JP2006201273A - Polarized light irradiating apparatus - Google Patents

Polarized light irradiating apparatus Download PDF

Info

Publication number
JP2006201273A
JP2006201273A JP2005010491A JP2005010491A JP2006201273A JP 2006201273 A JP2006201273 A JP 2006201273A JP 2005010491 A JP2005010491 A JP 2005010491A JP 2005010491 A JP2005010491 A JP 2005010491A JP 2006201273 A JP2006201273 A JP 2006201273A
Authority
JP
Japan
Prior art keywords
light
photo
alignment film
polarized light
polarized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005010491A
Other languages
Japanese (ja)
Inventor
Sayu Shiotani
サユ 塩谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Ushio Inc
Original Assignee
Ushio Denki KK
Ushio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK, Ushio Inc filed Critical Ushio Denki KK
Priority to JP2005010491A priority Critical patent/JP2006201273A/en
Publication of JP2006201273A publication Critical patent/JP2006201273A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To irradiate an optical alignment layer in a light irradiation region with a polarized light being diffused light without causing fluctuations of the polarization axis, even if an optical element, through which light is transmitted or on which light is reflected, is arranged in its optical path in an apparatus for irradiating the optical alignment layer with the polarized light being a diffuse light. <P>SOLUTION: A work 30, on which the optical alignment layer 31 is formed, is mounted on a work stage 32, and the whole of the work stage 32 is housed in a sample chamber 1. Inert gas, such as gaseous nitrogen, is introduced into the sample chamber 1 or is degassed therefrom. A light transmissive window 3 is formed at an upper part of the sample chamber 1, light from a light irradiation section 20 is transmitted through the light transmissive window 3, is polarized by a wire grid polarizing element 10 provided between the light transmissive window 3 and the work stage and irradiates the optical alignment layer 31 on the work stage 32. Since the optical element for transmitting or reflecting light is not provided between the polarizing element 10 and the optical alignment layer 31, rotation of the axis of polarization will not be produced and the fluctuations of the axis of polarization will not be produced. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、液晶表示素子の配向膜や、紫外線硬化型液晶を用いた視野角補償フィルムの配向層などの配向膜に、偏光光を照射して光配向を行なう偏光光照射装置に関する。   The present invention relates to a polarized light irradiation apparatus that performs optical alignment by irradiating polarized light to an alignment film such as an alignment film of a liquid crystal display element or an alignment layer of a viewing angle compensation film using an ultraviolet curable liquid crystal.

近年、液晶パネルを始めとする液晶素子の配向膜や、視野角補償フィルムの配向層などの配向処理に関し、配向膜に所定の波長の偏光光を照射することにより配向を行なう、光配向と呼ばれる技術が採用されるようになってきている。以下、上記光により配向を行う配向膜や配向層を設けたフィルムなど、光により配向特性が生じる膜や層のことを総称して光配向膜と呼ぶ。
光配向膜は、液晶パネルの大型化と共に大型化しており、それと共に光配向膜に偏光光を照射する偏光光照射装置も大型化している。光配向膜において、例えば視野角補償フィルムは、帯状の長いワークであり、配向処理後所望の長さに切断し使用する。最近は、パネルの大きさに合わせて大きくなり、幅1500mmのものもある。
近年、このような帯状の長い光配向膜に対して光配向を行うために、光配向膜の幅に相当する長さの棒状ランプを光源とする光照射装置を用い、光配向膜を棒状ランプの長手方向に対して直交する方向に搬送しながら光照射を行なうことが提案されている(例えば特許文献1、特許文献2参照)。
棒状ランプは、従来より比較的長いものが製造されており、光配向膜の幅方向に対応するような、例えば上記した1500mmといった長さのものを製造することができる。しかし、棒状ランプから放射される光は拡散光なので、拡散光を効率よく偏光する偏光素子を選択する必要があり、上記公報では、そのような偏光素子としてワイヤーグリッド偏光子と呼ばれる偏光素子が使用されている。
In recent years, with respect to alignment processing of alignment films of liquid crystal elements such as liquid crystal panels and alignment layers of viewing angle compensation films, alignment is performed by irradiating polarized light of a predetermined wavelength to the alignment film. Technology is being adopted. Hereinafter, films and layers in which alignment characteristics are generated by light, such as an alignment film that performs alignment by light and a film provided with an alignment layer, are collectively referred to as a photo-alignment film.
The photo-alignment film has been enlarged along with the enlargement of the liquid crystal panel, and the polarized light irradiation apparatus for irradiating the photo-alignment film with polarized light has also been enlarged. In the photo-alignment film, for example, a viewing angle compensation film is a long strip-shaped workpiece, and is used after being cut to a desired length after the alignment treatment. Recently, the size of the panel has increased to match the size of the panel, and some have a width of 1500 mm.
In recent years, in order to perform photo-alignment on such a long strip-shaped photo-alignment film, a light irradiation apparatus using a light-emitting lamp having a length corresponding to the width of the photo-alignment film as a light source is used. It has been proposed to carry out light irradiation while transporting in a direction perpendicular to the longitudinal direction (see, for example, Patent Document 1 and Patent Document 2).
A rod-shaped lamp having a relatively long length is conventionally manufactured, and a rod-shaped lamp having a length of, for example, 1500 mm described above corresponding to the width direction of the photo-alignment film can be manufactured. However, since the light emitted from the rod-shaped lamp is diffused light, it is necessary to select a polarizing element that efficiently polarizes the diffused light. In the above publication, a polarizing element called a wire grid polarizer is used as such a polarizing element. Has been.

ワイヤーグリッド偏光素子については、例えば特許文献3や特許文献4に詳細が示されている。概略の構造は、図5に示すように、長さが幅よりもはるかに長い複数の直線状の電気導体10a(例えばクロムやアルミニウム等の金属線。以下グリッドと呼ぶ)を、同一平面上(例えば石英ガラスなどの基板10b上)に平行に配置したものである。光路中に該偏光素子を挿入すると、グリッドの長手方向に平行な偏光成分は大部分反射され、直交する偏光成分は通過する。したがって、照射される偏光光の偏光軸の方向は、偏光素子のグリッドの長手方向に直交する方向になる。
ワイヤーグリッド偏光素子の特徴として、偏光光の消光比の入射角度(偏光素子に入射する光の角度)依存性が小さいことが知られている。
図6に、棒状ランプとワイヤーグリッド偏光素子を組み合わせた偏光光照射装置の構成例を示す。
高圧水銀ランプやメタルハライドランプ等の棒状ランプ21と、ランプ21からの光を反射する断面が楕円形の樋状集光鏡22を備えた光照射部20を、ランプ21の長手方向が、ワーク30上に形成された光配向膜31の幅方向(搬送方向に対して直交方向)になるように配置する。光照射部20には、ワイヤーグリッド偏光素子10が設けられている。ワイヤーグリッド偏光素子10は、ランプ21の発光長よりやや長い一辺を持つ長方形状で、その長手方向がランプ21の長手方向に一致するように設けられている。
Details of the wire grid polarization element are disclosed in, for example, Patent Document 3 and Patent Document 4. As shown in FIG. 5, the schematic structure is that a plurality of linear electric conductors 10a whose length is much longer than the width (for example, metal wires such as chromium and aluminum; hereinafter referred to as grids) are on the same plane ( For example, it is arranged in parallel on the substrate 10b such as quartz glass. When the polarizing element is inserted in the optical path, most of the polarized components parallel to the longitudinal direction of the grid are reflected and the orthogonal polarized components pass. Accordingly, the direction of the polarization axis of the irradiated polarized light is a direction orthogonal to the longitudinal direction of the grid of the polarizing element.
As a feature of the wire grid polarizing element, it is known that the dependency of the extinction ratio of polarized light on the incident angle (the angle of light incident on the polarizing element) is small.
In FIG. 6, the structural example of the polarized light irradiation apparatus which combined the rod-shaped lamp and the wire grid polarizing element is shown.
A light irradiation unit 20 including a rod-shaped lamp 21 such as a high-pressure mercury lamp or a metal halide lamp, and a bowl-shaped condensing mirror 22 having an elliptical cross section for reflecting the light from the lamp 21, and the longitudinal direction of the lamp 21 is a workpiece 30 It arrange | positions so that it may become the width direction (perpendicular direction with respect to a conveyance direction) of the photo-alignment film 31 formed on it. The light irradiation unit 20 is provided with a wire grid polarizing element 10. The wire grid polarizing element 10 has a rectangular shape with one side slightly longer than the light emission length of the lamp 21, and is provided such that its longitudinal direction coincides with the longitudinal direction of the lamp 21.

棒状ランプ21は、その長手方向が樋状集光鏡22の長手方向と一致するように、また、断面が楕円形の樋状集光鏡22の第1焦点位置に一致するように配置され、ワーク30上に形成された光配向膜31は、樋状集光鏡22の第2焦点位置に配置されている。
ワーク30は例えば長尺の連続ワークであり、送り出しローラR1にロール状に巻かれており、送り出しローラR1から引き出されて搬送され、光照射部20の下を通って巻き取りローラR2に巻き取られる。
ワーク30が光照射部20の下を搬送されるとき、ワーク30の光配向膜31に、ワイヤーグリッド偏光素子10により偏光された棒状ランプ21からの光が照射され、光配向処理される。
図6では、ワイヤーグリッド偏光素子10のグリッドは、棒状ランプ21の長手方向に対し平行に設けられており、したがって、光配向膜に照射される偏光光の偏光軸は、棒状ランプ21の長手方向に対し直交方向、即ち光配向膜の搬送方向に平行な方向になる。 棒状ランプ21の長さを、光配向膜の幅に対応させて設け、光配向膜を偏光光照射装置に対して相対的に一方向に移動させれば、原理的には1本のランプで、帯状の長い光配向膜の配向処理を行うことができる。またランプからの光を平行光にするような光学素子も不要になり装置の小型化が可能である。
特開2004−163881号公報 特開2004−144884号公報 特開2002−328234号公報 特表2003−508813号公報 特開2003−156687号公報 米国特許第6791749号明細書
The rod-shaped lamp 21 is arranged so that its longitudinal direction coincides with the longitudinal direction of the bowl-shaped condenser mirror 22, and so that its cross section coincides with the first focal position of the elliptic bowl-shaped condenser mirror 22, The photo-alignment film 31 formed on the work 30 is disposed at the second focal position of the bowl-shaped condenser mirror 22.
The workpiece 30 is, for example, a long continuous workpiece, wound around the delivery roller R1 in a roll shape, drawn out from the delivery roller R1, conveyed, and taken up by the take-up roller R2 under the light irradiation unit 20. It is done.
When the work 30 is transported under the light irradiation unit 20, the light alignment film 31 of the work 30 is irradiated with light from the rod-shaped lamp 21 polarized by the wire grid polarizing element 10 to be subjected to a light alignment process.
In FIG. 6, the grid of the wire grid polarizing element 10 is provided in parallel to the longitudinal direction of the rod-shaped lamp 21. Therefore, the polarization axis of the polarized light irradiated to the photo-alignment film is the longitudinal direction of the rod-shaped lamp 21. The direction perpendicular to the direction, that is, the direction parallel to the transport direction of the photo-alignment film. If the length of the rod-shaped lamp 21 is provided corresponding to the width of the photo-alignment film and the photo-alignment film is moved in one direction relative to the polarized light irradiation device, in principle, one lamp is used. , It is possible to perform an alignment treatment for a long strip-shaped photo-alignment film. Further, an optical element that makes the light from the lamp parallel light is not necessary, and the apparatus can be miniaturized.
JP 2004-163881 A JP 2004-144484 A JP 2002-328234 A Japanese translation of PCT publication No. 2003-508813 JP 2003-156687 A US Pat. No. 6,791,749

光配向膜に偏光光を照射する際、偏光光照射装置から出射した偏光光を、透過または反射する光学素子を介して光配向膜に照射する場合がある。
例えば、光配向膜に偏光光を照射する時に処理雰囲気を作るために、仕切られた部屋を設ける場合や、工場に偏光光照射装置を設置するにおいて高さや専有床面積の制限により偏光光の光路を折り返さなければならない場合などである。
上記において、まず処理雰囲気を作るために仕切られた部屋を作る場合について説明する。
光配向は光配向膜の化学反応(光架橋、光分解、光二量化など)によるものであるため、配向膜の種類によっては、大気中での光照射により表面酸化といった酸素阻害の影響を受け、反応が進行しにくくなったり、完了しなくなったりするものもある。
このような酸素阻害の影響を受けやすい光配向膜を光配向する場合、光配向膜近傍の雰囲気から酸素を減らせば、酸素阻害の影響が少なくなり、光配向処理に必要な光照度やエネルギーの閾値が低くなるなど、反応が進行しやすい状態になる。
光配向膜近傍の雰囲気から酸素を減らす一般的な手段として、窒素などの不活性なガスをパージして置換したり、減圧するとことが考えられる。
例えば特許文献5には、光配向膜を試料室内に置き、ガスを導入して空気と置換し、偏光光を照射することが示されている。
特許文献5に記載の装置の場合、ガスをパージする試料室に光を透過する窓部材(石英板)を設け、この透過窓を介してコリメータにより平行光にされた偏光光が照射される。
When irradiating polarized light to the photo-alignment film, the photo-alignment film may be irradiated through the optical element that transmits or reflects the polarized light emitted from the polarized light irradiation device.
For example, in order to create a processing atmosphere when irradiating polarized light to the photo-alignment film, when a partitioned room is provided, or when a polarized light irradiation device is installed in a factory, the optical path of the polarized light is limited by the height or the floor area occupied For example, it is necessary to wrap around.
In the above, first, the case where a partitioned room is created to create a processing atmosphere will be described.
Because photo-alignment is due to chemical reaction of photo-alignment film (photo-crosslinking, photo-decomposition, photo-dimerization, etc.), depending on the type of alignment film, it is affected by oxygen inhibition such as surface oxidation by light irradiation in the atmosphere. Some reactions may be difficult to proceed or may not complete.
When photo-aligning such a photo-alignment film that is susceptible to oxygen inhibition, if oxygen is reduced from the atmosphere in the vicinity of the photo-alignment film, the effect of oxygen inhibition is reduced, and the light illuminance and energy thresholds required for photo-alignment processing The reaction is likely to proceed, such as lowering.
As a general means for reducing oxygen from the atmosphere in the vicinity of the photo-alignment film, it can be considered that an inert gas such as nitrogen is purged and replaced, or the pressure is reduced.
For example, Patent Document 5 discloses that a photo-alignment film is placed in a sample chamber, gas is introduced to replace air, and polarized light is irradiated.
In the case of the apparatus described in Patent Document 5, a window member (quartz plate) that transmits light is provided in a sample chamber that purges gas, and polarized light that is collimated by a collimator is irradiated through the transmission window.

次に偏光光の光路を折り返す場合について説明する。
例えば、偏光光照射装置が設置される工場において、高さ方向に制限がある場合、図7に示すように、偏光光照射装置100から出射する偏光光を、反射ミラー4により光路を折り返して光配向膜31に照射する場合がある。例えば、特許文献6のFig.5Bには、偏光光を折り返して照射する装置構成が示されている。
しかし、棒状ランプからの拡散光を偏光した光を、石英板を透過させたり、図7に示した装置のように、反射ミラーを介して照射したところ、光照射面において、偏光軸のばらつきが発生することがわかった。
偏光軸がばらついた偏光光により光配向処理を行うと、処理された光配向膜を使って作られた液晶表示素子のコントラストが場所により異なり、むらとして目に映るといった問題が生じる。このため、光照射面での偏光軸のばらつきが±0.1°以内であることが要求される場合もある。
Next, a case where the optical path of the polarized light is turned back will be described.
For example, in a factory where the polarized light irradiation device is installed, when there is a restriction in the height direction, the polarized light emitted from the polarized light irradiation device 100 is reflected by the reflection mirror 4 to return the light as shown in FIG. The alignment film 31 may be irradiated. For example, FIG. FIG. 5B shows a device configuration for turning back and irradiating polarized light.
However, when the light polarized from the rod-shaped lamp is transmitted through a quartz plate or irradiated through a reflecting mirror as in the apparatus shown in FIG. 7, the polarization axis varies on the light irradiation surface. It was found to occur.
When the optical alignment process is performed with polarized light having a different polarization axis, the contrast of a liquid crystal display element made using the processed optical alignment film varies depending on the location, causing a problem that the liquid crystal display element appears uneven. For this reason, it may be required that the variation of the polarization axis on the light irradiation surface is within ± 0.1 °.

図8は、拡散光である偏光光が、石英板を透過した場合の偏光軸のばらつきを説明する図である。同図は、厚さ1.1mmの平行平板(石英ガラス)に、偏光光を様々な角度で入射した場合の、光照射面における偏光軸の回転角度を測定したものである。
図8(a)は、偏光方向(偏光軸の方向)が、図面手前奥方向の場合である。また、図8(b)は、偏光方向が、図面手左右方向の場合である。
いずれの場合も、平行平板への偏光光の入射角が大きくなると、偏光軸(偏光光の方向)が回転し、光照射領域での偏光軸のばらつきは大きくなる。
図8(c)は、偏光方向が、上記(a)と(b)の中間である45°の場合である。この場合は、入射角度が大きくなると偏光軸の回転角度が、上記(a)と(b)と比べても大きくなり、光照射領域での偏光軸のばらつきも大きくなる。
本実験では、平行平板を透過した偏光光の回転を測定したが、偏光光を反射ミラーによって反射した場合も、反射ミラーへの入射角が大きくなると、同様の偏光軸の回転が生じた。
FIG. 8 is a diagram for explaining variations in the polarization axis when polarized light, which is diffused light, passes through a quartz plate. In the figure, the rotation angle of the polarization axis on the light irradiation surface when polarized light is incident on a parallel plate (quartz glass) having a thickness of 1.1 mm at various angles is measured.
FIG. 8A shows the case where the polarization direction (the direction of the polarization axis) is the front-rear direction in the drawing. FIG. 8B shows the case where the polarization direction is the horizontal direction in the drawing.
In either case, when the incident angle of the polarized light on the parallel plate increases, the polarization axis (the direction of the polarized light) rotates, and the variation of the polarization axis in the light irradiation region increases.
FIG. 8C shows a case where the polarization direction is 45 °, which is intermediate between the above (a) and (b). In this case, when the incident angle is increased, the rotation angle of the polarization axis is increased as compared with the above (a) and (b), and the variation of the polarization axis in the light irradiation region is also increased.
In this experiment, the rotation of the polarized light transmitted through the parallel plate was measured. Even when the polarized light was reflected by the reflection mirror, the same rotation of the polarization axis occurred when the incident angle on the reflection mirror was increased.

図9に、拡散光である偏光光が、反射ミラーで反射された場合の偏光軸のばらつきを示す。
図9(a)は、偏光方向(偏光軸の方向)が、図面手前奥方向の場合である。また、図5(b)は、偏光方向が、図面手左右方向の場合である。
図9(c)は、偏光方向が、上記(a)と(b)の中間である45°の場合である。 偏光軸がずれる(回転する)方向は、透過の場合と反対になるが、基本的には透過の場合と同様の傾向を示し、即ち入射角度が大きくなるほど偏光軸のずれ量(回転量)が大きくなった。
上記の実験より、偏光光が、透過または反射する光学素子に、入射角度の大きい状態で入射すると、その光学素子から出射される偏光光の偏光軸に、回転が生じることがわかった。棒状ランプのような拡散光を放射する光源の場合、その光を偏光した偏光光も拡散光となる。拡散光が光学素子に入射するとき、入射する光には入射角度が大きい成分が含まれるので、偏光軸が回転し、光照射領域においては、偏光軸のばらつきが発生する。
本発明は上記問題点を解決するためになされたものであって、本発明の目的は、拡散光である偏光光を光配向膜に照射する装置において、光が透過したり反射したりする光学素子を、その光路中に配置する場合であっても、偏光軸のばらつきを生じさせることなく、光照射領域の光配向膜に照射できるようにすることである。
FIG. 9 shows variations in the polarization axis when polarized light, which is diffused light, is reflected by a reflection mirror.
FIG. 9A shows a case where the polarization direction (direction of the polarization axis) is the front-rear direction in the drawing. FIG. 5B shows the case where the polarization direction is the horizontal direction of the drawing.
FIG. 9C shows the case where the polarization direction is 45 °, which is intermediate between the above (a) and (b). The direction in which the polarization axis deviates (rotates) is opposite to that in the case of transmission, but basically shows the same tendency as in the case of transmission. That is, the larger the incident angle, the more the amount of polarization axis shift (rotation amount). It became bigger.
From the above experiments, it has been found that when polarized light is incident on a transmitting or reflecting optical element with a large incident angle, the polarization axis of the polarized light emitted from the optical element is rotated. In the case of a light source that emits diffused light such as a rod-shaped lamp, polarized light obtained by polarizing the light also becomes diffused light. When the diffused light enters the optical element, the incident light includes a component having a large incident angle, so that the polarization axis rotates, and the polarization axis varies in the light irradiation region.
The present invention has been made to solve the above-described problems, and an object of the present invention is an optical device that transmits or reflects light in an apparatus that irradiates a photo-alignment film with polarized light that is diffused light. Even when the element is arranged in the optical path, it is possible to irradiate the photo-alignment film in the light irradiation region without causing variation in the polarization axis.

拡散光である偏光光と光配向膜の間に光学素子があると、前記したように偏光軸のばらつきが生じる。そこで、本発明では、ワイヤーグリッド偏光素子と光配向膜との間には光学素子を設けない構造とした。言い換えれば、光配向膜に最も近い光学素子と光配向膜の間に、ワイヤーグリッド偏光素子を設ける。
例えば、前記したように不活性ガスをパージして酸素と置換したり減圧するために仕切り部材を設ける場合は、試料室の光透過窓が、光配向膜に最も近い光学素子となる。そこで、ワイヤーグリッド偏光素子は、この光透過窓と光配向膜の間に設ける。また、光透過窓自体を偏光素子としても良い。
また、例えば、光路を折り返すために反射ミラーを用いる場合は、反射ミラーが光配向膜に最も近い光学素子となる。そこで、ワイヤーグリッド偏光素子は、この反射ミラーと光配向膜との間に設ける。
If there is an optical element between the polarized light that is the diffused light and the photo-alignment film, the polarization axis varies as described above. Therefore, in the present invention, an optical element is not provided between the wire grid polarizing element and the photo-alignment film. In other words, a wire grid polarizing element is provided between the optical element closest to the photo-alignment film and the photo-alignment film.
For example, as described above, when a partition member is provided to purge the inert gas to replace oxygen or to reduce the pressure, the light transmission window of the sample chamber is an optical element closest to the photo-alignment film. Therefore, the wire grid polarizing element is provided between the light transmission window and the optical alignment film. Further, the light transmission window itself may be a polarizing element.
For example, when a reflection mirror is used to fold the optical path, the reflection mirror is an optical element closest to the photo-alignment film. Therefore, the wire grid polarization element is provided between the reflection mirror and the photo-alignment film.

本発明においては、以下の効果を得ることができる。
(1)拡散光である偏光光と光配向膜との間に光学素子を設けないようにしたので、偏光軸のばらつきが生じない。したがって、偏光軸のばらつきが少ない偏光光を光配向膜に照射することができる。
(2)ワイヤーグリッド偏光子を使用することにより、拡散光を効率よく偏光することができるとともに、平面形状であるので、試料室の光透過窓や反射ミラーと光配向膜の間のスペースが広くなるのを防ぐことができる。
In the present invention, the following effects can be obtained.
(1) Since no optical element is provided between the polarized light that is the diffused light and the photo-alignment film, variations in the polarization axis do not occur. Therefore, it is possible to irradiate the photo-alignment film with polarized light with little variation in the polarization axis.
(2) By using a wire grid polarizer, diffused light can be polarized efficiently and has a planar shape, so that the space between the light transmission window in the sample chamber and the reflection mirror and the photo-alignment film is wide. Can be prevented.

図1に、本発明の第1の実施例の構成を示す。
光照射部20には、前記図5と同様に、線状の光源である、高圧水銀ランプやメタルハライドランプ等の棒状のランプ21と、ランプ21からの光を反射する樋状の集光鏡22が内蔵されている。
以下、線状の光源として棒状ランプを例にして説明するが、近年は、紫外光を放射するLEDやLDも実用化されており、このようなLEDまたはLDを直線状に並べて配置し線状光源としても良い。その場合は、LEDまたはLDを並べる方向がランプの長手方向に相当する。
なお、現在光配向膜の材料としては、波長260nm±20nmの光で配向されるもの、280nm〜330nmの光で配向されるもの、365nmの光で配向されるものなどが知られており、光源の種類は必要とされる波長に応じて適宜選択する。
また、以下の説明では線状光源を用いる場合について説明するが、光源としては、超高圧水銀ランプやキセノン水銀ランプ等の点光源や、上記線状光源や点光源を平面上に複数並べた面状の光源に適用することもできる。
FIG. 1 shows the configuration of the first embodiment of the present invention.
As in FIG. 5, the light irradiation unit 20 includes a rod-shaped lamp 21 such as a high-pressure mercury lamp or a metal halide lamp, which is a linear light source, and a bowl-shaped condenser mirror 22 that reflects light from the lamp 21. Is built-in.
Hereinafter, a rod-shaped lamp will be described as an example of a linear light source. However, in recent years, LEDs and LDs that emit ultraviolet light have been put into practical use, and such LEDs or LDs are arranged in a straight line and are linear. It is good also as a light source. In that case, the direction in which the LEDs or LDs are arranged corresponds to the longitudinal direction of the lamp.
Currently, as materials for the photo-alignment film, those that are aligned by light having a wavelength of 260 nm ± 20 nm, those that are aligned by light of 280 nm to 330 nm, those that are aligned by light of 365 nm, etc. are known. The type is appropriately selected according to the required wavelength.
Further, in the following description, a case where a linear light source is used will be described. As the light source, a point light source such as an ultrahigh pressure mercury lamp or a xenon mercury lamp, or a surface on which a plurality of the linear light sources or point light sources are arranged on a plane is provided. It can also be applied to a light source having a shape.

図1に示すように、光配向膜31が形成されたワーク30はワークステージ32上に載置され、ワークステージ32全体は、試料室1内に収納されている。試料室1には窒素などの不活性ガスを導入するガス導入口2aと、不活性ガスにより置換されたガス等を排気するガス排出口2bとが設けられている。
また、試料室1の上部には、石英ガラスによる光透過窓3が設けられ、光照射部20からの光が透過する。透過した光は、石英窓とワークステージとの間に設けた、ワイヤーグリッド偏光素子10により偏光され、ワークステージ32上の光配向膜31に照射される。
光配向膜31に照射される偏光光は拡散光であるが、偏光素子10と光配向膜31との間に光を透過または反射する光学素子がないので、前記図8、図9に示したような偏光軸の回転は生じず、したがって偏光軸のばらつきは生じない。
As shown in FIG. 1, the work 30 on which the photo-alignment film 31 is formed is placed on a work stage 32, and the entire work stage 32 is housed in the sample chamber 1. The sample chamber 1 is provided with a gas inlet 2a for introducing an inert gas such as nitrogen and a gas outlet 2b for exhausting a gas substituted with the inert gas.
In addition, a light transmission window 3 made of quartz glass is provided in the upper part of the sample chamber 1 so that light from the light irradiation unit 20 is transmitted. The transmitted light is polarized by the wire grid polarizing element 10 provided between the quartz window and the work stage, and is applied to the photo-alignment film 31 on the work stage 32.
Although the polarized light applied to the photo-alignment film 31 is diffused light, there is no optical element that transmits or reflects light between the polarizing element 10 and the photo-alignment film 31, and therefore, as shown in FIGS. 8 and 9. Thus, the rotation of the polarization axis does not occur, and therefore, the polarization axis does not vary.

図2は、本発明の第2の実施例の構成を示す図であり、試料室1の光透過窓3を、例えばワイヤーグリッド偏光素子で構成したものである。
その他の構成は、図1に示したものと同様であり、試料室1には窒素などの不活性ガスを導入するガス導入口2aと、不活性ガスにより置換されたガス等を排気するガス排出口2bとが設けられている。
また、試料室1の上部には、ワイヤーグリッド偏光素子から構成される光透過窓3が設けられ、光照射部20からの光が偏光される。偏光素子から構成される光透過窓3により偏光された偏光光は、ワークステージ32上の光配向膜31に照射される。
この場合も、第1の実施例と同様に、偏光素子10と光配向膜31との間に光を透過または反射する光学素子がないので、偏光軸の回転は生じず、したがって偏光軸のばらつきは生じない。
なお、上記第1および第2の実施例では、不活性ガスを置換する構造を示しているが、試料室内を排気して減圧にする構造でもよい。
FIG. 2 is a diagram showing the configuration of the second embodiment of the present invention, in which the light transmission window 3 of the sample chamber 1 is configured by, for example, a wire grid polarizing element.
Other configurations are the same as those shown in FIG. 1. A gas inlet 2 a for introducing an inert gas such as nitrogen into the sample chamber 1 and a gas exhaust for exhausting a gas substituted by the inert gas or the like. An outlet 2b is provided.
Moreover, the light transmission window 3 comprised from a wire grid polarizing element is provided in the upper part of the sample chamber 1, and the light from the light irradiation part 20 is polarized. The polarized light polarized by the light transmission window 3 composed of a polarizing element is applied to the photo-alignment film 31 on the work stage 32.
Also in this case, as in the first embodiment, since there is no optical element that transmits or reflects light between the polarizing element 10 and the photo-alignment film 31, the polarization axis does not rotate, and therefore the polarization axis varies. Does not occur.
In the first and second embodiments, the structure for replacing the inert gas is shown. However, the structure may be such that the sample chamber is evacuated to reduce the pressure.

図3は、本発明の第3の実施例の構成を示す図であり、光配向膜が長尺帯状のワークに形成されている場合を示す。
同図に示すように光配向膜31が長尺帯状のワーク30上に形成されている場合、帯状のワーク30全体を一つの試料室に入れてしまうことは装置が大型化して困難である。
しかし、同図に示すように、光が照射される部分を覆うカバー状の試料室1を設け、ガス導入口2aから不活性ガス(窒素ガス)を流すようにすれば光配向膜近傍の酸素を減らすことができる。
試料室1の上部には、図1と同様に、光照射部20からの光を透過する光透過窓3(石英窓)を設け、該光透過窓3と光配向膜31との間に、ワイヤーグリッド偏光子10を設ける。光透過窓3を透過した光が偏光素子10によって偏光され、光配向膜31に照射される。
酸素と置換される窒素などの不活性ガスは、偏光素子10と光配向膜31との間を流れるように、試料室内に導入される。
本実施例においても、偏光素子10と光配向膜31との間には、偏光光を透過したり反射したりする光学素子がないので、偏光軸の回転が生じず、したがって偏光軸のばらつきのない光が光配向膜に照射される。
FIG. 3 is a diagram showing the configuration of the third embodiment of the present invention, and shows a case where the photo-alignment film is formed on a long strip-shaped workpiece.
As shown in the figure, when the photo-alignment film 31 is formed on the long strip-shaped workpiece 30, it is difficult to put the entire strip-shaped workpiece 30 into one sample chamber because the apparatus is large.
However, as shown in the figure, oxygen in the vicinity of the photo-alignment film can be obtained by providing a cover-like sample chamber 1 that covers the portion irradiated with light and allowing an inert gas (nitrogen gas) to flow from the gas inlet 2a. Can be reduced.
As in FIG. 1, a light transmission window 3 (quartz window) that transmits light from the light irradiation unit 20 is provided on the upper portion of the sample chamber 1, and between the light transmission window 3 and the photo-alignment film 31, A wire grid polarizer 10 is provided. The light transmitted through the light transmission window 3 is polarized by the polarizing element 10 and applied to the photo-alignment film 31.
An inert gas such as nitrogen substituted for oxygen is introduced into the sample chamber so as to flow between the polarizing element 10 and the photo-alignment film 31.
Also in this embodiment, since there is no optical element that transmits or reflects polarized light between the polarizing element 10 and the photo-alignment film 31, the rotation of the polarization axis does not occur. The light alignment film is irradiated with no light.

図4は、本発明の第4の実施例の構成を示す図である。本実施例は、反射ミラーにより光路を折り返し、帯状ワーク30上に形成された光配向膜31に偏光光を照射する場合を示しており、同図は棒状ランプ22の長手方向に対して直交方向の断面図である。
光照射部20の構成は図1と基本的に同じであり、前記したように棒状ランプ21から拡散光が出射し反射ミラー4で光路が折り返され、偏光素子10で偏光され光配向膜31に照射される。ワーク30は例えば長尺の連続ワークであり、送り出しローラR1にロール状に巻かれており、送り出しローラR1から引き出されて搬送され、光照射部20の下を通って巻き取りローラR2に巻き取られる。
本実施例においては、反射ミラー4が光配向膜31に最も近い光学素子になる。したがって、同図に示すように、反射ミラー4と光配向膜31との間に偏光素子10を設けている。
偏光素子10は、反射ミラー4により反射された光を偏光することになる。光配向膜31に照射される偏光光は拡散光であるが、偏光素子10と光配向膜31との間に光を透過または反射する光学素子がないので、前記したように、偏光軸の回転は生じず、したがって偏光軸のばらつきは生じない。
なお、光透過部材に遮光部を形成したマスクやレチクルを介して、光配向膜の所望の部分のみに偏光光を照射するような場合においては、該マスクやレチクルが光配向膜に最も近い光学素子となる。したがって、ワイヤーグリッド偏光素子は、マスクやレチクルと光配向膜との間に設ける。
FIG. 4 is a diagram showing the configuration of the fourth exemplary embodiment of the present invention. This embodiment shows a case where the optical path is turned back by a reflecting mirror, and the light alignment film 31 formed on the strip-shaped work 30 is irradiated with polarized light, and this figure is a direction orthogonal to the longitudinal direction of the rod-shaped lamp 22. FIG.
The configuration of the light irradiation unit 20 is basically the same as that in FIG. 1. As described above, diffused light is emitted from the rod-shaped lamp 21, the optical path is turned back by the reflection mirror 4, polarized by the polarizing element 10, and applied to the photo-alignment film 31. Irradiated. The workpiece 30 is, for example, a long continuous workpiece, wound around the delivery roller R1 in a roll shape, drawn out from the delivery roller R1, conveyed, and taken up by the take-up roller R2 under the light irradiation unit 20. It is done.
In this embodiment, the reflection mirror 4 is an optical element closest to the photo-alignment film 31. Therefore, as shown in the figure, the polarizing element 10 is provided between the reflecting mirror 4 and the photo-alignment film 31.
The polarizing element 10 polarizes the light reflected by the reflection mirror 4. Although the polarized light irradiated to the photo-alignment film 31 is diffused light, there is no optical element that transmits or reflects light between the polarization element 10 and the photo-alignment film 31, so that the rotation of the polarization axis is performed as described above. Therefore, the polarization axis does not vary.
In the case where only a desired portion of the photo-alignment film is irradiated with polarized light through a mask or reticle in which a light-shielding portion is formed on the light transmitting member, the mask or reticle is optically closest to the photo-alignment film. It becomes an element. Therefore, the wire grid polarizing element is provided between the mask or reticle and the photo-alignment film.

本発明第1の実施例の構成を示す図である。It is a figure which shows the structure of the 1st Example of this invention. 本発明第2の実施例の構成を示す図である。It is a figure which shows the structure of the 2nd Example of this invention. 本発明第3の実施例の構成を示す図である。It is a figure which shows the structure of the 3rd Example of this invention. 本発明第4の実施例の構成を示す図である。It is a figure which shows the structure of the 4th Example of this invention. ワイヤーグリッド偏光素子の概略構成を示す図である。It is a figure which shows schematic structure of a wire grid polarizing element. 棒状ランプとワイヤーグリッド偏光素子を組み合わせた偏光光照射装置の構成例を示す図である。It is a figure which shows the structural example of the polarized light irradiation apparatus which combined the rod-shaped lamp and the wire grid polarizing element. 反射ミラーを用いて光路を折り返し光配向膜に照射する偏光光照射装置の概略構成を示す図である。It is a figure which shows schematic structure of the polarized light irradiation apparatus which irradiates an optical path to a light orientation film | membrane using a reflective mirror. 拡散光である偏光光が、石英板を透過した場合の偏光軸のばらつきを説明する図である。It is a figure explaining the dispersion | variation in the polarization axis when the polarized light which is diffused light permeate | transmits a quartz plate. 拡散光である偏光光が、反射ミラーで反射された場合の偏光軸のばらつきを示す図である。It is a figure which shows the dispersion | variation in the polarization axis when the polarized light which is diffused light is reflected by the reflective mirror.

符号の説明Explanation of symbols

1 試料室
2a ガス導入口
2b ガス排気口
3 光透過窓
4 反射ミラー
10 ワイヤーグリッド偏光素子
20 光照射部
21 ランプ
22 集光鏡
30 ワーク
31 光配向膜
32 ワークステージ
DESCRIPTION OF SYMBOLS 1 Sample chamber 2a Gas inlet 2b Gas exhaust 3 Light transmission window 4 Reflection mirror 10 Wire grid polarizing element
20 Light Irradiation Unit 21 Lamp 22 Condenser Mirror 30 Work 31 Photo Alignment Film 32 Work Stage

Claims (2)

光を偏光し光配向膜に照射する偏光光照射装置において、
光を放射する光源と光配向膜との間に、上記光源からの光を透過または反射する、単数もしくは複数の光学素子を有し、
上記光学素子のうち、光配向膜に最も近い光学素子と光配向膜との間に、光源からの光を偏光するワイヤーグリッド偏光素子を設けた
ことを特徴とする偏光光照射装置。
In a polarized light irradiation apparatus that polarizes light and irradiates the photo-alignment film,
Between the light source that emits light and the photo-alignment film, it has one or a plurality of optical elements that transmit or reflect the light from the light source,
A polarized light irradiation apparatus comprising a wire grid polarizing element for polarizing light from a light source between an optical element closest to the photo-alignment film and the photo-alignment film among the optical elements.
上記光配向膜に最も近い光学素子は、
偏光光が照射される光配向膜の近傍の雰囲気を、周囲の雰囲気と仕切る光透過部材であることを特徴とする請求項1の偏光光照射装置。























The optical element closest to the photo-alignment film is
2. The polarized light irradiation apparatus according to claim 1, wherein the polarized light irradiation apparatus is a light transmission member that partitions an atmosphere in the vicinity of the photo-alignment film irradiated with the polarized light from the surrounding atmosphere.























JP2005010491A 2005-01-18 2005-01-18 Polarized light irradiating apparatus Pending JP2006201273A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005010491A JP2006201273A (en) 2005-01-18 2005-01-18 Polarized light irradiating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005010491A JP2006201273A (en) 2005-01-18 2005-01-18 Polarized light irradiating apparatus

Publications (1)

Publication Number Publication Date
JP2006201273A true JP2006201273A (en) 2006-08-03

Family

ID=36959361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005010491A Pending JP2006201273A (en) 2005-01-18 2005-01-18 Polarized light irradiating apparatus

Country Status (1)

Country Link
JP (1) JP2006201273A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009265290A (en) * 2008-04-24 2009-11-12 Ushio Inc Polarized light irradiation device for photo-alignment
JP2011253759A (en) * 2010-06-03 2011-12-15 Ushio Inc Light irradiation device
CN102841464A (en) * 2012-08-23 2012-12-26 深圳市华星光电技术有限公司 Liquid crystal light alignment applied voltage circuit and liquid crystal light alignment panel
CN103119481A (en) * 2010-07-26 2013-05-22 Lg化学株式会社 Mask and optical filter manufacturing apparatus including same
JP2013152433A (en) * 2012-11-30 2013-08-08 Ushio Inc Polarization light irradiation apparatus
JP2015500508A (en) * 2011-12-05 2015-01-05 エルジー・ケム・リミテッド Polarization separation element
JP2015011276A (en) * 2013-07-01 2015-01-19 東芝ライテック株式会社 Device for manufacturing liquid crystal panel and method for manufacturing liquid crystal panel
US9041993B2 (en) 2010-07-26 2015-05-26 Lg Chem, Ltd. Mask
JP2015111225A (en) * 2013-12-06 2015-06-18 東芝ライテック株式会社 Liquid crystal panel manufacturing apparatus and liquid crystal panel manufacturing method
US9140979B2 (en) 2011-12-01 2015-09-22 Lg Chem, Ltd. Mask
JP2015184577A (en) * 2014-03-25 2015-10-22 東芝ライテック株式会社 Polarized light irradiation device
JP2015194623A (en) * 2014-03-31 2015-11-05 東芝ライテック株式会社 Device and method for manufacturing liquid crystal panel
CN105785663A (en) * 2016-05-24 2016-07-20 武汉华星光电技术有限公司 Optical alignment device and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0386948A (en) * 1989-06-30 1991-04-11 Fuji Photo Film Co Ltd Optical recording medium and production thereof
JP2002098969A (en) * 2000-09-26 2002-04-05 Konica Corp Method for manufacturing optical alignment layer
JP2003156687A (en) * 2001-11-20 2003-05-30 Ushio Inc Polarized light irradiation device
JP2004144884A (en) * 2002-10-23 2004-05-20 Ushio Inc Polarizing light irradiation device for optical orientation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0386948A (en) * 1989-06-30 1991-04-11 Fuji Photo Film Co Ltd Optical recording medium and production thereof
JP2002098969A (en) * 2000-09-26 2002-04-05 Konica Corp Method for manufacturing optical alignment layer
JP2003156687A (en) * 2001-11-20 2003-05-30 Ushio Inc Polarized light irradiation device
JP2004144884A (en) * 2002-10-23 2004-05-20 Ushio Inc Polarizing light irradiation device for optical orientation

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009265290A (en) * 2008-04-24 2009-11-12 Ushio Inc Polarized light irradiation device for photo-alignment
JP2011253759A (en) * 2010-06-03 2011-12-15 Ushio Inc Light irradiation device
US9069257B2 (en) 2010-07-26 2015-06-30 Lg Chem, Ltd. Mask and optical filter manufacturing apparatus including the same
US9041993B2 (en) 2010-07-26 2015-05-26 Lg Chem, Ltd. Mask
JP2015187731A (en) * 2010-07-26 2015-10-29 エルジー・ケム・リミテッド Mask and optical filter manufacturing apparatus including the same
JP2013539065A (en) * 2010-07-26 2013-10-17 エルジー・ケム・リミテッド Mask and optical filter manufacturing apparatus including the same
CN103119481A (en) * 2010-07-26 2013-05-22 Lg化学株式会社 Mask and optical filter manufacturing apparatus including same
TWI468750B (en) * 2010-07-26 2015-01-11 Lg Chemical Ltd Mask and apparatus for manufacturing optical filter including the same
US9140979B2 (en) 2011-12-01 2015-09-22 Lg Chem, Ltd. Mask
JP2015500508A (en) * 2011-12-05 2015-01-05 エルジー・ケム・リミテッド Polarization separation element
US9541693B2 (en) 2011-12-05 2017-01-10 Lg Chem, Ltd. Polarized light splitting element
CN102841464A (en) * 2012-08-23 2012-12-26 深圳市华星光电技术有限公司 Liquid crystal light alignment applied voltage circuit and liquid crystal light alignment panel
WO2014029166A1 (en) * 2012-08-23 2014-02-27 深圳市华星光电技术有限公司 Liquid crystal optical alignment voltage applying circuit and liquid crystal optical alignment panel
JP2013152433A (en) * 2012-11-30 2013-08-08 Ushio Inc Polarization light irradiation apparatus
JP2015011276A (en) * 2013-07-01 2015-01-19 東芝ライテック株式会社 Device for manufacturing liquid crystal panel and method for manufacturing liquid crystal panel
JP2015111225A (en) * 2013-12-06 2015-06-18 東芝ライテック株式会社 Liquid crystal panel manufacturing apparatus and liquid crystal panel manufacturing method
JP2015184577A (en) * 2014-03-25 2015-10-22 東芝ライテック株式会社 Polarized light irradiation device
JP2015194623A (en) * 2014-03-31 2015-11-05 東芝ライテック株式会社 Device and method for manufacturing liquid crystal panel
CN105785663A (en) * 2016-05-24 2016-07-20 武汉华星光电技术有限公司 Optical alignment device and method

Similar Documents

Publication Publication Date Title
JP2006201273A (en) Polarized light irradiating apparatus
JP4968165B2 (en) Polarized light irradiation device for photo-alignment
JP4063042B2 (en) Polarized light irradiation device for photo-alignment
JP4604661B2 (en) Polarized light irradiation device for photo-alignment
KR100954897B1 (en) Polarized light device unit and polarized light irradiation apparatus
KR101288661B1 (en) Polarized light irradiation apparatus
KR100920293B1 (en) Polarized light illuminating apparatus
TW407301B (en) Gas manifold for uniform gas distribution and photochemistry
JP4706255B2 (en) Polarized light irradiation device
US9354375B2 (en) Grid polarizing element and apparatus for emitting polarized UV light
US8698999B2 (en) Protection module for EUV lithography apparatus, and EUV lithography apparatus
US8922757B2 (en) Photo-alingment apparatus, and method for fabricating liquid crystal display
KR20130089592A (en) Polarized light illuminating apparatus
KR102064875B1 (en) Apparatus for irradiating ultraviolet rays
KR20170135737A (en) Polarized light illuminating apparatus and light aligning apparatus
JP6613168B2 (en) Polarizer unit, polarized light irradiation device, and gas filling method for polarizer unit
JP2011203669A (en) Polarizing exposure apparatus
JP7200510B2 (en) Orientation method and photo-alignment device
JP2013161082A (en) Polarized light illumination device
JP6590252B2 (en) Exposure equipment
JP2014232238A (en) Polarized light irradiation device for optical alignment
JP7102218B2 (en) Lithography equipment and methods
JP2019040132A (en) Polarized light irradiation device, and polarized light irradiation method
CN115702528A (en) Gas laser device and method for manufacturing electronic device
CN111164502A (en) Light irradiation device and light irradiation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070918

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100406