JP5296578B2 - Automatic specimen tilting device for electron microscope - Google Patents

Automatic specimen tilting device for electron microscope Download PDF

Info

Publication number
JP5296578B2
JP5296578B2 JP2009056438A JP2009056438A JP5296578B2 JP 5296578 B2 JP5296578 B2 JP 5296578B2 JP 2009056438 A JP2009056438 A JP 2009056438A JP 2009056438 A JP2009056438 A JP 2009056438A JP 5296578 B2 JP5296578 B2 JP 5296578B2
Authority
JP
Japan
Prior art keywords
sample
electron
electron diffraction
image
tilt angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009056438A
Other languages
Japanese (ja)
Other versions
JP2010212067A (en
Inventor
修司 川合
光英 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP2009056438A priority Critical patent/JP5296578B2/en
Publication of JP2010212067A publication Critical patent/JP2010212067A/en
Application granted granted Critical
Publication of JP5296578B2 publication Critical patent/JP5296578B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an automatic sample inclination device for an electron microscope capable of automatically adjusting a sample inclination angle. <P>SOLUTION: The transmission electron microscope has at least: a control device for controlling movements of a sample movement mechanism 7 and a sample inclination mechanism 8; an imaging electron optical system 6 for imaging transmitted electrons transmitted from a sample 3 by using a multistage electron lens and a deflector; an image acquisition means 9 for an image-signalling imaged image; a memory means 11 for memorizing an image signal; and a computer 10 for analyzing the image signal memorized in the memory means 11 by reading out the image signal. The computer 10 memorizes the memory means 11 by acquiring an electron diffraction figure acquired in a current crystal orientation of the sample with a plurality of different sample inclination angles, and calculates an electron diffraction spot coordinate for each acquired electron diffraction figure, and calculates the center and a radius of an approximation circle by making circle approximation of an electron diffraction spot on the basis of the electron diffraction spot coordinate. Then, the sample inclination angle for minimizing the radius of the circle is set up to be the most suitable inclination angle. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は電子顕微鏡の自動試料傾斜装置に関し、更に詳しくは電子線を試料に照射し、試料を透過した透過電子を結像電子光学系により拡大結像した像を得る透過型電子顕微鏡に属し、結晶性試料の結晶方位と電子線入射方向とを合わせるために自動で試料傾斜角を調整する電子顕微鏡の自動試料傾斜装置に関する。   The present invention relates to an automatic sample tilting device for an electron microscope, and more particularly, to a transmission electron microscope that irradiates a sample with an electron beam and obtains an image obtained by enlarging and forming a transmission electron transmitted through the sample by an imaging electron optical system, The present invention relates to an automatic sample tilting apparatus for an electron microscope that automatically adjusts a sample tilt angle in order to match a crystal orientation of a crystalline sample with an electron beam incident direction.

透過型電子顕微鏡(TEM)は、試料に電子線を照射し、試料を透過した透過電子を結像電子光学系により拡大結像し、高分解能観察を行なうことができる。また、結晶性試料では、電子回折図形により材料の分子や原子の配列を調べることができる。更に、試料から放出されたX線を検出することにより元素分析もできるなど、応用技術も多い。最近では、電子線を試料上で走査し、その透過電子を走査信号と同期しながら検出することにより走査透過電子像モードを利用する機会も増えてきている。   A transmission electron microscope (TEM) can perform high-resolution observation by irradiating a sample with an electron beam and enlarging an image of transmission electrons that have passed through the sample with an imaging electron optical system. In the case of a crystalline sample, the arrangement of molecules and atoms of the material can be examined by an electron diffraction pattern. Furthermore, there are many applied technologies such as elemental analysis by detecting X-rays emitted from a sample. Recently, an opportunity to use a scanning transmission electron image mode by scanning an electron beam on a sample and detecting the transmission electrons in synchronization with a scanning signal is increasing.

ところで、透過型電子顕微鏡で電子回折図形などの観察を行なう場合、試料の結晶に対して入射電子線の方向を調整する必要がある。また、近年では、半導体試料などの微細な寸法測長を行なう前にシリコン結晶で電子線入射方位を合わせる場合がある。これは、試料の傾斜角と電子線の入射方向の微小なずれが測長誤差を招くことが危惧されているためである。   By the way, when observing an electron diffraction pattern or the like with a transmission electron microscope, it is necessary to adjust the direction of the incident electron beam with respect to the crystal of the sample. Further, in recent years, there are cases where the electron beam incident orientation is aligned with a silicon crystal before fine dimension measurement of a semiconductor sample or the like is performed. This is because a slight deviation between the tilt angle of the sample and the incident direction of the electron beam may cause a measurement error.

この試料と電子線の入射方位合わせは、機械的に直交する2軸方向に独立した傾斜機構により試料を傾斜して行なう。試料傾斜角の調整は、通常、オペレータが傾斜角を変化させながら電子回折図形の変化を見ながら手動で行なう。   This sample and electron beam incident orientation alignment is performed by inclining the sample by a mechanically independent tilting mechanism in two axial directions perpendicular to each other. The adjustment of the sample tilt angle is normally performed manually while the operator changes the tilt angle and observes the change in the electron diffraction pattern.

この種の装置として、任意の試料傾斜角で取得した電子回折図形から現在の結晶方位を数学的に算出し、観察目的の結晶方位に移行するために必要な傾斜角を数学的に計算する装置が知られている(例えば特許文献1参照)。   This type of device is a device that mathematically calculates the current crystal orientation from an electron diffraction pattern acquired at an arbitrary sample tilt angle, and mathematically calculates the tilt angle required to shift to the crystal orientation for the purpose of observation. Is known (see, for example, Patent Document 1).

また、2軸の試料回転機構を有する透過電子顕微鏡用試料ホルダにおいて、試料の観察位置の初期の結晶方位と基準方位の関係を回転機構の回転機機構から求め、その方位関係から目標の方位までの回転角を計算し、計算機の指令により回転角成分だけ2軸の回転機構を同時に操作し、試料を傾斜させる技術が知られている(例えば特許文献2参照)。   Also, in a transmission electron microscope sample holder having a biaxial sample rotation mechanism, the relationship between the initial crystal orientation of the sample observation position and the reference orientation is obtained from the rotating machine mechanism of the rotation mechanism, and from the orientation relationship to the target orientation A technique is known in which the rotation angle is calculated, the two-axis rotation mechanism is operated simultaneously by the rotation angle component according to a command from the computer, and the sample is tilted (see, for example, Patent Document 2).

特開平11−288679号公報(段落0013〜0028、図1)JP-A-11-288679 (paragraphs 0013 to 0028, FIG. 1) 特開平6−103948号公報(段落0018〜0020、図1)JP-A-6-103948 (paragraphs 0018 to 0020, FIG. 1)

現在、試料の結晶方位を合わせるための試料傾斜角の調整は、ほとんどの場合、オペレータの手動操作により調整されている。この操作は、熟練オペレータの場合、数秒で調整可能であるが、慣れていないオペレータは、調整に非常に多くの時間を有する。電子顕微鏡の電子回折モードでは、非常に強力な電子線(スポット)が蛍光板や像取得装置に入射するため、蛍光板の焼き付きや像取得装置の損傷を防ぐためにも短時間で調整することが望ましい。   At present, the adjustment of the sample inclination angle for adjusting the crystal orientation of the sample is mostly adjusted by an operator's manual operation. This operation can be adjusted in a few seconds for an experienced operator, but an unfamiliar operator has a great deal of time for adjustment. In the electron diffraction mode of the electron microscope, a very strong electron beam (spot) is incident on the fluorescent screen or the image acquisition device. Therefore, it is desirable to make adjustment in a short time in order to prevent the fluorescent screen from being burned in or the image acquisition device from being damaged.

前記した特許文献1の手法では、十分に薄い試料でなければ十分な調整精度が得られない。例えば、半導体試料の多くはFIB(集束イオンビーム装置)で微細加工した試料を観察試料とするため、オペレータのスキルにもよるが試料の膜厚が100nm以上であることが多く、膜厚によっては十分な調整精度が得られない場合がある。   With the method disclosed in Patent Document 1, sufficient adjustment accuracy cannot be obtained unless the sample is sufficiently thin. For example, since most of the semiconductor samples are microfabricated samples using an FIB (focused ion beam apparatus) as the observation sample, the film thickness of the sample is often 100 nm or more depending on the skill of the operator. In some cases, sufficient adjustment accuracy cannot be obtained.

また、計算に必要なさまざまな材料の格子定数などのデータを予めコンピュータに登録しておかなくてはならない。従って、コンピュータに登録されていない材料では自動で試料傾斜角を調整できず、汎用性がない。更に、オペレータは毎回、材料の種類や結晶方位をコンピュータに指示しなければならず、操作性が悪いという問題があった。   In addition, data such as lattice constants of various materials necessary for calculation must be registered in a computer in advance. Therefore, the sample tilt angle cannot be automatically adjusted for materials not registered in the computer, and there is no versatility. Furthermore, the operator has to instruct the computer about the type of material and the crystal orientation every time, and there is a problem that the operability is poor.

本発明はこのような課題に鑑みてなされたものであって、試料の結晶方位を合わせるための試料傾斜角を自動で調整することができる電子顕微鏡の自動試料傾斜装置を提供することを目的としている。   The present invention has been made in view of such problems, and an object thereof is to provide an automatic sample tilting device for an electron microscope capable of automatically adjusting the sample tilt angle for aligning the crystal orientation of the sample. Yes.

(1)請求項1記載の発明は、電子線を試料に照射する照射電子光学系と、試料をX方向,Y方向,Z方向に移動させる試料移動機構と、試料を直交する2軸で傾斜可能な試料傾斜機構と、これら試料移動機構及び試料傾斜機構の動作を制御する制御装置と、試料を透過した透過電子を多段の電子レンズと偏向器を用いて結像させる結像電子光学系と、結像した像を像信号化する像取得手段と、前記像信号を記憶する記憶手段と、該記憶手段に記憶された像信号を読み出して解析するコンピュータとを少なくとも有する透過電子顕微鏡において、前記コンピュータは、試料傾斜軸別に、異なる複数の試料傾斜角で試料の現在の結晶方位で得られる電子回折図形を取得して前記記憶手段に記憶し、取得した電子回折図形別に電子回折スポット座標を算出し、電子回折スポット座標を基に、電子回折スポットを円近似することにより、近似円の中心と半径を算出し、円の半径が最小となる試料傾斜角をフィッティングにより算出し、その試料傾斜角を最適試料傾斜角とし、前記制御装置は、前記試料傾斜機構を用いて試料を最適試料傾斜角へ移動させることを特徴とする。 (1) The invention described in claim 1 is an irradiation electron optical system that irradiates a sample with an electron beam, a sample moving mechanism that moves the sample in the X direction, the Y direction, and the Z direction, and the sample is tilted by two orthogonal axes A possible sample tilting mechanism, a control device for controlling the operations of the sample moving mechanism and the sample tilting mechanism, and an imaging electron optical system that forms an image of transmitted electrons that have passed through the sample using a multistage electron lens and a deflector A transmission electron microscope having at least image acquisition means for converting the image formed into an image signal, storage means for storing the image signal, and a computer for reading and analyzing the image signal stored in the storage means; The computer acquires electron diffraction patterns obtained with the current crystal orientation of the sample at different sample tilt angles for each sample tilt axis, stores them in the storage means, and stores electron diffraction spot positions for each acquired electron diffraction pattern. It calculates, on the basis of electron diffraction spot position, by an electron diffraction spots circle approximation, to calculate the center and radius of the approximate circle is calculated by fitting the specimen rotation angle the radius of the circle is a minimum, the sample The tilt angle is set to the optimum sample tilt angle, and the control device moves the sample to the optimum sample tilt angle using the sample tilt mechanism.

(2)請求項2記載の発明は、請求項1とは異なる最適試料傾斜角の算出方法を用いたもので、その特徴は、前記コンピュータは、前記電子回折図形別に算出した近似円の中心座標の軌跡を1次関数で近似し、1次関数直線とダイレクトスポット中心座標とが最短距離となる1次関数直線上の交点を算出し、この交点を取りうる試料傾斜角を数学的に算出し、その試料傾斜角を最適試料傾斜角とし、前記制御装置は前記試料傾斜機構を用いて試料を前記最適試料傾斜角へ移動させる、という点にある。 (2) The invention described in claim 2 uses a method of calculating an optimum specimen tilt angle different from that of claim 1, characterized in that the computer has center coordinates of approximate circles calculated for each electron diffraction pattern. Is approximated by a linear function, the intersection point on the linear function line that makes the shortest distance between the linear function line and the direct spot center coordinate is calculated, and the sample inclination angle that can take this intersection point is calculated mathematically. , and the specimen rotation angle and the optimum sample tilt angle, the control device causes the movement of the sample to the optimum sample tilt angle using the specimen rotation mechanism, Ru near that.

(3)請求項3記載の発明は、試料傾斜角を変化させながら異なる複数の電子回折図形を取得する際、試料傾斜により試料傾斜前の観察視野位置と試料傾斜後の観察視野位置との微小位置変化を補正するため、試料傾斜軸別に試料傾斜角変化に対する観察視野位置補正データ又は補正計算式を予め用意し、試料傾斜角変化と同時に視野位置補正量を、前記試料移動機構を用いて補正することを特徴とする。   (3) In the invention according to claim 3, when acquiring a plurality of different electron diffraction patterns while changing the sample tilt angle, the observation field position before the sample tilt and the observation field position after the sample tilt are minute due to the sample tilt. In order to correct the position change, observation field position correction data or correction calculation formula for the sample tilt angle change is prepared for each sample tilt axis in advance, and the field position correction amount is corrected simultaneously with the sample tilt angle change using the sample moving mechanism. It is characterized by doing.

(1)請求項1記載の発明によれば、試料傾斜軸別に、異なる複数の試料傾斜角で試料の現在の結晶方位で得られる電子回折図形を取得して前記記憶手段に記憶し、取得した電子回折図形別に電子回折スポット座標を算出し、電子回折スポット座標を基に、電子回折スポットを円近似することにより、近似円の中心と半径を算出し、円の半径が最小となる試料傾斜角を最適試料傾斜角とすることにより、試料の結晶方位を合わせるための試料傾斜角を自動で調整することができる。 (1) According to the invention described in claim 1, for each sample tilt axis, an electron diffraction pattern obtained with the current crystal orientation of the sample at a plurality of different sample tilt angles is acquired, stored in the storage means, and acquired. Calculate the electron diffraction spot coordinates for each electron diffraction pattern, calculate the center and radius of the approximate circle by approximating the electron diffraction spot to a circle based on the electron diffraction spot coordinates, and the sample tilt angle that minimizes the radius of the circle Is set to the optimum sample tilt angle, the sample tilt angle for adjusting the crystal orientation of the sample can be automatically adjusted.

(2)請求項2記載の発明によれば、電子回折図形別に算出した近似円の中心座標の軌跡を1次関数で近似し、1次関数直線とダイレクトスポット中心座標とが最短距離となる1次関数直線上の交点を算出し、この交点を取りうる試料傾斜角を数学的に算出し、その試料傾斜角を最適試料傾斜角とすることにより、試料の結晶方位を合わせるための試料傾斜角を自動で調整することができる。
(2) According to the invention described in claim 2, the locus of the center coordinates of the approximate circle calculated for each electron diffraction pattern is approximated by a linear function, and the linear function straight line and the direct spot center coordinates are the shortest distance 1 Calculating the intersection point on the linear function line, mathematically calculating the sample tilt angle that can take this intersection point, and setting the sample tilt angle as the optimum sample tilt angle, the sample tilt angle for aligning the crystal orientation of the sample Can be adjusted automatically.

(3)請求項3記載の発明によれば、試料傾斜軸別に試料傾斜角変化に対する観察視野位置補正データ又は補正計算式を予め用意し、試料傾斜角変化と同時に視野位置補正量を、前記試料移動機構を用いて補正することにより、試料の結晶方位を合わせるための試料傾斜角を自動で調整することができる。   (3) According to the invention described in claim 3, observation field position correction data or a correction calculation formula for the change in the sample tilt angle is prepared in advance for each sample tilt axis, and the field position correction amount is set simultaneously with the change in the sample tilt angle. By correcting using the moving mechanism, it is possible to automatically adjust the sample inclination angle for aligning the crystal orientation of the sample.

本発明の一実施例を示す構成図である。It is a block diagram which shows one Example of this invention. 電子回折図形を示す図である。It is a figure which shows an electron diffraction pattern. 電子回折図形の取得と取得した電子回折図形の円近似の説明図である。It is explanatory drawing of circular approximation of acquisition of an electron diffraction pattern and the acquired electron diffraction pattern. ラベリングの説明図である。It is explanatory drawing of labeling. ダイレクトスポットの仮決定の説明図である。It is explanatory drawing of temporary determination of a direct spot. 円近似の状態を示す図である。It is a figure which shows the state of a circle approximation. 円近似の中心の軌跡から最適傾斜角を算出する説明図である。It is explanatory drawing which calculates the optimal inclination angle from the locus | trajectory of the center of circular approximation. 塗りつぶし領域にもう一方の傾斜軸の最適位置があることの説明図である。It is explanatory drawing that there exists the optimal position of the other inclination axis in a filling area | region.

以下、本発明の実施の形態について、詳細に説明する。
(実施例1)
図1は本発明の一実施例を示す構成図である。図において、1は透過型電子顕微鏡(TEM)である。2は該TEM1内に設けられた電子を放出するための電子銃である。該電子銃2としては、例えば熱電子放出形や電界放出形などがある。3は試料、4は該試料3をその上に載せる試料台である。5は試料3の上部に形成された、電子銃2から放出された電子線を試料3に照射するための照射電子光学系、6は該試料3の下部に形成された、試料3を透過した電子線を多段の電子レンズと偏向器を用いて結像させる結像電子光学系である。
Hereinafter, embodiments of the present invention will be described in detail.
Example 1
FIG. 1 is a block diagram showing an embodiment of the present invention. In the figure, reference numeral 1 denotes a transmission electron microscope (TEM). Reference numeral 2 denotes an electron gun provided in the TEM 1 for emitting electrons. Examples of the electron gun 2 include a thermionic emission type and a field emission type. 3 is a sample, and 4 is a sample stage on which the sample 3 is placed. 5 is an irradiation electron optical system for irradiating the sample 3 with the electron beam emitted from the electron gun 2 formed on the upper part of the sample 3, and 6 is transmitted through the sample 3 formed on the lower part of the sample 3. This is an imaging electron optical system that forms an electron beam using a multistage electron lens and a deflector.

7は試料台4をXYZ方向に移動させる試料移動機構、8は試料台4を直交する2軸で傾斜可能な試料傾斜機構である。9はTEM1の下部に設けられたCCDカメラなどの像取得装置である。10はTEM1の全体の動作を制御するコンピュータである。該コンピュータ10内において、11は像取得装置9で取得した像信号をデジタルデータ化して記憶する像信号メモリ、12は該像信号メモリ11の内容を表示する像表示機構である。該像表示機構12としては、例えば液晶表示器などが用いられる。   7 is a sample moving mechanism for moving the sample stage 4 in the XYZ directions, and 8 is a sample tilting mechanism capable of tilting the sample stage 4 with two axes orthogonal to each other. Reference numeral 9 denotes an image acquisition device such as a CCD camera provided under the TEM 1. A computer 10 controls the overall operation of the TEM 1. In the computer 10, 11 is an image signal memory for storing the image signal acquired by the image acquisition device 9 as digital data, and 12 is an image display mechanism for displaying the contents of the image signal memory 11. For example, a liquid crystal display is used as the image display mechanism 12.

13は像信号メモリ11内に記憶されている像信号データを読み出して所定の解析・演算を行なう解析部、14は該解析部13の出力を受けて前記試料移動機構7及び試料傾斜機構8の動作を制御する試料位置補正装置である。このように構成されたシステムは、異なる試料傾斜角で複数の電子回折図形を検出することにより、目的の結晶方位に移動するために必要な前記試料傾斜機構の傾斜方向及び傾斜角を算出する。以下、本発明を詳細に説明する。   Reference numeral 13 denotes an analysis unit that reads out image signal data stored in the image signal memory 11 and performs predetermined analysis / calculation. Reference numeral 14 denotes an output of the analysis unit 13 that receives the output of the sample moving mechanism 7 and the sample tilting mechanism 8. It is a sample position correcting device for controlling the operation. The system configured as described above calculates a tilt direction and a tilt angle of the sample tilt mechanism necessary for moving to the target crystal orientation by detecting a plurality of electron diffraction patterns at different sample tilt angles. Hereinafter, the present invention will be described in detail.

電子回折モードにおいて、結晶性試料に電子線を照射すると、例えば図2に示すような電子回折図形を得ることができる。この電子回折図形は、試料の結晶方位を反映する。(a)は試料傾斜角補正済み、(b)は試料傾斜角未補正の回折図形である。通常、試料を電子顕微鏡の試料室に挿入した直後は、例えば(b)に示すような電子回折図形が得られる。図2の場合、目的とする結晶方位はSi[110]であり、(a)のような電子回折図形となるように前記2軸試料傾斜機構8を用いて調整し、結晶方位を合わせる。図の(a)は傾斜角補正された図形であり、電子回折スポットが規則正しく並んでいる。(b)は傾斜角補正されない図形であり、電子回折スポットが不規則に並んでいる。   When the crystalline sample is irradiated with an electron beam in the electron diffraction mode, for example, an electron diffraction pattern as shown in FIG. 2 can be obtained. This electron diffraction pattern reflects the crystal orientation of the sample. (A) is a diffraction pattern in which the sample tilt angle is corrected, and (b) is a diffraction pattern in which the sample tilt angle is not corrected. Usually, immediately after the sample is inserted into the sample chamber of the electron microscope, for example, an electron diffraction pattern as shown in (b) is obtained. In the case of FIG. 2, the target crystal orientation is Si [110], and the crystal orientation is adjusted by adjusting the biaxial sample tilt mechanism 8 so as to obtain an electron diffraction pattern as shown in FIG. (A) of the figure is a figure whose tilt angle is corrected, and electron diffraction spots are regularly arranged. (B) is a figure in which the tilt angle is not corrected, and the electron diffraction spots are irregularly arranged.

上述の試料傾斜を自動で行なうには、図3の(a)に示すように、2軸試料傾斜機構8の一方を変化させながら、複数の電子回折図形を像取得装置9で取得し、コンピュータ10の像信号メモリ11に記憶させる。像信号メモリ11に記憶された各電子回折図形は、それぞれ読み出されてコンピュータ10上で2値化することにより電子回折スポットとバックグラウンドとを分離する。2値化すると、回折スポットがある場所は白に、それ以外の領域は黒に2値化される。   In order to automatically perform the above-described sample tilt, as shown in FIG. 3A, a plurality of electron diffraction patterns are acquired by the image acquisition device 9 while changing one of the two-axis sample tilt mechanisms 8, and a computer 10 image signal memories 11 are stored. Each electron diffraction pattern stored in the image signal memory 11 is read out and binarized on the computer 10 to separate the electron diffraction spot and the background. When binarization is performed, a place where a diffraction spot is present is binarized to white, and other areas are binarized to black.

2値化により得られた電子回折スポットは、解析部13によりラベリングや輝度重心算出など画像処理を行ない各電子回折スポットの中心座標を算出する。図4はラベリングの説明図である。(a)はラベリング前の2値化画像である。この画像にラベリングを施すと、(b)に示すような画像が得られる。ラベリングが検出されると、コンピュータ10は検出した各スポットの輝度重心を算出する。(1)式,(2)式は輝度重心x座標をGx、輝度重心y座標をGyとしたものである。対象スポット以外を0階調とし、その画像をfijとすると、(1)式,(2)式で輝度重心を算出することができる。 The electron diffraction spot obtained by binarization is subjected to image processing such as labeling and luminance center of gravity calculation by the analysis unit 13 to calculate the center coordinates of each electron diffraction spot. FIG. 4 is an explanatory diagram of labeling. (A) is a binarized image before labeling. When this image is labeled, an image as shown in (b) is obtained. When labeling is detected, the computer 10 calculates the luminance centroid of each detected spot. In equations (1) and (2), the luminance centroid x coordinate is Gx and the luminance centroid y coordinate is Gy. If the gradation other than the target spot is set to 0 gradation and the image is f ij , the luminance centroid can be calculated by the expressions (1) and (2).

次に、解析部13は、(b)に示すように、各回折図形別に電子回折スポット中心座標から円近似を行ない、円の中心と半径とを算出する。ここで、円近似は一般的な数学的手法、例えば最小二乗法を用いて行なうことができる。   Next, as shown in (b), the analysis unit 13 performs circle approximation from the electron diffraction spot center coordinates for each diffraction pattern, and calculates the center and radius of the circle. Here, the circular approximation can be performed using a general mathematical method, for example, a least square method.

次に、得られた近似円の半径を電子回折図形を取得した際の2軸試料傾斜機構8の試料傾斜角でプロットすると(c)に示すようなものとなる。図において、横軸は傾斜角、縦軸は画素数で表した半径(r)である。近似円の半径は、試料傾斜角が最適位置、即ち目的の結晶方位位置において最小となる。図では、傾斜角−1.8°で半径rが最小となっていることが分かる。   Next, when the radius of the obtained approximate circle is plotted by the sample tilt angle of the biaxial sample tilt mechanism 8 when the electron diffraction pattern is acquired, it becomes as shown in (c). In the figure, the horizontal axis represents the inclination angle, and the vertical axis represents the radius (r) represented by the number of pixels. As for the radius of the approximate circle, the sample inclination angle is minimum at the optimum position, that is, the target crystal orientation position. In the figure, it can be seen that the radius r is minimum at an inclination angle of −1.8 °.

最適傾斜角が求まったら、試料位置補正部14は、2軸試料傾斜機構8が算出した傾斜角となるように設定する。近似円の半径は、試料傾斜角が最適位置、即ち目的の結晶方位位置において、最小となる。そこで、前記プロットを多項式などでフィッティングし、近似円の半径が最小となる2軸試料傾斜機構8の試料傾斜角を算出する。コンピュータ10は、算出した試料傾斜角となるように2軸試料傾斜機構8を用いて設定する。次に、2軸試料傾斜機構8のもう一方の軸に関して、上記と同様の手法を用いて2軸試料傾斜機構8の最適な試料傾斜角を算出、設定する。   When the optimum tilt angle is obtained, the sample position correcting unit 14 sets the tilt angle calculated by the biaxial sample tilt mechanism 8. The radius of the approximate circle is minimum at the sample tilt angle at the optimum position, that is, the target crystal orientation position. Therefore, the plot is fitted with a polynomial or the like, and the sample tilt angle of the biaxial sample tilt mechanism 8 that minimizes the radius of the approximate circle is calculated. The computer 10 sets the biaxial sample tilt mechanism 8 so that the calculated sample tilt angle is obtained. Next, with respect to the other axis of the biaxial sample tilting mechanism 8, the optimum sample tilt angle of the biaxial sample tilting mechanism 8 is calculated and set using the same method as described above.

以上説明したように、実施例1によれば、試料傾斜軸別に、異なる複数の試料傾斜角で試料の現在の結晶方位で得られる電子回折図形を取得して前記記憶手段に記憶し、取得した電子回折図形別に電子回折スポット座標を算出し、電子回折スポット座標を基に、電子回折スポットを円近似することにより、近似円の中心と半径を算出し、円の半径が最小となる試料傾斜角を最適傾斜角とすることにより、試料の結晶方位を合わせるための試料傾斜角を自動で調整することができる。
(実施例2)
図1記載の通り、電子銃2から放出された電子線を試料3に照射するための照射電子光学系5と、試料3をX方向(左右方向),Y方向(上下方向),Z方向(高さ方向)に移動させる試料移動機構7と、試料を直交する2軸で傾斜可能な試料傾斜機構8と、これら試料移動機構7及び試料傾斜機構8の動作を制御する制御装置(コンピュータ10)、試料3を透過した電子線を多段の電子レンズと偏光器を用いて結像する結像電子光学系6と、結像した像をCCDカメラなどの像取得装置9を用いて像信号化し、コンピュータ10のメモリ11などに記憶させる手段と、像信号を解析するコンピュータを少なくとも有する透過電子顕微鏡において、異なる試料傾斜角で複数の電子回折図形を解析することにより、目的の結晶方位に移動するために必要な前記試料傾斜機構8の傾斜方向及び傾斜角を算出するものである。
As described above, according to Example 1, for each sample tilt axis, an electron diffraction pattern obtained with the current crystal orientation of the sample at different sample tilt angles is acquired, stored in the storage means, and acquired. Calculate the electron diffraction spot coordinates for each electron diffraction pattern, calculate the center and radius of the approximate circle by approximating the electron diffraction spot to a circle based on the electron diffraction spot coordinates, and the sample tilt angle that minimizes the radius of the circle By setting the optimum tilt angle, the sample tilt angle for adjusting the crystal orientation of the sample can be automatically adjusted.
(Example 2)
As shown in FIG. 1, the irradiation electron optical system 5 for irradiating the sample 3 with the electron beam emitted from the electron gun 2 and the sample 3 in the X direction (left and right direction), Y direction (up and down direction), Z direction ( A sample moving mechanism 7 for moving the sample in the height direction), a sample tilting mechanism 8 capable of tilting the sample by two orthogonal axes, and a control device (computer 10) for controlling the operations of the sample moving mechanism 7 and the sample tilting mechanism 8 , An imaging electron optical system 6 that forms an image of an electron beam transmitted through the sample 3 using a multistage electron lens and a polarizer, and an image obtained by converting the formed image into an image signal using an image acquisition device 9 such as a CCD camera, In a transmission electron microscope having at least a means for storing it in the memory 11 of the computer 10 and a computer for analyzing the image signal, it moves to the target crystal orientation by analyzing a plurality of electron diffraction patterns at different sample inclination angles. And it calculates the inclination direction and inclination angle of the specimen rotation mechanism 8 necessary in order.

具体的な動作を以下に説明する。電子回折モードで、結晶性試料に電子線を照射すると、例えば図2のような電子回折図形を得ることができる。この電子回折図形は試料の現在の結晶方位を反映する。図2の(a)は試料傾斜角補正済みのもの、(b)は試料傾斜角未補正のものである。通常、試料を電子顕微鏡の試料室に挿入した直後は、例えば(b)に示すような電子回折図形が得られる。図2の場合、目的とする結晶方位はSi[110]であり、(a)のような電子回折図形となるように前記2軸試料傾斜機構8を用いて調整し、結晶方位を合わせる。   A specific operation will be described below. When the crystalline sample is irradiated with an electron beam in the electron diffraction mode, for example, an electron diffraction pattern as shown in FIG. 2 can be obtained. This electron diffraction pattern reflects the current crystal orientation of the sample. FIG. 2A shows the sample tilt angle corrected, and FIG. 2B shows the sample tilt angle uncorrected. Usually, immediately after the sample is inserted into the sample chamber of the electron microscope, for example, an electron diffraction pattern as shown in (b) is obtained. In the case of FIG. 2, the target crystal orientation is Si [110], and the crystal orientation is adjusted by adjusting the biaxial sample tilt mechanism 8 so as to obtain an electron diffraction pattern as shown in FIG.

上述の試料傾斜を自動で行なうには、図3の(a)に示すように、2軸試料傾斜機構8の一方を変化させながら複数の電子回折図形を像取得装置9で取得し、コンピュータ10の像信号メモリ11に記憶させる。コンピュータ10の像信号メモリ11に記憶された各電子回折図形は、それぞれ読み出されてコンピュータ10上で2値化することにより電子回折スポットとバックグラウンドとを分離する。次に、解析部13は2値化により得られた電子回折スポットに、ラベリングや輝度重心算出などの画像処理を行ない各電子回折スポットの中心座標を算出する。ラベリングは実施例1で説明した通りなので、その詳しい説明は省略する。   In order to automatically perform the above-described sample tilting, a plurality of electron diffraction patterns are acquired by the image acquisition device 9 while changing one of the two-axis sample tilting mechanisms 8 as shown in FIG. Is stored in the image signal memory 11. Each electron diffraction pattern stored in the image signal memory 11 of the computer 10 is read out and binarized on the computer 10 to separate the electron diffraction spot and the background. Next, the analysis unit 13 performs image processing such as labeling and luminance center of gravity calculation on the electron diffraction spot obtained by binarization, and calculates the center coordinates of each electron diffraction spot. Since labeling is as described in the first embodiment, detailed description thereof is omitted.

ダイレクトスポットは、最大画素のスポットであると決めることができるが、ここでは、その手法は限定しない。図5はダイレクトスポットの仮決定の説明図である。回折図形には、図に示すように、大きいスポットと小さいスポットが現れる。この場合、大きいスポットをダイレクトスポットと仮決定することができる。   The direct spot can be determined to be the spot of the maximum pixel, but the method is not limited here. FIG. 5 is an explanatory diagram of temporary determination of the direct spot. As shown in the figure, a large spot and a small spot appear in the diffraction pattern. In this case, a large spot can be temporarily determined as a direct spot.

次に、コンピュータ10は、図6に示すように、各回折図形別に電子回折スポット中心座標から円近似を行ない、円の中心と半径を算出する。円近似は一般的な数学的手法、例えば最小二乗法でよい。   Next, as shown in FIG. 6, the computer 10 performs circle approximation from the center coordinates of the electron diffraction spot for each diffraction pattern, and calculates the center and radius of the circle. The circle approximation may be a general mathematical method, for example, a least square method.

ここで、試料傾斜角の変化による近似円の中心の軌跡は、ほぼ直線関係をとると考えることができる。図6は円近似の状態を示す図である。試料傾斜角の最適値は、近似円の中心の軌跡とダイレクトスポットとの間が最短となる場合である。   Here, it can be considered that the locus of the center of the approximate circle due to the change in the sample tilt angle has a substantially linear relationship. FIG. 6 is a diagram showing a circular approximation state. The optimum value of the sample tilt angle is when the distance between the locus of the center of the approximate circle and the direct spot is the shortest.

図7は円近似の中心の軌跡から最適傾斜角算出の説明図である。(a)のfは図6で求めた直線である。この直線f上の●は円近似の中心である。Kはダイレクトスポットである。(b)に示すようにこのダイレクトスポットKを通る直線とfとが直角に交わる点をAとする。点Aの試料傾斜角を数学的に算出する。図7の1次直線fの●点の傾斜角は予め分かっているので、点Aの対応する傾斜角は補間法により求めることができる。最適な試料傾斜角が求まったら、コンピュータ10は算出した試料傾斜角となるように2軸試料傾斜機構を用いて設定する。   FIG. 7 is an explanatory diagram for calculating the optimum tilt angle from the locus of the center of the circular approximation. F in (a) is a straight line obtained in FIG. ● on this straight line f is the center of the circular approximation. K is a direct spot. A point where a straight line passing through the direct spot K and f intersect at right angles as shown in FIG. The sample inclination angle at point A is calculated mathematically. Since the inclination angle of the point ● of the primary straight line f in FIG. 7 is known in advance, the corresponding inclination angle of the point A can be obtained by an interpolation method. When the optimum sample tilt angle is obtained, the computer 10 sets the biaxial sample tilt mechanism so that the calculated sample tilt angle is obtained.

図7の場合、もう一方の試料傾斜軸の最適傾斜角は図8の塗りつぶし領域にある。そのため、もう一方の試料傾斜軸8の最適傾斜角の探索方向が決まる。即ち、2軸試料傾斜機構8のもう一方の軸に関して、上記と同様の手法を用いて2軸試料傾斜機構8の最適な試料傾斜角を算出するが、複数の電子回折図形を取得する際、図8の矢印方向に近似円の中心の軌跡が変化するように試料傾斜角を変化させればよい。これにより、試料傾斜角の探索領域が限定される。
(実施例3)
図1を用いて実施例3を説明する。実施例1と実施例2では、2軸試料傾斜機構により試料傾斜角を変化させながら複数の電子回折図形を取得する。しかしながら、通常は試料傾斜軸中心と試料の観察視野が一致しないため、試料傾斜角を変化させた場合、試料の観察視野が移動する。
In the case of FIG. 7, the optimum tilt angle of the other sample tilt axis is in the filled region in FIG. Therefore, the search direction of the optimum tilt angle of the other sample tilt axis 8 is determined. That is, with respect to the other axis of the biaxial sample tilting mechanism 8, the optimal sample tilt angle of the biaxial sample tilting mechanism 8 is calculated using the same method as described above. When acquiring a plurality of electron diffraction patterns, What is necessary is just to change a sample inclination angle so that the locus | trajectory of the center of an approximate circle may change to the arrow direction of FIG. This limits the search area for the sample tilt angle.
(Example 3)
Example 3 will be described with reference to FIG. In Example 1 and Example 2, a plurality of electron diffraction patterns are acquired while changing the sample tilt angle by the biaxial sample tilt mechanism. However, since the center of the sample tilt axis does not coincide with the observation field of the sample, the observation field of the sample moves when the sample tilt angle is changed.

このため、場合によっては試料傾斜によって、非晶質材料部分に電子線が照射されたり、近接の異なる結晶性材料に電子線照射されてしまうことが考えられる。そこで、コンピュータ10は、試料傾斜軸別に試料傾斜による試料の観察視野の移動量と2次元情報として予め補正データを持ち、傾斜角を変更する度に補正データから補間演算により補正値を算出し、試料の観察視野の移動量をキャンセルするように図1中の試料移動機構7を用いて移動させる。なお、補正データの代わりに補正演算式を用いてもよい。   For this reason, it is conceivable that, depending on the sample inclination, the amorphous material portion may be irradiated with an electron beam or a crystalline material having a different proximity may be irradiated with an electron beam due to the sample inclination. Therefore, the computer 10 has correction data in advance as the amount of movement of the observation field of the sample due to the sample tilt and two-dimensional information for each sample tilt axis, and calculates a correction value by interpolation calculation from the correction data every time the tilt angle is changed, The sample is moved by using the sample moving mechanism 7 in FIG. 1 so as to cancel the moving amount of the observation field of the sample. A correction calculation formula may be used instead of the correction data.

実施例3によれば、試料傾斜軸別に試料傾斜角変化に対する観察視野位置補正データ又は補正計算式を予め用意し、試料傾斜角変化と同時に視野位置補正量を、前記試料移動機構を用いて補正することにより、試料の結晶方位を合わせるための試料傾斜角を自動で調整することができる。   According to the third embodiment, observation field position correction data or a correction calculation formula for the change in the sample tilt angle is prepared in advance for each sample tilt axis, and the field position correction amount is corrected simultaneously with the sample tilt angle change using the sample moving mechanism. By doing so, the sample inclination angle for adjusting the crystal orientation of the sample can be automatically adjusted.

以上、説明した本発明の効果を列挙すれば、以下の通りである。
1)比較的厚い試料のようにきれいな電子回折スポットを得られがたい試料であっても、電子回折図形の2値化処理により電子回折スポットの抽出を行ない、回折スポットの中心座標を算出できるため、高精度で最適試料傾斜角を算出することができる。
2)電子回折図形の解析手法が単純であるため、解析時間がごく短時間であり、高速で最適試料傾斜角を算出することができる。そのため、強力な電子回折スポットによる像取得装置の損傷や蛍光板の焼き付きなどの事故を低減することができる。
3)結晶性試料の種類や方位を予め指定する必要がなく、オペレータは自動試料傾斜機構のボタンを押すだけでよく、特に電子回折の知識を有していなくても操作ができる。また、コンピュータには試料の結晶方位関連情報を登録する必要がなく、システムのスリム化を図れるだけでなく、様々な結晶性材料に対応可能となる。
4)実施例2の手法では、初回の試料傾斜軸の最適試料傾斜角を算出する際に、もう一方の試料傾斜軸の最適試料傾斜角が存在する方向が分かるため、試料傾斜角探索方向が限定され、より高精度に、かつより短時間で最適試料傾斜角を算出することができる。
5)試料傾斜による電子線の照射位置の移動量を予め補正データ又は補正計算式として用意しておくことにより、試料傾斜毎に試料の位置を補正し、試料の観察視野のズレを最小限に留めることができる。また、予め補正データを用意しておくことにより、試料傾斜角毎に試料の観察視野ズレを実際の像で移動量を評価する必要がなく、処理の高速化を実現することができる。
The effects of the present invention described above are listed as follows.
1) Even if the sample is difficult to obtain a clean electron diffraction spot, such as a relatively thick sample, the electron diffraction spot can be extracted by binarizing the electron diffraction pattern and the center coordinates of the diffraction spot can be calculated. The optimum sample tilt angle can be calculated with high accuracy.
2) Since the analysis method of the electron diffraction pattern is simple, the analysis time is very short, and the optimum sample tilt angle can be calculated at high speed. For this reason, it is possible to reduce accidents such as damage to the image acquisition device due to a strong electron diffraction spot and burn-in of the fluorescent screen.
3) There is no need to specify the type and orientation of the crystalline sample in advance, and the operator only has to press the button of the automatic sample tilt mechanism, and the operation can be performed even without knowledge of electron diffraction. In addition, it is not necessary to register the crystal orientation related information of the sample in the computer, so that not only the system can be made slim, but also various crystalline materials can be handled.
4) In the method of Example 2, when calculating the optimum sample tilt angle of the first sample tilt axis, the direction in which the optimum sample tilt angle of the other sample tilt axis exists is known, so the sample tilt angle search direction is It is limited, and the optimum sample inclination angle can be calculated with higher accuracy and in a shorter time.
5) The amount of movement of the electron beam irradiation position due to the sample tilt is prepared in advance as correction data or a correction calculation formula, thereby correcting the sample position for each sample tilt and minimizing the deviation in the observation field of the sample. Can be fastened. In addition, by preparing correction data in advance, it is not necessary to evaluate the amount of movement of the observation field deviation of the sample with an actual image for each sample inclination angle, and it is possible to realize high-speed processing.

1 透過型顕微鏡(TEM)
2 電子銃
3 試料
4 試料台
5 照射電子光学系
6 結像電子光学系
7 試料移動機構
8 試料傾斜機構
9 像取得装置
10 コンピュータ
11 像信号メモリ
12 像表示機構
13 解析部
14 試料位置補正部
1 Transmission microscope (TEM)
2 Electron gun 3 Sample 4 Sample stage 5 Irradiation electron optical system 6 Imaging electron optical system 7 Sample moving mechanism 8 Sample tilting mechanism 9 Image acquisition device 10 Computer 11 Image signal memory 12 Image display mechanism 13 Analyzing unit 14 Sample position correcting unit

Claims (3)

電子線を試料に照射する照射電子光学系と、
試料をX方向,Y方向,Z方向に移動させる試料移動機構と、
試料を直交する2軸で傾斜可能な試料傾斜機構と、
これら試料移動機構及び試料傾斜機構の動作を制御する制御装置と、
試料を透過した透過電子を多段の電子レンズと偏向器を用いて結像させる結像電子光学系と、
結像した像を像信号化する像取得手段と、
前記像信号を記憶する記憶手段と、
該記憶手段に記憶された像信号を読み出して解析するコンピュータと、
を少なくとも有する透過電子顕微鏡において、
前記コンピュータは、
試料傾斜軸別に、異なる複数の試料傾斜角で試料の現在の結晶方位で得られる電子回折図形を取得して前記記憶手段に記憶し、
取得した電子回折図形別に電子回折スポット座標を算出し、
電子回折スポット座標を基に、電子回折スポットを円近似することにより、近似円の中心と半径を算出し、
円の半径が最小となる試料傾斜角をフィッティングにより算出し、
その試料傾斜角を最適試料傾斜角とし、
前記制御装置は、
前記試料傾斜機構を用いて試料を前記最適試料傾斜角へ移動させる、
ことを特徴とする電子顕微鏡の自動試料傾斜装置。
An irradiation electron optical system for irradiating the sample with an electron beam;
A sample moving mechanism for moving the sample in the X, Y, and Z directions;
A sample tilting mechanism capable of tilting the sample in two orthogonal axes;
A control device for controlling the operation of the sample moving mechanism and the sample tilting mechanism;
An imaging electron optical system that forms an image of transmitted electrons that have passed through the sample using a multistage electron lens and a deflector;
Image acquisition means for converting the formed image into an image signal;
Storage means for storing the image signal;
A computer that reads and analyzes the image signal stored in the storage means;
In a transmission electron microscope having at least
The computer
For each sample tilt axis, obtain an electron diffraction pattern obtained in the current crystal orientation of the sample at a plurality of different sample tilt angles and store it in the storage means,
Calculate the electron diffraction spot coordinates for each acquired electron diffraction pattern,
Based on the electron diffraction spot coordinates, calculate the center and radius of the approximate circle by approximating the electron diffraction spot to a circle.
Calculate the sample inclination angle that minimizes the radius of the circle by fitting,
The sample inclination angle is the optimum sample inclination angle,
The controller is
The sample using the specimen rotation mechanism is moved to the optimum sample tilt angle,
An automatic sample tilting device for an electron microscope.
電子線を試料に照射する照射電子光学系と、
試料をX方向,Y方向,Z方向に移動させる試料移動機構と、
試料を直交する2軸で傾斜可能な試料傾斜機構と、
これら試料移動機構及び試料傾斜機構の動作を制御する制御装置と、
試料を透過した透過電子を多段の電子レンズと偏向器を用いて結像させる結像電子光学系と、
結像した像を像信号化する像取得手段と、
前記像信号を記憶する記憶手段と、
該記憶手段に記憶された像信号を読み出して解析するコンピュータと、
を少なくとも有する透過電子顕微鏡において、
前記コンピュータは、
前記電子回折図形別に算出した近似円の中心座標の軌跡を1次関数で近似し、
1次関数直線とダイレクトスポット中心座標とが最短距離となる1次関数直線上の交点を算出し、
この交点を取りうる試料傾斜角を数学的に算出し、
その試料傾斜角を最適試料傾斜角とし、
前記制御装置は
前記試料傾斜機構を用いて試料を前記最適試料傾斜角へ移動させる、
ことを特徴とする電子顕微鏡の自動試料傾斜装置。
An irradiation electron optical system for irradiating the sample with an electron beam;
A sample moving mechanism for moving the sample in the X, Y, and Z directions;
A sample tilting mechanism capable of tilting the sample in two orthogonal axes;
A control device for controlling the operation of the sample moving mechanism and the sample tilting mechanism;
An imaging electron optical system that forms an image of transmitted electrons that have passed through the sample using a multistage electron lens and a deflector;
Image acquisition means for converting the formed image into an image signal;
Storage means for storing the image signal;
A computer that reads and analyzes the image signal stored in the storage means;
In a transmission electron microscope having at least
The computer
Approximate the locus of the center coordinates of the approximate circle calculated for each electron diffraction pattern with a linear function,
Calculate the intersection point on the linear function line that makes the shortest distance between the linear function line and the direct spot center coordinates,
Mathematically calculate the sample tilt angle that can take this intersection,
The sample inclination angle is the optimum sample inclination angle,
The control device includes :
Moving the sample to the optimum sample tilt angle using the sample tilt mechanism ;
Automatic specimen rotation apparatus that electron microscope to, characterized in that.
試料傾斜角を変化させながら異なる複数の電子回折図形を取得する際、
試料傾斜により試料傾斜前の観察視野位置と試料傾斜後の観察視野位置との微小位置変化を補正するため、試料傾斜軸別に試料傾斜角変化に対する観察視野位置補正データ又は補正計算式を予め用意し、
試料傾斜角変化と同時に視野位置補正量を、前記試料移動機構を用いて補正することを特徴とする請求項1又は2記載の電子顕微鏡の自動試料傾斜装置。
When acquiring different electron diffraction patterns while changing the sample tilt angle,
In order to correct the minute position change between the observation field position before the sample tilt and the observation field position after the sample tilt due to the sample tilt, observation field position correction data or correction calculation formula for the sample tilt angle change is prepared in advance for each sample tilt axis. ,
The automatic sample tilting device for an electron microscope according to claim 1 or 2, wherein the visual field position correction amount is corrected using the sample moving mechanism simultaneously with the change in the sample tilt angle.
JP2009056438A 2009-03-10 2009-03-10 Automatic specimen tilting device for electron microscope Active JP5296578B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009056438A JP5296578B2 (en) 2009-03-10 2009-03-10 Automatic specimen tilting device for electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009056438A JP5296578B2 (en) 2009-03-10 2009-03-10 Automatic specimen tilting device for electron microscope

Publications (2)

Publication Number Publication Date
JP2010212067A JP2010212067A (en) 2010-09-24
JP5296578B2 true JP5296578B2 (en) 2013-09-25

Family

ID=42972024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009056438A Active JP5296578B2 (en) 2009-03-10 2009-03-10 Automatic specimen tilting device for electron microscope

Country Status (1)

Country Link
JP (1) JP5296578B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5546290B2 (en) * 2010-03-02 2014-07-09 株式会社日立ハイテクノロジーズ Charged particle beam apparatus and length measuring method using charged particle beam
JP6255494B2 (en) * 2014-07-07 2017-12-27 株式会社日立ハイテクノロジーズ Electron microscope and sample observation method
JP6994897B2 (en) * 2017-10-17 2022-01-14 日本電子株式会社 How to adjust the electron microscope and sample tilt angle
CN108801177B (en) * 2018-06-15 2020-05-05 湖南品胜生物技术有限公司 Method for automatically adjusting verticality of microscope system and calibration slide thereof
WO2020144838A1 (en) 2019-01-11 2020-07-16 株式会社日立ハイテク Charged particle beam apparatus, and method for controlling same
JP7126960B2 (en) * 2019-01-21 2022-08-29 日本電子株式会社 electronic microscope
WO2024024108A1 (en) * 2022-07-29 2024-02-01 株式会社日立ハイテク Charged particle beam device and method for controlling charged particle beam device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60150548A (en) * 1984-01-17 1985-08-08 Jeol Ltd Electron beam diffraction method
JPH04190550A (en) * 1990-11-26 1992-07-08 Hitachi Ltd Transmission electron microscope
JPH06103948A (en) * 1992-09-24 1994-04-15 Nippon Steel Corp Sample inclining operation method for transmission type electron microscope
JP3422045B2 (en) * 1993-06-21 2003-06-30 株式会社日立製作所 Electron microscope for measuring composition and lattice strain and its observation method
JP3672728B2 (en) * 1998-04-03 2005-07-20 日本電子株式会社 Automatic specimen tilting device in transmission electron microscope
JP2001210261A (en) * 2000-01-25 2001-08-03 Hitachi Ltd Transmission electron microscope

Also Published As

Publication number Publication date
JP2010212067A (en) 2010-09-24

Similar Documents

Publication Publication Date Title
JP5296578B2 (en) Automatic specimen tilting device for electron microscope
JP6255494B2 (en) Electron microscope and sample observation method
JP4988662B2 (en) Charged particle beam equipment
US8887311B1 (en) Scanning probe microscope
US20060226376A1 (en) Sample milling/observing apparatus and method of observing sample
JP6994897B2 (en) How to adjust the electron microscope and sample tilt angle
JP5788719B2 (en) Stage device and control method of stage device
JP5205306B2 (en) Scanning electron microscope
JP2009277536A (en) Cross section image acquiring method using combined charged particle beam device, and combined charged particle beam device
EP1071112B1 (en) Scanning charged-particle beam instrument
JP4750958B2 (en) Electron beam apparatus, data processing apparatus for electron beam apparatus, and stereo image creation method of electron beam apparatus
CN109314029B (en) Charged particle beam device
JP3970656B2 (en) Sample observation method using transmission electron microscope
JP4750959B2 (en) Data processing apparatus for electron beam apparatus, electron beam apparatus, and stereo measurement method for electron beam apparatus
JP6360620B2 (en) Charged particle beam apparatus, charged particle beam apparatus alignment method, alignment program, and storage medium
JPWO2016157403A6 (en) Charged particle beam apparatus, charged particle beam apparatus alignment method, alignment program, and storage medium
US8912487B2 (en) Charged particle beam device, position specification method used for charged particle beam device, and program
JP2005310428A (en) Scanning electron microscope
JP5491817B2 (en) Thin film sample position recognition system in electron microscope
JPH11167893A (en) Scanning electron microscope
JP2004271269A (en) Pattern inspection method and pattern inspection device
JP7061192B2 (en) Charged particle beam device
WO2020129164A1 (en) Imaging device
JP6775003B2 (en) Charged particle beam device
JP7059402B2 (en) Charged particle beam device and its control method

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111110

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130613

R150 Certificate of patent or registration of utility model

Ref document number: 5296578

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150