JP5284855B2 - Damping materials and damping composites - Google Patents

Damping materials and damping composites Download PDF

Info

Publication number
JP5284855B2
JP5284855B2 JP2009101085A JP2009101085A JP5284855B2 JP 5284855 B2 JP5284855 B2 JP 5284855B2 JP 2009101085 A JP2009101085 A JP 2009101085A JP 2009101085 A JP2009101085 A JP 2009101085A JP 5284855 B2 JP5284855 B2 JP 5284855B2
Authority
JP
Japan
Prior art keywords
aromatic polyamide
formula
aromatic
damping
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009101085A
Other languages
Japanese (ja)
Other versions
JP2010248669A (en
Inventor
あや 嘉数
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2009101085A priority Critical patent/JP5284855B2/en
Publication of JP2010248669A publication Critical patent/JP2010248669A/en
Application granted granted Critical
Publication of JP5284855B2 publication Critical patent/JP5284855B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Vibration Prevention Devices (AREA)
  • Laminated Bodies (AREA)
  • Polyamides (AREA)
  • Artificial Filaments (AREA)
  • Nonwoven Fabrics (AREA)
  • Audible-Bandwidth Dynamoelectric Transducers Other Than Pickups (AREA)

Description

本発明は、制振材に関するものであり、さらには、振動を減衰させる必要のある音響部材、構造部材などに適用される材料、特にスピーカー用ダンパーに好適に適用される制振材に関するものである。   The present invention relates to a vibration damping material, and further relates to a material applied to an acoustic member, a structural member or the like that needs to dampen vibrations, and more particularly to a vibration damping material suitably applied to a speaker damper. is there.

振動が伝達しやすい、または振動により障害を受ける機器や部材に対しては、これと同時に振動を抑制する制振材が広く求められており、該制振材は、高性能な顕微鏡などの精密測定機器や、オーディオ機器などの広い分野で適用されている。該制振材は、振動エネルギーを熱エネルギーに変換し、固体表面の振動を小さくものであり、その結果、固体表面から放射される振動を減衰させ、特に振動面の共振点近傍の振動減衰に有効である。   At the same time, a damping material that suppresses vibrations is widely required for devices and members that easily transmit vibrations or are damaged by vibrations. It is applied in a wide range of fields such as measuring equipment and audio equipment. The damping material converts vibration energy into thermal energy and reduces the vibration of the solid surface. As a result, the vibration radiated from the solid surface is attenuated, particularly in the vibration attenuation near the resonance point of the vibration surface. It is valid.

制振特性に優れる材料として、6μm以下の断面直径を有するメルトブロー不織布を用いることが報告されている(特許文献1)。
しかしながら、上記引用文献1の実施例に記載されている、平均断面直径が3μmのポリプロピレン繊維では、制振部材を加工する際、例えば樹脂成型加工などの熱圧加工には、適用の限界がある。また、該繊維マイクロメートルオーダーの断面直径であるため、制振性が十分とはいえず、さらに音響部材に用いても十分な性能が得られるものではない。
It has been reported that a melt blown nonwoven fabric having a cross-sectional diameter of 6 μm or less is used as a material having excellent vibration damping characteristics (Patent Document 1).
However, in the polypropylene fiber having an average cross-sectional diameter of 3 μm described in the example of the above cited reference 1, there is a limit to application in hot-pressure processing such as resin molding processing when processing the damping member. . Further, since the fiber has a cross-sectional diameter of the order of micrometer, it cannot be said that the vibration damping property is sufficient, and further, sufficient performance cannot be obtained even when used for an acoustic member.

特開2001−279570号公報JP 2001-279570 A

本発明の目的は、損失係数を向上し制振性が改善された制振材および制振複合材を提供することである。   An object of the present invention is to provide a vibration damping material and a vibration damping composite material having an improved loss factor and improved vibration damping properties.

