JPH06103948A - Sample inclining operation method for transmission type electron microscope - Google Patents

Sample inclining operation method for transmission type electron microscope

Info

Publication number
JPH06103948A
JPH06103948A JP4254625A JP25462592A JPH06103948A JP H06103948 A JPH06103948 A JP H06103948A JP 4254625 A JP4254625 A JP 4254625A JP 25462592 A JP25462592 A JP 25462592A JP H06103948 A JPH06103948 A JP H06103948A
Authority
JP
Japan
Prior art keywords
sample
bearing
biaxial
rotating
electron microscope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4254625A
Other languages
Japanese (ja)
Inventor
Shigeru Suzuki
鈴木  茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4254625A priority Critical patent/JPH06103948A/en
Publication of JPH06103948A publication Critical patent/JPH06103948A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To simplify the sample inclining operation by finding the relation of the initial crystal bearing and the standard bearing of the sample observing position from the rotating angle of a rotation mechanism, calculating the rotating angle to the object bearing from the above relation of bearings, and operating the sample inclining. CONSTITUTION:In the inclining operation method of a sample by a biaxial sample rotating mechanism, the relation of bearings between the initial bearing of the crystalline sample and the standard bearing is found from the rotating components of the electric motors of the biaxial sample rotating mechanism. Then, the rotating components of the biaxial sample rotating mechanism in order to incline the sample to the object crystal bearing is found by a calculator from the relation between the initial bearing, the standard bearing, and the object bearing, and by driving the biaxial sample rotating mechanism simultaneously as the rotating components, the sample is inclined. As a result, a desired sample inclining is carried out in a short time, and the sample inclining operation can be carried out simply in a series of operations of a transmission type electron microscope. Consequently, a diffraction image observation of sample, and the operating efficiency to observe a sample in such a condition can be improved more efficiently.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は操作性に優れた二軸の試
料傾斜機構を有する透過電子顕微鏡用試料傾斜操作方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sample tilting operation method for a transmission electron microscope having a biaxial sample tilting mechanism excellent in operability.

【0002】[0002]

【従来の技術】透過電子顕微鏡の観察においては、薄膜
状の試料や抽出レプリカ試料等の電子ビームが透過でき
る薄い試料を作製し、それを試料ホルダーに装着し、電
子顕微鏡の鏡体内に入れる。その後、電子ビームが透過
する場所に試料の観察場所を移動し、試料を透過した電
子ビームにより蛍光板等に結像させた像を観察する。透
過電子顕微鏡で用いられる試料ホルダーについては、た
とえば文献(坂田茂雄著:「電子顕微鏡の技術」,朝倉
書店1982年,p.19)に記載されている。
2. Description of the Related Art In observation with a transmission electron microscope, a thin sample such as a thin film sample or an extracted replica sample through which an electron beam can be transmitted is prepared, mounted on a sample holder, and placed in the body of an electron microscope. After that, the observation position of the sample is moved to a position where the electron beam is transmitted, and the image formed on the fluorescent plate or the like by the electron beam transmitted through the sample is observed. The sample holder used in the transmission electron microscope is described, for example, in a document (Shigeo Sakata: “Technology of Electron Microscope”, Asakura Shoten 1982, p. 19).

【0003】通常、観察においては同一観察場所におい
ても電子ビームと試料の向きの関係によって、像のコン
トラストが異なるため、いろいろな方向に試料を傾斜さ
せて観察する必要がある。特に、結晶性の試料を観察す
るときには、結晶の回折現象により得られる回折図形お
よび透過像を観察しながら、一軸あるいは二軸の回転機
構を有する試料傾斜装置により所望の結晶方位に試料を
傾斜させ、その傾斜条件下での透過像や回折図形を観察
する。その場合、試料の結晶方位を示す回折図形、およ
びその傾斜状態すなわち結晶の回折条件下での透過像の
観察とを交互に行う。このように明瞭な透過像のコント
ラストを得て、回折条件との対応を明らかにするため
に、試料の傾斜は必須のこととなっている。この試料傾
斜の方法においては、従来の技術では、試料ホルダーを
一軸のみ回転させるか、試料の二軸の回転機構を別々の
二つの操作装置によって制御して、試料をそれぞれの回
転機構で傾斜させていた。
Usually, in observation, even at the same observation location, the contrast of the image differs depending on the relationship between the direction of the electron beam and the orientation of the specimen, so it is necessary to incline the specimen in various directions for observation. In particular, when observing a crystalline sample, while observing the diffraction pattern and transmission image obtained by the diffraction phenomenon of the crystal, the sample is tilted to a desired crystal orientation by a sample tilting device having a uniaxial or biaxial rotation mechanism. , Observe the transmission image and diffraction pattern under the inclined condition. In that case, the diffraction pattern showing the crystal orientation of the sample and the observation of the transmission image under the tilted state, that is, the crystal diffraction condition are alternately performed. In order to obtain a clear contrast of the transmitted image and clarify the correspondence with the diffraction condition in this way, the inclination of the sample is essential. In this sample tilting method, in the conventional technique, the sample holder is rotated by only one axis, or the two-axis rotating mechanism of the sample is controlled by two separate operation devices, and the sample is tilted by each rotating mechanism. Was there.

【0004】一軸の回転機構を有する傾斜装置の場合
は、一般に回転軸は透過電子顕微鏡の鏡体の長手方向す
なわち電子ビームの方向に直角で、回転軸に直角方向に
試料方位を変えて像を観察することができる。二軸の回
転機構を有する試料ホルダーの傾斜装置が任意の方向に
傾斜させることができる。二軸の回転方法としては電子
ビームの方向の回転軸とそれと直角方向の回転軸をもつ
試料傾斜装置と電子ビームの方向にほぼ直角な二つの回
転軸をもつ試料傾斜装置がある。たとえば、後者の場合
は、透過電子顕微鏡の鏡体の長手方向に対し、横方向か
ら棒状の試料ホルダーを挿入する。この試料ホルダーを
用いた試料傾斜は、試料ホルダーの長手方向の軸(X
軸)の回りの回転と試料ホルダーの直角方向の軸(Y
軸)の回りの回転の二つの回転機構によって行われる。
この際、X軸とY軸の回転機構の回転方向はそれぞれ両
方向に変えられる必要がある。そのため、X軸とY軸回
りに両方向に回転させるには、従来の技術ではそれぞれ
の方向に回転させる制御スイッチを用い二つの電動機を
駆動させる方法をとっていた。
In the case of a tilting device having a uniaxial rotating mechanism, the rotating axis is generally perpendicular to the longitudinal direction of the transmission electron microscope, that is, the direction of the electron beam, and the sample orientation is changed in the direction perpendicular to the rotating axis to form an image. Can be observed. The tilting device of the sample holder having the biaxial rotation mechanism can be tilted in any direction. As the two-axis rotation method, there are a sample tilting device having a rotating shaft in the direction of the electron beam and a rotating shaft perpendicular thereto, and a sample tilting device having two rotating shafts substantially perpendicular to the direction of the electron beam. For example, in the latter case, a rod-shaped sample holder is inserted laterally with respect to the longitudinal direction of the mirror body of the transmission electron microscope. The tilting of the sample using this sample holder is performed in the longitudinal axis (X
Rotation around the axis) and the axis perpendicular to the sample holder (Y
It is carried out by two rotating mechanisms of rotation about an axis.
At this time, the rotation directions of the X-axis and Y-axis rotation mechanisms need to be changed in both directions. Therefore, in order to rotate the motor in both directions around the X-axis and the Y-axis, the conventional technique has adopted a method of driving two electric motors using control switches that rotate in the respective directions.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来の
技術で試料を一軸の回転機構を有する試料傾斜操作方法
で作動させたときには、回転方向が限られるため試料の
方位の選択性が乏しく、限られた方位しか出すことがで
きなかった。また、二軸の回転機構を有する試料傾斜で
は試料の任意の方位を出すことができるが、従来の試料
傾斜操作方法では、回転機構の二つの電動機を別々に操
作し回転させていた。すなわち、従来の技術ではX軸,
Y軸回りのそれぞれの回転方位と回転の程度を二つの電
動機を操作しながら、試料の透過像や回折図形を観察し
ていたために、一連の操作には熟練を要していた。特
に、所望の結晶方位を出すために試料の回折図形で調べ
ながら試料の観察を行うときには、これらの従来の方法
は簡便さに欠ける。
However, when the sample is operated by the conventional technique for operating the sample by the sample tilt operation method having the uniaxial rotation mechanism, the direction of rotation of the sample is limited and the orientation of the sample is poor in selectivity. I was only able to get the correct bearing. In addition, although the sample tilt can have any orientation in the sample tilt having the biaxial rotation mechanism, in the conventional sample tilt operation method, the two electric motors of the rotation mechanism are operated separately and rotated. That is, in the conventional technique, the X axis,
Since the transmission image and the diffraction pattern of the sample were observed while operating the two electric motors with respect to each rotation direction and the degree of rotation about the Y axis, a series of operations required skill. In particular, these conventional methods lack simplicity when observing the sample while checking the diffraction pattern of the sample to obtain a desired crystal orientation.

【0006】本発明は二軸の試料傾斜装置における二つ
の電動機による回転の操作性についての課題を克服し、
一連の透過電子顕微鏡の操作の中で試料傾斜操作を簡便
にする試料傾斜操作方法を提供することを目的とする。
The present invention overcomes the problem of operability of rotation by two electric motors in a biaxial sample tilting device,
An object of the present invention is to provide a sample tilting operation method that simplifies the sample tilting operation in a series of operations of a transmission electron microscope.

【0007】[0007]

【課題を解決するための手段】本発明は上記の従来技術
の課題を解決するために、二軸の試料回転機構による透
過電子顕微鏡用試料の傾斜操作方法において、結晶性試
料の初期方位と基準方位の方位関係を前記の二軸の試料
回転機構のそれぞれの電動機の回転成分から求め、次に
目標の結晶方位へ試料を傾斜するための前記二軸の試料
回転機構の回転成分を初期方位、基準方位および目標方
位の関係から計算機によって求め、その回転成分だけ前
記の二軸の試料回転機構を同時に駆動させることによっ
て試料を傾斜させることを特徴とする透過電子顕微鏡の
試料傾斜操作方法を提供する。
In order to solve the above-mentioned problems of the prior art, the present invention provides a method for tilting a sample for a transmission electron microscope by a biaxial sample rotating mechanism, in which an initial orientation and a reference of a crystalline sample are used. The azimuth relationship of the azimuth is obtained from the rotation components of the respective motors of the biaxial sample rotation mechanism, and then the rotation component of the biaxial sample rotation mechanism for inclining the sample to the target crystal orientation is the initial azimuth, A method for tilting a sample of a transmission electron microscope, characterized in that the sample is tilted by calculating the relationship between a reference direction and a target direction by a computer, and simultaneously driving the biaxial sample rotating mechanism by the rotation component thereof. .

【0008】[0008]

【作用】本発明を図1のフローチャートに沿って詳細に
説明する。通常の試料はほとんどの場合立方晶系の結晶
構造をとっているので、ここではその結晶の方位をミラ
ー指数(hkl)を用いて記述する。また、ここでは通
常使用されている二軸の試料傾斜装置の二つの回転軸
(X軸,Y軸)の方位と電子ビームの方向が初期の状態
でそれぞれ直角な場合について述べる。
The present invention will be described in detail with reference to the flowchart of FIG. Since most of the usual samples have a cubic crystal structure, the crystal orientation is described here using the Miller index (hkl). Further, here, a case will be described in which the directions of the two rotation axes (X axis, Y axis) of the commonly used biaxial sample tilting device and the direction of the electron beam are at right angles in the initial state.

【0009】まず、単結晶あるいは多結晶の試料を電子
顕微鏡内に挿入し、観察する結晶の視野に試料を移動す
る。観察する結晶の傾斜しない状態の初期の結晶方位を
(h0 0 0 )とする。この方位(h0 0 0 )は
まだ指数付けのしていない未知の方位である。
First, a single crystal or polycrystal sample is inserted into an electron microscope, and the sample is moved to the field of view of the crystal to be observed. The initial crystal orientation of the observed crystal in the non-tilted state is (h 0 k 0 l 0 ). This orientation (h 0 k 0 l 0 ) is an unknown orientation that has not yet been indexed.

【0010】回折図形の観察により結晶方位の指数を決
定できる対称性がよい基準結晶方位(h1 1 1 )に
試料を傾斜する。そのときのX軸とY軸回りの回転によ
る回転角x1 ,y1 を回転機構付属の角度目盛りから読
み取る。さらに基準結晶方位(h2 2 2 ),(h3
3 3 )に試料を傾斜し、それぞれのときのX軸とY
軸回りの回転角x2 ,y2 やx3 ,y3 を読み取る。こ
れらの三回の操作では次の関係を満足する。
The sample is tilted to a reference crystal orientation (h 1 k 1 l 1 ) which has good symmetry so that the index of the crystal orientation can be determined by observing the diffraction pattern. The rotation angles x 1 and y 1 due to the rotation around the X axis and the Y axis at that time are read from the angle scale attached to the rotation mechanism. Further, reference crystal orientations (h 2 k 2 l 2 ), (h 3
The sample is tilted to k 3 l 3 ) and the X axis and Y at each time are tilted.
Read the rotation angles x 2 , y 2 and x 3 , y 3 about the axis. These three operations satisfy the following relationship.

【0011】[0011]

【数1】 [Equation 1]

【0012】したがって、既知の方位(h1
1 1 ),(h2 2 2 ),(h3 3 3 )および
測定した回転角x1 ,y1 ,x2 ,y2 ,x3 ,y3
(1)式,(2)式,(3)式に代入すると、未知の方
位(h0 0 0 )を求めることができる。
Therefore, the known orientation (h 1 k
1 l 1 ), (h 2 k 2 l 2 ), (h 3 k 3 l 3 ) and the measured rotation angles x 1 , y 1 , x 2 , y 2 , x 3 , y 3 are given by equation (1), By substituting the equations (2) and (3), the unknown azimuth (h 0 k 0 l 0 ) can be obtained.

【0013】次に、目標の結晶方位(h4 4 4 )に
試料を傾斜するための方法について述べる。その方位に
回転させるための二軸の回転機構の回転角x4 ,y4
求める。回転角x4 ,y4 は次の式を満足する。
Next, a method for tilting the sample to the target crystal orientation (h 4 k 4 l 4 ) will be described. The rotation angles x 4 and y 4 of the biaxial rotation mechanism for rotating in that direction are obtained. The rotation angles x 4 and y 4 satisfy the following formula.

【0014】[0014]

【数2】 [Equation 2]

【0015】したがって、(4),(5)および(6)
式に目標の結晶方位(h4 4 4)を代入すると、x
4 ,y4 を求めることができる。以上の一連の計算は計
算機により行うのが簡便である。
Therefore, (4), (5) and (6)
Substituting the target crystallographic orientation (h 4 k 4 l 4 ) into the equation, x
4 and y 4 can be obtained. It is easy to perform the above series of calculations by a computer.

【0016】次にこのようにして計算した二軸電動機を
回転角x4 ,y4 の成分だけ二つの電動機が駆動するよ
うに駆動電源に計算機より指令を出す。それによって、
電源から電動機に電力が供給され、電動機は回転し試料
が電子ビームに対し目標の結晶方位になる。その方位の
もとで、透過電子顕微鏡の像や回折図形の観察を行う。
引き続き他の結晶方位で試料を観察する場合には、同様
の手順で傾斜を繰り返す。
Next, the computer issues a command to the drive power source so that the two motors are driven by the components of the rotation angles x 4 and y 4 of the thus calculated two-axis motor. Thereby,
Electric power is supplied from the power supply to the electric motor, and the electric motor is rotated so that the sample has a target crystal orientation with respect to the electron beam. Under this direction, the image of the transmission electron microscope and the diffraction pattern are observed.
When subsequently observing the sample in another crystal orientation, the tilt is repeated in the same procedure.

【0017】目標の方位までの試料傾斜の回転角成分を
求めるのは(1)式から(6)式を用いて可能である
が、本発明はこれに限らず、(1)式から(6)式と数
学的に同等な式、たとえばそれらの異なった組み合わせ
からなる式や、回転軸や電子ビームの方向の相対的な幾
何学的配置が異なっていても、回転角成分を求めること
も可能である。
The rotation angle component of the sample tilt up to the target azimuth can be obtained by using equations (1) to (6), but the present invention is not limited to this, and equation (1) to (6) is used. ) And mathematically equivalent formulas, for example, formulas consisting of different combinations of them, and the rotation angle component can be obtained even if the relative geometric arrangement of the rotation axis and the direction of the electron beam is different. Is.

【0018】[0018]

【実施例】本発明の試料傾斜操作方法の実施例について
述べる。電子ビームの方向に対し直角な二つの回転軸か
らなる試料回転機構を有する透過電子顕微鏡用試料ホル
ダーに立方晶系の結晶構造を有するモリブデンの多結晶
を装着した。試料を挿入したままの状態では試料は傾斜
していない。試料ホルダーを電子顕微鏡に挿入後、電子
ビームの観察位置に試料の観察場所を移動した。
EXAMPLES Examples of the sample tilting operation method of the present invention will be described. A polycrystal of molybdenum having a cubic crystal structure was mounted on a sample holder for a transmission electron microscope having a sample rotation mechanism composed of two rotation axes perpendicular to the direction of the electron beam. The sample is not tilted with the sample still inserted. After inserting the sample holder into the electron microscope, the observation position of the sample was moved to the observation position of the electron beam.

【0019】まず観察モードを回折図形に変え、初期方
位を観察した。その方位から二つの回転機構でx1 =1
9.1°,y1 =0°だけ回転したところ、二回対称の
(011)の回折図形が得られた。次にx2 =10.9
°,y2 =−35.3°だけ傾斜させたところ、四回対
称の(001)の回折図形が得られ、さらにx3 =1
0.9°,y3 =19.5°だけ傾斜させたところ、三
回対称の(111)の回折図形が得られた。これらの基
準方位と回転角を(1)から(3)式に代入し、試料挿
入時の初期の結晶方位を求めたところ、(123)が初
期方位であった。
First, the observation mode was changed to a diffraction pattern and the initial orientation was observed. X 1 = 1 with two rotating mechanisms from that direction
When rotated by 9.1 ° and y 1 = 0 °, a two-fold symmetrical (011) diffraction pattern was obtained. Then x 2 = 10.9
When tilted by °, y 2 = -35.3 °, a four-fold symmetric (001) diffraction pattern is obtained, and x 3 = 1
When tilted by 0.9 ° and y 3 = 19.5 °, a three-fold symmetrical (111) diffraction pattern was obtained. When these reference orientations and rotation angles were substituted into the equations (1) to (3) to determine the initial crystal orientation at the time of inserting the sample, (123) was the initial orientation.

【0020】次に目標の方位(112)に傾斜させると
きの手順について述べる。この目標方位および基準方位
や先に求めた回転角を、(4)から(6)式に代入した
ところ、目標方位までの回転角が計算できx4 =10.
9°,y4 =0°が求められる。この回転角成分だけ二
軸の試料傾斜装置の電動機を回転させると試料の方位が
目標の結晶方位(112)になり、目標の方位が得られ
た。
Next, the procedure for inclining to the target azimuth (112) will be described. By substituting the target azimuth and the reference azimuth and the previously obtained rotation angle into the expressions (4) to (6), the rotation angle up to the target azimuth can be calculated x 4 = 10.
9 ° and y 4 = 0 ° are obtained. When the motor of the biaxial sample tilting device was rotated by this rotation angle component, the sample orientation became the target crystal orientation (112), and the target orientation was obtained.

【0021】[0021]

【発明の効果】本発明の試料傾斜制御方法を用いれば、
短時間で所望の試料傾斜を行い、一連の透過電子顕微鏡
の操作の中で試料傾斜操作を簡便に行うことができる。
したがって、透過電子顕微鏡における試料の回折図形観
察およびその条件下で像を観察するときの操作性が一段
と向上する。
According to the sample tilt control method of the present invention,
The desired sample tilting can be performed in a short time, and the sample tilting operation can be easily performed in a series of operations of the transmission electron microscope.
Therefore, the operability when observing the diffraction pattern of the sample with the transmission electron microscope and observing the image under the condition is further improved.

【0022】そのため、回折条件を詳しく調べながら透
過像を観察するときには透過電子顕微鏡の操作時間が従
来の装置で操作した場合より半分以下になり、透過電子
顕微鏡を効率的に操作できる。それに伴い、透過電子顕
微鏡の運転に不可欠な維持費が下がり、経済的効果も大
きい。
Therefore, when the transmission image is observed while examining the diffraction conditions in detail, the operation time of the transmission electron microscope is less than half that in the case of operating with the conventional apparatus, and the transmission electron microscope can be operated efficiently. Along with that, the maintenance cost, which is indispensable for the operation of the transmission electron microscope, is reduced, and the economic effect is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の試料傾斜操作方法のフローチャートを
示している。
FIG. 1 shows a flow chart of a sample tilt operating method of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 二軸の試料回転機構による透過電子顕微
鏡用試料の傾斜操作方法において、結晶性試料の初期方
位と基準方位の方位関係を前記の二軸の試料回転機構の
それぞれの電動機の回転成分から求め、次に目標の結晶
方位へ試料を傾斜するための前記二軸の試料回転機構の
回転成分を初期方位、基準方位および目標方位の関係か
ら計算機によって求め、その回転成分だけ前記の二軸の
試料回転機構を同時に駆動させることによって試料を傾
斜させることを特徴とする透過電子顕微鏡の試料傾斜操
作方法。
1. A method for inclining a sample for a transmission electron microscope by a biaxial sample rotating mechanism, wherein an azimuth relationship between an initial azimuth and a reference azimuth of a crystalline sample is determined by rotating respective motors of the biaxial sample rotating mechanism. Then, the rotation component of the biaxial sample rotation mechanism for tilting the sample to the target crystal orientation is calculated from the relationship between the initial orientation, the reference orientation and the target orientation by a computer, and only the rotation component is A method for tilting a sample in a transmission electron microscope, wherein the sample is tilted by simultaneously driving a sample rotating mechanism of a shaft.
JP4254625A 1992-09-24 1992-09-24 Sample inclining operation method for transmission type electron microscope Withdrawn JPH06103948A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4254625A JPH06103948A (en) 1992-09-24 1992-09-24 Sample inclining operation method for transmission type electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4254625A JPH06103948A (en) 1992-09-24 1992-09-24 Sample inclining operation method for transmission type electron microscope

Publications (1)

Publication Number Publication Date
JPH06103948A true JPH06103948A (en) 1994-04-15

Family

ID=17267631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4254625A Withdrawn JPH06103948A (en) 1992-09-24 1992-09-24 Sample inclining operation method for transmission type electron microscope

Country Status (1)

Country Link
JP (1) JPH06103948A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010212067A (en) * 2009-03-10 2010-09-24 Jeol Ltd Automatic sample inclination device for electron microscope
US8008621B2 (en) 2008-07-23 2011-08-30 Korea Institute Of Machinery & Materials Apparatus of measuring the orientation relationship between neighboring grains using a goniometer in a transmission electron microscope and method for revealing the characteristics of grain boundaries

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8008621B2 (en) 2008-07-23 2011-08-30 Korea Institute Of Machinery & Materials Apparatus of measuring the orientation relationship between neighboring grains using a goniometer in a transmission electron microscope and method for revealing the characteristics of grain boundaries
JP2010212067A (en) * 2009-03-10 2010-09-24 Jeol Ltd Automatic sample inclination device for electron microscope

Similar Documents

Publication Publication Date Title
US4627009A (en) Microscope stage assembly and control system
US5337178A (en) Titlable optical microscope stage
JP4436942B2 (en) Micromanipulation device for fine work and microprobe for fine work
JPH06103948A (en) Sample inclining operation method for transmission type electron microscope
FR2830613A1 (en) Automatic relative positions adjusting method for goniometer, involves digital image processing to record trajectory of sample, calculating correction coordinates and moving sample in translating direction
JP3014274B2 (en) Biaxial tilt sample fine-movement device and image relief correction method
JPH0619965B2 (en) Sample exchange device for scanning electron microscope
JP2021096091A (en) Control device, system, method and program
JP4758526B2 (en) Micromanipulation equipment for fine work
JPH05251025A (en) Sample inclination device for transmission electron microscope
CN110993475B (en) Scanning electron microscope universal rotating sample table for fracture analysis and scanning electron microscope
JPH08124510A (en) Driving device for sample stage of analyser
JPS59123149A (en) Sample-moving device in electron ray system
JP3010334B2 (en) Sheet inspection equipment
JP3491974B2 (en) Sample moving method and sample moving device
JPH063721B2 (en) Scanning electron microscope
JP3440516B2 (en) Moving table position control method and its control device
WO2024034052A1 (en) Ion milling device and processing method using same
JPH09236609A (en) Scanning probe microscope
JP3702685B2 (en) Charged particle beam equipment
JP2000292256A (en) Luminance measuring method and wide-range and wide- angle luminance measuring apparatus
JPS6336925Y2 (en)
JPH07262955A (en) Biaxial tilting specimen holder
JP3811125B2 (en) Lattice constant measuring method and apparatus therefor
JPH0584014U (en) Scanning electron microscope

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19991130