is obtained by uniformly mixing the starting raw material of the basic carrier and ammonia, and then obtaining a solid mixture, preferably by filtration or centrifugal separation. Can be obtained by heating and drying at 100 to 200 ° C. for several hours to about 1 day and then crushing if necessary.

この発明においては、前記の塩基性担体原料の水酸化物を必要であれば溶媒、例えば水に入れ、酸性担体原料の塩又は酸性担体と混合し、必要であれば任意の形状、例えばペレット状又はハニカム形状に成形して、好適には100℃以上、特に100〜200℃程度の温度で数時間〜1昼夜程度の時間加熱乾燥した後、好適には200℃以上、特に200〜300℃程度の温度で10分〜1晩程度の時間焼成し、好適には400℃以上、特に400〜1000℃で10分間〜10時間程度の時間焼成して担体を得ることができる。   In the present invention, the hydroxide of the basic carrier raw material is put in a solvent, for example, water if necessary, and mixed with the salt of the acidic carrier raw material or the acidic carrier, and if necessary, any shape, for example, a pellet shape Alternatively, it is formed into a honeycomb shape and is preferably heated and dried at a temperature of about 100 ° C. or more, particularly about 100 to 200 ° C. for several hours to about 1 day, and then preferably 200 ° C. or more, particularly about 200 to 300 ° C. The carrier can be obtained by baking at a temperature of about 10 minutes to overnight, and preferably at 400 ° C. or higher, particularly 400 to 1000 ° C. for about 10 minutes to 10 hours.

この発明における担持触媒は、任意の形状、好適にはペレット状、ハニカム形状の成形体の前記担体に触媒金属を担持させることによって、あるいは担体に触媒金属を担持して得られた担持触媒を任意の形状の成形体に成形することによって、製造することができる。
例えば、酸化ロジウムRh、硝酸ロジウムRh(NO、塩化ロジウムRhCl・4HO等のロジウム化合物、ジニトロジアンミン白金Pt(NH(NO、ジクロロテトラアンミン白金Pt(NHCl・nHO(n=1)、ヘキサクロロ白金酸六水和物H[PtCl]・6H0、酸化白金PtO、有機白金などの白金化合物を触媒成分として用い、蒸発凝固法、含浸法、イオン交換法、吸着法、還元析出法等の触媒担持法、好適には含浸法によってRhやPtなどの触媒金属を担持させることができる。
前記の触媒金属の担持量は、担体に対して0.025〜1質量%程度、特に0.025〜0.5質量%程度であることが好ましい。
The supported catalyst in the present invention may be any supported catalyst obtained by supporting a catalyst metal on the carrier in an arbitrary shape, preferably a pellet-shaped or honeycomb-shaped molded body, or by supporting the catalyst metal on a carrier. It can manufacture by shape | molding to the molded object of the shape of.
For example, rhodium oxides such as rhodium oxide Rh 2 O 3 , rhodium nitrate Rh (NO 3 ) 3 , rhodium chloride RhCl 3 .4H 2 O, dinitrodiammine platinum Pt (NH 3 ) 2 (NO 2 ) 2 , dichlorotetraammine platinum Pt (NH 3 ) 4 Cl 2 .nH 2 O (n = 1), hexachloroplatinic acid hexahydrate H 2 [PtCl 6 ] .6H 2 0, platinum oxide PtO 2 , platinum compounds such as organic platinum as catalyst components The catalyst metal such as Rh and Pt can be supported by a catalyst supporting method such as an evaporation coagulation method, an impregnation method, an ion exchange method, an adsorption method, a reduction precipitation method, and preferably an impregnation method.
The amount of the catalyst metal supported is preferably about 0.025 to 1% by mass, particularly about 0.025 to 0.5% by mass, based on the carrier.

この発明の排ガス浄化触媒は、例えば、前記の塩基性担体原料の水酸化物と酸性担体原料の塩又は酸性担体を、必要であれば溶媒、例えば水と混合し、任意の形状、好適にはペレット状、ハニカム形状に成形した担体に触媒金属を担持させることによって形成してもよく、あるいは前記担体に触媒金属を担持した後に解砕して担持触媒とした後、任意の形状、好適にはハニカム形状に成形することによって製造することができる。   The exhaust gas purifying catalyst of the present invention comprises, for example, the basic carrier raw material hydroxide and the salt of the acidic carrier raw material or the acidic carrier mixed with a solvent, for example, water, if necessary, in any shape, preferably It may be formed by supporting the catalyst metal on a pellet-shaped or honeycomb-shaped support, or after supporting the catalyst metal on the support and crushing it to form a supported catalyst, It can be manufactured by forming into a honeycomb shape.

