JP5287737B2 - Polarized light irradiation device - Google Patents

Polarized light irradiation device Download PDF

Info

Publication number
JP5287737B2
JP5287737B2 JP2010004805A JP2010004805A JP5287737B2 JP 5287737 B2 JP5287737 B2 JP 5287737B2 JP 2010004805 A JP2010004805 A JP 2010004805A JP 2010004805 A JP2010004805 A JP 2010004805A JP 5287737 B2 JP5287737 B2 JP 5287737B2
Authority
JP
Japan
Prior art keywords
lamp
light
reflection mirror
polarizing element
light irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010004805A
Other languages
Japanese (ja)
Other versions
JP2011145381A (en
Inventor
暁史 三宮
望 田近
勝也 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Original Assignee
Ushio Denki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK filed Critical Ushio Denki KK
Priority to JP2010004805A priority Critical patent/JP5287737B2/en
Priority to TW099138838A priority patent/TWI416229B/en
Priority to KR1020100137696A priority patent/KR101288661B1/en
Priority to CN201110007079.7A priority patent/CN102129139B/en
Publication of JP2011145381A publication Critical patent/JP2011145381A/en
Application granted granted Critical
Publication of JP5287737B2 publication Critical patent/JP5287737B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1303Apparatus specially adapted to the manufacture of LCDs

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Liquid Crystal (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Polarising Elements (AREA)

Description

本発明は、液晶素子の配向膜や、視野角補償フィルムの配向層などに所定の波長の偏光光を照射して配向を行う偏光光照射装置に関する。   The present invention relates to a polarized light irradiation apparatus that performs alignment by irradiating polarized light of a predetermined wavelength onto an alignment film of a liquid crystal element, an alignment layer of a viewing angle compensation film, or the like.

近年、液晶パネルを始めとする液晶表示素子の配向膜や、視野角補償フィルムの配向層などの配向処理に関し、紫外線領域の波長の偏光光を照射し配向を行なう、光配向と呼ばれる技術が採用されるようになってきた。以下、光により配向を行う配向膜や、配向層を設けたフィルムなど、光により配向特性が生じる膜や層を総称して光配向膜と呼ぶ。
光配向膜は、液晶パネルの大型化と共に、例えば一辺が2000mm以上の四角形というように大面積化している。
上記のような大面積の光配向膜に対して光配向を行うために、棒状のランプとワイヤーグリッド状のグリッドを有する偏光素子(以下グリッド偏光素子という)を組み合わせた偏光光照射装置が提案されている(例えば特許文献1や特許文献2参照)。
In recent years, a technique called photo-alignment has been adopted in which alignment is performed by irradiating polarized light with a wavelength in the ultraviolet region for alignment processing of alignment films for liquid crystal display elements such as liquid crystal panels and alignment layers for viewing angle compensation films. It has come to be. Hereinafter, films and layers in which alignment characteristics are generated by light, such as alignment films that align with light and films provided with alignment layers, are collectively referred to as photo-alignment films.
With the increase in size of the liquid crystal panel, the photo-alignment film has an increased area, for example, a square having a side of 2000 mm or more.
In order to perform photo-alignment on the photo-alignment film having a large area as described above, a polarized light irradiation apparatus combining a rod-shaped lamp and a polarizing element having a wire grid grid (hereinafter referred to as a grid polarizing element) has been proposed. (For example, refer to Patent Document 1 and Patent Document 2).

光配向膜用の偏光光照射装置において棒状ランプは、発光長が比較的長いものを作ることができる。そのため、配向膜の幅に応じた発光長を備えた棒状ランプを使用し、該ランプからの光を照射しながら、配向膜をランプの長手方向に直交する方向に移動させれば、広い面積の配向膜を比較的短時間で光配向処理を行なうことができる。
図7に、線状の光源である棒状ランプとグリッド偏光素子を組み合わせた偏光光照射装置の構成例を示す。
同図において、光配向膜であるワーク30は、例えば視野角補償フィルムのような帯状の長尺ワークであり、送り出しロールR1から送り出され、図中矢印方向に搬送され、後述するように偏光光照射により光配向処理され、巻き取りロールR2により巻き取られる。
偏光光照射装置の光照射部20は、光配向処理に必要な波長の光(紫外線)を放射する棒状ランプ21、例えば高圧水銀ランプや水銀に他の金属を加えたメタルハライドランプと、棒状ランプ21からの紫外線をワーク30に向けて反射する断面が楕円形の樋状の反射ミラー22を備える。上記のように、棒状ランプ21の長さは、発光部が、ワーク30の搬送方向に直交する方向の幅に対応する長さを備えたものを使用し、上記棒状ランプ21は上記楕円形状の反射ミラー22の第1焦点に位置するように配置される。
光照射部20は、ランプ21の長手方向がワーク30の幅方向(搬送方向に対して直交方向)になるように配置する。
In the polarized light irradiation apparatus for the photo-alignment film, the rod-shaped lamp can be made with a relatively long light emission length. Therefore, if a rod-shaped lamp having a light emission length corresponding to the width of the alignment film is used and the alignment film is moved in a direction perpendicular to the longitudinal direction of the lamp while irradiating light from the lamp, a wide area can be obtained. The alignment film can be subjected to a photo-alignment process in a relatively short time.
FIG. 7 shows a configuration example of a polarized light irradiation apparatus in which a rod-shaped lamp that is a linear light source and a grid polarization element are combined.
In the figure, a work 30 which is a photo-alignment film is a strip-like long work such as a viewing angle compensation film, which is fed from a feed roll R1, conveyed in the direction of the arrow in the figure, and polarized light as described later. Photo-alignment treatment is performed by irradiation, and the film is taken up by a take-up roll R2.
The light irradiation unit 20 of the polarized light irradiation apparatus includes a rod-shaped lamp 21 that emits light (ultraviolet rays) having a wavelength necessary for photo-alignment processing, such as a high-pressure mercury lamp, a metal halide lamp obtained by adding other metal to mercury, and a rod-shaped lamp 21. A reflection mirror 22 having an elliptical cross section for reflecting the ultraviolet rays from the light toward the work 30 is provided. As described above, the length of the rod-shaped lamp 21 is such that the light-emitting portion has a length corresponding to the width in the direction orthogonal to the conveyance direction of the workpiece 30, and the rod-shaped lamp 21 has the elliptical shape. It arrange | positions so that it may be located in the 1st focus of the reflective mirror 22. FIG.
The light irradiation unit 20 is arranged so that the longitudinal direction of the lamp 21 is in the width direction of the workpiece 30 (direction orthogonal to the transport direction).

光照射部20の光出射側には、偏光素子であるグリッド偏光素子10が設けられ、上記楕円形状の反射ミラー22の第2焦点には、ワーク30が配置される。
光照射部20からの光はグリッド偏光素子10により偏光され、光照射部20の下を搬送されるワーク30に照射され、光配向処理が行われる。
グリッド偏光素子(ワイヤーグリッド型の偏光素子)については、例えば特許文献3や特許文献4に詳細が示されている。
光路中にこの偏光素子を挿入すると、グリッドの長手方向に平行な偏光成分は大部分反射され、直交する偏光成分は通過する。したがって、グリッド偏光素子を通過した光は、偏光素子のグリッドの長手方向に直交する方向の偏光軸を有する偏光光となる。
A grid polarizing element 10 as a polarizing element is provided on the light emitting side of the light irradiation unit 20, and a work 30 is disposed at the second focal point of the elliptical reflection mirror 22.
Light from the light irradiation unit 20 is polarized by the grid polarizing element 10 and irradiated to the workpiece 30 conveyed under the light irradiation unit 20 to perform a photo-alignment process.
Details of the grid polarizing element (wire grid type polarizing element) are shown in Patent Document 3 and Patent Document 4, for example.
When this polarizing element is inserted in the optical path, most of the polarized components parallel to the longitudinal direction of the grid are reflected and the orthogonal polarized components pass. Therefore, the light that has passed through the grid polarization element becomes polarized light having a polarization axis in a direction orthogonal to the longitudinal direction of the grid of the polarization element.

従来、光配向膜用の偏光光照射装置として、線状の光源である棒状ランプにグリッド偏光素子を組み合わせることが行われていたのは次のような理由からである。
棒状ランプからの光は発散光であり、ランプの出射側に偏光素子を配置して偏光光を得ようとしても、偏光素子にはさまざまな角度の光が入射する。
偏光素子としては、蒸着膜やブリュースタ角を利用したものが知られている。
しかし、これらの偏光素子は、偏光素子に決まった角度で入射する光しか偏光することができず、それ以外の角度で入射した光は、ほとんど偏光せずに通過してしまう。そのため、光源が発散光の場合、蒸着膜やブリュースタ角を利用した偏光素子を使用すると、偏光素子に入射する光を平行光にして入射角度をそろえた場合に比べると、得られる偏光光の消光比が悪くなる。
また、有機膜を利用した偏光素子もあるが、これは、光配向のために使用される紫外域の光を長時間照射すると特性が劣化するので、工業的に使用することは難しい。
Conventionally, as a polarized light irradiation apparatus for a photo-alignment film, a grid polarizing element is combined with a rod-shaped lamp that is a linear light source for the following reason.
The light from the rod-shaped lamp is divergent light, and light of various angles is incident on the polarizing element even if a polarizing element is arranged on the exit side of the lamp to obtain polarized light.
As a polarizing element, one utilizing a vapor deposition film or a Brewster angle is known.
However, these polarizing elements can only polarize light incident on the polarizing element at a fixed angle, and light incident at other angles passes almost without being polarized. Therefore, when the light source is divergent light, the use of a polarizing element that utilizes a vapor deposition film or Brewster's angle makes it possible to obtain polarized light that is obtained as compared with the case where the incident light is aligned by making the light incident on the polarizing element parallel light. The extinction ratio becomes worse.
In addition, there is a polarizing element using an organic film, but this is difficult to industrially use because its characteristics deteriorate when irradiated with light in the ultraviolet region used for photo-alignment for a long time.

これに対して、グリッド偏光素子は、偏光素子に入射する光の角度に対する出射する偏光光の消光比の依存性が小さい。そのため、棒状ランプから出射する光のような発散光であっても、入射角度が±45°の範囲であれば、光が照射される領域全体にわたって、比較的良好な消光比の偏光光が得られる。
そのため、棒状ランプの長さを、光配向膜の幅に対応させて設け、光配向膜を偏光光照射装置に対して相対的に一方向に移動させれば、原理的には1本のランプで、広い面積の光配向膜の配向処理を行うことができる。
したがって、棒状ランプにグリッド偏光素子を組み合わせれば、1本のランプで、広い面積の光配向膜の配向処理を行うことができ、装置全体を安価に製作することができる。
On the other hand, the grid polarization element is less dependent on the extinction ratio of the polarized light that is emitted with respect to the angle of the light incident on the polarization element. For this reason, even divergent light such as light emitted from a rod-shaped lamp can obtain polarized light having a relatively good extinction ratio over the entire region irradiated with light if the incident angle is within a range of ± 45 °. It is done.
Therefore, if the length of the rod-shaped lamp is provided corresponding to the width of the photo-alignment film and the photo-alignment film is moved in one direction relative to the polarized light irradiation device, in principle, one lamp Thus, alignment treatment of a photo-alignment film having a large area can be performed.
Therefore, when a grid polarizing element is combined with a rod-shaped lamp, a single lamp can perform alignment processing of a photo-alignment film having a large area, and the entire apparatus can be manufactured at low cost.

特開2006−126464号公報JP 2006-126464 A 特開2009−265290号公報JP 2009-265290 A 特開2002−328234号公報JP 2002-328234 A 特表2003−508813号公報Japanese translation of PCT publication No. 2003-508813 特開2006−184747号公報JP 2006-184747 A

上記したように、グリッド偏光素子は、入射角度依存性が小さく、斜めに入射する光についても偏光することができる。しかし、われわれが実験したところ、偏光素子に斜めに入射した光による偏光光は、垂直かそれに近い角度で入射した光による偏光光に比べると、偏光軸が回転し、偏光軸のずれ(以下軸ずれと呼ぶ)を生じることが分かった。偏光光に軸ずれが生じると、光照射領域において偏光軸のばらつきが生じる。
偏光軸がばらついた偏光光により光配向処理を行うと、処理された配向膜を使って作られた液晶表示素子のコントラストが場所により異なり、むらとして目に映るといった問題が生じる。このため、光照射領域での偏光軸のばらつきをできるだけ小さくすることが要求される。
As described above, the grid polarization element has a small incident angle dependency, and can also polarize light incident obliquely. However, as a result of our experiments, polarized light produced by obliquely incident light on the polarizing element rotates its polarization axis compared to polarized light produced by light incident at an angle close to or perpendicular to the polarization element (hereinafter referred to as the axis of polarization). It was found that this occurs. When the axis deviation occurs in the polarized light, the polarization axis varies in the light irradiation region.
When the optical alignment process is performed with polarized light having a different polarization axis, the contrast of a liquid crystal display element made using the processed alignment film varies depending on the location, causing a problem that the liquid crystal display element appears uneven. For this reason, it is required to minimize the variation of the polarization axis in the light irradiation region.

特許文献5には、光照射領域での偏光軸のばらつきは、グリッド偏光子に入射する光の角度が大きくなるほど、偏光子から出射する偏光光の偏光軸の回転量が大きくなり、光照射領域での偏光軸のばらつきが大きくなることが示されている。
前記図7に示した偏光光照射装置は、断面が楕円形の樋状の反射ミラー22を用い、棒状ランプ21を上記楕円形状の反射ミラー22の第1焦点に位置するように配置し、楕円形状の反射ミラー22の第2焦点には、ワーク30を配置している。このため、偏光素子に斜めに入射する光が比較的多くなり、偏光軸のばらつきが大きくなる。
以上のように従来の偏光光照射装置では、偏光軸のばらつきをできるだけ小さくするといった要望に充分応えることはできなかった。
本発明は上記事情に鑑みなされたものであって、本発明の目的は、線状の光源と、この光源からの光を反射する樋状の反射ミラーと、上記光源と上記反射ミラーで反射された光を偏光するグリッド偏光素子とを備えた偏光光照射装置において、光照射領域での偏光軸のばらつきを、できるだけ小さくすることである。
In Patent Document 5, the variation of the polarization axis in the light irradiation region increases the amount of rotation of the polarization axis of the polarized light emitted from the polarizer as the angle of light incident on the grid polarizer increases. It is shown that the variation of the polarization axis at the same time increases.
The polarized light irradiation device shown in FIG. 7 uses a bowl-shaped reflection mirror 22 having an elliptical cross section, and a rod-shaped lamp 21 is arranged so as to be positioned at the first focal point of the elliptical reflection mirror 22. A work 30 is disposed at the second focal point of the shaped reflection mirror 22. For this reason, a relatively large amount of light is incident obliquely on the polarizing element, resulting in a large variation in the polarization axis.
As described above, the conventional polarized light irradiation apparatus cannot sufficiently meet the demand for minimizing the variation in the polarization axis.
The present invention has been made in view of the above circumstances, and an object of the present invention is reflected by a linear light source, a bowl-shaped reflection mirror that reflects light from the light source, the light source, and the reflection mirror. In the polarized light irradiation apparatus provided with the grid polarizing element that polarizes the reflected light, the variation of the polarization axis in the light irradiation region is made as small as possible.

光照射領域での偏光軸のばらつきが小さくなるようにするには、グリッド偏光素子に入射する光の角度を小さくする(偏光素子への入射角を0°に近づける)ことが望ましいと考えられる。
そこで、棒状ランプからの紫外線をワークに向けて反射する樋状の反射ミラーとして、従来用いられていた断面が楕円形状のものに代えて、断面が放物線状のものを用いることが考えられる。
表1は反射ミラーの断面が楕円形状の場合と放物線状の場合の偏光軸むらを示したものである。なお、同表は計算により求めた結果を示している。表1の(a)は棒状ランプのアーク径がφ10mmの場合であって、断面が放物線状(パラボラ)で第1焦点F1の位置が20mm(反射ミラーの放物線の頂点と焦点との距離、以下同じ)の反射ミラー、断面が楕円形状(楕円)で第1焦点F1の位置が20mm、第2焦点F2の位置が100mmの反射ミラー、および断面が楕円形状(楕円)で第1焦点F1の位置が20mm、第2焦点F2の位置が200mmの反射ミラーを用い、第1焦点F1の位置にランプのアークの中心を配置した場合の軸むら(±[deg])を示す。なお、断面が放物線状の反射ミラーは、第2焦点F2はないが、ここではF2=無限大として示している。
また、表1の(b)は棒状ランプのアーク径が32.5mmの場合であって、断面が放物線状(パラボラ)で第1焦点F1の位置が25mmの反射ミラー、断面が楕円形状(楕円)で第1焦点F1の位置が25mm、第2焦点F2の位置が100mmの反射ミラー、および断面が楕円形状(楕円)で第1焦点F1の位置が25mm、第2焦点F2の位置が200mmの反射ミラーを用い、第1焦点F1の位置にランプのアークの中心を配置した場合の軸むら(±[deg])を示す。
In order to reduce the variation of the polarization axis in the light irradiation region, it is desirable to reduce the angle of light incident on the grid polarizing element (to make the incident angle to the polarizing element close to 0 °).
Therefore, it is conceivable to use a parabolic cross section instead of an elliptical cross section that has been conventionally used as a bowl-shaped reflecting mirror that reflects ultraviolet rays from a rod-shaped lamp toward a workpiece.
Table 1 shows the polarization axis unevenness when the reflecting mirror has an elliptical cross section and a parabolic shape. The table shows the results obtained by calculation. (A) in Table 1 shows a case where the arc diameter of the rod-shaped lamp is φ10 mm, the cross section is parabolic, and the position of the first focal point F1 is 20 mm (distance between the apex of the parabola and the focal point of the reflecting mirror, below The same mirror), a reflection mirror whose section is elliptical (ellipse), the position of the first focal point F1 is 20 mm, and the position of the second focal point F2 is 100 mm, and the position of the first focal point F1 whose section is elliptical (ellipse) Is the shaft unevenness (± [deg]) when a reflecting mirror having a position of 20 mm and a position of the second focus F2 of 200 mm is used and the center of the arc of the lamp is arranged at the position of the first focus F1. Note that a reflecting mirror having a parabolic cross section does not have the second focal point F2, but is shown here as F2 = infinity.
Further, (b) of Table 1 shows a case where the arc diameter of the rod-shaped lamp is 32.5 mm, where the cross section is parabolic and the position of the first focal point F1 is 25 mm, and the cross section is elliptical (elliptical). ), The position of the first focus F1 is 25 mm, the position of the second focus F2 is 100 mm, and the cross section is elliptical (ellipse), the position of the first focus F1 is 25 mm, and the position of the second focus F2 is 200 mm. The axial unevenness (± [deg]) in the case where the center of the arc of the lamp is arranged at the position of the first focal point F1 using the reflection mirror is shown.

Figure 0005287737
Figure 0005287737

同表から明らかなように、断面が放物線(パラボラ)の反射ミラーを用いた場合の軸むらに対して断面が楕円形状の反射ミラーを用いた場合の軸むらは2〜3倍となり、断面が放物線(パラボラ)の反射ミラーを用いることにより、偏光軸の軸むらを大幅に減少させることができる。
以上のように、断面が放物線状の反射ミラーを用い、ランプの中心をこの反射ミラーの放物線の第1焦点に配置することで、反射ミラーの反射光は平行光となり、グリッド偏光素子に小さな入射角度(垂直かそれに近い角度)で入射し、光照射領域での偏光軸のばらつきが小さくなる。
As is apparent from the table, the axial unevenness when the reflecting mirror having an elliptical cross section is 2 to 3 times the axial unevenness when using a parabolic reflecting mirror. By using a parabolic reflection mirror, the unevenness of the polarization axis can be greatly reduced.
As described above, a reflecting mirror having a parabolic cross section is used, and the center of the lamp is arranged at the first focal point of the parabola of the reflecting mirror, so that the reflected light of the reflecting mirror becomes parallel light and has a small incident on the grid polarizing element. Incident at an angle (perpendicular or close to it), the variation of the polarization axis in the light irradiation region is reduced.

しかし、グリッド偏光素子には、ランプからの直射光も入射する。ランプから放射される光は発散光であり、グリッド偏光素子に対して大きな入射角度で入射する成分もある。したがって、線状の光源からの光を反射する反射ミラーとして、断面が放物線状の樋状の反射ミラーを用いても、光照射領域での偏光軸のばらつきを完全になくすことはできないことがわかった。
上記問題を解決するために、種々検討した結果、反射ミラーとして断面が放物線状の反射ミラーを用いるとともに、ランプの中心(発光部)を該反射ミラーの第1焦点よりもやや偏光素子側に移動した方が、光照射領域での偏光軸のばらつきが、より小さくなることがわかった。
詳しくは、ランプの中心を、断面が放物線である反射ミラーの第1焦点と頂点を結ぶ直線上であって、第1焦点とグリッド偏光素子の間に配置する。このような位置にランプを配置することで、ランプを第1焦点に配置した場合よりも、光照射領域での偏光軸のばらつきを小さくすることができた。
ただし、ランプの中心が第1焦点から離れすぎると、偏光軸のばらつきは再び大きくなる。そのため、ランプの中心を第1焦点から偏光素子の方向に移動させる距離は、反射ミラーの焦点距離の1/2程度の距離までであることが望ましい。
以上に基づき、本発明においては、以下のようにして前記課題を解決する。
配向膜に偏光光を照射して光配向を行う偏光光照射装置において、拡散光を放射する線状の光源と、該光源からの光を反射する樋状で断面が放物線状の反射ミラーと、上記光源と上記反射ミラーで反射された光を偏光するグリッド偏光素子とを設ける。
上記光源の中心は、上記断面が放物線である反射ミラーの第1焦点と該反射ミラーの放物線の頂点を結ぶ直線上の、上記第1焦点より上記グリッド偏光素子側に配置され、光源の中心を第1焦点から偏光素子の方向に移動させる距離は、反射ミラーの焦点距離の1/2までの距離である。
However, direct light from the lamp also enters the grid polarization element. The light emitted from the lamp is divergent light, and there is also a component that enters the grid polarizing element at a large incident angle. Therefore, it is understood that even if a reflection mirror having a parabolic cross section is used as a reflection mirror that reflects light from a linear light source, variations in the polarization axis in the light irradiation region cannot be completely eliminated. It was.
As a result of various studies in order to solve the above problem, a reflection mirror having a parabolic cross section is used as the reflection mirror, and the center of the lamp (light emitting portion) is moved slightly to the polarizing element side from the first focal point of the reflection mirror. It was found that the variation in the polarization axis in the light irradiation region was smaller.
Specifically, the center of the lamp is arranged on a straight line connecting the first focal point and the apex of the reflecting mirror whose cross section is a parabola and between the first focal point and the grid polarizing element. By disposing the lamp at such a position, it was possible to reduce the variation in the polarization axis in the light irradiation region as compared with the case where the lamp was disposed at the first focal point.
However, if the center of the lamp is too far from the first focus, the variation in the polarization axis becomes large again. Therefore, it is desirable that the distance for moving the center of the lamp from the first focus in the direction of the polarizing element is up to about 1/2 of the focal length of the reflection mirror.
Based on the above, in the present invention, the above-described problem is solved as follows.
In a polarized light irradiation apparatus that performs light alignment by irradiating the alignment film with polarized light, a linear light source that emits diffused light, a bowl-shaped reflection mirror that reflects light from the light source, and a parabolic cross section; The light source and a grid polarizing element that polarizes the light reflected by the reflection mirror are provided.
The center of the light source is arranged on the grid polarization element side from the first focus on a straight line connecting the first focus of the reflection mirror whose cross section is a parabola and the apex of the parabola of the reflection mirror, and the center of the light source is The distance moved from the first focus in the direction of the polarizing element is a distance up to ½ of the focal length of the reflection mirror.

本発明においては、棒状ランプからの紫外線をワークに向けて反射する樋状の反射ミラーとして断面が放物線状のものを用いたので、偏光軸の軸むらを大幅に減少させることができる。
また、上記ランプの中心を、上記反射ミラーの第1焦点とグリッド偏光素子の間に配置したので、従来のように断面が楕円形状の樋状の反射ミラーを用いる場合に比べ、光照射領域での偏光軸のばらつきを少なくすることができる。
In the present invention, since the hook-shaped reflecting mirror that reflects the ultraviolet rays from the rod-shaped lamp toward the workpiece has a parabolic cross section , the unevenness of the polarization axis can be greatly reduced.
In addition, since the center of the lamp is disposed between the first focal point of the reflection mirror and the grid polarization element, the light irradiation region is compared with the case where a bowl-shaped reflection mirror having an elliptical cross section is used. The variation in the polarization axis can be reduced.

本発明の実施例の偏光光照射装置の構成を示す図である。It is a figure which shows the structure of the polarized light irradiation apparatus of the Example of this invention. 本発明において、反射ミラーとランプとワイヤーグリッド偏光素子の配置を説明する図である。In this invention, it is a figure explaining arrangement | positioning of a reflective mirror, a lamp | ramp, and a wire grid polarizing element. 第1焦点(F1)と放物線の頂点を結ぶ直線上を移動した場合の、光照射領域の偏光軸のばらつきの変化を示す図(1)である。It is a figure (1) which shows change of variation of the polarization axis of a light irradiation field at the time of moving on the straight line which connects the 1st focus (F1) and the vertex of a parabola. 第1焦点(F1)と放物線の頂点を結ぶ直線上を移動した場合の、光照射領域の偏光軸のばらつきの変化を示す図(2)である。It is a figure (2) which shows the change of the variation in the polarization axis of a light irradiation field at the time of moving on the straight line which connects the 1st focus (F1) and the vertex of a parabola. 第1焦点(F1)と放物線の頂点を結ぶ直線上を移動した場合の、光照射領域の偏光軸のばらつきの変化を示す図(3)である。It is a figure (3) which shows change of variation of the polarization axis of a light irradiation field at the time of moving on the straight line which connects the 1st focus (F1) and the top of a parabola. 偏光軸のバラつきを説明する図である。It is a figure explaining the variation of a polarization axis. 棒状ランプ、反射ミラーと、グリッド偏光素子とを用いた偏光光照射装置の構成例を示す図である。It is a figure which shows the structural example of the polarized light irradiation apparatus using a rod-shaped lamp, a reflective mirror, and a grid polarizing element.

図1(a)に本発明の実施例の樋状の反射ミラーと線状の光源である棒状ランプとグリッド偏光素子を組み合わせた偏光光照射装置の構成例を示し、同図(b)(c)に反射ミラーと棒状ランプの拡大図を示す。また、同図(d)にランプの断面形状を示す。
同図(a)において、光配向膜であるワーク30は、前述したように例えば視野角補償フィルムのような帯状の長尺ワークであり、送り出しロールR1から送り出され、図中矢印方向に搬送され、後述するように偏光光照射により光配向処理され、巻き取りロールR2により巻き取られる。
偏光光照射装置の光照射部20は、光配向処理に必要な波長の光(紫外線)を放射する棒状ランプ1、例えば高圧水銀ランプや水銀に他の金属を加えたメタルハライドランプと、棒状ランプ1からの紫外線をワーク30に向けて反射する樋状の反射ミラー2を備える。
FIG. 1A shows a configuration example of a polarized light irradiation apparatus combining a bowl-shaped reflection mirror, a rod-shaped lamp as a linear light source, and a grid polarizing element according to an embodiment of the present invention, and FIGS. ) Shows an enlarged view of the reflecting mirror and the rod-shaped lamp. FIG. 4D shows the sectional shape of the lamp.
In FIG. 9A, a work 30 as a photo-alignment film is a strip-like long work such as a viewing angle compensation film, as described above, and is fed from the feed roll R1 and conveyed in the direction of the arrow in the figure. As will be described later, the photo-alignment treatment is performed by irradiation with polarized light, and the film is taken up by the take-up roll R2.
The light irradiation unit 20 of the polarized light irradiation apparatus includes a rod-shaped lamp 1 that emits light (ultraviolet rays) having a wavelength necessary for photo-alignment processing, such as a high-pressure mercury lamp, a metal halide lamp obtained by adding other metal to mercury, and a rod-shaped lamp 1. It includes a bowl-shaped reflection mirror 2 that reflects ultraviolet rays from the workpiece 30 toward the workpiece 30.

棒状ランプ1の長さは、発光部が、ワーク30の搬送方向に直交する方向の幅に対応する長さを備えたものを使用する。光照射部20は、ランプ1の長手方向がワーク30の幅方向(搬送方向に対して直交方向)になるように配置する。
光照射部20の光出射側には、偏光素子であるグリッド偏光素子10が設けられる。
棒状ランプ1からの光は、直接グリッド偏光素子10に入射するとともに、反射ミラー2で反射してグリッド偏光素子10に入射し、グリッド偏光素子10により偏光され、光照射部20の下を搬送されるワーク30に照射され、光配向処理が行われる。
As the length of the rod-shaped lamp 1, a light emitting unit having a length corresponding to the width in the direction orthogonal to the conveying direction of the workpiece 30 is used. The light irradiation unit 20 is arranged so that the longitudinal direction of the lamp 1 is in the width direction of the workpiece 30 (direction orthogonal to the transport direction).
A grid polarizing element 10 which is a polarizing element is provided on the light emitting side of the light irradiation unit 20.
The light from the rod-shaped lamp 1 is directly incident on the grid polarizing element 10, is reflected by the reflection mirror 2, enters the grid polarizing element 10, is polarized by the grid polarizing element 10, and is conveyed under the light irradiation unit 20. The workpiece 30 is irradiated and a photo-alignment process is performed.

図1(b)は上記反射ミラー2の斜視図、図1(c)は棒状ランプ1の斜視図、図1(d)は棒状ランプを管軸に垂直な平面で切った断面図である。
反射ミラー2の内側がランプから放射される光を反射する反射面であり、この反射ミラー2の内側に、長手方向を合わせて棒状ランプが配置される。
反射ミラー2は、前記したように断面が放物線状の樋状のミラーであり、棒状ランプ1の長手方向が上記樋状の反射ミラー2の長手方向に平行に配置される。そして、棒状ランプの中心(棒状ランプを管軸に垂直な平面で切ったときの断面における中心位置、すなわち光源の中心)は、上記断面が放物線である反射ミラーの第1焦点と放物線の頂点を結ぶ直線上であって、上記第1焦点より上記グリッド偏光素子10側に配置される。
1B is a perspective view of the reflection mirror 2, FIG. 1C is a perspective view of the rod-shaped lamp 1, and FIG. 1D is a cross-sectional view of the rod-shaped lamp cut along a plane perpendicular to the tube axis.
The inside of the reflecting mirror 2 is a reflecting surface that reflects light emitted from the lamp, and a rod-like lamp is arranged inside the reflecting mirror 2 so as to match the longitudinal direction.
As described above, the reflecting mirror 2 is a bowl-shaped mirror having a parabolic cross section, and the longitudinal direction of the rod-shaped lamp 1 is arranged in parallel to the longitudinal direction of the bowl-shaped reflecting mirror 2. The center of the rod-shaped lamp (the center position in the section when the rod-shaped lamp is cut along a plane perpendicular to the tube axis, that is, the center of the light source) is the first focal point of the reflecting mirror whose section is a parabola and the apex of the parabola. It is on the connecting straight line and is arranged on the grid polarizing element 10 side from the first focal point.

ここで、反射ミラー2の「断面が放物線状」とは、この樋状の反射ミラー2の長手方向に対して直交する方向の断面の反射面の形状が、放物線状であるということである。反射ミラー2は、実際には、同図に示すように頂部に通風孔などの開口が形成されている場合があるが、その場合でも「断面が放物線状」という。
また、反射ミラー2は樋状であるので、反射ミラー2の第1焦点は、反射ミラー2の長手方向に沿って連続的に存在する。そこで、ここでは、第1焦点の集合体である直線のことを、「樋状のミラーの第1焦点」と呼ぶ
さらに、反射ミラー2の第1焦点とランプ1の中心を一致させるとは、反射ミラー2の第1焦点の集合体である直線と、ランプの中心線を一致させるということを意味する。
ランプの中心線とは、図1(d)に示す断面図における棒状のランプ1の円環状の封体(ガラス管)1aの内径の中心(アークの中心)点のランプ長手方向の集合体である。すなわち、棒状ランプを管軸に垂直な平面で切ったときの断面における内径の中心点の集合体であるランプの長手方向に沿った直線であり、光源の中心に相当する。
なお、ランプは内部に電極を有する有電極ランプと内部に電極を有さない無電極ランプがあるが、いずれの場合も、封体の円環の軸のことをランプの中心と呼ぶ。
Here, “the cross section is parabolic” of the reflection mirror 2 means that the shape of the reflection surface in the direction orthogonal to the longitudinal direction of the bowl-shaped reflection mirror 2 is a parabolic shape. In practice, the reflection mirror 2 may have an opening such as a ventilation hole at the top as shown in the figure, but even in that case, the cross section is referred to as a parabolic shape.
Further, since the reflection mirror 2 is bowl-shaped, the first focal point of the reflection mirror 2 is continuously present along the longitudinal direction of the reflection mirror 2. Therefore, here, a straight line that is an aggregate of the first focal points is referred to as a “first focal point of a bowl-shaped mirror”. Furthermore, to make the first focal point of the reflecting mirror 2 coincide with the center of the lamp 1 This means that the straight line that is the aggregate of the first focal points of the reflecting mirror 2 is matched with the center line of the lamp.
The center line of the lamp is an assembly in the longitudinal direction of the lamp at the center (arc center) point of the inner diameter of the annular envelope (glass tube) 1a of the rod-shaped lamp 1 in the sectional view shown in FIG. is there. That is, it is a straight line along the longitudinal direction of the lamp, which is an aggregate of the center points of the inner diameters in the cross section when the rod-shaped lamp is cut along a plane perpendicular to the tube axis, and corresponds to the center of the light source.
The lamp includes an electroded lamp having an electrode inside and an electrodeless lamp not having an electrode inside. In either case, the axis of the ring of the envelope is called the center of the lamp.

上記本発明の実施例の樋状で断面が放物線状の反射ミラーと棒状のランプ、及びグリッド偏光素子を組み合わせた偏光光照射装置におけるランプの位置と偏光軸のばらつきの関係を調べた。
図2に示すように、ランプ1を、断面が放物線状である反射ミラー2の第1焦点(F1)と、ミラー2の放物線の頂点Pとを結ぶ直線上を平行移動させた。すなわち、ランプ1の中心と焦点F1の距離d(位置ずれ量)を変えて偏光軸のばらつきを調べた。なお、上記したように反射ミラー2の頂部には開口が形成されていることがあるが、そのような場合、頂点Pは放物線の一部を形成する反射ミラー2の断面を外挿して求める。
放物線状の反射ミラー2は、焦点距離が異なるものについて3種(f=18mm,20mm,25mm)、また棒状ランプ1は封体の管径(内径)が異なるものを複数準備し、それぞれ組み合わせて調べた。
ランプ1の管径は、現在一般に使用される代表的な棒状ランプの管径である。ランプの管径は、細い方が輝度は高くなり、したがって高いピーク照度を得ることができる。しかし、ランプの長さが長くなると、強度を保つために太くなる傾向がある。
The relationship between the position of the lamp and the variation of the polarization axis in the polarized light irradiation apparatus combining the bowl-shaped reflection mirror with the parabolic section and the rod-shaped lamp and the grid polarizing element of the embodiment of the present invention was examined.
As shown in FIG. 2, the lamp 1 was translated on a straight line connecting the first focal point (F1) of the reflecting mirror 2 having a parabolic cross section and the apex P of the parabola of the mirror 2. That is, the variation of the polarization axis was examined by changing the distance d (positional deviation amount) between the center of the lamp 1 and the focal point F1. As described above, an opening may be formed at the top of the reflection mirror 2. In such a case, the apex P is obtained by extrapolating a cross section of the reflection mirror 2 forming a part of the parabola.
There are three types of parabolic reflecting mirrors 2 having different focal lengths (f = 18 mm, 20 mm, 25 mm), and a plurality of rod-shaped lamps 1 having different envelope tube diameters (inner diameters) are combined and combined. Examined.
The tube diameter of the lamp 1 is a tube diameter of a typical rod-shaped lamp that is generally used at present. As the tube diameter of the lamp is thinner, the luminance is higher, so that a higher peak illuminance can be obtained. However, when the length of the lamp is increased, it tends to be thicker in order to maintain the strength.

図3は、樋状で断面が放物線状の反射ミラーの焦点距離が18mmの場合において、管の内径が9mm,18mm,23.4mmの棒状ランプが、それぞれ第1焦点(F1)と放物線の頂点を結ぶ直線上を移動した場合の、光照射領域の偏光軸のばらつきの変化を示す。同図において、横軸は第1焦点からランプの中心までの距離、縦軸は偏光軸のばらつき(軸むら)の大きさである。
なお、偏光軸とは、光照射領域のある点における偏光方向を方位角で示したものである。また、偏光軸のばらつき(軸むら)の大きさは図6に示すように、偏光光が照射されている領域の中心位置の偏光軸の方向を基準とし、光照射領域の四隅の偏光軸の方向を測定し、何度回転しているかを、開き角θとして±θ/2で表したものである。
FIG. 3 shows a rod-shaped lamp having inner diameters of 9 mm, 18 mm, and 23.4 mm when the focal length of a reflecting mirror having a bowl shape and a parabolic cross section is 18 mm, the first focal point (F1) and the apex of the parabola, respectively. The change of the dispersion | variation in the polarization axis of a light irradiation area | region when moving on the straight line which connects is shown. In the figure, the horizontal axis represents the distance from the first focal point to the center of the lamp, and the vertical axis represents the magnitude of variation in the polarization axis (axis unevenness).
The polarization axis indicates the polarization direction at a certain point in the light irradiation region by an azimuth angle. Further, as shown in FIG. 6, the variation of the polarization axis (axis unevenness) is based on the direction of the polarization axis at the center position of the area irradiated with the polarized light, and the polarization axes at the four corners of the light irradiation area. The direction is measured and the number of rotations is expressed as ± θ / 2 as an opening angle θ.

図3に戻り、横軸の0の位置は第1焦点(F1)の位置であり、ずれ量がプラス側(0より右側)は、ランプを第1焦点(F1)からグリッド偏光子側に移動させた場合であり、ずれ量がマイナス側(0より左側)は、ランプを第1焦点(F1)からグリッド偏光子とは反対側に移動させた場合である。
図4は、樋状で断面が放物線状の反射ミラーの焦点距離が20mmの場合において、管の内径が10mm,20mm,26mmの棒状ランプを用いた場合である。
図5は、樋状で断面が放物線状の反射ミラーの焦点距離が25mmの場合において、管の内径が12.5mm,25mm,32.5mmの棒状ランプを用いた場合である。
Returning to FIG. 3, the position of 0 on the horizontal axis is the position of the first focus (F1), and when the shift amount is on the plus side (right side from 0), the lamp is moved from the first focus (F1) to the grid polarizer side. When the amount of deviation is negative (left side from 0), the lamp is moved from the first focal point (F1) to the side opposite to the grid polarizer.
FIG. 4 shows a case where a rod-like lamp having an inner diameter of 10 mm, 20 mm, or 26 mm is used when the focal length of a reflecting mirror having a bowl shape and a parabolic cross section is 20 mm.
FIG. 5 shows a case where a rod-like lamp having an inner diameter of 12.5 mm, 25 mm, and 32.5 mm is used when the focal length of a reflecting mirror having a bowl shape and a parabolic cross section is 25 mm.

図3,4,5より、次のような知見を導くことができる。
ランプを、第1焦点(F1)に対してグリッド偏光子とは反対側に移動させると、偏光軸のばらつき(軸むら)は大きくなる。
しかし、反射ミラーの第1焦点(F1)の位置が異なっても、ランプの管の大小によらず、ランプの中心を第1焦点(F1)に配置した場合の偏光軸のばらつき(軸むら)よりも、ランプの中心を、第1焦点(F1)から偏光子側に移動させたほうが偏光軸のばらつき(軸むら)が小さくなる。
したがって、線状の光源と、この光源からの光を反射する樋状で断面が放物線状の反射ミラーと、この光源と反射ミラーで反射された華を偏光するグリッド偏光素子とを備えた偏光光照射装置において、偏光軸のばらつき(軸むら)を小さくするためには、ランプ(の中心)を、反射ミラーの第1焦点と頂点を結ぶ直線上であって、第1焦点と偏光素子の間に配置にするのが良い。
The following knowledge can be derived from FIGS.
When the lamp is moved to the side opposite to the grid polarizer with respect to the first focal point (F1), the variation in the polarization axis (axis unevenness) increases.
However, even if the position of the first focal point (F1) of the reflecting mirror is different, variations in the polarization axis (axis unevenness) when the center of the lamp is arranged at the first focal point (F1), regardless of the size of the lamp tube. Rather than moving the center of the lamp from the first focal point (F1) to the polarizer side, the variation in the polarization axis (axis unevenness) becomes smaller.
Therefore, a polarized light comprising a linear light source, a bowl-shaped reflection mirror that reflects light from the light source and a parabolic cross section, and a grid polarization element that polarizes the flower reflected by the light source and the reflection mirror. In the irradiating device, in order to reduce the variation (polarity unevenness) of the polarization axis, the lamp (center) is on a straight line connecting the first focal point and the apex of the reflecting mirror and between the first focal point and the polarizing element. It is good to arrange it.

しかし、第1焦点(F1)からランプまでの距離が、ある程度以上になると、偏光軸のばらつき(軸むら)は増加に転じる。そのため、偏光軸のばらつき(軸むら)が最も小さくなるランプの位置は、反射ミラーの焦点距離とランプの内径に応じて、あらかじめ実験等で求めておく必要がある。
上記のように、ランプの中心が第1焦点から離れすぎると、偏光軸のばらつきは再び大きくなる。そのため、ランプの中心を第1焦点から偏光素子の方向に移動させる距離は、反射ミラーの焦点距離の1/2程度の距離、例えば、焦点距離が18mmのミラーの場合は9mm、20mmのミラーの場合は10mm、25mmのミラーの場合は12.5mmまでであることが望ましい。
ランプの中心を第1焦点(F1)から偏光子側に移動させたとき、ランプの管の内径は小さい方が、偏光軸のばらつき(軸むら)はより改善される。
However, when the distance from the first focal point (F1) to the lamp exceeds a certain level, the variation of the polarization axis (axis unevenness) starts to increase. Therefore, the position of the lamp with the smallest variation in polarization axis (axis unevenness) needs to be obtained in advance by experiments or the like according to the focal length of the reflecting mirror and the inner diameter of the lamp.
As described above, if the center of the lamp is too far from the first focal point, the variation of the polarization axis becomes large again. Therefore, the distance that the center of the lamp is moved from the first focus to the direction of the polarizing element is about a half of the focal length of the reflecting mirror, for example, 9 mm and 20 mm for a mirror with a focal length of 18 mm. In the case of a 10 mm or 25 mm mirror, it is desirable that the distance is 12.5 mm.
When the center of the lamp is moved from the first focus (F1) to the polarizer side, the variation in the polarization axis (axis unevenness) is further improved when the inner diameter of the lamp tube is smaller.

1 棒状ランプ
2 反射ミラー
10 グリッド偏光素子
20 光照射部
30 ワーク
R1 送り出しロール
R2 巻き取りロール
DESCRIPTION OF SYMBOLS 1 Bar-shaped lamp 2 Reflecting mirror 10 Grid polarizing element 20 Light irradiation part 30 Work R1 Sending roll R2 Winding roll

Claims (1)

配向膜に偏光光を照射して光配向を行う偏光光照射装置であって、拡散光を放射する線状の光源と、該光源からの光を反射する樋状で断面が放物線状の反射ミラーと、上記光源と上記反射ミラーで反射された光を偏光するグリッド偏光素子とを備え、
上記光源の中心は、上記断面が放物線である反射ミラーの第1焦点と該反射ミラーの放物線の頂点を結ぶ直線上の、上記第1焦点より上記グリッド偏光素子側に配置され、光源の中心を第1焦点から偏光素子の方向に移動させる距離は、反射ミラーの焦点距離の1/2までの距離である
ことを特徴とする偏光光照射装置。
A polarized light irradiating apparatus for irradiating polarized light to an alignment film to perform photo-alignment, a linear light source that emits diffused light, and a reflective mirror that has a bowl shape and a parabolic cross section that reflects light from the light source And a grid polarizing element that polarizes light reflected by the light source and the reflection mirror,
The center of the light source is arranged on the grid polarization element side from the first focus on a straight line connecting the first focus of the reflection mirror whose cross section is a parabola and the apex of the parabola of the reflection mirror, and the center of the light source is The polarized light irradiation apparatus , wherein the distance moved from the first focus in the direction of the polarizing element is a distance up to ½ of the focal length of the reflection mirror .
JP2010004805A 2010-01-13 2010-01-13 Polarized light irradiation device Expired - Fee Related JP5287737B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010004805A JP5287737B2 (en) 2010-01-13 2010-01-13 Polarized light irradiation device
TW099138838A TWI416229B (en) 2010-01-13 2010-11-11 Polarized light irradiation device
KR1020100137696A KR101288661B1 (en) 2010-01-13 2010-12-29 Polarized light irradiation apparatus
CN201110007079.7A CN102129139B (en) 2010-01-13 2011-01-13 Polarized light irradiation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010004805A JP5287737B2 (en) 2010-01-13 2010-01-13 Polarized light irradiation device

Publications (2)

Publication Number Publication Date
JP2011145381A JP2011145381A (en) 2011-07-28
JP5287737B2 true JP5287737B2 (en) 2013-09-11

Family

ID=44267283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010004805A Expired - Fee Related JP5287737B2 (en) 2010-01-13 2010-01-13 Polarized light irradiation device

Country Status (4)

Country Link
JP (1) JP5287737B2 (en)
KR (1) KR101288661B1 (en)
CN (1) CN102129139B (en)
TW (1) TWI416229B (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5200271B1 (en) * 2012-01-25 2013-06-05 ウシオ電機株式会社 Polarized light irradiation device
JP5056991B1 (en) 2012-02-02 2012-10-24 ウシオ電機株式会社 Polarized light irradiation device
KR101393460B1 (en) * 2013-01-15 2014-05-12 위아코퍼레이션 주식회사 Rubbing and photo-aligning device
JP5821860B2 (en) 2013-01-21 2015-11-24 ウシオ電機株式会社 Polarized light irradiation device
KR102064210B1 (en) 2013-07-04 2020-01-10 삼성디스플레이 주식회사 Polarizer, polarized light illuminating apparatus having the same and method of manufacturing the same
JP6326746B2 (en) * 2013-09-10 2018-05-23 東芝ライテック株式会社 Polarized light irradiation device
CN103676238B (en) * 2013-12-20 2016-09-14 深圳市华星光电技术有限公司 Orientation ultraviolet apparatus for baking
KR102166261B1 (en) 2014-03-25 2020-10-15 도시바 라이텍쿠 가부시키가이샤 Polarized light irradiation apparatus
KR102297802B1 (en) 2014-09-22 2021-09-03 도시바 라이텍쿠 가부시키가이샤 Light source device
JP2019101226A (en) * 2017-12-01 2019-06-24 シャープ株式会社 Polarized light irradiation device, and, method of manufacturing substrate with photosensitive film
CN108700770B (en) * 2018-04-24 2021-05-07 京东方科技集团股份有限公司 Photo-alignment process apparatus, method of manufacturing liquid crystal display substrate, and method of manufacturing photo-alignment process apparatus
JP2019211725A (en) * 2018-06-08 2019-12-12 株式会社ブイ・テクノロジー Light irradiation device
CN111856745B (en) * 2019-04-30 2023-03-17 上海微电子装备(集团)股份有限公司 Light irradiation device

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3140164B2 (en) * 1992-05-01 2001-03-05 パイオニア株式会社 Focusing reflector
US6307609B1 (en) * 1997-08-05 2001-10-23 Wayne M. Gibbons Polarized light exposure systems for aligning liquid crystals
JP2000028963A (en) * 1999-05-19 2000-01-28 Seiko Epson Corp Illumination device and projection type display device using it
US6874899B2 (en) * 2002-07-12 2005-04-05 Eastman Kodak Company Apparatus and method for irradiating a substrate
JP4063042B2 (en) * 2002-10-23 2008-03-19 ウシオ電機株式会社 Polarized light irradiation device for photo-alignment
US7413317B2 (en) * 2004-06-02 2008-08-19 3M Innovative Properties Company Polarized UV exposure system
JP4506412B2 (en) * 2004-10-28 2010-07-21 ウシオ電機株式会社 Polarizing element unit and polarized light irradiation device
JP4436752B2 (en) * 2004-12-22 2010-03-24 シャープ株式会社 Light source device and liquid crystal display device
JP4706255B2 (en) 2004-12-28 2011-06-22 ウシオ電機株式会社 Polarized light irradiation device
JP2006269190A (en) * 2005-03-23 2006-10-05 Yowa:Kk Direct backlight
JP4892859B2 (en) * 2005-04-20 2012-03-07 ウシオ電機株式会社 Polarized light irradiation device
JP2006323060A (en) 2005-05-18 2006-11-30 Ushio Inc Polarized-light irradiating device
CN101680630B (en) * 2007-06-18 2011-11-23 夏普株式会社 Lighting device for display equipment, display equipment, and television receiver
JP4968165B2 (en) * 2008-04-24 2012-07-04 ウシオ電機株式会社 Polarized light irradiation device for photo-alignment

Also Published As

Publication number Publication date
CN102129139B (en) 2014-08-20
JP2011145381A (en) 2011-07-28
TW201207515A (en) 2012-02-16
KR20110083496A (en) 2011-07-20
KR101288661B1 (en) 2013-07-22
CN102129139A (en) 2011-07-20
TWI416229B (en) 2013-11-21

Similar Documents

Publication Publication Date Title
JP5287737B2 (en) Polarized light irradiation device
JP4063042B2 (en) Polarized light irradiation device for photo-alignment
KR100954897B1 (en) Polarized light device unit and polarized light irradiation apparatus
JP4968165B2 (en) Polarized light irradiation device for photo-alignment
JP6119035B2 (en) Exposure equipment
JP2006201273A (en) Polarized light irradiating apparatus
JP5417646B2 (en) Roll film cutting device using laser
JP4706255B2 (en) Polarized light irradiation device
KR102064875B1 (en) Apparatus for irradiating ultraviolet rays
KR20170135737A (en) Polarized light illuminating apparatus and light aligning apparatus
WO2019130851A1 (en) Optical irradiation device and optical irradiation method
JP6070285B2 (en) Polarized light irradiation device
TWI781189B (en) Polarized light irradiation device and polarized light irradiation method
JP6052199B2 (en) Polarized light irradiation device and rod-shaped light source for photo-alignment
TW201250151A (en) Light irradiation device
JP5609158B2 (en) Light source device and projection display device
JP4846868B1 (en) Polarized illumination device
JP2014232238A (en) Polarized light irradiation device for optical alignment
JP2014026038A (en) Ultraviolet irradiation device
KR20150124539A (en) Apparatus for light irradiation
WO2013069119A1 (en) Polarized light illumination device
JP2013011714A (en) Screen manufacturing method and screen

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130325

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130520

R150 Certificate of patent or registration of utility model

Ref document number: 5287737

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees