JP5289294B2 - Quartz crucible for pulling silicon single crystal - Google Patents

Quartz crucible for pulling silicon single crystal Download PDF

Info

Publication number
JP5289294B2
JP5289294B2 JP2009282786A JP2009282786A JP5289294B2 JP 5289294 B2 JP5289294 B2 JP 5289294B2 JP 2009282786 A JP2009282786 A JP 2009282786A JP 2009282786 A JP2009282786 A JP 2009282786A JP 5289294 B2 JP5289294 B2 JP 5289294B2
Authority
JP
Japan
Prior art keywords
side wall
quartz crucible
single crystal
crucible
pulling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009282786A
Other languages
Japanese (ja)
Other versions
JP2011121843A (en
Inventor
稔 神田
拓麿 吉岡
弘史 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2009282786A priority Critical patent/JP5289294B2/en
Publication of JP2011121843A publication Critical patent/JP2011121843A/en
Application granted granted Critical
Publication of JP5289294B2 publication Critical patent/JP5289294B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Glass Melting And Manufacturing (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は、シリコン単結晶を製造する際に用いられるルツボであって、特に、チョクラルスキー法で用いられ、長時間シリコン単結晶の引き上げが行われるように、石英ルツボ内へシリコン原料融液が連続的に供給される単結晶引上げ用ルツボ、及び、そのルツボを用いた単結晶引上げ方法に関するものである。   The present invention is a crucible used in manufacturing a silicon single crystal, and is used in particular in the Czochralski method, so that the silicon single crystal is pulled into the quartz crucible for a long period of time. The present invention relates to a single crystal pulling crucible to which is continuously supplied and a single crystal pulling method using the crucible.

従来、シリコン単結晶の作製には、大型結晶が育成できる、結晶成長のスピードが速い等の利点から、チョクラルスキー法(以下「CZ法」という)が用いられている。近年、シリコン単結晶を大量に製造することを目的として、シリコン単結晶引上げルツボへ、シリコン原料融液を連続的に外部から供給することで、前記シリコン原料融液の液面高さ位置を実質的に一定とした状態でシリコン単結晶の引き上げを可能とするシリコン単結晶の引上げ方法が開発されている。   Conventionally, the Czochralski method (hereinafter referred to as “CZ method”) is used for the production of a silicon single crystal because of the advantages that a large crystal can be grown and the speed of crystal growth is high. In recent years, for the purpose of producing a large amount of silicon single crystal, the silicon raw material melt is continuously supplied from the outside to the silicon single crystal pulling crucible, so that the liquid surface height position of the silicon raw material melt is substantially reduced. A silicon single crystal pulling method has been developed that enables the silicon single crystal to be pulled in a constant state.

上記の長時間連続したシリコン単結晶の引上げ方法としては、図1に示すように、融液供給ルツボ3で固体シリコン原料2を溶融させ、溶融したシリコン原料融液5を、融液供給管4を通して、石英ルツボ20内でシリコン単結晶引上げ用ルツボ10へ供給し、前記シリコン原料融液5の液面高さ位置H0を実質的に一定とした状態でシリコン単結晶を引き上げる方法が挙げられる。例えば、特許文献1に開示されているような結晶原料の溶解装置を用いたシリコン単結晶の引上げである。   As a method for pulling up the silicon single crystal continuous for a long time, as shown in FIG. 1, the solid silicon raw material 2 is melted with a melt supply crucible 3, and the molten silicon raw material melt 5 is melted into a melt supply pipe 4. Then, the silicon single crystal pulling crucible 20 is supplied to the silicon single crystal pulling crucible 10 and the silicon single crystal is pulled up with the liquid surface height position H0 of the silicon raw material melt 5 substantially constant. For example, pulling up a silicon single crystal using a crystal raw material melting apparatus as disclosed in Patent Document 1.

しかしながら、これらの引上げ方法によってシリコン単結晶の引上げを行った場合、多くのシリコン単結晶を連続して引き上げることができる点で有効であるものの、前記石英ルツボ内に供給されたシリコン融液の液面が実質的に一定の高さ位置で変動しないため、前記石英ルツボの前記シリコン融液面の高さ位置に対応する内壁部分が侵食される(溶損する)という問題があった。   However, when the silicon single crystal is pulled by these pulling methods, it is effective in that many silicon single crystals can be pulled continuously. However, the silicon melt liquid supplied into the quartz crucible is effective. Since the surface does not vary at a substantially constant height position, there is a problem that the inner wall portion corresponding to the height position of the silicon melt surface of the quartz crucible is eroded (melted).

シリコン単結晶の引上げは、およそ1500℃という高温環境で行われ、前記石英ルツボの軟化する温度が1150℃程度であるため、引上げが長時間(例えば200時間以上)継続した場合、上述の石英ルツボの溶損は、石英ルツボの内倒れや座屈等を引き起こし、石英ルツボの使用期間の短縮を招くことになる。そのため、シリコン原料融液が連続的又は断続的に供給され、前記シリコンルツボ内でシリコン原料融液の液面高さ位置が実質的に一定の状態となる場合であっても、石英ルツボの溶損に起因した石英ルツボの破損を抑制できる技術の開発が望まれている。   The pulling of the silicon single crystal is performed in a high temperature environment of about 1500 ° C., and the quartz crucible is softened at a temperature of about 1150 ° C. Therefore, when the pulling continues for a long time (for example, 200 hours or more), This melting loss causes the quartz crucible to fall down or buckle, leading to a shortened use period of the quartz crucible. Therefore, even when the silicon raw material melt is supplied continuously or intermittently and the liquid level height position of the silicon raw material melt is substantially constant in the silicon crucible, the melting of the quartz crucible is performed. Development of a technique capable of suppressing breakage of a quartz crucible due to damage is desired.

ここで、特許文献2では、内倒れや座屈を抑制するため、黒鉛ルツボのストレート部の内面が下部から上部に向かって順次その口径が大きくなるように傾斜することを特徴とするルツボが開示されている。しかしながら、前記石英ルツボの前記シリコン融液面の高さ位置に対応する内壁部分が侵食される(溶損する)ことに起因した内倒れや座屈については、十分に解決することはできない。   Here, Patent Document 2 discloses a crucible characterized in that the inner surface of the straight portion of the graphite crucible is inclined so that the diameter gradually increases from the lower portion toward the upper portion in order to suppress inward tilting and buckling. Has been. However, inward tilting and buckling caused by erosion (melting damage) of the inner wall portion corresponding to the height position of the silicon melt surface of the quartz crucible cannot be sufficiently solved.

特開平10−25190号公報Japanese Patent Laid-Open No. 10-25190 特開2007−76974号公報JP 2007-76974 A

本発明の目的は、石英ルツボ形状の適正化を図ることにより、石英ルツボにシリコン原料融液が連続的又は断続的に供給され、前記石英ルツボ内でシリコン原料融液の液面高さ位置が実質的に一定の状態となる場合であっても、内壁の侵食に起因した石英ルツボの破損を抑制できる単結晶引上げ用ルツボ及び単結晶引上げ方法を提供することにある。   An object of the present invention is to optimize the shape of the quartz crucible so that the silicon raw material melt is continuously or intermittently supplied to the quartz crucible, and the liquid surface height position of the silicon raw material melt is within the quartz crucible. An object of the present invention is to provide a single crystal pulling crucible and a single crystal pulling method capable of suppressing breakage of a quartz crucible due to erosion of an inner wall even in a substantially constant state.

本発明者らは、シリコン原料融液を収容する石英ルツボ及び該石英ルツボの外側を覆う黒鉛ルツボの二重構造からなり、前記石英ルツボ内でシリコン原料融液の液面高さ位置が実質的に一定の状態となるように、前記石英ルツボ内へシリコン原料融液が連続的又は断続的に供給されるシリコン単結晶引上げ用ルツボについて、上記課題を解決するべく検討を重ねた結果、前記シリコン原料融液の液面高さ位置に対応した側壁の外周に、石英材料からなる側壁補強部を設けて前記側壁部分を厚肉側壁部とすることにより、該厚肉側壁部が、シリコン単結晶引上げ時、石英ルツボが加熱されて軟化し、前記黒鉛ルツボの内壁面形状に対応して変形し、石英ルツボの前記厚肉側壁部が内面側に部分的に迫り出してなるため、前記シリコン融液面の高さ位置範囲に対応する内壁部分が侵食される場合であっても、それに起因した石英ルツボの破損を有効に抑制できることを見出した。   The present inventors have a double structure of a quartz crucible containing a silicon raw material melt and a graphite crucible covering the outside of the quartz crucible, and the liquid surface height position of the silicon raw material melt is substantially within the quartz crucible. The silicon single crystal pulling crucible in which the silicon raw material melt is continuously or intermittently supplied into the quartz crucible so as to be in a constant state as a result of repeated investigations to solve the above problems. By providing a side wall reinforcing portion made of a quartz material on the outer periphery of the side wall corresponding to the liquid surface height position of the raw material melt to make the side wall portion a thick side wall portion, the thick side wall portion becomes a silicon single crystal. At the time of pulling up, the quartz crucible is heated and softened, and deforms corresponding to the shape of the inner wall surface of the graphite crucible, and the thick side wall portion of the quartz crucible partially protrudes toward the inner surface side. Liquid level high Even if the inner wall portion corresponding to the position range is eroded was found to be able to effectively suppress the breakage of the quartz crucible caused by it.

上記目的を達成するため、本発明の要旨構成は以下の通りである。
(1)シリコン原料融液を収容する石英ルツボ及び該石英ルツボの外側を覆う黒鉛ルツボの二重構造からなり、前記石英ルツボ内で前記シリコン原料融液の液面高さ位置を実質的に一定とした状態でシリコン単結晶の引き上げが行われるように、前記石英ルツボ内へシリコン原料融液が連続的に供給されるシリコン単結晶引上げ用ルツボであって、前記石英ルツボは、側壁外周の所定の高さ位置に、石英材料からなる側壁補強部を設けて、前記側壁部分を厚肉側壁部とし、シリコン単結晶引上げ時に石英ルツボが加熱されて軟化し、前記厚肉側壁部が前記黒鉛ルツボの内壁面形状に対応して変形することで、石英ルツボの前記厚肉側壁部が内面側に部分的に迫り出してなることを特徴とするシリコン単結晶引上げ用ルツボ。
In order to achieve the above object, the gist of the present invention is as follows.
(1) It has a double structure of a quartz crucible containing a silicon raw material melt and a graphite crucible covering the outside of the quartz crucible, and the liquid surface height position of the silicon raw material melt is substantially constant in the quartz crucible. A silicon single crystal pulling crucible in which a silicon raw material melt is continuously supplied into the quartz crucible so that the silicon single crystal is pulled in the state of A side wall reinforcing portion made of a quartz material is provided at a height position of the quartz material, the side wall portion is a thick wall side wall portion, the quartz crucible is heated and softened when the silicon single crystal is pulled, and the thick wall side wall portion is the graphite crucible. A silicon single crystal pulling crucible, characterized in that the thick side wall portion of the quartz crucible partially protrudes toward the inner surface side by being deformed corresponding to the inner wall surface shape.

(2)前記厚肉側壁部は、前記石英ルツボの側壁補強部を除いた側壁の厚さに対して、110〜150%の厚さを有する上記(1)記載のシリコン単結晶引上げ用ルツボ。 (2) The silicon single crystal pulling crucible according to the above (1), wherein the thick side wall portion has a thickness of 110 to 150% with respect to a thickness of the side wall excluding the side wall reinforcing portion of the quartz crucible.

(3)前記厚肉側壁部は、その上端部の高さ位置が、前記石英ルツボの側壁の下端から測定して、前記側壁の上端までの距離の50〜90%の範囲に設けられ、その下端部の高さ位置が、前記石英ルツボの側壁の下端から測定して、前記側壁の上端までの距離の40〜80%の範囲に位置する上記(1)又は(2)記載のシリコン単結晶引上げ用ルツボ。 (3) The thick side wall portion is provided such that the height position of the upper end portion thereof is measured in the range of 50 to 90% of the distance to the upper end of the side wall as measured from the lower end of the side wall of the quartz crucible. The silicon single crystal according to the above (1) or (2), wherein the height position of the lower end portion is located in the range of 40 to 80% of the distance to the upper end of the side wall as measured from the lower end of the side wall of the quartz crucible A crucible for lifting.

(4)前記石英ルツボは、胴部上端の外径が、胴部下端の外径よりも0.1%以上大きい上記(1)〜(3)のいずれか1項記載のシリコン単結晶引上げ用ルツボ。 (4) The quartz crucible for pulling up a silicon single crystal according to any one of the above (1) to (3), wherein the outer diameter of the upper end of the trunk is 0.1% or more larger than the outer diameter of the lower end of the trunk.

(5)前記石英ルツボは、胴部上端の外径が、700〜1120mmの範囲である上記(1)〜(4)のいずれか1項記載のシリコン単結晶引上げ用ルツボ。 (5) The quartz crucible is a crucible for pulling up a silicon single crystal according to any one of (1) to (4) above, wherein the outer diameter of the upper end of the body portion is in the range of 700 to 1120 mm.

(6)上記(1)〜(5)のいずれか1項に記載されたシリコン単結晶引上げ用ルツボを用いて、直径が300mm以上のシリコン単結晶インゴットを引き上げることを特徴とするシリコン単結晶引上げ方法。 (6) Pulling a silicon single crystal ingot having a diameter of 300 mm or more using the silicon single crystal pulling crucible described in any one of (1) to (5) above, pulling a silicon single crystal Method.

この発明によれば、石英ルツボにシリコン原料融液が連続的又は断続的に供給され、前記シリコンルツボ内でシリコン原料融液の液面高さ位置が実質的に一定の状態となる場合であっても、内壁の侵食に起因した石英ルツボの破損を抑制できる単結晶引上げ用ルツボ及び単結晶引上げ方法を提供することが可能になった。   According to the present invention, the silicon raw material melt is continuously or intermittently supplied to the quartz crucible, and the liquid surface height position of the silicon raw material melt is substantially constant in the silicon crucible. However, it has become possible to provide a crucible for pulling a single crystal and a method for pulling a single crystal that can suppress the damage of the quartz crucible due to the erosion of the inner wall.

単結晶引き上げ装置を模式的に示した断面図である。It is sectional drawing which showed the single crystal pulling apparatus typically. 本発明の石英ルツボを模式的に示した側断面図である。It is the sectional side view which showed typically the quartz crucible of this invention. 本発明の単結晶引上げ用ルツボを模式的に示した側断面図であり、(a)はシリコン融液ができた直後の状態、(b)は(a)のルツボにシリコン原料融液の供給を連続的又は断続的に行いながら引上げを長時間継続した時の状態を示したものである。FIG. 2 is a side sectional view schematically showing a single crystal pulling crucible of the present invention, in which (a) shows a state immediately after the silicon melt is formed, and (b) shows the supply of the silicon raw material melt to the crucible of (a). This shows the state when the pulling is continued for a long time while continuously or intermittently.

以下、本発明の構成と限定理由を、図1〜3を用いて説明する。
図1は、本発明の単結晶引上げ装置について模式的に示した側断面図であり、図2は、本発明の石英ルツボの一実施形態について模式的に示した側断面図であり、図3は、本発明の単結晶引上げ用ルツボを模式的に示した側断面図であり、(a)はシリコン融液ができた直後の状態、(b)は(a)のルツボにシリコン原料融液の供給を連続的又は断続的に行いながら引上げを長時間継続した時の状態を示したものである。
Hereinafter, the configuration of the present invention and the reasons for limitation will be described with reference to FIGS.
FIG. 1 is a side sectional view schematically showing a single crystal pulling apparatus of the present invention, and FIG. 2 is a side sectional view schematically showing an embodiment of a quartz crucible of the present invention. FIG. 2 is a side sectional view schematically showing a single crystal pulling crucible of the present invention, in which (a) shows a state immediately after a silicon melt is formed, and (b) shows a silicon raw material melt in a crucible of (a). It shows the state when the pulling is continued for a long time while the supply of is continuously or intermittently performed.

本発明に従う単結晶引上げ用ルツボは、図1に示すように、シリコン原料融液5を収容する石英ルツボ20及び該石英ルツボ20の外側を覆う黒鉛ルツボ30の二重構造からなり、前記石英ルツボ20内で前記シリコン原料融液5の液面高さ位置H0を実質的に一定とした状態でシリコン単結晶6の引上げが行われるように、前記石英ルツボ20内へシリコン原料融液5が連続的又は断続的に供給されるシリコン単結晶引上げ用ルツボ20であって、前記石英ルツボ20は、図2に示すように、側壁21の外周の所定の高さ位置Hに、石英材料からなる側壁補強部22を設けて前記側壁部分を厚肉側壁部23とし、図3(a)及び(b)に示すように、シリコン単結晶5の引上げ時、石英ルツボ20が加熱されて軟化し、前記厚肉側壁23部が前記黒鉛ルツボ30の内壁面30a形状に対応して変形することで、石英ルツボ20の前記厚肉側壁部23が内面側に部分的に迫り出してなる(図3(b))ことを特徴とする。
上記構成を採用することによって、前記シリコン融液5a面の高さ位置範囲(H1〜H3)に対応する内壁部分21が侵食される場合であっても、前記側壁補強部22を設けた厚肉側壁部23がルツボ内面側へ肉厚となるため、侵食に起因した石英ルツボ20の破損(座屈や内倒れ等)を有効に抑制することができる。
As shown in FIG. 1, the single crystal pulling crucible according to the present invention has a double structure of a quartz crucible 20 containing a silicon raw material melt 5 and a graphite crucible 30 covering the outside of the quartz crucible 20, and the quartz crucible The silicon raw material melt 5 is continuously introduced into the quartz crucible 20 so that the silicon single crystal 6 is pulled up with the liquid surface height position H0 of the silicon raw material melt 5 being substantially constant in the inside 20. The silicon crucible pulling crucible 20 is supplied either intermittently or intermittently, and the quartz crucible 20 has a side wall made of a quartz material at a predetermined height position H on the outer periphery of the side wall 21, as shown in FIG. As shown in FIGS. 3 (a) and 3 (b), the quartz crucible 20 is heated and softened when the silicon single crystal 5 is pulled up, as shown in FIGS. 3 (a) and 3 (b). 23 parts of thick side wall Due to the deformation corresponding to the shape of the inner wall surface 30a of the graphite crucible 30, the thick side wall portion 23 of the quartz crucible 20 partially protrudes toward the inner surface side (FIG. 3B). .
By adopting the above configuration, even when the inner wall portion 21 corresponding to the height position range (H1 to H3) of the surface of the silicon melt 5a is eroded, the thick wall provided with the side wall reinforcing portion 22 is provided. Since the side wall portion 23 becomes thicker toward the inner surface of the crucible, breakage of the quartz crucible 20 due to erosion (buckling, inward tilt, etc.) can be effectively suppressed.

なお、従来の技術では、前記側壁補強部22を、あらかじめ前記石英ルツボ20の内壁に設け、石英ルツボ20の前記厚肉側壁部23が内面側に部分的に迫り出してなるようにすることは、製造上困難である。石英ルツボは、回転するルツボ形状のモールド(型)に、遠心力を利用して石英原料粉を密着させ、その内部でアークを発生させ石英粉を溶融する、いわゆるアーク溶融法で製造するため、原料石英粉は、内面から外面に向かって溶融し、その温度は外側より内面側が高くなり、逆に溶融した石英ガラスの粘度は、内面側が低くなる。その結果、前記側壁補強部22を前記石英ルツボ20の内面側に設けた場合、引上げ中の石英ルツボ内面は重力により少しずつ下方にたれ落ちるため、石英原料粉をモールドに密着させる際、前記側壁補強部22を凸状に成形しても、凸状に成形した部分も平坦化し下方に流れ、部分的に内面に迫り出す形状を実現することは難しい。そのため、本発明では、前記側壁補強部22を、一旦外側に設け、その後の熱による石英ルツボ20の軟化を利用することで、前記厚肉側壁部23を石英ルツボ20の内面側に部分的に迫り出す形状とすることを可能としたものである。   In the prior art, the side wall reinforcing portion 22 is provided in advance on the inner wall of the quartz crucible 20 so that the thick side wall portion 23 of the quartz crucible 20 partially protrudes toward the inner surface side. It is difficult to manufacture. The quartz crucible is manufactured by a so-called arc melting method in which quartz raw material powder is brought into close contact with a rotating crucible-shaped mold using a centrifugal force, and an arc is generated therein to melt the quartz powder. The raw material quartz powder is melted from the inner surface toward the outer surface, and its temperature is higher on the inner surface side than on the outer side, and conversely, the viscosity of the fused quartz glass is lower on the inner surface side. As a result, when the side wall reinforcing portion 22 is provided on the inner surface side of the quartz crucible 20, the inner surface of the quartz crucible that is being pulled up gradually falls downward due to gravity, and therefore when the quartz raw material powder is brought into close contact with the mold, the side wall Even if the reinforcing portion 22 is formed in a convex shape, it is difficult to realize a shape in which the portion formed in the convex shape is flattened and flows downward and partially protrudes toward the inner surface. Therefore, in the present invention, the side wall reinforcing portion 22 is once provided on the outside, and the thick side wall portion 23 is partially formed on the inner surface side of the quartz crucible 20 by utilizing the subsequent softening of the quartz crucible 20 by heat. It is possible to make a shape that protrudes.

また、前記厚肉側壁部23を構成する側壁補強部22については、石英材料からなるものであれば特に限定はしないが、前記石英ルツボ20との接着性の点から、石英ルツボ20の材料と同じ材料からなることが好ましい。   The side wall reinforcing portion 22 constituting the thick-walled side wall portion 23 is not particularly limited as long as it is made of a quartz material. From the viewpoint of adhesiveness to the quartz crucible 20, the material of the quartz crucible 20 and It is preferable to consist of the same material.

前記側壁補強部22は、図2に示すように、前記シリコン原料融液5の液面高さ位置に対応し、所定の高さ位置Hに設ける必要があるが。前記石英ルツボ20を構成する石英ガラスは、溶融したシリコンと反応してシリコン原料融液5中へ溶解後、前記融液5中を循環した後、一部がガスとなって蒸発する。しかし、前記融液の液面付近では、雰囲気ガスと接した状態にあるため、石英ガラスが溶解した後、溶解した石英ガラスのほとんどが、すぐにガスとなって蒸発するため、前記石英ガラスのシリコン融液中への溶解反応が激しく起こる結果、前記シリコン原料融液5の液面5aと接する内壁部分の侵食量が大きくなり、石英ルツボ20の内倒れや座屈等の破損を招くためである。なお、前記原料シリコン融液5の液面高さ位置H0が実質的に一定というのは、厳密に一定の高さ位置ではなく、本発明では、任意の前記融液5の液面高さ位置H0を中心として±20mmの範囲をいう。   As shown in FIG. 2, the side wall reinforcing portion 22 needs to be provided at a predetermined height position H corresponding to the liquid surface height position of the silicon raw material melt 5. The quartz glass constituting the quartz crucible 20 reacts with the molten silicon and dissolves in the silicon raw material melt 5 and then circulates in the melt 5 and then partially evaporates as a gas. However, in the vicinity of the surface of the melt, since it is in contact with the atmospheric gas, most of the dissolved quartz glass immediately evaporates after the quartz glass is dissolved. As a result of the vigorous dissolution reaction in the silicon melt, the amount of erosion of the inner wall portion of the silicon raw material melt 5 in contact with the liquid surface 5a increases, leading to the quartz crucible 20 falling down or buckling. is there. Note that the liquid surface height position H0 of the raw silicon melt 5 is substantially constant is not strictly constant height position. In the present invention, any liquid surface height position of the melt 5 is used. The range of ± 20mm with H0 as the center.

さらに、図2に示すように、前記側壁補強部22が設けられた前記厚肉側壁部23は、前記石英ルツボ20の内壁の侵食を有効に抑制し、さらに、不要な前記側壁補強部22を防止する点から、一定の高さ範囲に限定して設けること、具体的には、その上端部23aの高さ位置H1が、前記石英ルツボ20の側壁の下端Uから測定して、前記側壁の上端Tまでの距離Xの50〜90%の範囲に設けられ、その下端部23bの高さ位置H3が、前記石英ルツボ20の側壁の下端Uから測定して、前記側壁の上端Tまでの距離Xの40〜80%の範囲に位置することが好ましい。前記上端部23aの高さ位置H1が距離Xの50%未満の場合、及び、前記下端部23bの高さ位置H2が距離Xの80%超えの場合、実際の前記シリコン原料融液5の液面高さ位置に対応できていないため、範囲外の部分については石英ルツボの破損を抑制することができない恐れがあり、一方、前記上端部23aの高さ位置H1が距離Xの90%超えの場合、及び、前記下端部23bの高さ位置H2が距離Xの40%未満の場合、実際の前記シリコン原料融液5の液面高さ位置範囲を超えて前記側壁補強部22が設けられているため、コスト的に好ましくないためである。   Further, as shown in FIG. 2, the thick side wall portion 23 provided with the side wall reinforcing portion 22 effectively suppresses erosion of the inner wall of the quartz crucible 20, and further eliminates the unnecessary side wall reinforcing portion 22. From the point of prevention, it is limited to a certain height range. Specifically, the height position H1 of the upper end 23a is measured from the lower end U of the side wall of the quartz crucible 20, and It is provided in the range of 50 to 90% of the distance X to the upper end T, and the height position H3 of the lower end 23b is measured from the lower end U of the side wall of the quartz crucible 20, and is the distance to the upper end T of the side wall. It is preferably located in the range of 40 to 80% of X. When the height position H1 of the upper end portion 23a is less than 50% of the distance X and when the height position H2 of the lower end portion 23b exceeds 80% of the distance X, the actual liquid of the silicon raw material melt 5 Since the surface height position cannot be accommodated, the quartz crucible may not be prevented from being damaged at a portion outside the range. On the other hand, the height position H1 of the upper end 23a exceeds 90% of the distance X. When the height position H2 of the lower end portion 23b is less than 40% of the distance X, the side wall reinforcing portion 22 is provided beyond the actual liquid level height position range of the silicon raw material melt 5. This is because it is not preferable in terms of cost.

また、図2に示すように、前記厚肉側壁部23は、前記石英ルツボ30の側壁補強部22を除いた側壁の厚さA2に対して、110〜150%の厚さA1を有することが好ましい。前記厚肉側壁部23の厚さA1が側壁補強部22を除いた側壁の厚さA2に対して110%未満の場合、前記厚肉側壁部23が薄すぎるため、前記シリコン融液5a面に対応する内壁部分21の侵食による前記石英ルツボ20の破損を十分に抑制できないからであり、一方、前記厚さA1が厚さA2に対して150%を超えると、前記厚肉側壁部23が厚すぎるため、該厚肉側壁部23の自重によって、石英ルツボ20の座屈や内倒れを引き起こす恐れがあるからである。なお、図2及び図3では、前記厚肉側壁部23をわかりやすく説明するため、実際よりも誇張した状態で前記側壁補強部22及び前記厚肉側壁部23が示されている。   As shown in FIG. 2, the thick side wall portion 23 has a thickness A1 of 110 to 150% with respect to the thickness A2 of the side wall excluding the side wall reinforcing portion 22 of the quartz crucible 30. preferable. When the thickness A1 of the thick side wall portion 23 is less than 110% with respect to the thickness A2 of the side wall excluding the side wall reinforcing portion 22, the thick side wall portion 23 is too thin. This is because damage to the quartz crucible 20 due to erosion of the corresponding inner wall portion 21 cannot be sufficiently suppressed. On the other hand, when the thickness A1 exceeds 150% with respect to the thickness A2, the thick side wall portion 23 becomes thick. This is because the weight of the thick side wall portion 23 may cause buckling or inward collapse of the quartz crucible 20. In FIGS. 2 and 3, the side wall reinforcing portion 22 and the thick side wall portion 23 are shown in an exaggerated state in order to easily explain the thick side wall portion 23.

さらに、前記石英ルツボ20は、図2に示すように胴部の外径Wが、下部から上部に向かって漸増してなることが好ましく、具体的には、胴部上端20aの外径W1が、胴部下端20cの外径W2よりも0.1%以上大きいことがより好適である。石英ルツボ20の側壁21の内倒れ及び座屈を抑制する効果が向上するためであり、胴部上端20aの外径W1が胴部下端20cの外径W2よりも0.1%以上大きくなければ、石英ルツボ20の側壁21の内倒れ及び座屈の抑制効果が十分に発揮できない恐れがあるためである。一方、胴部上端20aの外径W1が、胴部下端20cの外径W2の差が大きくなりすぎる(例えば、10mmを超える)と、シリコン原料融液5の液面5aの直上位置と直下位置におけるルツボ20の内径差が大きくなるため、当該位置が座屈の起点になる恐れがある。   Further, the quartz crucible 20 is preferably formed such that the outer diameter W of the body portion gradually increases from the lower part toward the upper part as shown in FIG. 2, and specifically, the outer diameter W1 of the upper end 20a of the body part is More preferably, it is 0.1% or more larger than the outer diameter W2 of the trunk lower end 20c. This is because the effect of suppressing inward tilting and buckling of the side wall 21 of the quartz crucible 20 is improved. If the outer diameter W1 of the barrel upper end 20a is not more than 0.1% larger than the outer diameter W2 of the barrel lower end 20c, quartz This is because the side wall 21 of the crucible 20 may not be able to sufficiently exhibit the effect of suppressing the internal falling and buckling. On the other hand, if the difference between the outer diameter W1 of the barrel upper end 20a and the outer diameter W2 of the barrel lower end 20c becomes too large (for example, more than 10 mm), the position immediately above and directly below the liquid surface 5a of the silicon raw material melt 5 Since the difference in the inner diameter of the crucible 20 increases, the position may become the starting point of buckling.

さらにまた、前記石英ルツボは、胴部上端の外径が、700〜1120mmの範囲であることが好ましい。本発明のシリコン単結晶引上げ用ルツボ10は、大口径のウェーハを対象としており、上記範囲が700mm以下の小口径ルツボに比べ、より高温での使用となるため、従来のルツボと比べて、顕著に、内壁の侵食に起因した石英ルツボの破損の抑制効果を奏することができるためである。   Furthermore, it is preferable that the quartz crucible has an outer diameter at the upper end of the body portion in a range of 700 to 1120 mm. The silicon single crystal pulling crucible 10 of the present invention is intended for large-diameter wafers and is used at a higher temperature than a small-diameter crucible having the above range of 700 mm or less. In addition, the quartz crucible can be prevented from being damaged due to the erosion of the inner wall.

なお、本発明のシリコン単結晶引上げ用ルツボ10を構成する黒鉛ルツボ30の構成については、特に限定することはなく、通常用いられる黒鉛ルツボを用いればよい。   Note that the structure of the graphite crucible 30 constituting the silicon single crystal pulling crucible 10 of the present invention is not particularly limited, and a commonly used graphite crucible may be used.

なお、本発明のシリコン単結晶引上げ用ルツボのサイズについては、引き上げるシリコン単結晶インゴットのサイズ等によって、種々の大きさのルツボを必要とするため、特に限定はしない。   The size of the silicon single crystal pulling crucible of the present invention is not particularly limited because crucibles of various sizes are required depending on the size of the silicon single crystal ingot to be pulled.

また、前記石英ルツボ20内へシリコン原料融液5を、連続的又は断続的に供給する方法としては、特に限定することはなく、任意の供給方法を用いればよい。例えば、図1に示すように、単結晶引上げ用ルツボ10の外部に配設された固体シリコン原料2を溶融するための融液供給ルツボ3、及び、該融液供給ルツボ3によって溶融されたシリコン原料融液5を搬送するための融液供給管4を用いることによって、シリコン原料融液5を、前記シリコンルツボ20内に供給することができる。   Further, the method for supplying the silicon raw material melt 5 continuously or intermittently into the quartz crucible 20 is not particularly limited, and any supply method may be used. For example, as shown in FIG. 1, a melt supply crucible 3 for melting a solid silicon raw material 2 disposed outside a single crystal pulling crucible 10, and silicon melted by the melt supply crucible 3 By using the melt supply pipe 4 for conveying the raw material melt 5, the silicon raw material melt 5 can be supplied into the silicon crucible 20.

前記石英ルツボの製造方法としては、特殊な形状である側壁補強部22を精度よく製造できれば特に限定はしないが、アーク法によって製造することが好ましい。アーク溶融によって製造すれば、広範囲の高温炎により短時間で製造できるためコスト的に有利であり、加えて、坩堝型の形状どおり製造することができるためである。一方、その他の製造方法、例えば、酸水素バーナーにて製造する場合、従来の石英ルツボ20に対して厚肉補強部22を溶接する形になるため、炎の範囲が小さいこともあり、作業時間が長く、生産性・コストが大きくなり、さらに、炎中の水酸基が多くガラス中に取り込まれ、粘度低下を引き起こす恐れがあるからである。また、酸水素バーナーでは局所加熱になるため、溶接部にひずみが残り、溶接後ルツボ全体をひずみ点以上の高温でアニーリング処理しないと、ルツボが破損する。   A method for manufacturing the quartz crucible is not particularly limited as long as the side wall reinforcing portion 22 having a special shape can be manufactured with high accuracy, but it is preferable to manufacture the quartz crucible by an arc method. Manufacturing by arc melting is advantageous in terms of cost because it can be manufactured in a short time with a wide range of high-temperature flames, and in addition, it can be manufactured according to the shape of the crucible type. On the other hand, when manufacturing with other manufacturing methods, for example, an oxyhydrogen burner, since the thick reinforcing portion 22 is welded to the conventional quartz crucible 20, the flame range may be small, and the working time This is because the length and the productivity and cost are increased, and more hydroxyl groups in the flame are incorporated into the glass, which may cause a decrease in viscosity. In addition, since the oxyhydrogen burner is locally heated, strain remains in the weld, and the crucible is damaged if the entire crucible after welding is not annealed at a temperature higher than the strain point.

次に、本発明のシリコン単結晶引上げ方法について説明する。本発明によるシリコン単結晶引上げ方法は、上述した本発明による単結晶引上げ用ルツボ10を用いて、直径が300mm以上の大口径シリコン単結晶インゴットを引き上げることを特徴とする。このシリコン単結晶引上げ方法を用いれば、内壁の侵食に起因した石英ルツボの破損を有効に抑制しつつ、長時間に渡って単結晶シリコンインゴットの引上げが可能となるためである。   Next, the silicon single crystal pulling method of the present invention will be described. The silicon single crystal pulling method according to the present invention is characterized by pulling up a large-diameter silicon single crystal ingot having a diameter of 300 mm or more using the above-described single crystal pulling crucible 10 according to the present invention. This is because if this silicon single crystal pulling method is used, it is possible to pull the single crystal silicon ingot over a long period of time while effectively suppressing breakage of the quartz crucible due to erosion of the inner wall.

さらに、前記単結晶の引上げは、1本の単結晶インゴットを長時間連続的に引き上げることが好ましい。本発明の石英ルツボ20は、実質的に一定な前記シリコン原料融液の液面高さ範囲に対応しており、単結晶インゴットを長時間連続的に引き上げた場合は、より有効に本発明の効果を奏することができるからである。   Furthermore, the pulling of the single crystal is preferably performed by continuously pulling up one single crystal ingot for a long time. The quartz crucible 20 of the present invention corresponds to a substantially constant liquid level height range of the silicon raw material melt. When the single crystal ingot is continuously pulled up for a long time, the quartz crucible 20 of the present invention is more effectively used. It is because an effect can be produced.

なお、上述したところは、この発明の実施形態の一例を示したにすぎず、請求の範囲において種々の変更を加えることができる。   The above description is merely an example of the embodiment of the present invention, and various modifications can be made within the scope of the claims.

(実施例1〜3)
実施例1〜3は、外径が810mm、高さが500mmの石英ルツボ20と、その外側を覆う、内径が815mm、深さが480mmの黒鉛ルツボ30との二重構造からなるシリコン単結晶引上げ用ルツボ10を、それぞれサンプルとして作製した。
なお、前記石英ルツボ20は、図2に示すように、前記シリコン原料融液5の液面高さ位置(300〜450mm)に対応した側壁21の外周に、石英ルツボと同じ材料からなる側壁補強部22を設けて前記側壁部分を厚肉側壁部23を形成し、図3(a)及び(b)に示すように、シリコン単結晶5の引上げ時、石英ルツボ20が加熱されて軟化し、前記厚肉側壁23部が前記黒鉛ルツボ30の内壁面30a形状に対応して変形することで、石英ルツボ20の前記厚肉側壁部23が内面側に部分的に迫り出すように構成されており、厚肉側壁部23の厚さA1(側壁補強部22を除いた側壁21の厚さA2に対しての割合(%)で表示)及び上端23a、下端23bの高さ位置H1、H3(石英ルツボ20の側壁21の下端Uから測定して、前記側壁21の上端Tまでの距離Xにおける割合(%)で表示)については、表1に示す。また、胴部上端20aの外径W1が、胴部下端20cの外径W2よりも6mm大きい。
また、前記石英ルツボ20にシリコン原料融液は、図1に示すように、融液供給ルツボ3で固体シリコン原料2を溶融させ、溶融したシリコン原料融液5を、融液供給管4を通して、前記石英ルツボ20内に供給した。
(Examples 1-3)
In Examples 1 to 3, a silicon single crystal pulling-up having a double structure of a quartz crucible 20 having an outer diameter of 810 mm and a height of 500 mm and a graphite crucible 30 covering the outside and having an inner diameter of 815 mm and a depth of 480 mm. The crucibles 10 for use were produced as samples.
As shown in FIG. 2, the quartz crucible 20 has a side wall reinforcement made of the same material as the quartz crucible on the outer periphery of the side wall 21 corresponding to the liquid surface height position (300 to 450 mm) of the silicon raw material melt 5. The portion 22 is provided to form the thick side wall portion 23, and the quartz crucible 20 is heated and softened when the silicon single crystal 5 is pulled, as shown in FIGS. 3 (a) and 3 (b). The thick side wall portion 23 is deformed corresponding to the shape of the inner wall surface 30a of the graphite crucible 30 so that the thick side wall portion 23 of the quartz crucible 20 partially protrudes toward the inner surface side. , The thickness A1 of the thick side wall portion 23 (expressed as a ratio (%) with respect to the thickness A2 of the side wall 21 excluding the side wall reinforcing portion 22), and the height positions H1 and H3 of the upper end 23a and the lower end 23b (quartz Measured from the lower end U of the side wall 21 of the crucible 20, For the display) the percentage (%) at the distance X to the edge T, shown in Table 1. Further, the outer diameter W1 of the trunk upper end 20a is 6 mm larger than the outer diameter W2 of the trunk lower end 20c.
Further, as shown in FIG. 1, the silicon raw material melt in the quartz crucible 20 is obtained by melting the solid silicon raw material 2 with the melt supply crucible 3 and passing the molten silicon raw material melt 5 through the melt supply pipe 4. The quartz crucible 20 was supplied.

比較例Comparative example

(比較例)
比較例は、前記石英ルツボ20の側壁21の外周に、前記側壁補強部22を設けず、前記側壁部分を厚肉側壁部23を形成しないこと以外は、実施例1と同様の条件によって、シリコン単結晶引上げ用ルツボを作製した。
また、前記石英ルツボ20にシリコン原料融液は、図1に示すように、融液供給ルツボ3で固体シリコン原料2を溶融させ、溶融したシリコン原料融液5を、融液供給管4を通して、前記石英ルツボ20内に供給した。
(Comparative example)
In the comparative example, silicon was formed under the same conditions as in Example 1 except that the side wall reinforcing portion 22 was not provided on the outer periphery of the side wall 21 of the quartz crucible 20 and the thick side wall portion 23 was not formed on the side wall portion. A crucible for pulling a single crystal was produced.
Further, as shown in FIG. 1, the silicon raw material melt in the quartz crucible 20 is obtained by melting the solid silicon raw material 2 with the melt supply crucible 3 and passing the molten silicon raw material melt 5 through the melt supply pipe 4. The quartz crucible 20 was supplied.

(評価方法)
実施例及び比較例の各ルツボを、図1に示すような単結晶引上げ装置に用いて、シリコン融液の温度1500℃という引き上げ条件で、4本のシリコン単結晶インゴットの引上げ(230時間連続)を行った。その後、石英ルツボを回収し、石英ルツボ内壁の侵食に起因した内倒れ及び座屈の有無について確認することで評価を行った。
(Evaluation method)
Using each of the crucibles of the example and the comparative example in a single crystal pulling apparatus as shown in FIG. 1, pulling up four silicon single crystal ingots under a pulling condition of a silicon melt temperature of 1500 ° C. (230 hours continuous) Went. Thereafter, the quartz crucible was collected, and evaluation was performed by confirming the presence or absence of inward collapse and buckling due to erosion of the inner wall of the quartz crucible.

Figure 0005289294
Figure 0005289294

表1の結果から、実施例1〜3のシリコン単結晶引上げ用ルツボは、石英ルツボの座屈及び内倒れのいずれについても発生しておらず、有効に石英ルツボの破損を抑制できていることがわかる。一方、比較例のシリコン単結晶引上げ用ルツボについては、石英ルツボ内壁の侵食に起因した石英ルツボの内倒れ及び座屈が発生していた。   From the results of Table 1, the silicon single crystal pulling crucibles of Examples 1 to 3 did not generate any buckling or inward tilting of the quartz crucible, and were able to effectively suppress the damage of the quartz crucible. I understand. On the other hand, in the crucible for pulling up the silicon single crystal of the comparative example, the quartz crucible was tilted and buckled due to the erosion of the inner wall of the quartz crucible.

この発明によれば、石英ルツボにシリコン原料融液が連続的又は断続的に供給され、前記シリコンルツボ内でシリコン原料融液の液面高さ位置が実質的に一定の状態となる場合であっても、内壁の侵食に起因した石英ルツボの破損を抑制できる単結晶引上げ用ルツボ及び単結晶引上げ方法を提供することが可能になった。   According to the present invention, the silicon raw material melt is continuously or intermittently supplied to the quartz crucible, and the liquid surface height position of the silicon raw material melt is substantially constant in the silicon crucible. However, it has become possible to provide a crucible for pulling a single crystal and a method for pulling a single crystal that can suppress the damage of the quartz crucible due to the erosion of the inner wall.

1 単結晶引き上げ装置
2 固体シリコン原料
3 融液供給ルツボ
4 融液供給管
5 シリコン原料融液
6 シリコン単結晶インゴット
10 シリコン単結晶引上げ用ルツボ
20 石英ルツボ
21 側壁
22 側壁補強部
23 厚肉側壁部
30 黒鉛ルツボ
DESCRIPTION OF SYMBOLS 1 Single crystal pulling apparatus 2 Solid silicon raw material 3 Melt supply crucible 4 Melt supply pipe 5 Silicon raw material melt 6 Silicon single crystal ingot 10 Silicon single crystal pulling crucible 20 Quartz crucible 21 Side wall 22 Side wall reinforcement 23 Thick side wall 30 Graphite crucible

Claims (6)

シリコン原料融液を収容する石英ルツボであって、
円筒状の側壁からなる胴部を有し、
前記胴部は、前記側壁の所定の高さ位置に設けられた厚肉側壁部を有し、
前記厚肉側壁部は、前記側壁の外周よりも外側に迫り出すように設けられた側壁補強部を有し、
前記厚肉側壁部は、シリコン単結晶引上げ時に加熱されて軟化し、前記石英ルツボの外側を覆う黒鉛ルツボの内壁面形状に対応して変形したとき、内面側に迫り出すように形成されていることを特徴とするシリコン単結晶引上げ用石英ルツボ。
A quartz crucible containing a silicon raw material melt,
It has a body consisting of a cylindrical side wall,
The trunk includes a thick side wall provided at a predetermined height position of the side wall,
The thick side wall portion has a side wall reinforcing portion provided so as to protrude outward from the outer periphery of the side wall,
The thick side wall portion is heated and softened when the silicon single crystal is pulled, and is formed so as to protrude toward the inner surface side when deformed corresponding to the inner wall surface shape of the graphite crucible covering the outer side of the quartz crucible. A quartz crucible for pulling a silicon single crystal.
前記厚肉側壁部は、前記側壁補強部を除いた前記側壁の厚さに対して、110〜150%の厚さを有する請求項1記載のシリコン単結晶引上げ用石英ルツボ。 The quartz crucible for pulling a silicon single crystal according to claim 1, wherein the thick side wall portion has a thickness of 110 to 150% with respect to the thickness of the side wall excluding the side wall reinforcing portion. 前記厚肉側壁部は、その上端部の高さ位置が、前記側壁の下端から測定して、前記側壁の上端までの距離の50〜90%の範囲に設けられ、その下端部の高さ位置が、前記側壁の下端から測定して、前記側壁の上端までの距離の40〜80%の範囲に位置する請求項1又は2記載のシリコン単結晶引上げ用石英ルツボ。 The thick side wall portion is provided such that the height position of its upper end portion is in the range of 50 to 90% of the distance to the upper end of the side wall as measured from the lower end of the side wall, and the height position of the lower end portion thereof. The quartz crucible for pulling a silicon single crystal according to claim 1 or 2 , wherein the quartz crucible is located in a range of 40 to 80% of a distance to the upper end of the side wall as measured from the lower end of the side wall. 前記胴部の上端の外径が、前記胴部の下端の外径よりも0.1%以上大きい請求項1〜3のいずれか1項記載のシリコン単結晶引上げ用石英ルツボ。 The quartz crucible for pulling a silicon single crystal according to any one of claims 1 to 3 , wherein an outer diameter of an upper end of the body portion is 0.1% or more larger than an outer diameter of a lower end of the body portion. 前記胴部の上端の外径が、700〜1120mmの範囲である請求項1〜4のいずれか1項記載のシリコン単結晶引上げ用石英ルツボ。 The quartz crucible for pulling up a silicon single crystal according to any one of claims 1 to 4 , wherein an outer diameter of an upper end of the body portion is in a range of 700 to 1120 mm. シリコン原料融液を収容する石英ルツボであって、A quartz crucible containing a silicon raw material melt,
円筒状の側壁からなる胴部を有し、It has a body consisting of a cylindrical side wall,
前記胴部は、前記側壁の所定の高さ位置に設けられた厚肉側壁部を有し、The trunk includes a thick side wall provided at a predetermined height position of the side wall,
前記厚肉側壁部は、前記側壁の外周よりも外側に迫り出すように設けられた側壁補強部を有し、The thick side wall portion has a side wall reinforcing portion provided so as to protrude outward from the outer periphery of the side wall,
前記厚肉側壁部は、その上端部の高さ位置が、前記側壁の下端から測定して、前記側壁の上端までの距離の50〜90%の範囲に設けられ、その下端部の高さ位置が、前記側壁の下端から測定して、前記側壁の上端までの距離の40〜80%の範囲に位置することを特徴とするシリコン単結晶引上げ用石英ルツボ。The thick side wall portion is provided such that the height position of its upper end portion is in the range of 50 to 90% of the distance to the upper end of the side wall as measured from the lower end of the side wall, and the height position of the lower end portion thereof. However, the quartz crucible for pulling a silicon single crystal is located in the range of 40 to 80% of the distance to the upper end of the side wall as measured from the lower end of the side wall.
JP2009282786A 2009-12-14 2009-12-14 Quartz crucible for pulling silicon single crystal Active JP5289294B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009282786A JP5289294B2 (en) 2009-12-14 2009-12-14 Quartz crucible for pulling silicon single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009282786A JP5289294B2 (en) 2009-12-14 2009-12-14 Quartz crucible for pulling silicon single crystal

Publications (2)

Publication Number Publication Date
JP2011121843A JP2011121843A (en) 2011-06-23
JP5289294B2 true JP5289294B2 (en) 2013-09-11

Family

ID=44286119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009282786A Active JP5289294B2 (en) 2009-12-14 2009-12-14 Quartz crucible for pulling silicon single crystal

Country Status (1)

Country Link
JP (1) JP5289294B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5497247B1 (en) 2012-05-15 2014-05-21 信越石英株式会社 Silica container for pulling single crystal silicon and manufacturing method thereof
CN103703171A (en) 2012-05-16 2014-04-02 信越石英株式会社 Silica vessel for drawing up monocrystalline silicon and method for producing same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0431254Y2 (en) * 1986-04-28 1992-07-28
JPS63319288A (en) * 1987-06-23 1988-12-27 Shin Etsu Handotai Co Ltd Flanged quartz crucible
JPH03174390A (en) * 1989-12-01 1991-07-29 Nippon Steel Corp Production device for single crystal
JP3970580B2 (en) * 2001-11-07 2007-09-05 株式会社Sumco Silicon single crystal pulling apparatus and pulling method thereof
KR20100128288A (en) * 2008-02-05 2010-12-07 쟈판 스파 쿼츠 가부시키가이샤 Quartz glass crucible

Also Published As

Publication number Publication date
JP2011121843A (en) 2011-06-23

Similar Documents

Publication Publication Date Title
JP4948504B2 (en) Silicon single crystal pulling method
JP4995068B2 (en) Silica glass crucible for pulling silicon single crystals
JP2011121827A (en) Graphite crucible and apparatus for producing silicon single crystal
JP5289293B2 (en) Quartz crucible for single crystal pulling
JP4975012B2 (en) Silica glass crucible for pulling silicon single crystal and manufacturing method thereof
JP4814855B2 (en) Silica glass crucible
JP4863927B2 (en) Silica glass crucible for pulling silicon single crystal and method for producing silicon single crystal using the same
JP5289294B2 (en) Quartz crucible for pulling silicon single crystal
JP6253976B2 (en) Quartz glass crucible and manufacturing method thereof
JP2011105537A (en) Method for producing silicon single crystal
JP4428529B2 (en) Quartz crucible
JP5027168B2 (en) Single crystal pulling crucible and single crystal pulling method
JP6324837B2 (en) Manufacturing method of quartz glass crucible for pulling single crystal silicon
JP2018043897A (en) Quartz glass crucible, and production thereof
WO2002014587A1 (en) Quartz crucible and method for producing single crystal using the same
JP5447946B2 (en) Silica glass crucible for pulling silicon single crystal and manufacturing method thereof
JP2011057460A (en) Method for growing silicon single crystal
US9328009B2 (en) Vitreous silica crucible for pulling silicon single crystal, and method for manufacturing the same
JP2008063205A (en) Recharge device of solid raw material and recharge method using the same
WO2023204146A1 (en) Quartz glass crucible for pulling up monocrystalline silicon ingot
JP4702266B2 (en) Single crystal pulling method
JP2018095538A (en) Single crystal pulling apparatus
JP2008087972A (en) Method for manufacturing silicon single crystal
JP6052151B2 (en) Method for producing silicon single crystal
JP5488519B2 (en) Quartz glass crucible, method for producing the same, and method for producing silicon single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130401

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130604

R150 Certificate of patent or registration of utility model

Ref document number: 5289294

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250