また、この発明の排ガス浄化触媒は、例えばコージェライト(2MgO・2Al・5SiO)などのMgO・Al・SiO複合酸化物から形成されるハニカム形状の支持基材に前記の担体からなるコート層を任意の方法、例えば含浸、塗布などによって形成し、次いで担体からなるコート層に触媒金属を任意の方法によって担持する方法によって、あるいは前記のハニカム形状の支持基材に予め調製した前記の担体と前記の触媒金属とからなる担持触媒を任意の方法によって積層することによっても製造することができる。 Further, the exhaust gas purifying catalyst of the present invention, for example, cordierite (2MgO · 2Al 2 O 3 · 5SiO 2) The support substrate of a honeycomb shape formed from MgO · Al 2 O 3 · SiO 2 composite oxide such as The coating layer made of the above support is formed by any method, for example, impregnation, coating, etc., and then the catalyst metal is supported on the coating layer made of the support by any method, or on the honeycomb-shaped support substrate in advance. It can also be produced by laminating the prepared supported catalyst composed of the carrier and the catalyst metal by any method.

前記の触媒金属成分を担体に担持する方法としては、好適には、前記の成形された担体に触媒金属成分のスラリーを塗布、噴霧する、好適には触媒金属成分のスラリーをゾーンコートするか、又は成形された担体を触媒金属成分のスラリーに含浸するか、あるいは担体と触媒金属成分のスラリーとを混合し、水を蒸発させながら混練して触媒金属ペーストとし、これを押出し成形機などで押し出して、担体に触媒金属成分を含浸させる方法などが挙げられる。   As a method for supporting the catalyst metal component on the support, preferably, the catalyst metal component slurry is applied and sprayed on the molded support, preferably the catalyst metal component slurry is zone-coated, Or impregnate the molded carrier into the catalyst metal component slurry, or mix the carrier and the catalyst metal component slurry, knead while evaporating water to form a catalyst metal paste, and extrude it with an extrusion molding machine etc. And a method of impregnating the support with a catalytic metal component.

この発明において、好適には、100℃以上、特に100〜200℃程度の温度で数時間〜1昼夜程度の時間加熱乾燥した後、400℃以上、特に400〜800℃で30分間〜5時間程度の時間焼成し必要であれば触媒金属成分を還元することによって、この発明の排ガス浄化触媒を製造することができる。   In the present invention, preferably, after drying by heating at a temperature of about 100 ° C. or more, particularly about 100 to 200 ° C. for several hours to about 1 day or night, at 400 ° C. or more, particularly 400 to 800 ° C. for about 30 minutes to 5 hours The exhaust gas purification catalyst of the present invention can be produced by calcining for a period of time and reducing the catalyst metal component if necessary.

以下、この発明の好適な態様である、前述の記載に従って水酸化ジルコニウムとアルミニウム塩とを混合し、焼成して担体を作製し、得られた担体に触媒金属成分を含浸させた排ガス浄化触媒の具体例のX線回折図(XRD)である図4〜6を用いて説明する。
これらの図において、図4はAl/触媒全体が10質量%、図5はAl/触媒全体が20質量%、図6はAl/触媒全体が30質量%の場合の担持触媒を示す。
Hereinafter, according to the above description, which is a preferred embodiment of the present invention, zirconium hydroxide and an aluminum salt are mixed and calcined to prepare a carrier, and the resulting carrier is impregnated with a catalytic metal component. A specific example will be described with reference to FIGS. 4 to 6 which are X-ray diffraction diagrams (XRD).
In these figures, FIG. 4 shows that Al 2 O 3 / total catalyst is 10 mass%, FIG. 5 shows that Al 2 O 3 / total catalyst is 20 mass%, and FIG. 6 shows that Al 2 O 3 / total catalyst is 30 mass%. The supported catalyst is shown.

これら図4〜図6において、X線回折分析で強度は異なるが2θ(deg)が一定の60.2°にピークを有している。
従って、これらの担体はAl、ZrおよびOからなる同一の金属複合酸化物を含むと考えられる。
そして、この複合酸化物は、組成式としてはAl0.16Zr0.841.96で示される。
4 to 6, the X-ray diffraction analysis has a peak at 60.2 ° where 2θ (deg) is constant although the intensity is different.
Therefore, these supports are considered to contain the same metal complex oxide composed of Al, Zr and O.
This composite oxide is represented by Al 0.16 Zr 0.84 O 1.96 as a composition formula.

この発明の触媒は、必要であれば圧縮・解砕し、所望の形状の触媒、例えば直径1〜2mmのペレット状又はハニカム形状の触媒として、良好な浄化能を有する排ガス浄化触媒として使用することができる。   The catalyst of the present invention is compressed and crushed as necessary, and used as a catalyst having a desired shape, for example, a pellet-shaped or honeycomb-shaped catalyst having a diameter of 1 to 2 mm, as an exhaust gas purification catalyst having a good purification ability. Can do.

この発明における担体中にはAl0.16Zr0.841.96が含まれるが、このAl0.16Zr0.841.96のAl含有率は3.87質量%、Zr含有率は68.62質量%、O含有率は27.51質量%である。
Al=10質量%、ZrO=89.75質量%のAl含有率は5.29質量%、Zr含有率は66.44質量である。
Zrが全てAl0.16Zr0.841.96になっているとすると、余分なAl含有率は1.55質量%である。
Al=20質量%、ZrO=79.75質量%のAl含有率は10.58質量%、Zr含有率は59.04質量%である。
Zrが全てAl0.16Zr0.841.96になっているとすると、余分なAl含有率は7.26質量%である。
Al=30質量%、ZrO=69.75質量%のAl含有率は15.88質量%、Zr含有率は51.64質量%である。
Zrが全てAl0.16Zr0.841.96になっているとすると、余分なAl含有率は12.97質量%である。
Although the carrier in the present invention include Al 0.16 Zr 0.84 O 1.96, the Al 0.16 Zr 0.84 O Al content of 1.96 3.87 wt%, Zr content The rate is 68.62% by mass, and the O content is 27.51% by mass.
The Al content of Al 2 O 3 = 10 mass% and ZrO 2 = 89.75 mass% is 5.29 mass%, and the Zr content is 66.44 mass.
Assuming that all Zr is Al 0.16 Zr 0.84 O 1.96 , the excess Al content is 1.55% by mass.
The Al content of Al 2 O 3 = 20 mass% and ZrO 2 = 79.75 mass% is 10.58 mass%, and the Zr content is 59.04 mass%.
Assuming that all Zr is Al 0.16 Zr 0.84 O 1.96 , the excess Al content is 7.26% by mass.
The Al content of Al 2 O 3 = 30% by mass and ZrO 2 = 69.75% by mass is 15.88% by mass, and the Zr content is 51.64% by mass.
Assuming that all Zr is Al 0.16 Zr 0.84 O 1.96 , the excess Al content is 12.97% by mass.

以下、この発明の実施例を示す。
以下の各例において、排ガス浄化触媒の性能は以下に記載の測定法によって行い、評価した。
1.担持触媒の酸量測定
アンモニア昇温脱離法TPD(Temperature Programmed desorption)によって、吸着ガスとしてアンモニアを用いてNH脱離量から酸量を測定し、試料の酸点の強度分布を評価した。装置はTPD−MASSを使用した。NH脱離量について単位を省略して表示する場合があるが、この場合の単位はAlが10質量%のときの値を2007.97としたときの相対値を意味する。
Examples of the present invention will be described below.
In each of the following examples, the performance of the exhaust gas purification catalyst was evaluated by the measurement method described below.
1. Measurement of acid amount of supported catalyst By ammonia temperature programmed desorption (TPD), the acid amount was measured from NH 3 desorption amount using ammonia as an adsorption gas, and the intensity distribution of acid points of the sample was evaluated. The device used was TPD-MASS. The NH 3 desorption amount may be displayed by omitting the unit. In this case, the unit means a relative value when the value when Al 2 O 3 is 10 mass% is 2007.97.

2.担持触媒の還元温度測定
昇温還元型TPR(Temperature Programmed Reduction/Reaction)によって、還元性ガスとしてHを用いて触媒(Rh)の還元温度を測定した。還元温度が低い程貴金属触媒は還元されやすく、活性が高い。装置はTPD−MASSを使用した。
3.浄化特性試験
得られた触媒(形状:ペレット)を排ガス浄化性能装置にセットし、下記表1に示すガス組成で、空間速度400000h−1の条件におけるC、NO、COの各50%浄化温度をそれぞれ測定し、触媒活性を評価した。尚、リッチガスのλ(空気過剰率=空燃比/理論空燃比)=0.46、リーンガスのλ=2.32であった。50%浄化温度が低いほど触媒活性が高い。
2. Measurement of reduction temperature of supported catalyst The reduction temperature of the catalyst (Rh 2 O 3 ) was measured by using temperature-reduction TPR (Temperature Programmed Reduction / Reaction) using H 2 as the reducing gas. The lower the reduction temperature, the easier the noble metal catalyst is reduced and the higher the activity. The device used was TPD-MASS.
3. Purification characteristic test The obtained catalyst (shape: pellet) was set in an exhaust gas purification performance apparatus, and each of C 3 H 6 , NO x , and CO under the conditions of a space velocity of 400000 h −1 with the gas composition shown in Table 1 below. % Purification temperature was measured and the catalytic activity was evaluated. The rich gas λ (excess air ratio = air / fuel ratio / theoretical air / fuel ratio) = 0.46, and the lean gas λ = 2.32. The lower the 50% purification temperature, the higher the catalytic activity.

Figure 0005303867
Figure 0005303867

4.CO吸着量測定
常法により定容型吸着量測定装置を用いて、金属表面へのCO吸着量を測定し、下記の換算式より触媒Rhの粒子径を求めた。装置はCOパルスを使用した。
換算式:1860.465116×C/(V×a×d/吸着比)(Å)=3.887123746/V(Å)
C:Rhの担持濃度=0.25(%)
V:触媒1グラム当たりのCO吸着量
a:Rhの格子定数(Å)=3.8030
吸着比:Rh1モルに吸着するCOのモル比=1.5
d:Rhの比重(g/cc)=12.41
5.担持触媒の塩基量測定
二酸化炭素昇温脱離法TPD(Temperature Programmed reduction)によって、吸着ガスとしてCOを用いて試料の脱離CO量から塩基量を測定し、塩基点の強度分布を評価した。装置はTPD−MASSを使用した。CO脱離量について単位を省略して表示する場合には、単位は共沈法で調製したRh/ZrOの値を5×10−9としたときの相対値を意味する。
6.X線回折(XRD)測定
XRDの測定条件
装置:RINT2500製
測定方法…連続
開始角…3度
終了角…85度
サンプリング幅…0.02度
スキャンスピード…5.0度/min
電圧…50kV
電流…300mA
4). Measurement of CO adsorption amount Using a constant volume type adsorption amount measurement device, the amount of CO adsorption on the metal surface was measured by a conventional method, and the particle size of the catalyst Rh was determined from the following conversion formula. The apparatus used a CO pulse.
Conversion formula: 1860.465116 × C / (V × a 2 × d / adsorption ratio) (Å) = 3.887123746 / V (Å)
C: Rh loading concentration = 0.25 (%)
V: CO adsorption amount per gram of catalyst a: Lh lattice constant (Å) = 3.8030
Adsorption ratio: molar ratio of CO adsorbed on Rh1 mole = 1.5
d: Rh specific gravity (g / cc) = 12.41
5. Measurement of the base amount of the supported catalyst Using the temperature programmed desorption method TPD (Temperature Programmed reduction), the base amount is measured from the desorbed CO 2 amount of the sample using CO 2 as the adsorption gas, and the intensity distribution of the base points is evaluated. did. The device used was TPD-MASS. When the unit is omitted and displayed for the CO 2 desorption amount, the unit means a relative value when the value of Rh / ZrO 2 prepared by the coprecipitation method is 5 × 10 −9 .
6). X-ray diffraction (XRD) measurement XRD measurement conditions Apparatus: manufactured by RINT2500 Measurement method: Continuous Start angle: 3 degrees End angle: 85 degrees Sampling width: 0.02 degrees Scanning speed: 5.0 degrees / min
Voltage ... 50kV
Current: 300mA

実施例1
オキシ硝酸ジルコニウムにアンモニアを入れ、一晩攪拌した後、遠心分離機で分離、洗浄して固形分を取得し、固形分を120℃で解砕した。解砕後、出来上がった水酸化ジルコニウムを水、さらに硝酸アルミニウムをAl/触媒全体が10質量%となる割合で入れて、混合した後、120℃で一晩乾燥させた。次いで、250℃で1時間焼成し、解砕して、800℃で3時間焼成して、担体を得た。
この担体に、硝酸ロジウムを含浸させた後、120℃で一晩乾燥させ、500℃で2時間焼成して、担持量0.25質量%(Rh/担体)の担持触媒を得た。
この担持触媒である排ガス浄化触媒について評価した。結果をまとめて表2、図1、図2および図3に示す。
Example 1
Ammonia was added to zirconium oxynitrate and stirred overnight, then separated and washed with a centrifuge to obtain a solid content, and the solid content was crushed at 120 ° C. After pulverization, the resulting zirconium hydroxide was mixed with water and aluminum nitrate at a ratio of Al 2 O 3 / total catalyst of 10% by mass, and then mixed and dried at 120 ° C. overnight. Next, it was calcined at 250 ° C. for 1 hour, crushed, and calcined at 800 ° C. for 3 hours to obtain a carrier.
This support was impregnated with rhodium nitrate, dried at 120 ° C. overnight, and calcined at 500 ° C. for 2 hours to obtain a supported catalyst having a supported amount of 0.25% by mass (Rh / support).
The exhaust gas purification catalyst which is this supported catalyst was evaluated. The results are summarized in Table 2, FIG. 1, FIG. 2 and FIG.

実施例2
硝酸アルミニウムをAl/触媒全体が20質量%となる割合で入れた他は実施例1と同様に実施して、担持触媒を得た。
この担持触媒である排ガス浄化触媒について評価した。結果をまとめて表2、および表3、図1、図2および図3に示す。
Example 2
A supported catalyst was obtained in the same manner as in Example 1 except that aluminum nitrate was added at a ratio of 20% by mass of Al 2 O 3 / total catalyst.
The exhaust gas purification catalyst which is this supported catalyst was evaluated. The results are collectively shown in Table 2 and Table 3, FIG. 1, FIG. 2 and FIG.

実施例3
硝酸アルミニウムをAl/触媒全体が30質量%となる割合で入れた他は実施例1と同様に実施して、担持触媒を得た。
この担持触媒である排ガス浄化触媒について評価した。結果をまとめて表2、図1、図2および図3に示す。
Example 3
A supported catalyst was obtained in the same manner as in Example 1 except that aluminum nitrate was added at a ratio of Al 2 O 3 / total catalyst of 30% by mass.
The exhaust gas purification catalyst which is this supported catalyst was evaluated. The results are summarized in Table 2, FIG. 1, FIG. 2 and FIG.

比較例1
硝酸アルミニウムを全く加えなかった他は実施例1と同様に実施して、担持触媒を得た。
この担持触媒について評価した。結果をまとめて表2、表3、図1、図2および図3に示す。
Comparative Example 1
A supported catalyst was obtained in the same manner as in Example 1 except that no aluminum nitrate was added.
This supported catalyst was evaluated. The results are summarized in Table 2, Table 3, FIG. 1, FIG. 2 and FIG.

比較例2〜4
公知の共沈法である下記の方法によって、硝酸アルミニウムをアルミナとして10、20、又は30質量%の割合となるように加えて、担持量0.25質量%(Rh/担体)の担持触媒を得た。
共沈法の手順:オキシ硝酸ジルコニウムに硝酸アルミニウムを入れてpHが約8になるようにアンモニアを滴下した後、一晩攪拌して、120℃で1日乾燥、500℃で2時間焼成。
これらの担持触媒について評価した。結果をまとめて表2および表3、図1、図2および図3に示す。
Comparative Examples 2-4
According to the following method, which is a known coprecipitation method, aluminum nitrate is added as alumina in a proportion of 10, 20, or 30% by mass, and a supported catalyst with a supported amount of 0.25% by mass (Rh / carrier) is added. Obtained.
Procedure of coprecipitation method: Ammonia was dropped into zirconium oxynitrate so that the pH was about 8, and the mixture was stirred overnight, dried at 120 ° C. for one day, and calcined at 500 ° C. for 2 hours.
These supported catalysts were evaluated. The results are collectively shown in Table 2 and Table 3, FIG. 1, FIG. 2 and FIG.

