JP5290564B2 - Carbon thin film - Google Patents
Carbon thin film Download PDFInfo
- Publication number
- JP5290564B2 JP5290564B2 JP2007294273A JP2007294273A JP5290564B2 JP 5290564 B2 JP5290564 B2 JP 5290564B2 JP 2007294273 A JP2007294273 A JP 2007294273A JP 2007294273 A JP2007294273 A JP 2007294273A JP 5290564 B2 JP5290564 B2 JP 5290564B2
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- component
- sic
- carbon
- sio
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Materials For Medical Uses (AREA)
- Media Introduction/Drainage Providing Device (AREA)
- Carbon And Carbon Compounds (AREA)
- Physical Vapour Deposition (AREA)
- Chemical Vapour Deposition (AREA)
Description
本発明は、炭素質薄膜及びその製造方法に関し、特にガイドワイヤ及びカテーテル等の変形を伴う医療器具の表面に形成する炭素質薄膜及びその製造方法に関する。 The present invention relates to a carbonaceous thin film and a manufacturing method thereof, and more particularly to a carbonaceous thin film formed on the surface of a medical device accompanied by deformation of a guide wire, a catheter and the like and a manufacturing method thereof.
ダイヤモンド様薄膜(DLC膜)に代表される炭素質薄膜は、耐蝕性及び耐摩耗性等に優れており、さまざまな分野において表面コーティングに用いることが試みられている。例えば、医療器具の基材の表面に炭素質薄膜をコーティングすることにより、表面の平滑性、耐摩耗性、耐蝕性及び生体適合性等を付与することができると期待される。 A carbonaceous thin film typified by a diamond-like thin film (DLC film) is excellent in corrosion resistance and wear resistance, and has been tried to be used for surface coating in various fields. For example, it is expected that surface smoothness, abrasion resistance, corrosion resistance, biocompatibility, and the like can be imparted by coating a carbonaceous thin film on the surface of a base material of a medical device.
特に、使い捨てにできない医療器具は感染の防止のために滅菌・消毒を行う必要がある。滅菌・消毒を行う方法の一つとして、薬剤の溶液への浸漬がある。滅菌・消毒用の薬剤は、酸性又はアルカリ性で腐食性が高いものが多い。このような薬剤に通常の金属又は樹脂製の医療器具を浸漬すると、薬剤による腐食及び劣化を生じてしまう。このような医療器具の表面を炭素質薄膜でコーティングすることにより、医療器具の寿命を大幅に伸ばすことが可能となると期待される。 In particular, medical devices that cannot be disposable need to be sterilized and disinfected to prevent infection. One method of sterilization and disinfection is immersion in a drug solution. Many sterilization / disinfection chemicals are acidic or alkaline and highly corrosive. When a medical device made of a normal metal or resin is immersed in such a drug, corrosion and deterioration due to the drug occur. By coating the surface of such a medical device with a carbonaceous thin film, it is expected that the life of the medical device can be greatly extended.
しかし、通常の炭素質薄膜は硬度が高く剛直な材料であるため、炭素質薄膜が基材の表面から剥がれたり、炭素質薄膜にクラックが生じたりしやすい。このため、炭素質薄膜と基材との間に、シリコン(Si)又は炭化硅素(SiC)等からなる中間層を形成することにより、基材と炭素質薄膜との密着性を向上させることが試みられている(例えば、特許文献1及び2を参照。)。
しかしながら、前記の従来の中間層を形成することにより、炭素質薄膜と基材との密着性を向上させる方法には、以下のような問題がある。中間層の形成により、炭素質薄膜と基材との密着性を向上させることはできる。しかし、炭素質薄膜自体は弾性に乏しいため、基材が大きく変形した場合に炭素質薄膜にクラックが生じることを防止できない。クラックは、剥離の原因となり又剥離が生じなくても、薬剤等が侵入して基材が腐食する原因となる。このため、ガイドワイヤ、カテーテル及び内視鏡といった大きな変形を伴う医療器具においては、中間層を形成するだけでは、炭素質薄膜を表面コーティングとして用いることが困難である。 However, the method for improving the adhesion between the carbon thin film and the base material by forming the conventional intermediate layer has the following problems. By forming the intermediate layer, the adhesion between the carbonaceous thin film and the substrate can be improved. However, since the carbon thin film itself has poor elasticity, it cannot be prevented that a crack occurs in the carbon thin film when the base material is greatly deformed. Cracks cause peeling, and even if peeling does not occur, chemicals or the like enter and cause corrosion of the substrate. For this reason, it is difficult to use a carbonaceous thin film as a surface coating only by forming an intermediate layer in a medical device with a large deformation such as a guide wire, a catheter, and an endoscope.
本発明は、前記従来の問題を解決し、剥離及びクラックが発生しにくく且つ耐蝕性が高い炭素質薄膜を実現できるようにすることを目的とする。 An object of the present invention is to solve the above-mentioned conventional problems, and to realize a carbonaceous thin film that hardly causes peeling and cracking and has high corrosion resistance.
前記の目的を達成するため、本発明は炭素質薄膜をSiC成分を含み且つ表面のSiO2成分が少ない構成とする。 In order to achieve the above object, the present invention has a structure in which a carbon thin film contains a SiC component and has a small amount of SiO 2 on the surface.
具体的に、本発明に係る炭素質薄膜は、基材の表面に形成され、炭素同士が結合したC−C成分及び炭素とシリコンとが結合したSiC成分を含む膜本体を備え、膜本体の表面における酸素とシリコンとが結合したSiO2成分の比率は、0.05以下であることを特徴とする。 Specifically, a carbon thin film according to the present invention includes a film body formed on the surface of a base material, the film body including a C-C component in which carbons are bonded together and a SiC component in which carbon and silicon are bonded, The ratio of the SiO 2 component in which oxygen and silicon are bonded on the surface is 0.05 or less.
本発明の炭素質薄膜は、SiC成分を含んでいるため、弾性率が通常の炭素質薄膜よりも小さい。従って、基材の表面から剥離しにくく、クラックも生じにくい。また、表面におけるSiO2成分の比率が0.05以下であるため、薬剤に対する耐蝕性に優れている。その結果、大きな変形を伴う医療器具等の基材表面に形成した場合においても、基材の耐久性を向上させることができる。 Since the carbon thin film of the present invention contains a SiC component, the elastic modulus is smaller than that of a normal carbon thin film. Therefore, it is difficult to peel off from the surface of the base material, and cracks are hardly generated. Moreover, since the ratio of the SiO 2 component on the surface is 0.05 or less, the corrosion resistance to the drug is excellent. As a result, the durability of the base material can be improved even when it is formed on the surface of the base material such as a medical instrument accompanied by a large deformation.
本発明の炭素質薄膜において、SiC成分の比率は、0.06以上であってもよい。また、SiC成分の比率は、0.5以下であってもよい。 In the carbonaceous thin film of the present invention, the ratio of the SiC component may be 0.06 or more. Further, the ratio of the SiC component may be 0.5 or less.
本発明の炭素質薄膜において、基材は金属であってもよい。また、基材は、ガイドワイヤ、カテーテル又は内視鏡であってもよい。 In the carbonaceous thin film of the present invention, the substrate may be a metal. The base material may be a guide wire, a catheter, or an endoscope.
本発明に係る炭素質薄膜の製造方法は、基材を載置したチャンバ内の水分を除去する工程(a)と、工程(a)よりも後に、チャンバ内に炭素源及び硅素源となる原料ガスを導入することにより、炭素同士が結合したC−C成分及び炭素とシリコンとが結合したSiC成分を含む膜本体を基材の表面にイオン化蒸着する工程(b)とを備えていることを特徴とする。 The method for producing a carbonaceous thin film according to the present invention includes a step (a) for removing moisture in a chamber on which a substrate is placed, and a raw material that becomes a carbon source and a silicon source in the chamber after step (a). A step (b) of ionizing and depositing a film body containing a C—C component in which carbons are bonded to each other and a SiC component in which carbon and silicon are bonded to each other by introducing a gas. Features.
本発明の炭素質薄膜の製造方法は、チャンバ内の水分を除去する工程を備えている。このため、硅素の導入量を多くした場合にも、酸化シリコン成分が少ない炭素質薄膜を形成することができる。従って、基材の表面から剥離したり、クラックが生じたりしにくく且つ耐蝕性に優れた炭素質薄膜を実現できる。 The method for producing a carbonaceous thin film of the present invention includes a step of removing moisture in the chamber. For this reason, even when the amount of silicon introduced is increased, a carbonaceous thin film with less silicon oxide component can be formed. Therefore, it is possible to realize a carbonaceous thin film that is hardly peeled off from the surface of the base material or cracks and has excellent corrosion resistance.
本発明に係る炭素質薄膜及びその製造方法によれば、大きな変形を伴う医療器具等においても耐久性が向上する炭素質薄膜を実現できる。 According to the carbon thin film and the method for producing the same according to the present invention, it is possible to realize a carbon thin film with improved durability even in a medical instrument or the like accompanied by a large deformation.
本願発明者らは、炭素質薄膜を形成する際にシリコン(Si)を加えることにより、炭素同士が結合したC−C成分の他に、炭素とSiとが結合した炭化硅素(SiC)成分を含む炭素質薄膜が形成でき、SiCの含有量により炭素質薄膜のヤング率が大きく変化することを見いだした。 The present inventors added silicon (Si) when forming a carbonaceous thin film, thereby adding a silicon carbide (SiC) component in which carbon and Si are bonded in addition to a C—C component in which carbons are bonded to each other. It was found that the carbonaceous thin film can be formed, and the Young's modulus of the carbonaceous thin film varies greatly depending on the SiC content.
一方、Siを添加することにより、酸化シリコン(SiO2)が生じ、炭素質薄膜の表面におけるSiO2成分の存在量が、炭素質薄膜の耐蝕性に大きな影響を与えることを見いだした。 On the other hand, by adding Si, silicon oxide (SiO 2 ) was generated, and the abundance of the SiO 2 component on the surface of the carbonaceous thin film was found to have a great influence on the corrosion resistance of the carbonaceous thin film.
本発明は、前記2つの知見に基づいてなされたものであり、クラック及び剥離が発生しにくく且つ耐蝕性に優れた炭素質薄膜を実現できる。 The present invention has been made based on the above two findings, and can realize a carbonaceous thin film that hardly causes cracks and peeling and has excellent corrosion resistance.
−炭素質薄膜の形成−
本発明において用いる基材は、どのようなものであってもよいが、大きな変形を伴い且つ滅菌等のために腐食性の薬剤に浸漬される医療器具の場合に特に大きな効果を発揮する。具体的には、金属性のガイドワイヤにおいて耐蝕性を大きく向上させることができる。また、カテーテル及び内視鏡等の樹脂等により形成された医療器具においても耐蝕性を向上させることができる。
-Formation of carbonaceous thin film-
The substrate used in the present invention may be any material, but exhibits a particularly great effect in the case of a medical instrument that is greatly deformed and immersed in a corrosive drug for sterilization or the like. Specifically, corrosion resistance can be greatly improved in a metallic guide wire. Moreover, corrosion resistance can be improved also in a medical instrument formed of a resin such as a catheter and an endoscope.
炭素質薄膜の形成方法は、既知の方法を用いることができる。例えば、スパッタ法、DCマグネトロンスパッタ法、RFマグネトロンスパッタ法、化学気相堆積法(CVD法)、プラズマCVD法、プラズマイオン注入法、重畳型RFプラズマイオン注入法、イオンプレーティング法、アークイオンプレーティング法、イオンビーム蒸着法又はレーザーアブレーション法等により基材の表面に形成することができる。また、その厚みは特に限定されるものではないが、0.00μm5〜3μmの範囲が好ましく、より好ましくは0.01μm〜1μmの範囲である。 A known method can be used to form the carbon thin film. For example, sputtering, DC magnetron sputtering, RF magnetron sputtering, chemical vapor deposition (CVD), plasma CVD, plasma ion implantation, superimposed RF plasma ion implantation, ion plating, arc ion play It can be formed on the surface of the substrate by a coating method, an ion beam deposition method, a laser ablation method or the like. The thickness is not particularly limited, but is preferably in the range of 0.00 μm to 3 μm, more preferably in the range of 0.01 μm to 1 μm.
また、炭素質薄膜は基材の表面に直接形成することができるが、基材と炭素質薄膜とをより強固に密着させるために、基材と炭素質薄膜との間に中間層を設けてもよい。中間層の材質としては、基材の種類に応じて種々のものを用いることができるが、硅素(Si)と炭素(C)、チタン(Ti)と炭素(C)又はクロム(Cr)と炭素(C)からなるアモルファス膜等の公知のものを用いることができる。その厚みは特に限定されるものではないが、0.005μm〜0.3μmの範囲が好ましく、より好ましくは0.01〜0.1μmの範囲である。 In addition, the carbonaceous thin film can be directly formed on the surface of the base material, but an intermediate layer is provided between the base material and the carbonaceous thin film in order to more firmly adhere the base material and the carbonaceous thin film. Also good. Various materials can be used for the intermediate layer depending on the type of substrate, but silicon (Si) and carbon (C), titanium (Ti) and carbon (C), or chromium (Cr) and carbon. A known film such as an amorphous film made of (C) can be used. The thickness is not particularly limited, but is preferably in the range of 0.005 μm to 0.3 μm, more preferably in the range of 0.01 to 0.1 μm.
中間層は、公知の方法を用いて形成することができ、例えば、スパッタ法、CVD法、プラズマCVD法、溶射法、イオンプレーティング法又はアークイオンプレーティング法等を用いればよい。 The intermediate layer can be formed using a known method. For example, a sputtering method, a CVD method, a plasma CVD method, a thermal spraying method, an ion plating method, an arc ion plating method, or the like may be used.
−組成評価−
炭素質薄膜の組成はX線光電子分光分析法(XPS法)により行った。測定には、日本電子製のXPS装置JPS9010を用いた。X線源には、AlKα線(1486.3eV)を用い、加速電圧を12.5kV、エミッション電流を15mAとし、真空度が8×10-7Paの条件で測定を行った。また、得られたスペクトルのバックグラウンドはShirley法により除去した。試料の測定においては、0.2eVのチャージシフトが解析精度に影響を与える。このため、金のナノ粒子を試料表面の一部に滴下して乾燥させ、金の結合エネルギ(Au4f7/2)からのシフト量をまず求め、チャージの補正を行った。
-Composition evaluation-
The composition of the carbon thin film was performed by X-ray photoelectron spectroscopy (XPS method). For the measurement, an XPS apparatus JPS9010 manufactured by JEOL Ltd. was used. As the X-ray source, AlKα ray (1486.3 eV) was used, the acceleration voltage was 12.5 kV, the emission current was 15 mA, and the degree of vacuum was 8 × 10 −7 Pa. The background of the obtained spectrum was removed by the Shirley method. In the measurement of the sample, a charge shift of 0.2 eV affects the analysis accuracy. Therefore, gold nanoparticles were dropped on a part of the sample surface and dried, and the shift amount from the gold binding energy (Au4f7 / 2) was first obtained to correct the charge.
試料中の全カーボンに対するSiC成分の比率[SiC]/[C]はC1sスペクトルをカーブフィッティングにより分割することによって求めた。まず、C1sスペクトルを、SP3炭素−炭素結合(SP3:C−C)と、グラファイト炭素−炭素結合(SP2:C−C)と、SP3炭素−水素結合(SP3:C−H)と、SP2炭素−水素結合(SP2:C−H)の4つの成分に分割した。各成分のピークの中心値はそれぞれ、283.7〜8eV、284.2〜3eV、284.7〜8eV及び2845.3〜4eVとした。さらに低エネルギ側に残されたピークを炭素−硅素結合(SiC)成分として分割し、高エネルギ側に残されたピークを炭素−酸素結合(C−Ox)成分として分割した。SiC成分のピークの中心値は283.1〜2eVとした。C1sスペクトルから得られた全炭素の積分強度とSiC成分の積分強度との比をSiC成分の比率[SiC]/[C]とした。 The ratio [SiC] / [C] of the SiC component to the total carbon in the sample was determined by dividing the C1s spectrum by curve fitting. First, a C1s spectrum is obtained by using an SP3 carbon-carbon bond (SP3: C—C), a graphite carbon-carbon bond (SP2: C—C), an SP3 carbon-hydrogen bond (SP3: C—H), and an SP2 carbon. -Divided into 4 components of hydrogen bonds (SP2: C-H). The center values of the peaks of each component were 283.7 to 8 eV, 284.2 to 3 eV, 284.7 to 8 eV, and 2845.3 to 4 eV, respectively. Further, the peak left on the low energy side was divided as a carbon-silicon bond (SiC) component, and the peak left on the high energy side was divided as a carbon-oxygen bond (C-Ox) component. The center value of the peak of the SiC component was set to 283.1 to 2 eV. The ratio between the integrated intensity of all carbons obtained from the C1s spectrum and the integrated intensity of the SiC component was defined as the ratio [SiC] / [C] of the SiC component.
試料表面におけるSiO2成分の比率は試料面に対する光電子の検出を75°傾け、表面敏感となる条件において測定した。得られたC1s及びSi2pスペクトルからSiとCとの濃度比([Si]/([Si]+[C]))を相対感度係数を用いて算出した。また、Si2pスペクトルをカーブフィッテングすることによりSiO2成分の積分強度を求めた。Si2pスペクトルから得られた全Siの積分強度と、SiO2成分の積分強度との比に、SiとCとの濃度比を掛けることによりSiO2成分の比率[SiO2]/([Si]+[C])とした。 The ratio of the SiO 2 component on the sample surface was measured under conditions where the photoelectron detection with respect to the sample surface was inclined by 75 ° and the surface was sensitive. The concentration ratio of Si and C ([Si] / ([Si] + [C])) was calculated from the obtained C1s and Si2p spectra using the relative sensitivity coefficient. Further, the integral intensity of the SiO 2 component was determined by curve fitting the Si 2p spectrum. The ratio [SiO 2 ] / ([Si] + of the SiO 2 component is obtained by multiplying the ratio of the integrated intensity of the total Si obtained from the Si 2p spectrum and the integrated intensity of the SiO 2 component by the concentration ratio of Si and C. [C]).
また、試料全体に
−物性評価−
炭素質薄膜の弾性率(ヤング率)の測定は、Hysitron社製の高感度(0.0004nm、3nN)センサーを搭載した90度三角錐のダイヤモンド圧子を用いたナノインデンテーション法により行った。圧痕状態の測定には試料表面を微小な探針で走査することによって三次元形状を高倍率で観察できる顕微鏡である株式会社島津製作所製の走査型プローブ顕微鏡(SPM:Scanning Probe Microscope)を用いた。ナノインデンテーションによる測定条件は100μNの精度でダイヤモンド圧子を制御しながら試料に押し込み、荷重-変位曲線の解析から弾性率等の力学的性質を定量した。圧子の押し込み時間は5秒間とし、また引き抜き時間も5秒間に設定して測定を行った。
In addition, the physical properties of the entire sample
The elastic modulus (Young's modulus) of the carbon thin film was measured by a nanoindentation method using a 90-degree triangular pyramid diamond indenter equipped with a high sensitivity (0.0004 nm, 3 nN) sensor manufactured by Hysitron. For the measurement of the indentation state, a scanning probe microscope (SPM) manufactured by Shimadzu Corporation, which is a microscope capable of observing a three-dimensional shape at a high magnification by scanning the surface of the sample with a fine probe, was used. . The measurement conditions by nanoindentation were pushed into the sample while controlling the diamond indenter with an accuracy of 100 μN, and the mechanical properties such as elastic modulus were quantified from the analysis of the load-displacement curve. The indenter pressing time was set to 5 seconds, and the drawing time was set to 5 seconds for measurement.
炭素質薄膜の剥がれ及びクラックの発生については、電子顕微鏡(日立TM−1000)の反射電子像を用いて観察することにより評価を行った。 About peeling of a carbonaceous thin film and generation | occurrence | production of a crack, it evaluated by observing using the reflected electron image of an electron microscope (Hitachi TM-1000).
耐食性試験は、試料を濃度3.5%のグルタラールに浸漬することにより行った。具体的には、グルタラールを3.5%含むサイデックスプラス28(ジョンソン・エンド・ジョンソン社登録商標)に氷酢酸を含む緩衝液を100:4.5の割合で混合した液を使用した。試料を常温で1週間浸漬した後に、実体顕微鏡(LiecaMZ16)によって観察することにより評価を行った。 The corrosion resistance test was conducted by immersing the sample in glutarar having a concentration of 3.5%. Specifically, a solution in which a buffer solution containing glacial acetic acid was mixed at a ratio of 100: 4.5 to Sidex Plus 28 (registered trademark of Johnson & Johnson) containing 3.5% glutarar was used. After the sample was immersed at room temperature for 1 week, it was evaluated by observing with a stereomicroscope (LiecaMZ16).
以下に、本発明に係る炭素質薄膜及びその製造方法について、実施例を用いてさらに詳細に説明する。 Hereinafter, the carbon thin film and the manufacturing method thereof according to the present invention will be described in more detail with reference to examples.
(一実施例)
直径0.5mmのステンレス(JIS規格SUS316)ワイヤを基材として用いた。まず、基材をイオン化蒸着装置のチャンバ内にセットし、ボンバードクリーニングを30分間行った。ボンバードクリーニングは、チャンバ内にアルゴンガス(Ar)を圧力が10-1Pa〜10-3Pa(10-3Torr〜10-5Torr)となるように導入した後、放電を行うことによりArイオン発生させ、発生したArイオンを基材の表面に衝突させることにより行った。
(Example)
A stainless steel (JIS standard SUS316) wire having a diameter of 0.5 mm was used as a base material. First, the base material was set in a chamber of an ionization deposition apparatus, and bombard cleaning was performed for 30 minutes. Bombardment cleaning, Ar by performing after introducing to argon gas (Ar) pressure becomes 10 -1 Pa~10 -3 Pa (10 -3 Torr~10 -5 Torr) in the chamber, a discharge ion This was performed by causing the generated Ar ions to collide with the surface of the substrate.
次に、チャンバにベンゼン及びテトラメチルシラン(Si(CH3)4)を導入しながら5分〜10分間放電を行うことにより硅素(Si)及び炭素(C)を主成分とする膜厚が100nmのアモルファス状のDLC膜である炭素質薄膜を形成した。テトラメチルシランの導入量を変化させることによりSi含有量が異なる炭素質薄膜を形成した。 Next, discharge is performed for 5 minutes to 10 minutes while introducing benzene and tetramethylsilane (Si (CH 3 ) 4 ) into the chamber, so that the film thickness mainly containing silicon (Si) and carbon (C) is 100 nm. The carbonaceous thin film which is an amorphous DLC film was formed. Carbon thin films with different Si contents were formed by changing the amount of tetramethylsilane introduced.
炭素質薄膜の形成前に、チャンバを80℃に昇温し、2時間ベーキングを行った。これにより、炉内に残留する水分を除去し、成膜中に酸化が生じることを防止した。また、成膜終了後、酸素を10-1Paの圧力となるように導入し、15秒間放電を行うことにより強制的に炭素質薄膜表面の酸化を行った。これにより、表面のSiO2成分の比率[SiO2]/([Si]+[C])が異なる炭素質薄膜を形成した。 Before forming the carbon thin film, the chamber was heated to 80 ° C. and baked for 2 hours. As a result, moisture remaining in the furnace was removed, and oxidation was prevented from occurring during film formation. Further, after the film formation was completed, oxygen was introduced to a pressure of 10 −1 Pa, and the surface of the carbon thin film was forcibly oxidized by discharging for 15 seconds. As a result, carbon thin films having different SiO 2 component ratios [SiO 2 ] / ([Si] + [C]) on the surface were formed.
図1(a)〜(d)は、得られた試料をXPS法により測定して得られたC1sスペクトル及びそのカーブフィッティングの結果を示している。図1(a)〜(d)に示したサンプルのオージェ電子分光分析により求めたSiの含有量は、それぞれ0%、3%、19%及び27%であった。オージェ電子分光分析は、PHISICAL ELECTRONICS社製のPHI−660型走査型オージェ電子分光装置を用いて行った。電子銃の加速電圧は10kVとし、資料電流が500nAの条件で測定した。また、Arイオン銃の加速電圧は2kVとし、スパッタリングレートは8.2nm/minに設定した。 FIGS. 1A to 1D show the C1s spectrum obtained by measuring the obtained sample by the XPS method and the results of curve fitting thereof. The Si contents obtained by Auger electron spectroscopy analysis of the samples shown in FIGS. 1A to 1D were 0%, 3%, 19%, and 27%, respectively. Auger electron spectroscopy analysis was performed using a PHI-660 scanning Auger electron spectrometer manufactured by PHISICAL ELECTRONICS. The acceleration voltage of the electron gun was 10 kV, and the measurement was performed under the condition that the material current was 500 nA. Further, the acceleration voltage of the Ar ion gun was set to 2 kV, and the sputtering rate was set to 8.2 nm / min.
図1(a)〜(d)に示すように、Si含有量が増加するに従い、SiCのピークの割合が次第に大きくなった。カーブフィッティングから求めたSiC成分の比率[SiC]/[C]は、それぞれ0、0.004、0.064及び0.13であった。 As shown in FIGS. 1A to 1D, the proportion of the SiC peak gradually increased as the Si content increased. The SiC component ratios [SiC] / [C] determined from curve fitting were 0, 0.004, 0.064, and 0.13, respectively.
図2は、得られた試料における、SiC成分の比率[SiC]/[C]と、ヤング率との関係を示している。[SiC]/[C]が大きくなるに従いヤング率は急激に低下し、[SiC]/[C]が0.06程度でほぼ一定となっている。 FIG. 2 shows the relationship between the SiC component ratio [SiC] / [C] and the Young's modulus in the obtained sample. As [SiC] / [C] increases, the Young's modulus decreases rapidly, and [SiC] / [C] is approximately constant at about 0.06.
図3(a)及び(b)は、得られた試料について、炭素質薄膜の剥がれ及びクラックの発生を測定した結果を示している。得られた試料を半径50mmとなるように曲げた後、曲げた部位の観察を行っている。図3(a)は、[SiC]/[C]が0.13の試料について測定した結果を示しているが、炭素質薄膜の剥がれ及びクラックの発生は認められていない。一方、図3(b)は、[SiC]/[C]が0の試料について測定した結果を示しているが、炭素質薄膜に微細なクラックが生じ、膜剥がれが生じていることがわかる。 FIGS. 3A and 3B show the results of measuring the peeling of the carbonaceous thin film and the occurrence of cracks for the obtained sample. After bending the obtained sample to have a radius of 50 mm, the bent portion is observed. FIG. 3 (a) shows the measurement result of a sample having [SiC] / [C] of 0.13, but no peeling of the carbonaceous thin film and generation of cracks are observed. On the other hand, FIG. 3B shows the result of measurement for a sample having [SiC] / [C] of 0. It can be seen that fine cracks are generated in the carbonaceous thin film, and film peeling occurs.
これは、SiC成分を含む炭素質薄膜とすることにより、ヤング率が低下し、クラックが生じにくくなったためである。従って、炭素質薄膜のクラックを防止するためには、[SiC]/[C]を0.06以上とすることが好ましく、0.1以上とすることがさらに好ましい。 This is because by using a carbon thin film containing a SiC component, the Young's modulus decreases and cracks are less likely to occur. Accordingly, in order to prevent cracking of the carbonaceous thin film, [SiC] / [C] is preferably 0.06 or more, and more preferably 0.1 or more.
一方、[SiC]/[C]を大きくするためには、炭素質薄膜中のSi量を増やす必要がある。炭素質薄膜中のSi量が増加すると、炭素質薄膜表面においてSiO2成分が増加し、炭素質薄膜の耐腐食性が低下するおそれがある。 On the other hand, in order to increase [SiC] / [C], it is necessary to increase the amount of Si in the carbonaceous thin film. When the amount of Si in the carbonaceous thin film increases, the SiO 2 component increases on the surface of the carbonaceous thin film, which may reduce the corrosion resistance of the carbonaceous thin film.
図4(a)〜(c)は、それぞれ、[SiC]/[C]が0.004、0.064及び0.13のサンプルについてXPS測定によるSi2pスペクトルを示している。この場合、光電子の検出角度を75°とし、炭素質薄膜の表面について測定を行った。 4A to 4C show Si2p spectra obtained by XPS measurement for samples having [SiC] / [C] of 0.004, 0.064, and 0.13, respectively. In this case, the photoelectron detection angle was set to 75 °, and the surface of the carbonaceous thin film was measured.
図5は、図4に示したスペクトルをカーブフィッティングして求めたSiO2成分の比率[SiO2]/([Si]+[C])と[SiC]/[C]との関係を示している。[SiC]/[C]の値が大きくなるに従い、SiO2成分の比率も増加している。 FIG. 5 shows the relationship between the ratio [SiO 2 ] / ([Si] + [C]) of the SiO 2 component obtained by curve fitting the spectrum shown in FIG. 4 and [SiC] / [C]. Yes. As the value of [SiC] / [C] increases, the ratio of the SiO 2 component also increases.
図6は、[SiO2]/([Si]+[C])が0.0143の試料と、酸素プラズマを照射することにより形成した[SiO2]/([Si]+[C])が0.0668の試料とについて耐蝕性を測定した結果を示している。図6(a)に示すように[SiO2]/([Si]+[C])が0.0143の試料は、腐食が全く認められなかったが、(b)に示すように[SiO2]/([Si]+[C])が0.0668の試料は、薬剤による腐食が生じている。 FIG. 6 shows that [SiO 2 ] / ([Si] + [C]) is 0.0143 and [SiO 2 ] / ([Si] + [C]) formed by irradiating oxygen plasma. The result of having measured corrosion resistance about 0.0668 sample is shown. As shown in FIG. 6A, the sample having [SiO 2 ] / ([Si] + [C]) of 0.0143 showed no corrosion, but as shown in FIG. 6B, [SiO 2] ] / ([Si] + [C]) of 0.0668 has corrosion caused by chemicals.
以上の結果から、炭素質薄膜の耐腐食性を確保するには、[SiO2]/([Si]+[C])の値を0.05以下とすることが好ましく、0.02以下とすることがさらに好ましい。また、図5を外挿して求めた、[SiO2]/([Si]+[C])が0.05となる[SiC]/[C]の値は約0.5である。従って、耐蝕性を確保するには、[SiC]/[C]の値を0.5以下とすることが好ましく、0.3以下とすることがさらに好ましい。 From the above results, in order to ensure the corrosion resistance of the carbon thin film, the value of [SiO 2 ] / ([Si] + [C]) is preferably 0.05 or less, and 0.02 or less. More preferably. Further, the value of [SiC] / [C] obtained by extrapolating FIG. 5 and having [SiO 2 ] / ([Si] + [C]) of 0.05 is about 0.5. Therefore, in order to ensure corrosion resistance, the value of [SiC] / [C] is preferably 0.5 or less, and more preferably 0.3 or less.
また、SiO2成分は成膜の際にチャンバ内に残留する酸素を含む成分によって生じると考えられる。特に、水分は残留しやすく且つ分解によって酸素を生じる。従って、成膜前の水分の除去を十分行うことにより、SiC成分を多く含む場合にもSiO2成分が少ない炭素質薄膜が得られる。チャンバ内の水分の除去は、一実施例において示したベーキングの他に、チャンバ内を真空状態とする方法等でもよい。例えば、チャンバ内を10-5Pa以下の高真空にした後、炭素質薄膜を堆積すればよい。また、基材のボンバードクリーニングに用いるガス中の水分を低減したり、原料ガス中の水分を低減したりすることも有効である。ガス中の水分の低減は、超高純度ガスを用いたり、モレキュラーシーブによる脱水等により行うことができる。さらに、これらの方法を組み合わせてもよい。 Further, it is considered that the SiO 2 component is generated by a component containing oxygen remaining in the chamber during film formation. In particular, moisture tends to remain and generates oxygen by decomposition. Therefore, by sufficiently removing water before film formation, a carbonaceous thin film having a small SiO 2 component can be obtained even when a large amount of SiC component is contained. The removal of moisture in the chamber may be a method of making the inside of the chamber in a vacuum state in addition to the baking shown in one embodiment. For example, the carbon thin film may be deposited after the chamber is evacuated to a high vacuum of 10 −5 Pa or less. It is also effective to reduce the moisture in the gas used for the bombard cleaning of the substrate or to reduce the moisture in the source gas. The moisture in the gas can be reduced by using ultra-high purity gas or by dehydration with molecular sieves. Furthermore, these methods may be combined.
炭素質薄膜の表面におけるSiO2成分を低減する方法としては、表面だけ組成を代えてSiを含まない炭素質薄膜を積層する方法も考えられる。しかし、この場合には、成膜が複雑になる。また、炭素質薄膜同士の界面から剥がれが生じるおそれもある。 As a method for reducing the SiO 2 component on the surface of the carbon thin film, a method of laminating a carbon thin film not containing Si by changing the composition only on the surface is also conceivable. However, in this case, film formation becomes complicated. Moreover, there is a possibility that peeling occurs from the interface between the carbon thin films.
本発明に係る炭素質薄膜及びその製造方法は、大きな変形を伴う基材の表面に形成した場合においても、剥離及びクラックが発生しにくく且つ耐蝕性が高い炭素質薄膜を実現でき、特にガイドワイヤ及びカテーテル等の変形を伴う医療器具の表面に形成する炭素質薄膜及びその製造方法等として有用である。 The carbonaceous thin film and the method for producing the same according to the present invention can realize a carbonaceous thin film that hardly causes peeling and cracking and has high corrosion resistance even when formed on the surface of a base material with a large deformation. And it is useful as a carbonaceous thin film formed on the surface of a medical device accompanied by deformation of a catheter or the like, and a method for producing the same.
Claims (2)
前記膜本体の表面における酸素とシリコンとが結合したSiO2成分の全炭素原子及び全シリコン原子の合計に対する比率は、0.05以下であり、
前記SiC成分の全炭素原子に対する比率は、0.06以上、0.5以下であり、
前記基材は、金属であり、変形を伴う医療器具の一部であることを特徴とする炭素質薄膜。 A film body formed on the surface of the substrate, including a C—C component in which carbons are bonded together and a SiC component in which carbon and silicon are bonded;
The ratio of the SiO 2 component in which oxygen and silicon are bonded to the surface of the film body to the total of all carbon atoms and all silicon atoms is 0.05 or less,
The ratio of the SiC component to all carbon atoms is 0.06 or more and 0.5 or less,
The carbonaceous thin film characterized in that the substrate is a metal and is a part of a medical device accompanied by deformation .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007294273A JP5290564B2 (en) | 2007-11-13 | 2007-11-13 | Carbon thin film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007294273A JP5290564B2 (en) | 2007-11-13 | 2007-11-13 | Carbon thin film |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009120885A JP2009120885A (en) | 2009-06-04 |
JP5290564B2 true JP5290564B2 (en) | 2013-09-18 |
Family
ID=40813357
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007294273A Active JP5290564B2 (en) | 2007-11-13 | 2007-11-13 | Carbon thin film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5290564B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5327934B2 (en) * | 2007-12-06 | 2013-10-30 | 国立大学法人広島大学 | Implant material and manufacturing method thereof |
EP2397163B1 (en) | 2009-02-10 | 2017-11-29 | Toyo Advanced Technologies Co., Ltd. | Implant material and method for producing the same |
JP5661632B2 (en) * | 2009-08-17 | 2015-01-28 | 川澄化学工業株式会社 | Medical instruments and metal products |
JP6474673B2 (en) | 2015-04-17 | 2019-02-27 | キリン株式会社 | Gas barrier plastic molded body and method for producing the same |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2971928B2 (en) * | 1989-12-28 | 1999-11-08 | 株式会社豊田中央研究所 | Hard amorphous carbon-hydrogen-silicon thin film having lubricity, iron-based metal material having the thin film on its surface, and method for producing the same |
JP4612147B2 (en) * | 2000-05-09 | 2011-01-12 | 株式会社リケン | Amorphous hard carbon film and method for producing the same |
JP2002183937A (en) * | 2000-12-14 | 2002-06-28 | Hitachi Maxell Ltd | Magnetic recording medium |
JP4427706B2 (en) * | 2002-05-21 | 2010-03-10 | 株式会社豊田中央研究所 | High wear resistance and high seizure resistance sliding member and manufacturing method thereof |
JP2004260086A (en) * | 2003-02-27 | 2004-09-16 | Shin Etsu Handotai Co Ltd | Manufacturing method of silicon wafer |
JP4768709B2 (en) * | 2004-03-05 | 2011-09-07 | ウオーターズ・テクノロジーズ・コーポレイシヨン | Valve with low friction coating |
US20060079863A1 (en) * | 2004-10-08 | 2006-04-13 | Scimed Life Systems, Inc. | Medical devices coated with diamond-like carbon |
JP4372663B2 (en) * | 2004-10-27 | 2009-11-25 | 株式会社豊田中央研究所 | Engine valve system parts |
JP2007100135A (en) * | 2005-09-30 | 2007-04-19 | Toyota Central Res & Dev Lab Inc | Corrosion-resistant member |
-
2007
- 2007-11-13 JP JP2007294273A patent/JP5290564B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2009120885A (en) | 2009-06-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101079196B1 (en) | Medical device having diamond-like thin film and method for manufacture thereof | |
JP3737291B2 (en) | Diamond-like carbon hard multilayer film molded body | |
JP5290564B2 (en) | Carbon thin film | |
JP2001316800A (en) | Amorphous carbon coated member | |
WO2004076710A1 (en) | Amorphous carbon film, process for producing the same and amorphous carbon film-coated material | |
JP2009525826A (en) | Multilayer coating for razor blades | |
US20120190114A1 (en) | Silicon-incorporated diamond-like carbon film, fabrication method thereof, and its use | |
Batory et al. | Gradient titanium and silver based carbon coatings deposited on AISI316L | |
US9138507B2 (en) | Method for manufacturing an implant material | |
JP5327934B2 (en) | Implant material and manufacturing method thereof | |
JP5623800B2 (en) | TiAlN film forming body | |
JP5215653B2 (en) | Antithrombogenic material and method for producing the same | |
WO2016111288A1 (en) | Diamond-like carbon layered laminate and method for manufacturing same | |
WO2009119269A1 (en) | Process for producing surface covered component having excellent film adhesion | |
JP5296416B2 (en) | Antithrombotic material | |
TW201140071A (en) | Method for producing tungsten-containing diamond-like carbon film on base of contact probe pin for semiconductor inspection device | |
Zheng et al. | Ti–TiC–TiC/DLC gradient nano-composite film on a biomedical NiTi alloy | |
EP4241799A1 (en) | Metal material for medical device, manufacturing method for metal material for medical device, and medical device | |
JP4116144B2 (en) | Manufacturing method of hard carbon coating member | |
Tian et al. | Influence of Cathodic Arc Current on Structure, Mechanical and Tribological Properties of TiC/aC: H Nano-multilayer Coatings | |
Liao et al. | Tribological performance of ultrathin diamond-like carbon films prepared by plasma-based ion implantation | |
CN114196937A (en) | Hydrophilic amorphous carbon film and preparation method thereof | |
JP2010228972A (en) | Carbonaceous film and method for producing the same | |
Xu et al. | Influence of acetylene to argon flow rate ratios on structure and properties of hydrogenated amorphous carbon films produced on steel substrates by plasma immersion ion implantation and deposition | |
JP2000169965A (en) | Zinc-containing alloy clad member and its production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100826 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20111227 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20120220 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121106 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121204 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130528 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130606 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5290564 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |