JP5298658B2 - 燃料電池セパレータ及びその製造方法並びに燃料電池 - Google Patents

燃料電池セパレータ及びその製造方法並びに燃料電池 Download PDF

Info

Publication number
JP5298658B2
JP5298658B2 JP2008160438A JP2008160438A JP5298658B2 JP 5298658 B2 JP5298658 B2 JP 5298658B2 JP 2008160438 A JP2008160438 A JP 2008160438A JP 2008160438 A JP2008160438 A JP 2008160438A JP 5298658 B2 JP5298658 B2 JP 5298658B2
Authority
JP
Japan
Prior art keywords
fuel cell
cooling water
cell separator
cross
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008160438A
Other languages
English (en)
Other versions
JP2010003508A (ja
Inventor
茂高 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2008160438A priority Critical patent/JP5298658B2/ja
Publication of JP2010003508A publication Critical patent/JP2010003508A/ja
Application granted granted Critical
Publication of JP5298658B2 publication Critical patent/JP5298658B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Description

この発明は、燃料電池セパレータ及びその製造方法並びに燃料電池に関する。
たとえば特許文献1に開示された従来の燃料電池セパレータは、金属プレートの凸部が重なり合う部分の両凹部にシール要素を形成すると共に、シール要素の両側に存在する二枚の金属プレート相互の両凹部により内側の空所及び外側の空所が形成されており、少なくとも両空所の一方の空所には弾性材製シール部材が充填されて閉鎖領域が形成されていた。
特開2007−200751号公報
しかしながら、上述の燃料電池は、冷却水流路を流れる冷却水が不均一となり、セル面内における温度ムラが発生してしまっていた。
本発明は、このような従来の問題点に着目してなされたものであり、セル面内を均質に冷却できる燃料電池セパレータ及びその製造方法並びに燃料電池を提供することを目的とする。
本発明は以下のような解決手段によって前記課題を解決する。
本発明は、片面に形成され、膜電極接合体に反応ガスを供給する反応ガス流路と、その反対面に前記反応ガス流路と交互に並ぶように形成され冷却水が流れる冷却水流路と、を備え、冷却水流路のうち、裏側でガス拡散層及び補強フィルム層の両方に当接する冷却水流路の幅が、発電面に当接する冷却水流路の幅よりも広い幅広冷却水流路と、幅広冷却水流路に設けられその幅広冷却水流路の流路断面積が幅狭冷却水流路の流路断面積と等しくなるように、幅広冷却水流路の流路断面積を縮小する断面積縮小部材を有する、ことを特徴とする。
本発明によれば、幅広冷却水流路の流路断面積が幅狭冷却水流路の流路断面積と略等しくなるように、幅広冷却水流路の流路断面積を縮小する断面積縮小部材を、幅広冷却水流路に設けることで、冷却水がほぼ一様にセパレータ内を流れるようになる。したがって燃料電池を一様に冷却でき冷却ムラを防止できる。
以下では図面等を参照して本発明を実施するための最良の形態について説明する。
(第1実施形態)
図1は、本発明による燃料電池の外観を示す図であり、図1(A)は斜視図、図1(B)は側面図である。
燃料電池スタック1は、積層された複数の発電セル10と、集電プレート20と、絶縁プレート30と、エンドプレート40と、4本のテンションロッド50とを備える。
発電セル10は、燃料電池の単位セルである。各発電セル10は、1ボルト(V)程度の起電圧を生じる。各発電セル10の構成の詳細については後述する。
集電プレート20は、積層された複数の発電セル10の外側にそれぞれ配置される。集電プレート20は、ガス不透過性の導電性部材、たとえば緻密質カーボンで形成される。集電プレート20は、上辺の一部に出力端子21を備える。燃料電池スタック1は、出力端子21によって、各発電セル10で生じた電子e-を取り出して出力する。
絶縁プレート30は、集電プレート20の外側にそれぞれ配置される。絶縁プレート30は、絶縁性の部材、たとえばゴムなどで形成される。
エンドプレート40は、絶縁プレート30の外側にそれぞれ配置される。エンドプレート40は、剛性のある金属材料、たとえば鋼などで形成される。
一方のエンドプレート40(図1(A)では、左手前のエンドプレート40)には、アノード供給口41aと、アノード排出口41bと、カソード供給口42aと、カソード排出口42bと、冷却水供給口43aと、冷却水排出口43bとが設けられている。本実施形態では、アノード排出口41b、冷却水排出口43b及びカソード供給口42aは図中右側に設けられている。またカソード排出口42b、冷却水供給口43a及びアノード供給口41aは図中左側に設けられている。
テンションロッド50は、エンドプレート40の四隅付近にそれぞれ配置される。燃料電池スタック1は内部に貫通した孔(不図示)が形成されている。この貫通孔にテンションロッド50が挿通される(図1(B)参照)。テンションロッド50は、剛性のある金属材料、たとえば鋼などで形成される。テンションロッド50は、発電セル10同士の電気短絡を防止するため、表面には絶縁処理されている。このテンションロッド50にナット51が螺合する(図1(B)参照)。テンションロッド50とナット51とが燃料電池スタック1を積層方向に締め付ける。
アノード供給口41aにアノードガスとしての水素を供給する方法としては、例えば水素ガスを水素貯蔵装置から直接供給する方法、又は水素を含有する燃料を改質して改質した水素含有ガスを供給する方法などがある。なお、水素貯蔵装置としては、高圧ガスタンク、液化水素タンク、水素吸蔵合金タンクなどがある。水素を含有する燃料としては、天然ガス、メタノール、ガソリンなどがある。また、カソード供給口42aに供給するカソードガスとしては、一般的に空気が利用される。
燃料電池スタック1は、図1(B)に示すように、積層された複数の発電セル10の両側に、集電プレート20と、絶縁プレート30と、エンドプレート40と、が配置される。
また燃料電池スタックの片側の絶縁プレート30の外側には、サブエンドプレート41が配置され、さらにそのサブエンドプレート41の外側にたとえば皿バネなどからなる変動吸収部材42が配置され、その外側にエンドプレート40が設けられる。このような積層構造の燃料電池スタックを4本のテンションロッド50で積層方向に締め付ける。このように変動吸収部材42が設けられているので、燃料電池スタックに作用する面圧の変動を吸収可能である。
図2は発電セルの構造を示す図であり、図2(A)は分解図、図2(B)は断面図である。
発電セル10は、膜電極接合体(Membrane Electrode Assembly;MEA)11の両面に、アノードセパレータ12a及びカソードセパレータ12bが配置される構造である。
MEA11は、イオン交換膜からなる電解質膜111の両面に電極触媒層112が形成される。この電極触媒層112の上にガス拡散層(Gas Diffusion Layer;GDL)113が形成される。
電極触媒層112は、たとえば白金が担持されたカーボンブラック粒子で形成される。
GDL113は、十分なガス拡散性及び導電性を有する部材、たとえばカーボン繊維で形成される。
アノード供給口41aから供給されたアノードガスは、このGDL113aを流れてアノード電極触媒層112(112a)と反応し、アノード排出口41bから排出される。
カソード供給口42aから供給されたカソードガスは、このGDL113bを流れてカソード電極触媒層112(112b)と反応し、カソード排出口42bから排出される。
アノードセパレータ12aは、GDL113a及びシール14aを介してMEA11の片面(図2(A)の裏面、図2(B)の下面)に重ねられる。カソードセパレータ12bは、GDL113b及びシール14bを介してMEA11の片面(図2(A)の表面、図2(B)の上面)に重ねられる。アノードセパレータ12a及びカソードセパレータ12bは、たとえばステンレスなどの金属製のセパレータ基体がプレス成型されて、一方の面に反応ガス流路が形成され、その反対面に反応ガス流路と交互に並ぶように冷却水流路が形成される。図2(B)に示すようにアノードセパレータ12a及びカソードセパレータ12bが重ねられて、冷却水流路が形成される。
MEA11、アノードセパレータ12a及びカソードセパレータ12bには、それぞれ孔41a,41b,42a,42b,43a,43bが形成されており、これらが重ねられて、アノード供給口(アノード供給マニホールド)41a、アノード排出口(アノード排出マニホールド)41b、カソード供給口(カソード供給マニホールド)42a、カソード排出口(カソード排出マニホールド)42b、冷却水供給口(冷却水供給マニホールド)43a及び冷却水排出口(冷却水排出マニホールド)43bが形成される。
図2(B)に示すように、MEA11の反応領域にGDL113(113a,113b)が形成される。そしてMEA11の反応領域の外側のシール領域には補強フィルム層114(114a,114b)が形成される。
セパレータ12のシール領域には、シール14(14a,14b)が配置される。本実施形態ではセパレータ12として、いわゆるストレート流路のタイプを例示する。
シール14(14a,14b)は、たとえばシリコーンゴム、エチレンプロピレンゴム(ethylene propylene diene monomer;EPDM)、フッ素ゴムなどのゴム状弾性材である。シール14(14a,14b)は、補強フィルム層114(114a,114b)に当接する。
図3は本発明の解決課題を説明する図であり、図3(A)はGDLが設計寸法よりも小さかった場合を示し、図3(B)は補強フィルム層が設計寸法よりも小さかった場合を示す。
次に本発明の理解を容易にするために、本発明の解決課題を説明する。
理想的には、電解質膜111に形成されるGDL113及び補強フィルム層114が設計寸法通りであり、設計寸法通りに位置することが望ましいが、現実的には寸法バラツキや積層位置ズレが生じてしまう。
仮にGDL113が設計寸法よりも小さいときには、図3(A)に示すように反応ガスの圧力変動によって電解質膜111が伸縮して破損する可能性がある。
また仮に補強フィルム層114が設計寸法よりも小さいときには、図3(B)に示すようにGDL113を流れた反応ガスが外部に漏れてしまう可能性がある。
したがってGDL113及び補強フィルム層114の大きさがバラついても、GDL113及び補強フィルム層114を確実に挟持できなければならない。
図4は、本発明による燃料電池セパレータの第1実施形態を示す図であり、図4(A)は単品断面図、図4(B)は積層断面図である。
上記説明の通り、GDL113及び補強フィルム層114の寸法バラツキや積層位置ズレがあっても、両者を確実に挟持する必要がある。そこで本実施形態では、セパレータ12に形成される冷却水流路のうち、裏側がGDL113及び補強フィルム層114へ当接する冷却水流路121の幅t1が、GDL113だけに当接する冷却水流路122の幅t2よりも広くなるようにした。なお幅t1の具体的な値は、GDL113及び補強フィルム層114の位置バラツキ誤差のデータに基づいて設定すればよい。このようにすることで、GDL113及び補強フィルム層114の寸法バラツキや積層位置ズレがあっても、冷却水流路121の裏側でGDL113及び補強フィルム層114を確実に挟持することができる。
また幅広の冷却水流路121には、冷却水流路121の流路断面積S1が幅狭の冷却水流路122の流路断面積S2と略等しくなるように、冷却水流路121の流路断面積を縮小するスペーサ(断面積縮小部材)15を配した。このスペーサ15の材料はシール14と同じである。そして本実施形態では、スペーサ15は、冷却水流路121の片壁面にのみ沿って形成される、
以下ではスペーサ15を設けた理由を述べる。
図5は、冷却水流量の平均流量に対する比率を、燃料電池セパレータの位置ごとに示した図である。図中実線は本実施形態であり、一点破線は図6に示した比較形態である。
ここで図6を参照して比較形態について説明する。比較形態は、幅広の冷却水流路121に、スペーサ15が配されていない。それ以外は本実施形態と同一構成である。
図5に示されているように、本実施形態によれば冷却水がほぼ一様にセパレータ内を流れる。したがって燃料電池を一様に冷却でき冷却ムラを防止できる。この結果、電解質膜111のドライアウトを抑制でき、耐久性及び信頼性を向上できるのである。
これに対して比較形態では、最外部の幅広冷却水流路121に冷却水が多く流れてしまって、それ以外の冷却水流路122との流量差が大きい。このような構成では燃料電池の冷却ムラが生じてしまい、電解質膜111の耐久性及び信頼性が劣ってしまう。
また本実施形態では、最外周の冷却水流路121の断面積を必要な断面積まで減少させることができるので、熱容量の大きい冷却水量を減少させ、低温起動性を向上させることができる。
加えて、最外周の冷却水流路121の断面の一部のみがシール材で埋められており、全体が埋められている構造ではない。全体が埋められた構造であると、シール成形後に弾性体が縮んだときに力が大きく、セパレータが変形して、シール性が悪化する可能性があるが、本実施形態では、全体が埋められている構造ではないので、シール成形後に弾性体が縮んだときの力が小さくセパレータを変形せず、シール性が向上する。
(第2実施形態)
図7は、本発明による燃料電池セパレータの第2実施形態を示す断面図である。
本実施形態のセパレータ12の冷却水流路121の片壁面には貫通孔が形成されており、スペーサ15は、シール14と一体成型されている。具体的には型で保持された後、ゴム等の材料が流し込まれればよい。そのようにすればそのゴムが貫通孔を通って反対側に流れ込むので、スペーサ15及びシール14を一体成型可能である。
このようすればスペーサ15を簡易に形成することができ、かつ第1実施形態と同様に燃料電池を一様に冷却することができる。
(第3実施形態)
図8は、本発明による燃料電池セパレータの第3実施形態を示す断面図である。
本実施形態のスペーサ15−1,15−2は、冷却水流路121の両壁面に沿って形成される。なおこのようにしても、冷却水流路121の流路断面積S1が冷却水流路122の流路断面積S2と略等しい。
このように構成しても、第1実施形態と同様に燃料電池を一様に冷却できる。
(第4実施形態)
図9は、本発明による燃料電池セパレータの第4実施形態を示す断面図である。
本実施形態のセパレータ12のシール領域には、シール14と反対側に突設され、積層状態で隣設するセパレータと互いに当接する当接部123が形成される。
そしてスペーサ15及びシール14が、セパレータ12のシール領域まで延設されるように形成した。
図10は第4実施形態の効果を説明する図であり、図10(A)はこの第4実施形態であり、図10(B)は比較形態である。
図10(B)に示した比較形態のように、当接部123が形成されていないと、積層状態でテンションロッド50で積層方向に締め付けて荷重をかけると、図10(B)に示したようにセパレータ12が変形するおそれがある。このようになってはシール14がシール性能を発揮できない可能性がある。
しかしながら、本実施形態のセパレータ12には、積層状態で隣設するセパレータと互いに当接する当接部123が形成されているので、積層状態でテンションロッド50で積層方向に締め付けて荷重をかけても、セパレータ12が変形することがない。したがってシール14が確実にシール性能を発揮できる。またこのように構成することで、スペーサ15を、セパレータ12のシール領域まで延設形成できるようになった。したがって隣接するスペーサ15同士の当接面積を大きくでき、冷却水流路121を流れる冷却水が外部に漏れてしまうことを確実に防止できるのである。
またシール14が、セパレータ基体の外周を回り込んでセパレータ12のシール領域まで延設されており、セパレータ基体の外周を覆うようになっている。このように構成すれば、外部との絶縁性を確保することができる。したがって、別途絶縁部品を設ける必要がないので、部品点数、部品コスト及び組立て工数の削減することができる。
(第5実施形態)
図11は、本発明による燃料電池セパレータの第5実施形態を示す断面図である。
第4実施形態では、図9に示されているように、シール14の中心軸が当接部123の中心軸とズレていた。本実施形態では、シール14の中心軸が当接部123の中心軸と一致するように構成した。このようにすれば、テンションロッド50による締め付けて荷重が当接部123にかかりやすくなり、セパレータ12が第4実施形態よりも一層変形しにくくなる。
(第6実施形態)
図12は本発明による燃料電池セパレータの第6実施形態を示す図であり、図12(A)は燃料電池セパレータの平面図、図12(B)は図12(A)のB−B断面図、図12(C)は図12(A)のC−C断面図である。なお発明構造が明瞭になるように、図12(A)は燃料電池セパレータの基体を単品で、すなわちシール成形前の状態で図示した。
本実施形態では、図12(A)のように当接部123を円形に形成した。そしてその当接部123を、セパレータ12のシール領域の長手方向に沿って所定間隔ごとに配置した。
このように構成すれば、第4実施形態よりもさらに大きい面積で、スペーサ15同士が当接するようになり、冷却水流路121を流れる冷却水が外部に漏れてしまうことを一層確実に防止できるのである。
なお第5実施形態のように、シール14の中心軸が当接部123の中心軸と一致するように構成すれば、セパレータ12が一層変形しにくくなる。
(第7実施形態)
図13は本発明による燃料電池セパレータの第7実施形態を示す図であり、図13(A)は燃料電池セパレータの平面図、図13(B1)は図13(A)のB1−B1断面図、図13(B2)は図13(A)のB2−B2断面図、図13(C)は図13(A)のC−C断面図である。
本実施形態では、シール14のうち、当接部123に位置する部分の高さH1が、それ以外の部分に位置する部分の高さH2よりも高くなるようにした。
シール14のうち、当接部123に位置する部分は、当接部123内に吸収される分だけ多くのシール材が必要となる。シール厚が異なると、シールの弾性が変わってしまって、シール反力に差異が生じてしまう。
しかしながら、本実施形態のように、シール14のうち、当接部123に位置する部分の高さH1が、それ以外の部分に位置する部分の高さH2よりも高くなるようにして形状を変更すれば、シールの弾性がほぼ一様になり、シール反力が揃うこととなり、局所的に過度に潰しすぎたりすることによってシール耐久性が悪化してしまうことを防止できるとともに、シール性を安定させることができる。なお本実施形態は、シール14の弾性がシール14の全体で一様であることにポイントがあり、形状は適宜変更すればよい。
(製造方法)
図14は、本発明による燃料電池セパレータの製造方法を示す図である。
最初に、流路成型用のプレス型を使用して板状のセパレータ基体に、反応ガス流路及び冷却水流路になる凹凸をプレス成型する(図14(B);流路成型工程#101)。
次に、シール成型用の型でセパレータ基体を固定する(図14(C);基体固定工程#102)。
続いて、セパレータ基体の外周側からシール材料を注入する(図14(D);材料注入工程#103)。
そして型から取りだして燃料電池セパレータが完成する。
当接部123は、セパレータ12のシール領域の長手方向に沿って所定間隔ごとに配置されているので、図14(E−2)の下面図に示されているようにシール材料はその間を流れてスペーサ15になる。
図15は、燃料電池セパレータの比較形態の製造方法を示す図である。
仮に図15に示されているような点注入(ポイントゲート)とすると、ヒケ及び注入口エグレなどによる変形にともなってシール性が悪化しやすい。
しかしながら、本実施形態では図14に示したようにセパレータ基体の外周側からシール材料を注入するフィルムゲート方式としたので、ヒケ及び注入口エグレなどによる変形にともなうシール性の悪化を防止できるのである。また、シール溝と最外周冷却水流路をつなぐ連通孔も不要であるので、セパレータプレス成型時の応力集中による割れを防ぐこともできる。
以上説明した実施形態に限定されることなく、その技術的思想の範囲内において種々の変形や変更が可能であり、それらも本発明の技術的範囲に含まれることが明白である。
本発明による燃料電池の外観を示す図である。 発電セルの構造を示す図である。 本発明の解決課題を説明する図である。 本発明による燃料電池セパレータの第1実施形態を示す図である。 冷却水流量の平均流量に対する比率を、燃料電池セパレータの位置ごとに示した図である。 比較形態について説明する図である。 本発明による燃料電池セパレータの第2実施形態を示す断面図である。 本発明による燃料電池セパレータの第3実施形態を示す断面図である。 本発明による燃料電池セパレータの第4実施形態を示す断面図である。 第4実施形態の効果を説明する図である。 本発明による燃料電池セパレータの第5実施形態を示す断面図である。 本発明による燃料電池セパレータの第6実施形態を示す図である。 本発明による燃料電池セパレータの第7実施形態を示す図である。 本発明による燃料電池セパレータの製造方法を示す図である。 燃料電池セパレータの比較形態の製造方法を示す図である。
符号の説明
1 燃料電池スタック
11 膜電極接合体
111 電解質膜
113 ガス拡散層
114 補強フィルム層
12 セパレータ
121 幅広冷却水流路
122 幅狭冷却水流路
14 シール
15 スペーサ(断面積縮小部材)

Claims (12)

  1. 電解質膜の表裏両面に形成されたガス拡散層とその外側に形成された補強フィルム層とを備える膜電極接合体に当接する燃料電池セパレータであって、
    片面に形成され、膜電極接合体に反応ガスを供給する反応ガス流路と、
    その反対面に前記反応ガス流路と交互に並ぶように形成され、冷却水が流れる冷却水流路と、
    を備え、
    前記冷却水流路のうち、裏側でガス拡散層及び補強フィルム層の両方に当接する冷却水流路の幅が、発電面に当接する冷却水流路の幅よりも広い幅広冷却水流路と、
    前記幅広冷却水流路に設けられ、その幅広冷却水流路の流路断面積が幅狭冷却水流路の流路断面積と等しくなるように、幅広冷却水流路の流路断面積を縮小する断面積縮小部材を有する、
    ことを特徴とする燃料電池セパレータ。
  2. 請求項1に記載の燃料電池セパレータにおいて、
    前記幅広冷却水流路を形成する壁面のうち外側の壁面に形成された貫通孔を備え、
    前記断面積縮小部材は、前記貫通孔を介して、シール領域に設けられて前記補強フィルム層に当接して反応ガスが外部に漏れることを防止するシールと一体に形成される、
    ことを特徴とする燃料電池セパレータ。
  3. 請求項1又は請求項2に記載の燃料電池セパレータにおいて、
    前記断面積縮小部材は、セパレータ基体の外周を回り込んで外周を覆うように延設されたシールと一体に形成される、
    ことを特徴とする燃料電池セパレータ。
  4. 請求項1から請求項3までのいずれか1項に記載の燃料電池セパレータにおいて、
    前記シール領域に前記シールと反対側に突設され、積層状態で隣設するセパレータと互いに当接する当接部をさらに備え、
    前記断面積縮小部材は、前記シール領域まで延設形成される、
    ことを特徴とする燃料電池セパレータ。
  5. 請求項4に記載の燃料電池セパレータにおいて、
    前記当接部は、セパレータ基体と一体形成される、
    ことを特徴とする燃料電池セパレータ。
  6. 請求項4又は請求項5に記載の燃料電池セパレータにおいて、
    前記シールは中心軸が前記当接部の中心軸と一致する、
    ことを特徴とする燃料電池セパレータ。
  7. 請求項4から請求項6までのいずれか1項に記載の燃料電池セパレータにおいて、
    前記当接部は、前記シール領域の長手方向に沿って所定間隔ごとに形成される、
    ことを特徴とする燃料電池セパレータ。
  8. 請求項7に記載の燃料電池セパレータにおいて、
    前記シールは、前記当接部に位置する部分の高さが、それ以外の部分に位置する部分の高さよりも高い、
    ことを特徴とする燃料電池セパレータ。
  9. 請求項1から請求項8までのいずれか1項に記載の燃料電池セパレータにおいて、
    前記断面積縮小部材は、前記幅広冷却水流路の片壁面にのみ沿って形成される、
    ことを特徴とする燃料電池セパレータ。
  10. 請求項1から請求項8までのいずれか1項に記載の燃料電池セパレータにおいて、
    前記断面積縮小部材は、前記幅広冷却水流路の両壁面に沿って形成される、
    ことを特徴とする燃料電池セパレータ。
  11. 請求項1から請求項10までのいずれか1項に記載の燃料電池セパレータを製造する燃料電池セパレータ製造方法において、
    反応ガス流路及び冷却水流路になる凹凸が形成されたセパレータ基体を上型及び下型で固定する基体固定工程と、
    前記セパレータ基体の外周側からシール材料を注入する材料注入工程と、
    を含むことを特徴とする燃料電池セパレータ製造方法。
  12. 電解質膜の表裏両面に形成されたガス拡散層とその外側に形成された補強フィルム層とを備える膜電極接合体と、
    前記膜電極接合体に当接するように配置され、片面に形成されて膜電極接合体に反応ガスを供給する反応ガス流路と、その反対面に前記反応ガス流路と交互に並ぶように形成されて冷却水が流れる冷却水流路と、を有し、前記冷却水流路のうち、裏側でガス拡散層及び補強フィルム層の両方に当接する冷却水流路の幅が、発電面に当接する冷却水流路の幅よりも広い幅広冷却水流路と、前記幅広冷却水流路に設けられ、その幅広冷却水流路の流路断面積が幅狭冷却水流路の流路断面積と等しくなるように、幅広冷却水流路の流路断面積を縮小する断面積縮小部材を有する燃料電池セパレータと、
    を含む燃料電池。
JP2008160438A 2008-06-19 2008-06-19 燃料電池セパレータ及びその製造方法並びに燃料電池 Active JP5298658B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008160438A JP5298658B2 (ja) 2008-06-19 2008-06-19 燃料電池セパレータ及びその製造方法並びに燃料電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008160438A JP5298658B2 (ja) 2008-06-19 2008-06-19 燃料電池セパレータ及びその製造方法並びに燃料電池