Figure 0005303867
Figure 0005303867

Figure 0005303867
Figure 0005303867

また、実施例1〜3、比較例1で得られた担持触媒について脱離CO量から塩基量を測定したところ、実施例1〜3では20x10−9〜35x10−9、比較例1では12x10−9であった。 Moreover, when the amount of bases was measured from the amount of desorbed CO 2 for the supported catalysts obtained in Examples 1 to 3 and Comparative Example 1, 20 × 10 −9 to 35 × 10 −9 in Examples 1 to 3 and 12 × 10 in Comparative Example 1. -9 .

以上より、実施例1〜3と比較例1〜4とを比較すると、この発明による担持触媒である排ガス浄化触媒は、酸点および塩基点のいずれの量もAl、ZrO単独の場合よりも増えており、これによって貴金属(Rh)が易還元性となりメタル化されて高活性となり、また塩基点よって貴金属(Rh)のシンタリングが抑制され、このため高活性と低シンタリングを兼ね備えた浄化能の高い排ガス浄化触媒が得られた。 From the above, when Examples 1 to 3 and Comparative Examples 1 to 4 are compared, the exhaust gas purifying catalyst which is a supported catalyst according to the present invention has both the acid point and base point amount of Al 2 O 3 and ZrO 2 alone. As a result, precious metal (Rh) becomes easily reducible and becomes metallized and becomes highly active, and the base point suppresses sintering of the precious metal (Rh), so that high activity and low sintering are achieved. An exhaust gas purifying catalyst having a high purifying ability and having a combination was obtained.

図1は、Al添加量を変えた場合のNH脱離量測定による担持触媒の酸量の変化を示す。FIG. 1 shows the change in the acid amount of the supported catalyst by measuring the NH 3 desorption amount when the addition amount of Al 2 O 3 is changed. 図2は、Al添加量を変えた場合の担持触媒に担持されたRhの還元温度の変化を示す。FIG. 2 shows changes in the reduction temperature of Rh 2 O 3 supported on the supported catalyst when the amount of Al 2 O 3 added is changed. 図3は、Al添加量を変えた場合の担持触媒の50%浄化温度およびRhの粒子径の変化を示す。FIG. 3 shows changes in the 50% purification temperature of the supported catalyst and the particle diameter of Rh when the amount of Al 2 O 3 added is changed. 図4は、実施例1で得られた担持触媒のX線回折図を示す。FIG. 4 shows an X-ray diffraction pattern of the supported catalyst obtained in Example 1. 図5は、実施例2で得られた担持触媒のX線回折図を示す。FIG. 5 shows an X-ray diffraction pattern of the supported catalyst obtained in Example 2. 図6は、実施例3で得られた担持触媒のX線回折図を示す。FIG. 6 shows an X-ray diffraction pattern of the supported catalyst obtained in Example 3. 図7は、比較例1で得られた担持触媒のX線回折図を示す。FIG. 7 shows an X-ray diffraction pattern of the supported catalyst obtained in Comparative Example 1.

Claims (2)

塩基性担体原料の水酸化物と、排ガス浄化触媒全体に対するAl の割合が10〜30質量%となるアルミニウムの塩又はAl と溶媒とからなる混合物を加熱乾燥して溶媒を除去した後、焼成して担体を作製し、
得られた担体に、担持する貴金属としてRhを担体に対して0.025〜0.5質量%の割合で担持することを特徴とする排ガス浄化触媒の製造法。
A mixture of a hydroxide of the basic carrier material and an aluminum salt or Al 2 O 3 and a solvent in which the ratio of Al 2 O 3 to the entire exhaust gas purification catalyst is 10 to 30% by mass is dried by heating. After removing the baked to produce a carrier,
A method for producing an exhaust gas purifying catalyst, characterized in that Rh is supported as a noble metal to be supported on the obtained carrier at a ratio of 0.025 to 0.5 mass% with respect to the carrier .
前記塩基性担体原料の水酸化物が、水酸化ジルコニウムである請求項1に記載の製造法。   The production method according to claim 1, wherein the hydroxide of the basic carrier material is zirconium hydroxide.
JP2007143493A 2007-05-30 2007-05-30 Manufacturing method of exhaust gas purification catalyst Expired - Fee Related JP5303867B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007143493A JP5303867B2 (en) 2007-05-30 2007-05-30 Manufacturing method of exhaust gas purification catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007143493A JP5303867B2 (en) 2007-05-30 2007-05-30 Manufacturing method of exhaust gas purification catalyst

Publications (2)

Publication Number Publication Date
JP2008296111A JP2008296111A (en) 2008-12-11
JP5303867B2 true JP5303867B2 (en) 2013-10-02

Family

ID=40170148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007143493A Expired - Fee Related JP5303867B2 (en) 2007-05-30 2007-05-30 Manufacturing method of exhaust gas purification catalyst

Country Status (1)

Country Link
JP (1) JP5303867B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59156434A (en) * 1983-02-25 1984-09-05 Toyota Motor Corp Catalyst for purifying exhaust gas
JP2581872B2 (en) * 1992-05-15 1997-02-12 エヌ・イーケムキャット株式会社 Exhaust gas purification catalyst for internal combustion engine excellent in heat resistance and method for producing the same
JPH0924274A (en) * 1995-05-09 1997-01-28 Hitachi Ltd Catalyst and system for purifying exhaust gas
JP3567708B2 (en) * 1997-04-28 2004-09-22 トヨタ自動車株式会社 Exhaust gas purification catalyst
JP3239155B2 (en) * 1997-11-12 2001-12-17 株式会社次世代排ガス触媒研究所 Exhaust gas purification catalyst and method for producing the same
JP2003020227A (en) * 2001-07-02 2003-01-24 Toyota Central Res & Dev Lab Inc Fine mixed oxide powder, production method thereor and catalyst
JP2006341152A (en) * 2005-06-07 2006-12-21 Toyota Motor Corp Catalyst carrier manufacturing method and manufacturing method of exhaust gas purifying catalyst
JP2008230937A (en) * 2007-03-23 2008-10-02 Ube Ind Ltd Compound oxide and compound oxide carrier, and method for producing catalyst for exhaust gas clarification using them

Also Published As

Publication number Publication date
JP2008296111A (en) 2008-12-11

Similar Documents

Publication Publication Date Title
US20090286680A1 (en) Exhaust Gas Purification Catalyst and Exhaust Gas Purification Catalyst Member
WO2005092481A1 (en) Nitrogen oxide storage material and nitrogen oxide storage catalyst produced therefrom
EP2683467A1 (en) Exhaust gas purification catalyst
JP4826337B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP5674092B2 (en) Exhaust gas purification catalyst and method for producing the same
JP6567168B2 (en) Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification apparatus using the same
JP4569436B2 (en) Exhaust gas purification catalyst and method for producing exhaust gas purification catalyst material
JPH10286462A (en) Catalyst of purifying exhaust gas
JP3831093B2 (en) Composite oxide, method for producing the same, and exhaust gas purification catalyst using the same
JP4316586B2 (en) Exhaust gas purification catalyst
JP6339013B2 (en) Exhaust gas purification catalyst carrier, exhaust gas purification catalyst, and exhaust gas purification catalyst structure
JP5794908B2 (en) Exhaust gas purification catalyst and exhaust gas purification catalyst structure
JP2018038999A (en) Exhaust gas purification catalyst
JP5071840B2 (en) Exhaust gas purification catalyst
JP4045002B2 (en) Composite oxide and exhaust gas purification catalyst using the same
JP5050659B2 (en) Exhaust gas purification catalyst
WO2015087781A1 (en) Exhaust gas purifying catalyst
JP5303867B2 (en) Manufacturing method of exhaust gas purification catalyst
JPH0582258B2 (en)
JP2020062645A (en) Carrier for exhaust gas purification catalyst and exhaust gas purification catalyst
JP2000051700A (en) Exhaust emission purifying catalyst and its production
JP3488999B2 (en) Exhaust gas purification catalyst composition, method for producing the same, and exhaust gas purification catalyst
WO2006008948A1 (en) Catalyst for exhaust gas purification and process for producing the same
JP5512257B2 (en) Exhaust gas purification catalyst and method for producing exhaust gas purification catalyst
JPH1176819A (en) Catalyst for cleaning of exhaust gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130610

R151 Written notification of patent or utility model registration

Ref document number: 5303867

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees