JP5299836B2 - 燃料電池 - Google Patents

燃料電池 Download PDF

Info

Publication number
JP5299836B2
JP5299836B2 JP2007261656A JP2007261656A JP5299836B2 JP 5299836 B2 JP5299836 B2 JP 5299836B2 JP 2007261656 A JP2007261656 A JP 2007261656A JP 2007261656 A JP2007261656 A JP 2007261656A JP 5299836 B2 JP5299836 B2 JP 5299836B2
Authority
JP
Japan
Prior art keywords
gas
fuel cell
cell
case
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007261656A
Other languages
English (en)
Other versions
JP2008210778A (ja
Inventor
竜也 矢口
圭子 櫛引
靖志 中島
重夫 井深
寛和 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2007261656A priority Critical patent/JP5299836B2/ja
Priority to PCT/JP2008/052001 priority patent/WO2008093896A1/en
Priority to US12/518,592 priority patent/US8304126B2/en
Priority to EP08704510A priority patent/EP2127011B1/en
Publication of JP2008210778A publication Critical patent/JP2008210778A/ja
Application granted granted Critical
Publication of JP5299836B2 publication Critical patent/JP5299836B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/2432Grouping of unit cells of planar configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2457Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • H01M8/2475Enclosures, casings or containers of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2484Details of groupings of fuel cells characterised by external manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2484Details of groupings of fuel cells characterised by external manifolds
    • H01M8/2485Arrangements for sealing external manifolds; Arrangements for mounting external manifolds around a stack
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Description

本発明は、複数の固体電解質型燃料電池ユニットを積層したスタック構造体をケースに収容している燃料電池に関するものである。
従来、上記したような燃料電池としては、例えば、単セルを保持していると共に中心に燃料ガス導入孔が形成され且つこの燃料ガス導入孔の周囲に複数の空気導入孔が形成された複数の円盤状を成すセル板と、中心に燃料ガス導入孔が形成され且つこの燃料ガス導入孔の周囲に複数の空気導入孔が形成された複数の円盤状を成すセパレータ板とを交互に積層して成る燃料電池があった(例えば、特許文献1参照)。
この燃料電池の場合、燃料ガス及び空気の両方のガスをセル板及びセパレータ板の各中心部分から供給して外周部分から排出するようにしていることから、未燃焼ガスを回収することができず、その結果、過渡運転時等のガス流が変化する場合には、燃料利用率が低下して効率が落ちるうえ、外周部分での燃焼が不安定になることで単セルに局所的な熱応力がかかって破損してしまう恐れがあった。
そこで、このような破損の危惧を解消するべく成された燃料電池としては、単セルを保持していると共に中心部分に燃料ガス及び空気のうちの一方のガスの導入孔を有するセル板と、中心部分に燃料ガス及び空気のうちの一方のガスの導入孔を有するセパレータ板との各外周縁部同士を接合して固体電解質型燃料電池ユニットを形成し、この固体電解質型燃料電池ユニットを集電体を介して複数積層して成るスタック構造体をガス導入口及びガス排出口を具備したケースに収容して、ガス導入口から燃料ガス及び空気のうちの他方のガスを導入してガス排出口に流すようにしたものがある(例えば、特許文献2参照)。
米国特許第6344290号明細書 特開2004−207028号公報
ところが、上記従来の燃料電池では、スタック構造体の互いに重なり合う固体電解質型燃料電池ユニット間に集電体を配置して単セルと接触させているので、効率的に発電出力を取り出すことができるものの、円盤形の固体電解質型燃料電池ユニット間の集電体が位置する面内に対して、反応用ガスを均一に分配することが難しく、単セルに設ける電極を中心管外径近くまで設けて出力密度を上げる場合には、その中心管の風下の領域にはとくに反応用ガスが流れにくいために、その領域では十分な発電出力を得ることができない事態が起こりうるという問題があった。
また、上記従来の燃料電池では、複数積層した固体電解質型燃料電池ユニットの中心部を締結したスタック構造体とすると、それら各固体電解質型燃料電池ユニットの外周縁部がフリーな状態になっているので、大きな熱応力は発生し難い構造ではあるものの、燃料電池を自動車に搭載する場合等において、急速起動するときや急激な負荷変動がある場合には、一方の反応用ガスに加熱ガスや発電用ガスを多量に導入するため、ガス導入口で局所的な温度変化が生じ、耐熱衝撃性が低下する可能性がないとはいえない問題があり、これらの問題点の解決が従来の課題となっていた。
そこで本発明は、互いに積層された固体電解質型燃料電池ユニット間に流通させる反応用ガスの面内流量分配性を格段に向上させることができ、その結果、効率よく発電出力を得ることができるのに加えて、定常発電時におけるユニット間面内の温度分布を平準化し得るのに伴って、起動運転時や負荷変動時における耐熱衝撃性の向上をも実現できる燃料電池の提供を目的としている。
本発明に係る燃料電池は、複数の固体電解質型燃料電池ユニットを互いに間隙をもって積層してなるスタック構造体と、これを収容したケースとに、二種類の反応用ガスを互いに分離して流通させることによる発電を行うものであり、上記ケースには、二種類の反応用ガスのうちの一方のものを当該ケース内に導入するためのガス導入口と、そのケース内に導入された一方の反応用ガスを排出するためのガス排出口とを、スタック構造体を挟む両側に配設しているとともに、上記ガス導入口の総口幅寸法を、ガス排出口の総口幅寸法よりも大きく設定したことを特徴としている。
上記の構成では、一方の反応用ガスの圧力損失をガス導入口に比べてガス排出口付近で高くすることだけでなく、ガス導入口からスタック構造体の中心部分を回流してガス排出口に流路長と、ガス導入口からスタック構造体外周を回流してガス排出口に流通する流路長との差を小さくすることにより、固体電解質型燃料電池ユニット間の面内に一方の反応用ガスが均一に分配されることになり、定常発電時における固体電解質型燃料電池ユニット間面内の温度分布が平準化される。
また、ガス導入口の口幅を広くすることにより、当該ガス導入口における一方の反応用ガスの流速を抑え、起動運転時の加熱ガスや、負荷変動時の温度調整用ガスを導入する場合において、局所的かつ急激な温度変化を生じさせることを防ぐことにより、耐熱衝撃性を向上させることができる。
本発明によれば、互いに積層した固体電解質型燃料電池ユニット間に流通させる反応用ガスの面内流量分配性を格段に向上させることができ、その結果、効率よく発電出力を得ることができるのに加え、定常発電時におけるユニット間面内の温度分布を平準化し得るのに伴って、起動運転時や負荷変動時における耐熱衝撃性の向上をも実現することができる。
以下に、本発明の第一の実施形態に係る燃料電池について、図1〜5を参照して詳細に説明する。図1は、本発明の第一の実施形態に係る燃料電池の外観斜視図、図2は、その燃料電池の分解斜視図、図3は、その燃料電池の平断面図、図4は、図1に示すI‐I線に沿う断面図である。また、図5は、固体電解質型燃料電池ユニットの一部を拡大して示す拡大断面図である。
本発明の第一の実施形態に係る燃料電池A1は、複数の固体電解質型燃料電池ユニット200…を互いに間隙sをもって積層してなるスタック構造体Bを、ケース210に収容した構成になっている。
上記のスタック構造体(以下、たんに「セルスタック」という。)B内と、ケース210内には二種類の反応用ガスを互いに分離して流通させており、これにより発電を行うようになっている。
上記「積層」とは、複数の固体電解質型燃料電池ユニット(以下、単に「セルユニット」という。)200…を互いに間隙sをもって積み重ねていることを意味している。
「間隙s」は、隣接する他のセルユニット200との間に一方の反応用ガスを流通させるためのものであり、互いに同寸法にしているものの他、規則的に異なる寸法にしたものを含む。
「二種類の反応用ガス」は、そのうちの一方の反応用ガスを空気として、他方の反応用ガスを燃料ガスとして以下に説明するが、一方の反応用ガスを燃料ガス、他方の反応用ガスを空気としてもよいことは勿論である。
本実施形態においては、ケース210内には上記一方の反応用ガスが、また、セルスタックBには他方のものが互いに分離して流通されるようになっている。
ケース210は、0.5(mm)ほどの板厚にしたSUS430製のものであり、ケース本体220の側部に、導入部230と排出部240とを突設した構成になっている。
ケース本体220は、平面視円形の底板221に周板222を囲繞形成するとともに、上板225を全周にわたり溶着した気密性を有するものである。
上記周板222には、ケース本体220内に一方の反応用ガスを導入するためのガス導入口223と、当該ケース210内に導入された一方の反応用ガスを排出するためのガス排出口224とが、セルスタックBを挟む周板222の両側位置に形成されている。
導入部230は、ガス導入口223に対応する周板222の外側に直方体形にして、また、排出部240は、ガス排出口224に対応する周板222の外側に上記導入部230よりも容積の小さい直方体形にしてそれぞれ突設されている。
本実施形態における「両側」とは、詳細を後述するセルユニット200の当接部261,271の中心軸線O1を通る直径線О2上に、ガス導入口223とガス排出口224の各口幅W1,W2方向中心O3,O4を位置させていることであるが、これに限るものではない。
「口幅」は、ケース本体220の周板222に沿う長さのことであり、ガス導入口223とガス排出口224を同じ高さにしていることを前提としている。
また、本実施形態においては、ガス導入口223の口幅寸法W1を、セルユニット200の半径D1と、当該当接部261,271の半径D2との差の二倍以上に設定している。これにより、ガス導入口223での圧力損失を減らすことでポンプロスを低減しつつ、面内温度分布の均一性を向上させられる。
上板225は、ケース本体220に対応する主板225aに、導入部230と排出部240の輪郭に対応する副板225b,225cを一体に形成したものであり、ケース本体220,導入部230及び排出部240を区画する周板に溶着されている。
副板225bには、外部から一方の反応用ガスを導入するための導入管225dが、また、副板225cには、ケース本体220内に導入された一方の反応用ガスを排出するための排出管225eがそれぞれ立設されている。
なお、226はセルスタックBの中心軸線O1に一致して接続され、下記のセルユニット200に対して他方の反応用ガスの導入及び排出を行うための中心管である。
セルユニット200…は、固体電解質型セル(以下、「単セル」ともいう。)250を配設したセル板260とセパレータ270との間に区画形成される空隙Kにユニット内集電体280と流路形成体290とを収容した中空円盤形のものである。
セル板260は、隣接する他のセルユニット200との間に上記した間隙sが形成される高さにした円筒形の当接部261が、円形基板262の中心に下向きにして突設されているとともに、その円形基板262周縁部には周板263が起立形成されている。
当接部261には、後述する流路形成体290に形成されているガス流入孔291とガス流出孔292に対応する位置に、それらと同径の貫通孔264,265…が開口形成されている。
互いに隣接積層されたセルユニット200,200間の間隙sには、ユニット外集電体300がそれぞれ配設されている。
このユニット外集電体300は、例えばインコネル(登録商標)製の金属メッシュを円環形に成形したものであり、これの周縁部をセル板260又はセパレータ270にレーザ溶接等により接合されている。
固体電解質型セル250は、アノード極(燃料極)とカソード極(空気極)とを電解質(いずれも図示しない)の上下両側に配設し、かつ、中心軸線O1を中心とした円形に形成されている。
セパレータ270は、隣接する他のセルユニット200との間に、上記した間隙sが形成される高さにした円筒形の当接部271が、円形基板272の中心に上向きにして突設されているとともに、その円形基板272の周縁部には周板273が垂下形成されている。
当接部271には、流路形成体290に形成されているガス流入孔291とガス流出孔292に対応する位置に、それらと同径の貫通孔274,275…が開口形成されている。
上記した構成からなるセルユニット200を互いに積層することにより、セル板260の当接部261と、セパレータ270の当接部271とが当接し、これにより上下に積層隣接するセルユニット200,200間に間隙sが形成される。
本実施形態における一方の反応用ガスの流動状態は、次のとおりである。
ガス導入口223を介してケース220内に流入した一方の反応用ガスは、セルユニット200,200間の各間隙sを通じ、ガス排出口224に向けて流動し、そのガス排出口224を通じてケース本体220外に排出される。
このとき、ガス導入口223の総口幅寸法を、ガス排出口224の総口幅寸法よりも大きく設定していることにより、当該ガス導入口223における一方の反応用ガスの流速が抑えられる。これにより、起動運転時の加熱ガスや、負荷変動時の温度調整用ガスを導入する場合において、局所的かつ急激な温度変化を生じさせることを防ぐことができ、耐熱衝撃性を向上させることができる。
また、一方の反応用ガスの圧力損失をガス導入口に比べてガス排出口付近で高くすることができる。
さらに、ガス導入口223からセルスタックBの当接部(中心部分)を回流してガス排出口224に流動する流路長と、ガス導入口223からセルスタック外周を回流してガス排出口224に流動する流路長との差を小さくすることができる。
これに加えて、セルユニット間の面内に一方の反応用ガスが均一に分配されることになり、定常発電時におけるセルユニット間面内の温度分布を平準化している。
次に、本発明の第二の実施形態に係る燃料電池A2について、図6〜9を参照して説明する。
燃料電池A2は、複数のセルユニット1…を互いに間隙s1をもって積層してなるセルスタック11をケース10に収容しているとともに、下記のケース本体12とセルスタック11間の間隙s1にガス流規制部16を配設している。
ガス流規制部16は、ガス導入口12aから導入した一方の反応用ガスをユニット外集電体15を通じてガス排出口12bに流通させるように規制するものである。
ケース10は、0.5(mm)ほどの板厚にしたSUS430製のものであり、ケース本体12の側部に、導入部12Aと排出部12Bとを突設した構成になっている。
ケース本体12は、平面視円形の底板12cに周板12dを囲繞形成するとともに、蓋体(上板)12eを全周にわたり溶着した気密性を有するものである。
上記周板12dには、ケース本体12内に一方の反応用ガスを導入するためのガス導入口12aと、当該ケース本体12内に導入された一方の反応用ガスを排出するためのガス排出口12bとが、セルスタックBを挟む両側位置に形成されている。
導入部12Aは、ガス導入口12aに対応する周板12dの外側に直方体形にして、また、排出部12Bは、ガス排出口12bに対応する周板12dの外側に上記導入部12Aよりも容積の小さい直方体形にしてそれぞれ突設されている。
なお、13はセルスタック11の中心に接続してセルユニット1に対する燃料ガス(他方の反応用ガス)の導入及び排出を行う中心管である。
セルユニット1は、図6,9に示すように、単セル6を配設したセル板2とセパレータ3との間に区画形成される空隙Kにユニット内集電体4と流路形成体5とを収容した中空円盤形のものである。
セル板2は金属製のものであり、円形薄板状を成し且つ中心部分にガス導入孔21及びガス排出孔22を有している。
セパレータ板3は金属製のものであり、セル板2と同じく円形薄板状を成し且つ中心部分にガス導入孔31及びガス排出孔32を有している。
これらのセル板2及びセパレータ板3は、互いに対向した状態で各々の外周縁部同士を接合されている。
セル板2及びセパレータ板3の各中心部分には、外周縁部と同心状を成し且つ互いに離間する方向に突出して後述するようにスペーサとして機能する円形凸状段差部(当接部)23,33が中心軸線O1に一致してそれぞれ形成されている。
なお、円形凸状段差部(当接部)23,33は例えばプレス加工によって成型される。
セル板2及びセパレータ板3の各外周縁部には、この外周縁部と同心状を成し且つ互いに接近する方向に突出して空隙Kを形成するための環状段差24,34がプレス加工によってそれぞれ形成してある。
また、上記したガス導入孔21,31及びガス排出孔22,32は、セル板2及びセパレータ板3の各円形凸状段差部23,33に対向して配置されている。
単セル6はドーナツ状を成しており、その内周縁部及び外周縁部に、円形凸状段差部23を有する内側円板部分及び環状段差24を有する外側リング部分をそれぞれ接合してセル板2を形成している。なお、単セル6は、電解質支持型セル、電極支持型セル、多孔質支持型セルのいずれでもあってもよい。
また、セパレータ板3の円形凸状段差部33には、ガス導入孔31と連通してセル板2及びセパレータ板3間に形成される空隙K内に対して中心管13からの燃料ガスを供給する流路形成体5が収容してある。
一方、セル板2の円形凸状段差部23には、ガス排出孔22と連通して上記空隙Kから中心管13側に燃料ガスを排出する流路部品5が収容してある。
これらの流路形成体5…は、後述するように、セルユニット1を積層してセルスタック11を形成した状態において、そのセルスタック11全体の押付力のみで互いに密着するようになっている。
本実施形態においては、上記した燃料極をニッケル+イットリア安定化ジルコニアのサーメット、電解質を8モルパーセントイットリア安定化ジルコニア、空気極をランタンストロンチュウムマンガナイトとした厚さ0.8mmの燃料極支持型セルを単セル6として用いている。
一方、セル板2及びセパレータ板3には、肉厚が0.1mmのSUS430の圧延板を用いている。
そして、この圧延板を超硬及びSKD11から成る金型を装備したプレス装置にセットして、80トンのプレス荷重をかけてプレス加工を行い、これにより上述した形状に形成されたセル板2のセル接着部に、BaO-CaO−Al2O3-SiO2系のガラスペーストを厚さ50μmで塗布し、このガラスペースト上に単セル6を載せて900℃15分で接着させた。
上記プレス加工及び単セル6の接合により得られたセル板2及びセパレータ板3の外径は125mmであり、セル板2及びセパレータ板3の各外周縁部同士をレーザ溶接を用いて接合して、厚さ1.5mmのセルユニット1とした。
ユニット内集電体4には、インコネル製金属メッシュから成るドーナツ状のものを用い、セル板2及びセパレータ板3に対してその周縁部をレーザ溶接により接合した。
一方、流路形成体5にもSUS430を用い、セル板2及びセパレータ板3に対しては、接合温度を1000℃以下とした真空中での拡散接合により固定し、接合時の変形を防いでいる。
なお、拡散接合に代えてYAGレーザを用いたレーザ溶接による接合も可能であり、この際、セル板2及びセパレータ板3が薄板状を成していることから、表側からレーザを照射しても接合することができる。
また、流路形成体5の流路パターンは、エッチングや研削加工やレーザ加工により形成することができるほか、エッチング部品を積層して接合することによっても形成することができる。
本実施形態に係る燃料電池A2においては、互いに隣接するセルユニット1の一方側の中心部分に、Al2O3を主成分とするセラミックス接着剤を塗布している。
このセラミックス接着剤を塗布した中心部分に他方側のセルユニット1の中心部分を載せて、以降同様にして規定の段数になるまでセルユニット1を積層し、最後に150℃2時間の接着焼成を行ってセルスタック11を製作した。
そして、この燃料電池A2では、図8に示すように、ガス導入口12a及びガス排出口12bを有するSUS430製のケース10内に、従ってまた、ケース本体12(板厚0.5mm)にセルスタック11を収容している。
また、セルスタック11の最上端に位置するセルユニット1のセパレータ板3の円形凸状段差部33に中心管13を溶接により接合し、このケース本体12に蓋体12eを被せて各々の合わせ目どうしを溶接により接合する。
さらに、蓋体12eの導入部12Aを覆う部分及び排出部12Bを覆う部分に導入管17及び排出管18をそれぞれ溶接により接合するようにしている。
この際、セルスタック11とケース本体12との間における隙間s1に、耐火性の発泡セメントからなるガス流規制部としての充填材16を設けている。
ケース本体12におけるガス導入口12aの総口幅寸法W1をガス排出口12bの総口幅寸法W2よりも大きく設定している。これにより、ガス導入口12aから導入した空気をセルユニット1,1間の間隙s1に配設したユニット外集電体15を通してガス排出口12bに流通させるようにしている。
本実施形態において、充填材16は、セルスタック11をケース本体12に収容するのに先立って、セルスタック11の外周縁部に塗布するようにしているが、セルスタック11の外周縁部に対して、あらかじめ離型材としてボロンナイトライドを主成分とする材料を噴霧しておくことで、充填材16とセルスタック11との互いの移動を許容するようにしてある。
加えて、この実施例において、ケース本体12におけるガス排出口12bの周板に気孔径10μmで且つ厚さ1mmのSUS310S製発泡金属19Aを付けてスポット溶接により接合し、この発泡金属19Aの一部にセラミックス接着剤を介してガラスウール(ガス抵抗体)19を接着させている。
この燃料電池A2において、図6(a)に示すように、導入管17からガス導入口12aを介してケース本体12内に空気を導入すると、セルスタック11のセルユニット1とこれに積層したセルユニット1との間、すなわち、カソード側である層間に位置するユニット外集電体15に空気が流れた後、ガス排出口12bを通して排出管18側に排気される。
一方、燃料ガスは、中心管13のガス導入部分13a及びセルユニット1の各ガス導入孔21,31を通してセル板2及びセパレータ板3間に形成される各空間K内に導入流通した後、各ガス排出孔22,32及び中心管13のガス排気部分13bを通して排気される。
上記した燃料電池A2では、セルスタック11とケース本体12との間における隙間にガス流規制部である充填材16を設けているうえ、ケース本体12におけるガス導入口12aの総口幅寸法W1をガス排出口12bの総口幅寸法W2よりも大きく設定している。
これにより、ケース本体12のガス導入口12aから導入した空気(一方の反応用ガス)が、ケース本体12とセルスタック11との間の隙間よりも互いに重なり合うセルユニット1の間の集電体15の部分に流れやすくなる。
これにより、セル板2に保持された単セル6の部分に対する空気の供給量が大幅に増加することとなり、従って、十分な発電出力が得られることとなる。
また、上記した燃料電池A2では、空気がセルユニット1間の面内に流れやすくなる分だけ、空気が均一に分配されることとなり、定常発電時におけるユニット間面内の温度分布が平準化されて、起動運転時や負荷変動時の耐熱衝撃性が向上することとなる。
さらに、上記した燃料電池A2では、セルスタック11のセルユニット1のセル板2及びセパレータ板3の間に形成される空間S内に燃料ガスのみを流すようにしているので、未燃焼ガスを回収し得ることとなり、したがって、過渡運転時等のガス流が変化する場合であったとしても、燃料利用率が低下することがなく、加えて、単セル6に局所的な熱応力がかかって不具合が生じる可能性が少なくなる。
さらにまた、上記した燃料電池A2では、セルスタック11の外周縁部に発泡セメントからなる充填材16を塗布することで、ガス流規制部を形成するようにしているうえ、セルスタック11の外周縁部に対して、あらかじめ離型材としてのボロンナイトライドを主成分とする材料を噴霧して表面処理を行うようにしているので、充填材16をセルユニット1に接着させることなく、所定位置に設置することができる。
その結果、簡便な作業を行うだけで、単セル6の部分へのガス供給量を増加させ得ることとなり、加えて、セルユニット1が昇降温に対してその外周縁部で応力を開放しやすくなり、従って、耐熱衝撃性向上及び薄板化が図られることとなる。
さらにまた、上記した燃料電池A2では、ケース本体12におけるガス排出口12bの側壁に、ガス抵抗体としてのガラスウール19を配置しているので、ケース本体12のガス排出口12bにおける排出圧が高まることとなって、空気をセルユニット1間の面内により行き渡らせ得ることとなる。
上記したセルユニット1では、セル板2及びセパレータ板3が互いにほぼ同一形状を成しているが、これに限定されるものではなく、例えば、単セル6を取り付けるセル板2が円形凸状段差部23のみを有する形状を成し且つセパレータ板3が通常の約二倍の高さの環状段差部34を有する形状を成していてもよい。
また、本実施形態では、単セル6がドーナツ状を成す場合を示したが、これに限定されるものではなく、単セル6を小径の円板状を成すものとしてセル板2の取付け領域に複数配置したり、単セル6を扇形状を成すものとしてフレームを介してセル板2の取付け領域に取付けたりすることも可能である。
さらに、本実施形態では、セルスタック11を収容するケース本体12の間口形状が、円形状を成す場合を示したが、これに限定されるものではなく、例えば、セルスタック11を収容するケース本体12の間口形状が、六角形状を成していてもよい。
さらにまた、上記した実施形態では、ケース本体12とセルスタック11との間における隙間のうちのガス導入口12a及びガス排出口12bを除く全周にわたって充填材16を設置しているが、ケース12とセルスタック11との間における隙間のうちのケース本体12のガス導入口12a近傍及びガス排出口12b近傍のみに充填材16を設けるようにしてもよい。
上記した燃料電池A2では、ガス抵抗体としてガラスウール19を採用して、このガラスウール19をガス排出口12bに発泡金属19Aを介して固定した場合を示したが、これに限定されるものではない。
他の構成としては、例えば、図10(a)に示すように、ガス抵抗体としてアルミナを主成分とした多孔質セラミックス29Aを採用して、この多孔質セラミックス29をガス排出口12bにセラミックス接着剤を介して固定した構成にしてもよい。
また、図10(b)に示すように、ガス抵抗体として直径0.5mmの小穴を多数有する板厚0.6mmのパンチングボード29Bを採用して、このパンチングボード29Bをセルスタック11と接触しないようにしてガス排出口12bに溶接により固定してもよい。
この際、空気の流れを妨げるガス抵抗体は、ケース本体12におけるガス排出口12bに設ける場合に限定されるものではなく、例えば、図11(a)に示すように、ガス排出口12bに接続する排出管18にガス抵抗体としてのオリフィス29Cを設けたり、図11(b)に示すように、ガス排出口12bに接続する排出管18にガス抵抗体としての電磁弁29Dを設けたりすることも可能である。
図12〜14は、本発明の第三の実施形態に係る燃料電池を示している。図12は、本発明の第三の実施形態に係る燃料電池を示す平面説明図である。また、図13は、図12に示すO−B線位置に沿う断面図、図14は、図12に示すO−C線に沿う断面図である。
本実施形態に係る燃料電池A3は、SUS310製のケース本体72(板厚0.5mm)に二つのガス導入口72a及び一つのガス排出口72bを設置した構成のものであり、二つのガス導入口72aの各幅の和W1を、ガス排出口72bの総口幅寸法W2よりも大きく設定している。
なお、72A,72Aは上述したものと同等のガス導入部であり、また、72Bはガス排出部である。
本実施形態では、図13に示すように、セルスタック11を構成する複数のセルユニット1の間隔に合わせて成形した板厚0.1mmの金属波板76に、セラミックスシート77をガラス接着剤で貼り付けて成るものをガス流規制部としている。
このガス流規制部は、セルスタック11の外周部分に嵌め込んだ状態でケース本体72にスポット溶接により固定されている。
また、本実施形態では、図14に示すように、気孔径100μm,気孔率50%,板厚1mmの気孔率が大きいパンチングボード79Aの両端に、気孔径10μm,気孔率30%,厚さ1mmの気孔率が小さいSUS310S製発泡金属79Bをシーム溶接で接合して成るものをガス抵抗体としている。
このガス抵抗体は、ガス排出口72bの側壁にレーザ溶接により固定してあり、この際、セルスタック11のガス排出口72bに面する外周部分には、塗布焼成により形成されたガラスコート79Cが配置してある。
本実施形態の燃料電池A3においても、セルスタック11とケース本体72との間における隙間s1に、金属波板76及びセラミックスシート77から成るガス流規制部を設けているうえ、ケース本体72におけるガス導入口72aの総口幅寸法W1をガス排出口72bの総口幅寸法W2よりも大きく設定している。
これにより、ケース本体72のガス導入口72aから導入した空気が、ケース本体72とセルスタック11との間の隙間s1よりもセルスタック11の互いに重なり合うセルユニット1の間の集電体15の部分に流れやすくなる。
従って、セル板2に保持された単セル6の部分に対する空気の供給量が大幅に増加することとなり、したがって、十分な発電出力が得られることとなる。
また、上記した燃料電池A3では、空気がセルユニット1間の面内に流れやすくなる分だけ、空気が均一に分配されることとなり、定常発電時におけるユニット間面内の温度分布が平準化されて、起動運転時や負荷変動時の耐熱衝撃性が向上することとなる。
さらに、上記した燃料電池A3では、ケース本体72におけるガス排出口72bの側壁に、気孔率が大きいパンチングボード79Aの両端に気孔率が小さい発泡金属79Bを接合して成るガス抵抗体及びガラスコート79Cを配置している。これにより、ケース本体72のガス排出口72bにおける排出圧が高まることとなって、空気をセルユニット1間の面内により行き渡らせ得ることとなる。
次に、本発明に係る燃料電池と、比較例に係る燃料電池との定常発電時における空気(カソードガス)の流れのシミュレーションについて説明する。
本発明に係る燃料電池は、ガス導入口の総口幅寸法W1がガス排出口の総口幅寸法W2よりも広いケース(W1=80mm,W2=20mm、図3参照)を有している。
比較例に係る燃料電池は、ガス導入口の総口幅寸法W1がガス排出口の総口幅寸法W2よりも狭いケース(W1=20mm,W2=80mm)を有している。
このシミュレーションで使用したガス条件を表1に示し、シミュレーション結果を図15〜図18に示す。図15及び図16は、本発明の燃料電池及び比較例の燃料電池の各カソードガス速度ノルム分布をそれぞれ示しており、図17及び図18は、本発明の燃料電池及び比較例の燃料電池の各カソードガス温度分布をそれぞれ示している。
Figure 0005299836
図15及び図16のシミュレーション結果に示すように、ガス導入口の総口幅寸法W1がガス排出口の総口幅寸法W2よりも狭い比較例の燃料電池では、本発明に係る燃料電池と比べてセルスタックの当接部の風下側でカソードガス速度ノルムが小さくなっている。すなわち、カソードガス流速が遅くなっており、面内ガス流量分布の均一性が損なわれていることが判る。
また、図17及び図18のシミュレーション結果に示すように、カソードガス温度が最大となる排出口付近において、本発明に係る燃料電池が約800℃であるのに対して、比較例の燃料電池では約900℃となっている。
すなわち、本発明の燃料電池がカソードガス最大温度を100℃程度低くし得ることが判る。加えて、ガス導入口幅が排出口幅よりも広い本発明の燃料電池の方が、比較例の燃料電池と比べて、ガス導入口付近における局所的な温度の急変を抑え得ることが判る。従って、ケース本体のガス導入口の総口幅寸法W1をガス排出口の総口幅寸法W2よりも広くすることで、ユニット間面内の温度分布を平準化できることが実証できた。
ところで、ケース本体のガス導入口及びガス排出口の各口幅寸法に上記した特徴を有しているのに加えて、ガス導入口及びガス排出口の各個数と設置部位にも特徴を有している。さらに後述するように、ガス導入口やガス排出口に整流板を設けることは、ガス導入口の数やガス排出口の数を増やすことに含まれるものとする。
本発明における単セルとしては、電極支持型セル、電解質支持型セル及び多孔質金属支持型セルのいずれでもよい。この単セルを保持するセル板には、単セルとの熱膨張係数を合わせた材料を用いることが望ましい。
例えば、ニッケルとイットリア安定化ジルコニアのサーメットを燃料極に用いた燃料極支持型セルの場合には、燃料極の熱膨張率に近い約10.E−6[1/K]程度の熱膨張率となるフェライト系金属を用いることが望ましく、特に、フェライト系金属の中でもSUS430やCrofer22APUを用いることができる。
さらに、セルユニットのセル板及びセパレータ板の各外周部はプレス加工により形成することが望ましく、セル板及びセパレータ板の各々の外周縁部同士の接合には、溶接やロウ付けを用いることができる他、超音波接合法等も用いることができるが、これに限定されるものではない。
さらにまた、セルユニットの各単セル領域の間に配置される集電体には、導電性の多孔体を使用することができる。例えば、金属メッシュや発泡金属体を用いることができる他、金属や電極材料からなる繊維の織物やフェルト等を使用することができ、特に、高温下でも弾性が保たれるインコネル等のNi系合金を使用することができる。
また、高温化でも高い耐酸化性があり、電気的導電性の良いCrofer22APU等の高Cr(19〜25%)含有のステンレス材を用いることもできるが、これらに限定するものではないことは上記と同様である。
本発明の燃料電池のように、すなわち、セルスタックの中心に接続する中心管を備えた燃料電池のように、ケース本体のガス導入口から導入した一方の反応用ガスをセルスタックの互いに重なり合うセルユニット間のユニット外集電体を通してガス排出口に流す場合、ユニット外集電体が位置するセルユニット間の面内に対して、一方の反応用ガスを均一に分配することが難しく、当接部の風下の領域にはとくにガスが流れにくい状況である。
そこで、本発明に係る燃料電池において、セルユニット間の面内に一方の反応用ガスを均一に分配するべく、ケース本体のガス導入口からガス排出口までの流路長さを以下のように設定している。
図19は、高効率運転にて動作させる場合におけるケース本体のガス導入口からガス排出口までの好ましい流路長さの設定要領を示す燃料電池の簡略平面説明図である。
すなわち、図19に示すように、ケース本体12のガス導入口12a(12a’)の中心12i(12i’)から中心軸線O1に向かう線分と当接部23,33との交点をX(X’)とすると共にガス導入口12a(12a’)と隣接するガス排出口12bの中心12oから中心軸線O1に向かう線分と当接部23,33との交点をYとし、ガス導入口12a(12a’)の中心12i(12i’),交点X(X’),交点Y,ガス排出口12bの中心12oを結ぶ流路をP1(P1’)、ガス導入口12a(12a’)及びガス排出口12b間におけるケース本体12の外周板に沿う流路をP2(P2’)とした場合において、流路P1の長さと流路P2の長さとの差の絶対値が、流路P1の長さの40%以下(流路P1’の長さと流路P2’の長さとの差の絶対値が、流路P1’の長さの40%以下)になるように設定することができる。
これは、流路P1(P1’)の長さと流路P2(P2’)の長さとの差の絶対値が、流路P1(P1’)の長さの40%を超えると、ガス導入口12a(12a’)から導入された反応用ガスが排出口12bに至る流路のうち流路長さが短い方へ流れてしまって固体電解質型ユニット間の面内に均一に行き渡らせることが困難になるからである。
仮に、流路P1(P1’)の長さと流路P2(P2’)の長さの差の絶対値が、流路P1(P1’)の長さの40%を超えると、高効率運転のために60%以上のガス利用率にて運転する場合に、ガス導入口12a(12a’)から導入された反応用ガスが排出口12bに至る流路のうち流路長さが長い方に流れたガスの濃度がガス排出口付近で低下して発電効率が低下してしまうことから、流路P1の長さと流路P2の長さとの差の絶対値が流路P1の長さの40%以下にすることにより、高効率にて燃料電池を動作させることができるものである。
ここで、燃料電池を車体に搭載する際には、定常運転時だけでなく、起動運転時や負荷変動時や過負荷時に起因する冷却運転の頻度が非常に高いことから、燃料電池の温度分布のばらつきを緩和させて耐熱衝撃性を向上させる必要がある。
例えば、単セルとセル板とをガラス接合していると、ガス導入口から高温の一方の反応用ガスをケース内に導入して急速過熱を行う起動時には、熱衝撃によってガラス接合部分に不具合が生じる可能性がある。
さらに、燃焼器からの燃焼オフガスをセルスタックへ導入して温度の保持を行っている暖気運転時から出力100%とする負荷変動時に移行する段階においては、セルスタックの温度よりも低温の燃料ガスをセルスタックへ導入すると、単セル(電解質が薄膜の電極支持型セル)面内に大きな温度分布のばらつきが生じて、熱応力により電極と電解質との剥離を招いてしまい、単セルの性能が低下する可能性があった。
そこで、鋭意検討を行った結果、高温(低温)の他方の反応用ガスをケース内に導入する上で、燃料電池材料として最も熱伝導性が悪い材料で構成される単セルに対して、局所的に加熱(冷却)することを防ぐべく、単セルの特徴的な長さと同程度である固体電解質ユニットの半径と中心管の半径との差以上にガス導入口の総口幅寸法を設定すると、単セル自身のサイズと同程度で加熱(冷却)を行うことができるため、上記不具合の発生を回避するのに好適であることを見い出した。
このように、ケース本体におけるガス導入口の総口幅寸法をセルユニットの半径と中心管の半径との差よりも大きく設定すると、セルユニット間の面内の温度分布のばらつき緩和することができる。その結果、セルユニット(単セルとセル板との接合部等の接合箇所)における熱応力が低減することとなって、耐熱衝撃性が向上することとなる。
さらにまた、本発明の燃料電池において、図20に示すように、ケース12がガス導入口12a及びガス排出口12bを一つずつ具備し、このケース12におけるガス導入口12aの幅方向中心12iと、中心軸線O1と、ガス排出口12bの幅方向中心12oとを略同一直線上に位置させた構成とすることができる。この際、図21に示すように、ケース12におけるガス導入口12aの口幅寸法を、セルユニットの半径と当接部の半径との差の二倍以上に設定した構成とすることもできる。
具体的には、ガス導入口12aの幅をW1、ガス排出口12bの幅をW2、ケース本体12の半径をr1、当接部23(33)の半径をr2、ガス導入口12aとガス排出口12bとが成す角度をR、r1−r2=aとした場合、図20に示すように、W1=1.1a,W2=0.9aとしたり、図21に示すように、W1=2a,W2=aとしたり、図22に示すように、W1=2a,W2=a,R=165°としたり、図23に示すように、W1=3.14r1,W2=0.5aとしたりすることができる。
ケースがガス導入口及びガス排出口を一つずつ具備している燃料電池において上記した構成とする理由は、ケースにおけるガス導入口の幅方向中心と、当接部の中心(中心軸線)と、ガス排出口の幅方向中心とが略同一直線上に位置していないと、一方の反応用ガスがセルユニット間の面内に偏って供給されて、発電時の反応熱が面内で偏ることから、面内温度分布に大きなばらつきが生じることとなって、熱応力により単セルの電解質にクラックが入って発電不可能になる恐れがあるからである。
上記したケースにおけるガス導入口の幅方向中心と、当接部の中心(中心軸線)と、ガス排出口の幅方向中心とを略同一直線上に位置させた燃料電池では、ガス導入口及びガス排出口が単数なので、スタック構造体からケースへ伝熱するのを少なく抑えることができ、起動時間の短縮化が図られることとなる。
一方、ケースにおけるガス導入口の口幅寸法を固体酸化物型燃料電池ユニットの半径と中心管の半径との差の二倍以上、従ってまた、セルユニットの半径との当接部の直径との差の二倍以上に設定した燃料電池では、ガス導入口からユニット間に導入されたガスが、中心管、従ってまた、当接部を避けて左右に分流するガス流路において、ガス導入口幅に対してユニット間のガス流路幅を同幅か狭幅させることで、ガス流路幅の拡幅に起因する大きな圧力損失を避けることが可能となり、ポンプロスを低減しつつ面内ガス流量分配性をより向上させ、面内温度分布の均一性を向上させ得ることとなる。
さらにまた、本発明の燃料電池において、ケースが複数のガス導入口及びガス排出口を具備し、このケースにおける複数のガス導入口の各幅方向中心及び当接部の中心を結ぶ線分と、当接部の中心及び上記ガス導入口に最も近傍で隣接するガス排出口の幅方向中心を結ぶ線分とが成す角度をいずれも80°よりも大きく且つ180°を超えない範囲に設定してある構成とすることができる。
上記した構成とする理由は、ケースにおける複数のガス導入口の各幅方向中心及び中心軸線を結ぶ線分と、中心軸線及び上記ガス導入口に最も近傍で隣接するガス排出口の幅方向中心を結ぶ線分とが成す角度が鋭角である場合、ガス導入口から流入する一方の反応用ガスが当接部まで行き渡らずに、ガス導入口に最も近傍で隣接するガス排出口へ流れてしまう。
これを避けるために、ガス導入口とガス排出口との間に整流板を設置しようとすると、単セルを保護する都合上セルユニット間のピッチを広げざるを得ず、結果として発電出力密度が低下してしまうからである。
次に、図24〜35を参照して、複数のガス導入口とガス排出口の幅及び位置関係のパターンを具体的に説明する。図24〜35は、同上のガス導入口とガス排出口の幅及び位置関係のいくつかのパターンを具体的に示す燃料電池の簡略平面説明図である。
図24及び図25に示すように、ケース本体12が二個のガス導入口12a及び一個のガス排出口12bを有していて、二個のガス導入口12aの各幅の和をW1、ガス排出口12bの幅をW2、ケース本体12の半径をr1、当接部23(33)の半径をr2、二個のガス導入口12aとガス排出口12bとがそれぞれ成す角度をR1,R2、r1−r2=aとした場合、図24に示すように、R1=R2=150°,W1=2a,W2=aとしたり、図20に示すように、R1=120°,R2=150°,W1=2a,W2=0.5aとしたりすることができる。
また、図26に示すように、ケース本体12が一個のガス導入口12a及び二個のガス排出口12bを有していて、ガス導入口12aの幅をW1、二個のガス排出口12bの各幅の和をW2、ケース本体12の半径をr1、当接部23(33)の半径をr2、ガス導入口12aと二個のガス排出口12bとがそれぞれ成す角度をR1,R2、r1−r2=aとした場合、R1=160°,R2=150°,W1=1.2a,W2=aとすることができる。
さらに、図27に示すように、ケース本体12がガス導入口12a及びガス排出口12bを二つずつ具備し、これらのガス導入口12a及びガス排出口12bを交互に配置して、ガス導入口12aの各幅方向中心12i及び中心軸線O1を結ぶ線分と、中心軸線O1及びガス導入口12aに最も近傍で隣接するガス排出口12bの幅方向中心12oを結ぶ線分とが成す角度R1,R2をいずれも80°よりも大きく且つ100°を超えない範囲に設定してある構成を採用することができる。
具体的には、二個のガス導入口12aの各幅の和をW1、二個のガス排出口12bの各幅の和をW2、ケース本体12の半径をr1、当接部23(33)の半径をr2、二個のガス導入口12aと二個のガス排出口12bとがそれぞれ成す角度をR1,R2、r1−r2=aとした場合、図27に示すように、R1=R2=90°,W1=3a,W2=1.5aとしたり、図28に示すように、R1=R2=85°,W1=2a,W2=1.1aとしたりすることができる。
この際、ガス導入口12a及びガス排出口12bを並列に配置した場合には、図29に示すように、R1=R2=140°,W1=2a,W2=2aとすることができる。
さらにまた、図30に示すように、ケース本体12が三個のガス導入口12a及び一個のガス排出口12bを有していて、三個のガス導入口12aの各幅の和をW1、ガス排出口12bの幅をW2、ケース本体12の半径をr1、当接部23(33)の半径をr2、ガス排出口12bとこれに隣接する二個のガス導入口12aとがそれぞれ成す角度をR1,R2、r1−r2=aとした場合、R1=130°,R2=150°,W1=2.5a,W2=0.3aとすることができる。
さらにまた、図31に示すように、ケース本体12が一個のガス導入口12a及び三個のガス排出口12bを有していて、ガス導入口12aの幅をW1、三個のガス排出口12bの各幅の和をW2、ケース本体12の半径をr1、当接部23(33)の半径をr2、ガス導入口12aとこれに最も近傍で隣接するガス排出口12bとが成す角度をR、r1−r2=aとした場合、R=120°,W1=3.5a,W2=2.1aとすることができる。
さらにまた、図32に示すように、ケース本他12が三個のガス導入口12a及び二個のガス排出口12bを並列に有していて、三個のガス導入口12aの各幅の和をW1、二個のガス排出口12bの各幅の和をW2、ケース本体12の半径をr1、当接部23(33)の半径をr2、二個のガス排出口12bとこれらに隣接する二個のガス導入口12aとがそれぞれ成す角度をR1,R2、r1−r2=aとした場合、R1=R2=120°,W1=2a,W2=aとすることができる。
さらにまた、図33に示すように、ケース本体12が二個のガス導入口12a及び三個のガス排出口12bを並列に有していて、二個のガス導入口12aの各幅の和をW1、三個のガス排出口12bの各幅の和をW2、ケース12の半径をr1、当接部23(33)の半径をr2、二個のガス導入口12aとこれらに隣接する二個のガス排出口12bとがそれぞれ成す角度をR1,R2、r1−r2=aとした場合、R1=R2=120°,W1=2.2a,W2=aとすることができる。
さらにまた、図34に示すように、ケース本体12が三個のガス導入口12a及び三個のガス排出口12bを並列に有していて、三個のガス導入口12aの各幅の和をW1、三個のガス排出口12bの各幅の和をW2、ケース12の半径をr1、当接部23(33)の半径をr2、互いに隣接する二組のガス導入口12a及びガス排出口12bがそれぞれ成す角度をR1,R2、r1−r2=aとした場合、R1=100°,R2=90°,W1=2.5a,W2=1.4aとすることができる。
上記したように、図24〜34において、複数のガス導入口12aとガス排出口12bの幅及び位置関係のパターンを具体的に示したが、ケース本体12のガス導入口12aとガス排出口12bに接続する導入管17及び排出管18は、必ずしもセルスタックのセルユニットの積層方向と直交する方向に沿わせる必要はない。
例えば、図35に17,18で示すように、セルユニットの積層方向に沿うようにしてケース本体12に接続することができる。
また、導入管17及び排出管18は、必ずしもストレートな管状に限定されるものではなく、図33に示したように、反応用ガスの流入方向上流側から下流側に向けて漸次口径が広がる拡管状に形成してもよい。
さらにまた、本発明に係る燃料電池において、ケースにおけるガス排出口に、一方の反応用ガスの流れを妨げるパンチングボード、多孔質体、メッシュ、織物、不織布、充填材等のガス抵抗体を設けた構成とすることが可能であり、この構成を採用すると、ケースのガス排出口における排出圧が高まるので、一方の反応用ガスをセルユニット間の面内により行き渡らせ得ることとなる。
さらにまた、本発明に係る燃料電池において、ガス抵抗体は電気的に絶縁状態で設けてある構成とすることができ、この場合には、ガス抵抗体によってセルユニット間の絶縁性を向上させ得るので、セルユニット間の漏電が阻止されて発電効率の低下が回避されることとなる。
さらにまた、本発明に係る燃料電池において、ガス抵抗体の気孔率をセルスタックのセルユニット間に位置する集電体の気孔率よりも小さく設定した構成とすることができ、この構成を採用すると、セルユニット間における一方の反応用ガスの圧力変化と比べて、ガス排出時の圧力変化を効果的に高め得るので、面内ガス流量分布の均一性が向上することとなる。
さらにまた、本発明に係る燃料電池において、ガス抵抗体の気孔率を部分的に変化させてある構成とすることが可能であり、この場合には、セルユニットの外周部分を流れる一方の反応用ガスとセルユニットの中心部分を流れる一方の反応用ガスの各流量をガス排出口のガス抵抗体の気孔率でコントロールすることで、面内ガス流量分布及び面内温度分布の均一性の向上を実現し得ることとなる。
さらにまた、本発明の燃料電池では、ケース本体とセルスタックとの間の隙間にガス流規制部を設けることで、この隙間に一方のガスが流れ込むのを阻止して、セルユニット間にある単セル電極面に対して、一方のガスを均一に分配するようにしている。
この際、ガス流規制部には、キャスタブル耐火物や、ポルトランドセメント,アルミナセメント,燐酸セメント,珪酸セメント等の耐火性発泡セメントや、耐火モルタルや、石膏や、セラミックス接着剤や、泡ガラス等の不定形材料や、ガラス繊維,セラミックス繊維,金属繊維から主に構成されるフェルトや、織物や、編物や、これらのコンポジット材料や、金属箔等のシート材又は成型体を使用することができるが、いずれにも限定されるものではない。
ここで、昇温時におけるセルユニットの熱応力を低減させて、セルユニット間に隙間ができないようにするべく、セルスタックを収納するケースには、セルユニットを構成する金属材料と同種の材料を使用し、且つ、ケース本体とセルスタックとの間の隙間に設置するガス流規制部の熱膨張係数と上記金属材料の熱膨張係数との絶対差を10%以内に収めることが好ましい。
しかしながら、ガス流規制部とセルスタックの各セルユニットとを互いに移動可能に接触させてある構成とすれば、セルユニットへ加わる熱応力を低減させることができるので、ガス流規制部として、必ずしもケースやセルスタックとほぼ熱膨張係数が等しい材料を使用する必要はない。なお、「互いに移動可能」は、「相対的に移動可能」と同義である。
この場合、ケース本体の側面とセルスタックとは互いに密接するだけなので、セルスタックを構成する金属材料としてフェライト系金属を使用し、一方、ケースには、高温強度に優れ且つ耐酸化性の高いオーステナイト系金属、特にSUS310Sを使用してもよい。
このように、セルスタックを構成する金属材料とケースの材料との各熱膨張率が異なっていたとしても、ガス流規制部とセルスタックの各セルユニットとを互いに移動可能に接触させるように成すことで、昇温時においてセルユニットに加わる熱応力を減らすことができる。加えて、セルユニットの外周縁部をガス流規制部で保持させるように成すこともできるので、セル板やセパレータ板の薄板化が図られることとなり、その結果、出力密度が向上することとなる。
さらにまた、本発明の燃料電池において、ガス流規制部の気孔率をセルスタックのセルユニット間に位置するユニット外集電体の気孔率よりも小さく設定した構成とすることができ、この構成を採用すると、一方の反応用ガスがセルスタックとケース本体との間の隙間へ流れ込むのを阻止し得るので、セルユニットの単セルに対する一方の反応用ガスの供給量が一層増加することとなり、その結果、発電効率が向上することとなる。
さらにまた、本発明の燃料電池において、ガス流規制部の気孔率をガス抵抗体の気孔率よりも小さく設定した構成とすることが可能であり、この場合、セルユニット間に供給した一方の反応用ガスがセルスタックとケース本体との間の隙間へ流れ込むのを阻止しつつ、ケースのガス排出口に導き得ることとなる。
さらにまた、本発明の燃料電池において、ガス流規制部とセルスタックのセルユニットとを電気的に絶縁した構成とすることができる。
このように、ガス流規制部とセルスタックのセルユニットとを電気的に絶縁してある構成を採用すると、ガス流規制部を介してセルユニット間又はセルユニットとケースとの間の電気絶縁性能を向上させ得ることとなり、その結果、漏電損失が抑制されて発電効率が向上することとなる。
この際、ガス流規制部とセルユニットとを電気的に絶縁する電気絶縁層として、例えば、ケース本体とセルスタックとの間の隙間に合わせて形成した成形体とセラミックスシートを具備し、上記成形体とセルスタックとの間に上記セラミックスシートを挟み込んでなるものを採用し得る。
以上詳細に説明したが、いずれにしても、上記各実施形態において説明した各構成は、それら各実施形態にのみ適用することに限らず、一の実施形態において説明した構成を、他の実施形態に準用若しくは適用し、さらには、それを任意に組み合わせることができるものである。
なお、本発明は上述した実施形態に限るものではなく、次のような変形実施が可能である。
上述した実施形態においては、セルユニット200の当接部261,271の中心軸線O1を通る直径線О2上に、ガス導入口223とガス排出口224の各口幅W1,W2方向中心O3,O4を位置させた例について説明したが、これに限るものではなく、中心O3,O4が直径線О2から多少ずれていてもよい。
また、上述した各実施形態においては、セルユニットのセル板とセパレータとに当接部をそれぞれ一体に突設した構成のものについて説明したが、図36に示す別体にした構成のものを採用することができる。図36は、セルユニットの他例を示す断面図である。
図36に示すセルスタックB1は、セルユニット400のセル板410とセパレータ420に当接部を一体に形成することなく、セルユニット400間に、それらと別体のスペーサ430を介挿して互いを積層した構成のものである。
すなわち、本実施形態における当接部は、セル板410とセパレータ420とは別に形成したものである。
スペーサ430は、隣接する他のセルユニット400との間に上記の間隙sが形成される高さにした円柱形のものであり、これには、上記したものと同等の流路形成体290のガス流入孔とガス流出孔に対応する位置に、それらと同径の貫通孔(いずれも図示しない)が形成されている。
すなわち、セルスタックB1は、隣接する他のセルユニット400との間に上記間隙sを形成する円柱形のスペーサ430を介挿した円盤形に形成されているとともに、それら各セルユニット400を、それらスペーサ430の中心を中心軸線O1に一致させて積層したものである。
上記したセルスタックB1を採用した場合における一方の反応用ガスの流動状態は、次のとおりである。
ガス導入口を介してケース内に流入した一方の反応用ガスは、セルスタックB1の各間隙sを通じてガス排出口に向けて流動し、そのガス排出口を通じてケース本体外に排出される。
このとき、ガス導入口の総口幅寸法を、ガス排出口の総口幅寸法よりも大きく設定していることにより、当該ガス導入口における一方の反応用ガスの流速が抑えられる。これにより、起動運転時の加熱ガスや、負荷変動時の温度調整用ガスを導入する場合において、局所的かつ急激な温度変化を生じさせることを防ぐことができ、耐熱衝撃性を向上させることができる。
また、一方の反応用ガスの圧力損失をガス導入口に比べてガス排出口付近で高くすることができる。
さらに、ガス導入口からセルスタックB1のスペーサ430(中心部分)を回流してガス排出口に流動する流路長と、ガス導入口からセルスタック外周を回流してガス排出口に流動する流路長との差を小さくすることができる。
これに加えて、セルユニットB1間の面内に一方の反応用ガスが均一に分配されることになり、定常発電時におけるセルユニット間面内の温度分布を平準化している。
本発明の第一の実施形態に係る燃料電池の外観斜視図である。 同上の燃料電池の分解斜視図である。 同上の燃料電池の平断面図である。 図1に示すI‐I線に沿う断面図である。 固体電解質型燃料電池ユニットの一部を拡大して示す拡大断面図である。 (a)は本発明の第二の実施形態に係る燃料電池の平断面図、(b)は(a)に示すII−II線に沿う断面図である。 同上の第二の実施形態に係る燃料電池の外観斜視図である。 (a)は同上の第二の実施形態に係る燃料電池の分解斜視図、(b)はガス排出口側の部分断面図である。 (a)は固体電解質型燃料電池ユニットの分解斜視図、(b)は固体電解質型燃料電池ユニットの外観斜視図である。 (a),(b)は、ガス抵抗体の他例を示すガス排出口側の部分断面図である。 (a)は、ガス抵抗体のさらに他例を示すガス排出口側の部分断面図、(b)はそのガス抵抗体を配した燃料電池の外観斜視図である。 本発明の第三の実施形態に係る燃料電池を示す平面説明図である。 図12に示すO−B線に沿う断面図である。 図12に示すO−C線に沿う断面図である。 本発明に係る燃料電池の定常発電時における空気の流れのシミュレーション結果を示すカソードガス速度ノルム分布図である。 比較例に係る燃料電池の定常発電時における空気の流れのシミュレーション結果を示すカソードガス速度ノルム分布図である。 本発明に係る燃料電池の定常発電時における空気の流れのシミュレーション結果を示すカソードガス温度分布図である。 比較例に係る燃料電池の定常発電時における空気の流れのシミュレーション結果を示すカソードガス温度分布図である。 高効率運転にて動作させる場合におけるケース本体のガス導入口からガス排出口までの好ましい流路長さの設定要領を示す燃料電池の簡略平面説明図である。 本発明に係る燃料電池におけるケースのガス導入口とガス排出口の幅及び位置関係の一パターンを具体的に示す簡略平面説明図である。 本発明に係る燃料電池におけるケースのガス導入口とガス排出口の幅及び位置関係の他のパターンを具体的に示す簡略平面説明図である。 本発明に係る燃料電池におけるケースのガス導入口とガス排出口の幅及び位置関係のさらに他のパターンを具体的に示す燃料電池の簡略平面説明図である。 本発明に係る燃料電池におけるケースのガス導入口とガス排出口の幅及び位置関係のさらに他のパターンを具体的に示す燃料電池の簡略平面説明図である。 本発明に係る燃料電池におけるケースのガス導入口とガス排出口の幅及び位置関係のさらに他のパターンを具体的に示す燃料電池の簡略平面説明図である。 本発明に係る燃料電池におけるケースのガス導入口とガス排出口の幅及び位置関係のさらに他のパターンを具体的に示す燃料電池の簡略平面説明図である。 本発明の燃料電池におけるケースのガス導入口とガス排出口の幅及び位置関係のさらに他のパターンを具体的に示す燃料電池の簡略平面説明図である。 本発明に係る燃料電池におけるケースのガス導入口とガス排出口の幅及び位置関係のさらに他のパターンを具体的に示す燃料電池の簡略平面説明図である。 本発明に係る燃料電池におけるケースのガス導入口とガス排出口の幅及び位置関係のさらに他のパターンを具体的に示す燃料電池の簡略平面説明図である。 本発明に係る燃料電池におけるケースのガス導入口とガス排出口の幅及び位置関係のさらに他のパターンを具体的に示す燃料電池の簡略平面説明図である。 本発明に係る燃料電池におけるケースのガス導入口とガス排出口の幅及び位置関係のさらに他のパターンを具体的に示す燃料電池の簡略平面説明図である。 本発明に係る燃料電池におけるケースのガス導入口とガス排出口の幅及び位置関係のさらに他のパターンを具体的に示す燃料電池の簡略平面説明図である。 本発明に係る燃料電池におけるケースのガス導入口とガス排出口の幅及び位置関係のさらに他のパターンを具体的に示す燃料電池の簡略平面説明図である。 本発明の燃料電池におけるケースのガス導入口とガス排出口の幅及び位置関係のさらに他のパターンを具体的に示す燃料電池の簡略平面説明図である。 本発明に係る燃料電池におけるケースのガス導入口とガス排出口の幅及び位置関係のさらに他のパターンを具体的に示す燃料電池の簡略平面説明図である。 本発明に係る燃料電池におけるケースのガス導入口に接続する導入管の他の構成例を示す燃料電池の簡略平面説明図である。 セルユニットの他例を示す断面図である。
符号の説明
1,200,400 固体電解質型燃料電池ユニット(セルユニット)
2 セル板
3 セパレータ板
4,280 ユニット内集電体
6,250 単セル
10 ケース
11,B,B1 スタック構造体(セルスタック)
12 ケース本体
12a ガス導入口
12b ガス排出口
15,300 ユニット外集電体
16 充填材(ガス流規制部)
19 ガラスウール(ガス抵抗体)
21,31 ガス導入孔
22,32 ガス排出孔
29A 多孔質セラミックス(ガス抵抗体)
29B パンチングボード(ガス抵抗体)
29C オリフィス(ガス抵抗体)
29D 電磁弁(制御弁)
76 金属波板(ガス流規制部)
77 セラミックスシート(ガス流規制部)
79A パンチングボード(ガス抵抗体)
79B 発泡金属(ガス抵抗体)
79C ガラスコート(ガス抵抗体)
223 ガス導入口
224 ガス排出口
W1 ガス導入口の総口幅寸法
W2 ガス排出口の総口幅寸法

Claims (17)

  1. 複数の固体電解質型燃料電池ユニットを互いに間隙をもって積層してなるスタック構造体と、これを収容したケースとに、二種類の反応用ガスを互いに分離して流通させることによる発電を行う燃料電池において、
    上記ケースに、二種類の反応用ガスのうちの一方のものを当該ケース内に導入するためのガス導入口と、そのケース内に導入された一方の反応用ガスを排出するためのガス排出口とを、スタック構造体を挟む両側に配設しているとともに、
    上記ガス導入口の総口幅寸法を、ガス排出口の総口幅寸法よりも大きく設定したことを特徴とする燃料電池。
  2. 固体電解質型燃料電池ユニットは、隣接する他の固体電解質型燃料電池ユニットとの間に上記間隙を形成する円筒形の当接部を突出した円盤形に形成されているとともに、それら各固体電解質型燃料電池ユニットを、それら当接部の中心を一軸線上に一致させて積層しており、
    ガス導入口の総口幅寸法を、固体電解質型燃料電池ユニットの半径と当接部の半径との差よりも大きく設定したことを特徴とする請求項1に記載の燃料電池。
  3. ケースには、ガス導入口とガス排出口とが一つずつ形成されており、固体電解質型燃料電池ユニットの当接部の中心を通る直径線上に、ガス導入口とガス排出口の各幅方向中心を位置させていることを特徴とする請求項2に記載の燃料電池。
  4. ケースには、ガス導入口とガス排出口とが一つずつ形成されており、そのガス導入口の口幅寸法を、固体電解質型燃料電池ユニットの半径と、固体電解質型燃料電池ユニットの当接部の半径との差の二倍以上に設定していることを特徴とする請求項2又は3に記載の燃料電池。
  5. ケースには、ガス導入口とガス排出口とがそれぞれ複数形成されており、それらガス導入口の各幅方向中心及び固体電解質型燃料電池ユニットの当接部の中心を結ぶ線分と、当接部の中心及びガス導入口に最も近傍で隣接するガス排出口の幅方向中心を結ぶ線分とが成す角度をいずれも80°よりも大きく且つ180°を超えない範囲に設定していることを特徴とする請求項2に記載の燃料電池。
  6. ケースには、ガス導入口とガス排出口とが2つずつ形成されており、それらガス導入口及びガス排出口を交互に配置して、ガス導入口の各幅方向中心及び当接部の中心を結ぶ線分と、当接部の中心及びガス導入口に最も近傍で隣接するガス排出口の幅方向中心を結ぶ線分とが成す角度をいずれも80°よりも大きくかつ100°を超えない範囲に設定していることを特徴とする請求項2に記載の燃料電池。
  7. ケースに形成されているガス排出口に、これに流入する一方の反応用ガスの流れを妨げるガス抵抗体を配設していることを特長とする請求項1〜6のいずれか1項に記載の燃料電池。
  8. ガス抵抗体を、電気的に絶縁状態で設けていることを特徴とする請求項7に記載の燃料電池。
  9. 固体電解質型燃料電池ユニット間の間隙にユニット外集電体が配設されており、
    ガス抵抗体の気孔率を、ユニット外集電体の気孔率よりも小さく設定していることを特徴とする請求項7又は8に記載の燃料電池。
  10. ガス抵抗体の気孔率を部分的に変化させていることを特徴とする請求項7〜9のいずれか1項に記載の燃料電池。
  11. ケースに形成した複数のガス排出口に排出管がそれぞれ接続されており、その排出管に、これに流入する一方の反応用ガスの流れを妨げるガス抵抗体を配設していることを特徴とする請求項1〜10のいずれか1項に記載の燃料電池。
  12. ケースに形成した複数のガス排出口に排出管がそれぞれ接続されており、その排出管に、
    これに流入する一方の反応用ガスの流量を制御するための制御弁を設けていることを特徴とする請求項1〜10のいずれか1項に記載の燃料電池。
  13. 互いに積層されている固体電解質型燃料電池ユニット間の間隙にユニット外集電体が配設されているとともに、ケースとスタック構造体との間に間隙が形成されており、
    ケースとスタック構造体間の間隙に、ガス導入口から導入した一方の反応用ガスをユニット外集電体を通じてガス排出口に流通させるように規制するガス流規制部を設けていることを特徴とする請求項1〜12のいずれか1項に記載の燃料電池。
  14. ガス流規制部と各固体電解質型燃料電池ユニットとを互いに移動可能に接触させていることを特徴とする請求項13に記載の燃料電池。
  15. ガス流規制部の気孔率を、ユニット外集電体の気孔率よりも小さく設定していることを特徴とする請求項13又は14に記載の燃料電池。
  16. ガス流規制部の気孔率をガス抵抗体の気孔率よりも小さく設定していることを特徴とする請求項13〜15のいずれか1項に記載の燃料電池。
  17. ガス流規制部と固体電解質型燃料電池ユニットとを電気的に絶縁させていることを特徴とする請求項13〜16のいずれか1項に記載の燃料電池。
JP2007261656A 2007-02-01 2007-10-05 燃料電池 Expired - Fee Related JP5299836B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007261656A JP5299836B2 (ja) 2007-02-01 2007-10-05 燃料電池
PCT/JP2008/052001 WO2008093896A1 (en) 2007-02-01 2008-01-31 Fuel cell
US12/518,592 US8304126B2 (en) 2007-02-01 2008-01-31 Fuel cell
EP08704510A EP2127011B1 (en) 2007-02-01 2008-01-31 Fuel cell

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007022915 2007-02-01
JP2007022915 2007-02-01
JP2007261656A JP5299836B2 (ja) 2007-02-01 2007-10-05 燃料電池

Publications (2)

Publication Number Publication Date
JP2008210778A JP2008210778A (ja) 2008-09-11
JP5299836B2 true JP5299836B2 (ja) 2013-09-25

Family

ID=39321437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007261656A Expired - Fee Related JP5299836B2 (ja) 2007-02-01 2007-10-05 燃料電池

Country Status (4)

Country Link
US (1) US8304126B2 (ja)
EP (1) EP2127011B1 (ja)
JP (1) JP5299836B2 (ja)
WO (1) WO2008093896A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4854237B2 (ja) * 2004-10-22 2012-01-18 日産自動車株式会社 固体電解質型燃料電池及びスタック構造体
US8039157B2 (en) * 2004-12-21 2011-10-18 Nissan Motor Co., Ltd. Startup method for fuel cell stack structure, temperature control method for fuel cell stack structure, and fuel cell stack structure
JP5197081B2 (ja) * 2008-03-19 2013-05-15 京セラ株式会社 セルスタック装置および燃料電池モジュール
JP2010108767A (ja) * 2008-10-30 2010-05-13 Nissan Motor Co Ltd 燃料電池、これを用いた燃料電池システム、燃料電池システムの起動絵方法
US9112197B1 (en) * 2009-06-17 2015-08-18 Ravindra Kashyap Fuel cell motor system
US8790850B2 (en) * 2012-03-01 2014-07-29 Institute Of Nuclear Energy Research Current collection apparatus and method of processing for a solid oxide fuel cell thereof
EP3035431B1 (de) * 2014-12-19 2019-04-24 Hexis AG Brennstoffzellenmodul und verfahren zum betrieb eines brennstoffzellenmoduls
US9835382B2 (en) * 2015-09-16 2017-12-05 Acer Incorporated Thermal dissipation module
JP2020520051A (ja) * 2017-05-08 2020-07-02 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティドSaint−Gobain Ceramics And Plastics, Inc. 燃料電池装置
DE102017115878A1 (de) * 2017-07-14 2019-01-17 Elringklinger Ag Brennstoffzellenvorrichtung
CN114050289B (zh) * 2021-10-25 2022-07-01 国家电投集团氢能科技发展有限公司 燃料电池电堆外壳吹扫装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3982961A (en) * 1975-05-02 1976-09-28 United Technologies Corporation Fuel cell stack with an integral ejector for reactant gas recirculation
JPH07249426A (ja) * 1994-03-11 1995-09-26 Toyota Motor Corp 燃料電池およびその製造方法ならびに燃料電池の収納ケース
US5773160A (en) * 1994-06-24 1998-06-30 Ballard Power Systems Inc. Electrochemical fuel cell stack with concurrent flow of coolant and oxidant streams and countercurrent flow of fuel and oxidant streams
US5486430A (en) * 1994-09-01 1996-01-23 Ballard Power Systems Inc. Internal fluid manifold assembly for an electrochemical fuel cell stack array
EP0960448B1 (de) 1997-02-11 2002-04-10 Fucellco, Incorporated Brennstoffzellenstapel mit festen elektrolyten und deren anordnung
US6159629A (en) * 1998-12-17 2000-12-12 Ballard Power Systems Inc. Volume effecient layered manifold assembly for electrochemical fuel cell stacks
US6500578B1 (en) * 2000-04-10 2002-12-31 Hybrid Power Generation Systems, Llc Stacking and manifolding of angularly offset, unitized solid oxide fuel cells
US6677069B1 (en) * 2000-08-18 2004-01-13 Hybrid Power Generation Systems, Llc Sealless radial solid oxide fuel cell stack design
JP4581325B2 (ja) 2002-12-25 2010-11-17 日産自動車株式会社 燃料電池
JP2004362991A (ja) * 2003-06-05 2004-12-24 Honda Motor Co Ltd 燃料電池
JP4617711B2 (ja) 2004-04-30 2011-01-26 日産自動車株式会社 燃料電池
JP2005353421A (ja) * 2004-06-10 2005-12-22 Nissan Motor Co Ltd 燃料電池
FR2876499B1 (fr) * 2004-10-11 2006-12-15 Renault Sas Agencement de conduites d'alimentation et/ou d'evacuation de fluides pour pile a combustible
JP4854237B2 (ja) * 2004-10-22 2012-01-18 日産自動車株式会社 固体電解質型燃料電池及びスタック構造体
US8039157B2 (en) 2004-12-21 2011-10-18 Nissan Motor Co., Ltd. Startup method for fuel cell stack structure, temperature control method for fuel cell stack structure, and fuel cell stack structure
JP4972861B2 (ja) * 2004-12-21 2012-07-11 日産自動車株式会社 燃料電池スタック構造体の起動方法及び燃料電池スタック構造体
JP5035589B2 (ja) 2005-11-22 2012-09-26 日産自動車株式会社 燃料電池
JP2007207505A (ja) * 2006-01-31 2007-08-16 Honda Motor Co Ltd 燃料電池

Also Published As

Publication number Publication date
US20100015503A1 (en) 2010-01-21
WO2008093896A1 (en) 2008-08-07
US8304126B2 (en) 2012-11-06
EP2127011A1 (en) 2009-12-02
JP2008210778A (ja) 2008-09-11
EP2127011B1 (en) 2012-10-24

Similar Documents

Publication Publication Date Title
JP5299836B2 (ja) 燃料電池
AU2002367634B2 (en) Solid oxide fuel cell stack and packet designs
EP1230706B1 (en) Radial planar fuel cell stack construction for solid electrolytes
US20060166053A1 (en) Solid oxide fuel cell assembly with replaceable stack and packet modules
KR100976506B1 (ko) 고체산화물 연료전지용 전극 지지체와 일체형 단위 셀 및이를 이용한 스텍 제작 방법
EP1788656B1 (en) Solid oxide fuel cell stack with a gas flow regulating member between casing and stack
EP2586088B1 (en) Fuel cell
JP5156766B2 (ja) 燃料電池組立体
JP5127389B2 (ja) 燃料電池及び燃料電池スタック
JP2003163016A (ja) 電気化学装置および電気化学装置用導電性接続部材
JP4617711B2 (ja) 燃料電池
JP2015018622A (ja) 燃料電池ユニット、燃料電池システム及びハイブリッド発電システム
JPH08279364A (ja) 固体電解質型燃料電池
JP5007915B2 (ja) 燃料電池
JP3972240B2 (ja) 固体電解質型燃料電池
JP2004288493A (ja) 固体電解質型燃料電池組立体
JP4282109B2 (ja) 固体電解質型燃料電池のスタック構造
JP2008123710A (ja) 燃料電池
KR101301330B1 (ko) 연료 전지용 막전극 접합체
JP3123785B2 (ja) 燃料電池
JP5294145B2 (ja) 燃料電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130527

R150 Certificate of patent or registration of utility model

Ref document number: 5299836

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130609

LAPS Cancellation because of no payment of annual fees