Publications (2)

Publication Number Publication Date
JP2010003508A JP2010003508A (ja) 2010-01-07
JP5298658B2 true JP5298658B2 (ja) 2013-09-25

Family

ID=41585075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008160438A Active JP5298658B2 (ja) 2008-06-19 2008-06-19 燃料電池セパレータ及びその製造方法並びに燃料電池

Country Status (1)

Country Link
JP (1) JP5298658B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5439212B2 (ja) * 2010-02-08 2014-03-12 本田技研工業株式会社 燃料電池
JP5920594B2 (ja) * 2013-04-17 2016-05-18 トヨタ自動車株式会社 燃料電池
DE202014008157U1 (de) * 2014-10-08 2016-01-20 Reinz-Dichtungs-Gmbh Elektrochemisches System
WO2016195045A1 (ja) * 2015-06-03 2016-12-08 日産自動車株式会社 燃料電池用金属セパレータ構造体、該セパレータ構造体を用いた燃料電池及び燃料電池スタック
KR101876061B1 (ko) * 2016-09-29 2018-07-06 현대자동차주식회사 연료전지 스택
EP4091787A4 (en) * 2020-01-16 2024-04-17 Nok Corp MOULDING TOOL AND SEALING ELEMENT
CN113363617B (zh) * 2021-06-18 2022-07-08 中国第一汽车股份有限公司 一种电池液冷板组件、动力电池总成及电动车辆

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4473598B2 (ja) * 2004-02-20 2010-06-02 本田技研工業株式会社 燃料電池
JP4780940B2 (ja) * 2004-07-29 2011-09-28 東海ゴム工業株式会社 固体高分子型燃料電池用セル
JP5438918B2 (ja) * 2008-05-22 2014-03-12 本田技研工業株式会社 燃料電池用電解質・電極構造体及び燃料電池

Also Published As

Publication number Publication date
JP2010003508A (ja) 2010-01-07

Similar Documents

Publication Publication Date Title
US8999596B2 (en) Fuel cell
US8551671B2 (en) Fuel cell fluid sealing structure
JP5298658B2 (ja) 燃料電池セパレータ及びその製造方法並びに燃料電池
US9660276B2 (en) Fuel cell including separator with outer ends placed inward of fluid passages formed in frame
US9099693B2 (en) Fuel cell and fuel cell separator
US8999592B2 (en) Fuel cell
US8232023B2 (en) Fuel cell and method of manufacturing same
JP2005190706A (ja) 燃料電池スタック構造
US10014548B2 (en) Fuel cell
US20110053030A1 (en) Fuel Cell with Gas Diffusion Layer having Flow Channel and Manufacturing Method Thereof
US8846264B2 (en) Fuel cell comprising offset connection channels
JP5029813B2 (ja) 燃料電池用セパレータ
US9343752B2 (en) Fuel cell stack
JP2008171613A (ja) 燃料電池
US20120258378A1 (en) Fuel cell
US10003099B2 (en) Fuel cell stack
JP5098652B2 (ja) 燃料電池
JP2009187778A (ja) 燃料電池スタックおよびその製造方法
JP2006302702A (ja) セパレータのシール構造およびシール付きセパレータの製造方法
JP6511647B2 (ja) ガスケット−セパレータ部材接合体とその製造方法およびガスケット−セパレータ部材接合体を用いた燃料電池
US20120295176A1 (en) Fuel cell
US9373852B2 (en) Fuel cell stack
JP2017130436A (ja) 反応物質による流路の通過を制限するためのバイポーラプレート
JP5286702B2 (ja) 燃料電池およびその製造方法
US20220384831A1 (en) Fuel cell and fuel cell stack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130603

R150 Certificate of patent or registration of utility model

Ref document number: 5298658

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150