本発明者が鋭意検討したところ、上記課題は、以下に記載する構成とすることにより解決できることを見出した。
すなわち本発明は、繊維軸方向に直交する断面直径が10〜500nmの全芳香族ポリアミドナノファイバーからなり、該全芳香族ポリアミドナノファイバーが、下記の式(1)で示される反復構造単位を含む芳香族ポリアミド骨格中に、反復構造の主たる構造単位とは異なる芳香族ジアミン成分、または芳香族ジカルボン酸ハライド成分を、第3成分として芳香族ポリアミドの反復構造単位の全量に対し1〜10mol%となるように共重合させた全芳香族ポリアミドからなる制振材である。
−(NH−Ar1−NH−CO−Ar1−CO)− ・・・式(1)
ここで、Ar1はメタ配位又は並行軸方向以外に結合基を有する2価の芳香族基である。
As a result of intensive studies by the present inventors, it has been found that the above problems can be solved by adopting the configuration described below.
That is, the present invention comprises a wholly aromatic polyamide nanofiber having a cross-sectional diameter of 10 to 500 nm perpendicular to the fiber axis direction, and the wholly aromatic polyamide nanofiber includes a repeating structural unit represented by the following formula (1). In the aromatic polyamide skeleton, an aromatic diamine component or an aromatic dicarboxylic acid halide component different from the main structural unit of the repeating structure is 1 to 10 mol% with respect to the total amount of the repeating structural unit of the aromatic polyamide as the third component. The vibration damping material is made of wholly aromatic polyamide copolymerized .
-(NH-Ar1-NH-CO-Ar1-CO) -... Formula (1)
Here, Ar1 is a divalent aromatic group having a bonding group other than in the meta-coordination or parallel axis direction.

また、本発明は、繊維軸方向に直交する断面直径が0.5〜30μmの繊維よりなる織物、編物、乾式不織布、湿式不織布、またはフィルムのうち少なくとも1種からなる基材上に、繊維軸方向に直交する断面直径が10〜500nmの全芳香族ポリアミドナノファイバーを積層してなり、該芳香族ポリアミドナノファイバーが、下記の式(1)で示される反復構造単位を含む芳香族ポリアミド骨格中に、反復構造の主たる構造単位とは異なる芳香族ジアミン成分、または芳香族ジカルボン酸ハライド成分を、第3成分として芳香族ポリアミドの反復構造単位の全量に対し1〜10mol%となるように共重合させた全芳香族ポリアミドからなる制振複合材である。
−(NH−Ar1−NH−CO−Ar1−CO)− ・・・式(1)
ここで、Ar1はメタ配位又は並行軸方向以外に結合基を有する2価の芳香族基である。
Further, the present invention provides a fiber shaft on a substrate made of at least one of a woven fabric, a knitted fabric, a dry nonwoven fabric, a wet nonwoven fabric, or a film made of fibers having a cross-sectional diameter of 0.5 to 30 μm perpendicular to the fiber axis direction. In the aromatic polyamide skeleton, which is formed by laminating wholly aromatic polyamide nanofibers having a cross-sectional diameter of 10 to 500 nm perpendicular to the direction, and the aromatic polyamide nanofiber includes a repeating structural unit represented by the following formula (1) In addition, an aromatic diamine component or an aromatic dicarboxylic acid halide component different from the main structural unit of the repeating structure is copolymerized so as to be 1 to 10 mol% based on the total amount of the repeating structural unit of the aromatic polyamide as the third component. A vibration-damping composite material made of wholly aromatic polyamide .
-(NH-Ar1-NH-CO-Ar1-CO) -... Formula (1)
Here, Ar1 is a divalent aromatic group having a bonding group other than in the meta-coordination or parallel axis direction.

本発明の制振材は、芳香族ポリアミドナノファイバーからなり、優れた制振性を発現する。また、該制振材は、強度、耐熱性の点でも優れており、多種の加工性に優れた制振材が提供される。   The vibration damping material of the present invention is composed of aromatic polyamide nanofibers and exhibits excellent vibration damping properties. Further, the vibration damping material is excellent in terms of strength and heat resistance, and a vibration damping material excellent in various workability is provided.

本発明の制振材は、繊維軸方向に直交する断面直径が10〜500nmの全芳香族ポリアミドナノファイバーからなることを特徴とする。かかる構成の制振材とすることにより、ナノファイバーの広い比表面積が振動エネルギーをナノファイバー全体、また、これを基材に積層して用いる場合には基材にも、効率的に伝達させることができ、高い制振性を発揮する。また、該制振材は軽量であるため、高能率化を量ることが可能となる。 The vibration damping material of the present invention is characterized by comprising a wholly aromatic polyamide nanofiber having a cross-sectional diameter of 10 to 500 nm perpendicular to the fiber axis direction. By using such a damping material, the wide specific surface area of the nanofibers can efficiently transmit vibration energy to the entire nanofiber or to the substrate when it is laminated on the substrate. And exhibits high vibration control. Further, since the vibration damping material is lightweight, it is possible to increase the efficiency.

全芳香族ポリアミドナノファイバーの断面直径は、上記のように10〜500nmである必要があり、好ましくは30〜300nmである。ここで断面直径とは、任意にサンプリングした100本のナノファイバーの断面直径の平均値をいう。本発明においては、上記断面直径が10〜500nmに集中しており、該断面直径の範囲内に85%以上存在することが好ましい。断面直径が10nm未満では、繊維が切れやすくなるため、振動を伝達する能力が劣ったり、加工時や使用時に破損しやすくなったりし、一方、ナノファイバーの断面直径が500nmを越えると、比表面積が落ち、ナノファイバー間の接点、ナノファイバーと基材の接点が少なくなるため好ましくない。そのため、上記範囲外のナノファイバーが15%を超えて存在するようになると、目的とする制振性を得難くなる傾向にある。   The cross-sectional diameter of the wholly aromatic polyamide nanofiber needs to be 10 to 500 nm as described above, and preferably 30 to 300 nm. Here, the cross-sectional diameter means an average value of cross-sectional diameters of 100 nanofibers arbitrarily sampled. In the present invention, the cross-sectional diameter is concentrated at 10 to 500 nm, and it is preferable that the cross-sectional diameter is 85% or more within the range of the cross-sectional diameter. If the cross-sectional diameter is less than 10 nm, the fiber is likely to be broken, so that the ability to transmit vibration is inferior, and the fiber is liable to break during processing or use. Is not preferable because the contact point between the nanofibers and the contact point between the nanofibers and the substrate are reduced. Therefore, when nanofibers outside the above range are present in excess of 15%, it tends to be difficult to obtain the desired vibration damping properties.

上記の制振材には、織物、編物、乾式不織布、湿式不織布のうち少なくとも1種からなる繊維構造体上に、上記全芳香族ポリアミドナノファイバーを積層してなる制振材であってもよい。上記繊維としては、断面直径が0.5〜10μmであることが好ましい。   The vibration damping material may be a vibration damping material obtained by laminating the wholly aromatic polyamide nanofibers on a fiber structure composed of at least one of woven fabric, knitted fabric, dry nonwoven fabric, and wet nonwoven fabric. . The fiber preferably has a cross-sectional diameter of 0.5 to 10 μm.

本発明においては、全芳香族ポリアミドナノファイバーが、下記の式(1)で示される反復構造単位を含む芳香族ポリアミド骨格中に、反復構造の主たる構造単位とは異なる、芳香族ジアミン成分、または芳香族ジカルボン酸ハライド成分を、第3成分として芳香族ポリアミドの反復構造単位の全量に対し1〜10mol%となるように共重合させた芳香族ポリアミドからなる
−(NH−Ar1−NH−CO−Ar1−CO)− ・・・式(1)
ここで、Ar1はメタ配位又は並行軸方向以外に結合基を有する2価の芳香族基である。
In the present invention, an aromatic diamine component in which the wholly aromatic polyamide nanofiber is different from the main structural unit of the repeating structure in the aromatic polyamide skeleton containing the repeating structural unit represented by the following formula (1) , or the aromatic dicarboxylic acid halide component, consisting of 1 to 10 mol% and so as aromatic polyamides obtained by copolymerizing with respect to the total amount of the repeating structural units of aromatic polyamide as a third component.
-(NH-Ar1-NH-CO-Ar1-CO) -... Formula (1)
Here, Ar1 is a divalent aromatic group having a bonding group other than in the meta-coordination or parallel axis direction.

また、本発明においては、上記第3成分となる芳香族ジアミンが式(2)または(3)、芳香族ジカルボン酸ハライドが、式(4)または(5)であることが好ましい。
N−Ar−NH ・・・式(2)
N−Ar−Y−Ar−NH ・・・式(3)
XOC−Ar−COX ・・・式(4)
XOC−Ar−Y−Ar−COX ・・・式(5)
ここで、Ar2はAr1とは異なる2価の芳香族基、Ar3はAr1とは異なる2価の芳香族基、Yは酸素原子、硫黄原子、アルキレン基からなるから選ばれる少なくとも1種の原子又は官能基であり、Xはハロゲン原子を表す。
Moreover, in this invention, it is preferable that the aromatic diamine used as said 3rd component is Formula (2) or (3), and an aromatic dicarboxylic acid halide is Formula (4) or (5).
H 2 N—Ar 2 —NH 2 Formula (2)
H 2 N-Ar 2 -Y- Ar 2 -NH 2 ··· formula (3)
XOC-Ar 3 -COX ··· formula (4)
XOC-Ar 3 -Y-Ar 3 -COX ··· formula (5)
Here, Ar2 is a divalent aromatic group different from Ar1, Ar3 is a divalent aromatic group different from Ar1, Y is at least one atom selected from the group consisting of an oxygen atom, a sulfur atom, and an alkylene group Or it is a functional group and X represents a halogen atom.

上記のように第3成分を共重合することにより、紡糸溶液の安定性が向上し、断糸がし難く、成形されるナノファイバーはビーズと呼ばれる節糸状のポリマー塊の発現が少ないため、均一な断面直径を有する長繊維のナノファイバーが得られやすくなる。このため、振動エネルギーを効率的に伝達することが可能となり制振性が向上する傾向にあり、より好ましい。また、紡糸溶液を安定化させるためにアルカリ金属塩などの添加をする方法もあるが、ナノファイバー中に塩の残存することが好ましくない場合もあり、上記のように特定の第3成分を共重合させて均一で断糸の発生のないナノファイバーを用いることの方がより効果的である。   By copolymerizing the third component as described above, the stability of the spinning solution is improved, it is difficult to break the yarn, and the formed nanofibers have little expression of nodular polymer mass called beads, It becomes easy to obtain nanofibers of long fibers having a large cross-sectional diameter. For this reason, vibration energy can be efficiently transmitted, and the vibration damping tends to be improved, which is more preferable. In addition, there is a method of adding an alkali metal salt or the like to stabilize the spinning solution. However, it may not be preferable that the salt remains in the nanofiber. It is more effective to use nanofibers that are polymerized and have no yarn breakage.

第3成分の含有率が1mol%未満であると、紡糸溶液にゲル化が生じるため好ましくなく、また、10mol%を超えると、紡糸溶液の粘度が上昇し、目的の断面直径を有するナノファイバーを得にくく、好ましくない。   If the content of the third component is less than 1 mol%, gelation occurs in the spinning solution, which is not preferable. If the content exceeds 10 mol%, the viscosity of the spinning solution increases, and nanofibers having a target cross-sectional diameter are not obtained. It is difficult to obtain and is not preferable.

上記ナノファイバーの集合形態としては、不織布であることが好ましい。このように織物等のように繊維軸方向がそろっていない不織布形態とすることで、ナノファイバーが方向性を生じないため、制振材として適している。   The aggregate form of the nanofibers is preferably a nonwoven fabric. Thus, since the nanofiber does not produce directionality by adopting a nonwoven fabric form in which the fiber axis direction is not aligned, such as a woven fabric, it is suitable as a vibration damping material.

上記制振材の目付けは、0.5〜10.0g/mが好ましく、0.8〜3.0g/mがより好ましい。上記目付けが、0.5g/m未満では十分な制振性が得られないだけでなく、取扱いも難しくなり、一方、10.0g/mを超えても制振性の向上効果が大きくなく好ましくない。 Basis weight of the damping material, preferably 0.5~10.0g / m 2, 0.8~3.0g / m 2 is more preferable. If the weight per unit area is less than 0.5 g / m 2 , sufficient vibration damping performance cannot be obtained, and handling becomes difficult. On the other hand, even if it exceeds 10.0 g / m 2 , the effect of improving the vibration damping performance is large. Not preferable.

本発明においては、繊維軸方向に直交する断面直径が0.5〜30μmの繊維よりなる織物、編物、乾式不織布、湿式不織布、あるいはフィルムのうち少なくとも1種からなる基材上に、上記全芳香族ポリアミドナノファイバーを積層してなる制振複合材としてもよい。該基材は使用される制振用途によって選択することができ、例えばスピーカー用ダンパーには、全芳香族ポリアミド繊維、アクリル繊維、綿繊維などの織物を好ましく用いることができる。上記以外にも、織物等に用いる繊維を構成するポリマー、および、フィルムを構成するポリマーとしては、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリ乳酸などのポリエステル系、ナイロンなどのポリアミド系、ポリプロピレン、ポリエチレンなどのポリオレフィン系なども使用することができる。 In the present invention, the total fragrance is formed on a substrate made of at least one of a woven fabric, a knitted fabric, a dry nonwoven fabric, a wet nonwoven fabric, or a film made of fibers having a cross-sectional diameter of 0.5 to 30 μm perpendicular to the fiber axis direction. It is good also as a damping composite material formed by laminating group polyamide nanofibers. The base material can be selected according to the damping application to be used. For example, a woven fabric such as wholly aromatic polyamide fiber, acrylic fiber, and cotton fiber can be preferably used for the speaker damper. In addition to the above, polymers constituting fibers used for fabrics and the like, and polymers constituting films include polyethylene terephthalate, polyethylene naphthalate, polyesters such as polylactic acid, polyamides such as nylon, polypropylene, polyethylene, etc. Polyolefin type can also be used.

上記基材の目付けは、50〜400g/mが好ましく、100〜300g/mがより好ましい。該目付けが、50g/m未満では強度が低下し、一方、200g/mを超えると、制振性が低下する傾向にある。 Basis weight of the substrate is preferably from 50~400g / m 2, 100~300g / m 2 is more preferable. If the weight per unit area is less than 50 g / m 2 , the strength decreases, whereas if it exceeds 200 g / m 2 , vibration damping tends to decrease.

本発明においては、上記制振複合材においては、ナノファイバーの重量は、基材重量に対して好ましくは0.1〜5重量%、より好ましくは0.3〜5重量%であり、かかる重量比率とすることでこれを音響部材、特にスピーカー用ダンパーとして用いて良好な音響効果(損失係数)が得られる。   In the present invention, the weight of the nanofiber is preferably 0.1 to 5% by weight, more preferably 0.3 to 5% by weight, based on the weight of the base material in the above-described vibration-damping composite material. By setting the ratio, a good acoustic effect (loss factor) can be obtained using this as an acoustic member, particularly a speaker damper.

上記制振複合材においては、全芳香族ポリアミドナノファイバーの一部が溶融または軟化してフィルム状となって基材と接合していてもよい。このような形態を有する制振複合材は、芳香族ポリアミドナノファイバーを基材に積層した後、これに加熱加圧処理を施すことによって得られ、該制振複合材は、芳香族ポリアミドナノファイバーと基材がより密着し、加工性に優れ、使用寿命も向上する。   In the vibration damping composite material, a part of the wholly aromatic polyamide nanofiber may be melted or softened to form a film and bonded to the substrate. The damping composite material having such a form is obtained by laminating an aromatic polyamide nanofiber on a base material, and then subjecting this to a heating and pressurizing treatment. And the base material are more closely adhered to each other.

以上に説明した本発明の制振材および制振複合材は、例えば以下の方法により製造することができる。一つの方法としては、全芳香族ポリアミド溶液を、高電圧を印加して、制振材の場合は紙、フィルム、織物等の上に、制振複合材の場合は基材上に、スプレーしてナノファイバーを形成する方法を好ましく例示することができる。また、得られるナノファイバーの断面直径は印加電圧、溶液濃度、スプレーの飛散距離等に依存し、これらの条件を調整することで任意の断面直径とすることができる。溶媒としては、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、ジメチルスルホキシドなどを用いることができる。   The damping material and damping composite material of the present invention described above can be manufactured, for example, by the following method. One method is to spray a wholly aromatic polyamide solution on a paper, film, fabric, etc. in the case of a damping material or on a substrate in the case of a damping composite by applying a high voltage. Thus, a method for forming nanofibers can be preferably exemplified. Further, the cross-sectional diameter of the obtained nanofiber depends on the applied voltage, the solution concentration, the spray scattering distance, and the like, and can be set to an arbitrary cross-sectional diameter by adjusting these conditions. As the solvent, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, dimethyl sulfoxide and the like can be used.

具体的には、全芳香族ポリアミドポリマーと溶媒とを1:99〜16:84の重量比で溶解させたポリマー溶液を調製し、5〜70kVの電圧下で、紡糸距離を5.0〜50cmとし、単位距離あたりの電圧に換算すると0.5〜7.0kv/cmとして電界紡糸を行うことにより前述した断面直径を有する全芳香族ポリアミドナノファイバーを作製することができる。   Specifically, a polymer solution in which a wholly aromatic polyamide polymer and a solvent are dissolved at a weight ratio of 1:99 to 16:84 is prepared, and the spinning distance is 5.0 to 50 cm under a voltage of 5 to 70 kV. Then, when converted into a voltage per unit distance, a wholly aromatic polyamide nanofiber having the aforementioned cross-sectional diameter can be produced by performing electrospinning at 0.5 to 7.0 kv / cm.

紡糸溶液の供給は、ノズルや口金から押し出す方法や、紡糸溶液中に浸した円盤やドラムに、必要量となるように紡糸溶液を付着させ、連続回転させることにより供給する方法が挙げられる。   Examples of the spinning solution supply include a method of extruding from a nozzle and a base, and a method of supplying the spinning solution by attaching it to a disk or drum immersed in the spinning solution so that it becomes a required amount and continuously rotating it.

同様に電界紡糸法によりナノファイバーを成形できる高分子には、ナイロンやポリビニルアルコール等が知られているが、こうした従来のナノファイバーは、実用面において、強度が不十分であったり、高温で加工する場合も溶融しやすかったりする問題があり、制振材に用いるのが不向きであるが、全芳香族ナノファイバーを用いることでこれらの問題を解決することができる。   Similarly, nylon, polyvinyl alcohol, etc. are known as polymers capable of forming nanofibers by electrospinning. However, these conventional nanofibers are insufficient in practical use or processed at high temperatures. In this case, there is a problem that it is easy to melt, and it is not suitable for use as a damping material. However, these problems can be solved by using wholly aromatic nanofibers.

また、上記電界紡糸においては、前述した特定の第3成分を共重合した全芳香族ポリアミドを用いることで、均一で断糸のない全芳香族ポリアミドナノファイバーが得られ、制振特性にすぐれた制振材とすることができる。   In addition, in the electrospinning, by using the wholly aromatic polyamide copolymerized with the specific third component described above, a wholly aromatic polyamide nanofiber that is uniform and has no yarn breakage is obtained, and has excellent damping characteristics. Damping material can be used.

さらに、前述した芳香族ポリアミドナノファイバーの一部が溶融または軟化してフィルム形状となり基材と接合している部分が存在する制振複合材は、例えば、基材上に芳香族ポリアミドナノファイバーを積層体した後、これに、カレンダー加工装置、エンボス加工装置等により、温度30〜350℃、線圧50〜300kgf/cmとして加熱加圧処理を施すことにより製造することができる。   Furthermore, a vibration-damping composite material in which a part of the above-mentioned aromatic polyamide nanofiber is melted or softened to form a film and is joined to the substrate includes, for example, an aromatic polyamide nanofiber on the substrate. After being laminated, it can be produced by subjecting it to heat and pressure treatment at a temperature of 30 to 350 ° C. and a linear pressure of 50 to 300 kgf / cm using a calendaring device, an embossing device or the like.

本発明の制振材および制振複合材は、音響部材に適しており、特に本発明の制振複合材は、ピーカー用ダンパーに適している。具体的効果としては、芳香族ポリアミドナノファイバーを積層した制振複合材は、JIS G0602−1993により測定する損失係数を、基材単体に対し10%以上向上させることが可能である。 Damping material and vibration-damping composite material of the present invention is suitable for the acoustic member, in particular vibration-damping composite material of the present invention is suitable for the speaker damper. As a specific effect, the vibration damping composite material in which aromatic polyamide nanofibers are laminated can improve the loss coefficient measured by JIS G0602-1993 by 10% or more with respect to the base material alone.

制振性複合材をピーカー用ダンパーに用いる場合、基材、または、基材およびナノファイバーに樹脂が含浸されていてもよい。該樹脂としては、フェノール樹脂、メラミン樹脂、エポキシ樹脂、ウレタン樹脂等を用いることができる。 When using a vibration-damping composite material speaker damper, the substrate, or the substrate and nanofibers resin may be impregnated. As the resin, phenol resin, melamine resin, epoxy resin, urethane resin, or the like can be used.

本発明の制振材および制振複合材は、用途に応じて2層以上、好ましくは2〜10層積層して用いてよく、その際上記のように樹脂を含浸し加熱加圧処理を行い、これらを一体化した成形体とするのが好ましい。   The vibration damping material and the vibration damping composite material of the present invention may be used by laminating two or more layers, preferably 2 to 10 layers, depending on the application. At that time, the resin is impregnated and subjected to heat and pressure treatment as described above. These are preferably formed into an integrated molded body.

以下、実施例により本発明を具体的に説明する。なお、実施例中の測定は以下の方法を用いた。   Hereinafter, the present invention will be described specifically by way of examples. In the examples, the following methods were used.

(1)断面直径
ナノファイバーを任意に100本サンプリングし、走査型電子顕微鏡JSM6330F(JEOL社製)にて測定し、断面直径の平均値を求めた。なお測定は、30,000倍の倍率で行った。
(1) Cross-sectional diameter Arbitrarily 100 nanofibers were sampled and measured with a scanning electron microscope JSM6330F (manufactured by JEOL), and the average cross-sectional diameter was determined. The measurement was performed at a magnification of 30,000 times.

(2)ビーズ数
ナノファイバー表面を任意に10ヶ所サンプリングし、走査型電子顕微鏡JSM6330F(JEOL社製)にて測定し、ビーズの長軸方向について1μmを超えるビーズ数を数え、平均値を算出した。なお測定は、1,000倍の倍率で行い、約90×120μmの視野であった。
(2) Number of beads The surface of the nanofiber was sampled arbitrarily at 10 locations, measured with a scanning electron microscope JSM6330F (manufactured by JEOL), the number of beads exceeding 1 μm was counted in the long axis direction of the beads, and the average value was calculated. . The measurement was performed at a magnification of 1,000 times and a field of view of about 90 × 120 μm.

(3)損失係数および損失係数上昇率
JIS G0602−1993片端固定打撃加振法に準拠して実施した。試験片を10mm×45mmにカットし、任意に測定用サンプルを5枚選んだ。サンプルの片端をサンプル台に固定し、開放されている片端に与えるインパクトによって生じる振幅をCCDレーザー変異計、FFTアナライザに取り込み、解析した。なお、損失係数ηは下記式にて算出した。
Λ=log(X/X)=1/nlog(X/X
Λ:対数減衰率、X:振幅歪、X:n番目の振幅歪
η=Λ/π
制振複合材サンプルおよび基材のみについて上記損失係数を測定、基材のみの損失係数(比較例1)に対する上昇率を下記式から算出した。
損失係数上昇率[%]=(サンプルの損失係数/基材のみの損失係数)×100
(3) Loss factor and rate of increase in loss factor The loss factor and the rate of increase in the loss factor were implemented in accordance with JIS G0602-1993 one-end fixed impact excitation method. The test piece was cut into 10 mm × 45 mm, and 5 measurement samples were arbitrarily selected. One end of the sample was fixed to the sample stage, and the amplitude generated by the impact given to the open one end was taken into a CCD laser mutation meter and FFT analyzer and analyzed. The loss coefficient η was calculated by the following formula.
Λ = log e (X 0 / X 1 ) = 1 / nlog e (X 0 / X n )
Λ: logarithmic decay rate, X 0 : amplitude distortion, X n : nth amplitude distortion η = Λ / π
The loss factor was measured only for the damping composite material sample and the base material, and the rate of increase relative to the loss coefficient of the base material only (Comparative Example 1) was calculated from the following equation.
Loss coefficient increase rate [%] = (loss coefficient of sample / loss coefficient of base material only) × 100

参考例
帝人テクノプロダクツ(株)製コーネックス紡績糸20番手(単繊維断面直径15μm)からなる目付けが163g/mの織物にフェノール樹脂含浸し、目付けが175g/mの基材を作成した。
一方、特公昭47−10863号公報記載の方法に準じた界面重合法により芳香族ポリアミドポリマーを下記のように製造した。
イソフタル酸ジクロライド25.25g(100mol%)を水分含有率2mg/100mlのテトラヒドロフラン125mlに溶解し、−25℃に冷却した。これを撹拌しながらメタフェニレンジアミン13.52g(100mol%)を、上記テトラヒドロフラン125mlに溶解した溶液を細流として約15分間にわたって添加し、白色の乳濁液(A)を作製した。これとは別に無水炭酸ナトリウム13.25gを水250mlに室温で溶かし、これを撹拌しながら5℃まで冷却して炭酸ナトリウム水和物結晶を析出させ分散液(B)を作製した。上記乳濁液(A)と分散液(B)とを激しく混合した。更に2分間混合を続けた後、200mlの水を加えて希釈し、生成重合体を白色粉末として沈殿させた。重合終了系からろ過、水洗、乾燥して目的とするポリマーを得た。得られたポリマーについて測定した固有粘度IVは1.68であった。
[ Reference example ]
Basis weight consisting of Teijin Techno Products Co. Conex spun yarn 20 fastest (single fiber cross-sectional diameter 15 [mu] m) is phenol resin impregnated into the fabric of 163 g / m 2, a basis weight creates a substrate of 175 g / m 2.
On the other hand, an aromatic polyamide polymer was produced as follows by an interfacial polymerization method according to the method described in Japanese Patent Publication No. 47-10863.
25.25 g (100 mol%) of isophthalic acid dichloride was dissolved in 125 ml of tetrahydrofuran having a water content of 2 mg / 100 ml and cooled to −25 ° C. While stirring this, 13.52 g (100 mol%) of metaphenylenediamine was added over about 15 minutes as a trickle of a solution obtained by dissolving 125 ml of the above tetrahydrofuran to prepare a white emulsion (A). Separately, 13.25 g of anhydrous sodium carbonate was dissolved in 250 ml of water at room temperature, and this was cooled to 5 ° C. with stirring to precipitate sodium carbonate hydrate crystals to prepare a dispersion (B). The emulsion (A) and dispersion (B) were mixed vigorously. After further mixing for 2 minutes, 200 ml of water was added for dilution, and the resulting polymer was precipitated as a white powder. Filtration, washing with water and drying were carried out from the polymerization completed system to obtain the desired polymer. The intrinsic viscosity IV measured for the obtained polymer was 1.68.

エレクトロスピニングは特開2006−336173号公報記載の方法に準じ、ナノファイバーを製造した。得られたポリマーをN,N−ジメチルアセトアミドに、10重量%となるように溶解させ、1kV/cmとなるように電界を作用させてエレクトロスピニングを実施し、上記基材上にナノファイバーを積層させ積層体を得た。得られた積層体を5枚重ねて、プレス機にて250℃、150kgf/cmにて加熱加圧処理を行い、制振複合材を得た。ナノファイバーの目付けは1.0g/m(基材重量に対して0.57重量%)であった。結果を表1に示す。
また、上記積層体を重ねず1枚のみ用いて同様の条件で加熱加圧処理を行って制振複合材を成形し、得られた制振複合材から直径80mmのスピーカー用ダンパーを切り出し、これを用いてスピーカーを作成し試聴を行ったが、音質は比較例1より明瞭であった。
Electrospinning produced nanofibers according to the method described in JP-A-2006-336173. The obtained polymer was dissolved in N, N-dimethylacetamide so as to be 10% by weight, electrospun was performed by applying an electric field so as to be 1 kV / cm, and nanofibers were laminated on the substrate. To obtain a laminate. Five obtained laminates were stacked and subjected to heat and pressure treatment at 250 ° C. and 150 kgf / cm 2 with a press machine to obtain a vibration-damping composite material. The basis weight of the nanofiber was 1.0 g / m 2 (0.57% by weight based on the weight of the substrate). The results are shown in Table 1.
Further, only one piece of the above laminate is not used and heat-pressing treatment is performed under the same conditions to form a damping composite material, and a speaker damper having a diameter of 80 mm is cut out from the obtained damping composite material. The sound quality was clearer than that of Comparative Example 1.

実施例1
100mol%のイソフタル酸ジクロライドの代わりに、イソフタル酸ジクロライド25.13g(99mol%)とテレフタル酸ジクロライド0.25g(1mol%)を使用した以外は、参考例記載の方法と同様にして制振複合材を得た。結果を表1に示す。また、参考例と同様にスピーカーを作成し試聴を行ったが、音質は比較例1より明瞭であった。
[ Example 1 ]
A vibration-damping composite material in the same manner as described in Reference Example , except that 25.13 g (99 mol%) of isophthalic acid dichloride and 0.25 g (1 mol%) of terephthalic acid dichloride were used instead of 100 mol% of isophthalic acid dichloride. Got. The results are shown in Table 1. In addition, a speaker was created and auditioned as in the reference example , but the sound quality was clearer than in Comparative Example 1.

実施例2
全芳香族ポリアミドナノファイバーを基材両面に積層させ、加熱加圧処理を実施した以外は、実施例1記載の方法と同様にして制振複合材を得た。上記積層体1枚あたりのナノファイバーの目付けは2.0g/m(基材重量に対して1.14重量%)であった。結果を表1に示す。また、参考例と同様にスピーカーを作成し試聴を行ったが、音質は比較例1より明瞭であった。
[ Example 2 ]
A vibration-damping composite material was obtained in the same manner as described in Example 1 except that the wholly aromatic polyamide nanofibers were laminated on both surfaces of the substrate and subjected to heat and pressure treatment. The basis weight of the nanofibers per one laminate was 2.0 g / m 2 (1.14% by weight based on the weight of the base material). The results are shown in Table 1. In addition, a speaker was created and auditioned as in the reference example , but the sound quality was clearer than in Comparative Example 1.

実施例3
全芳香族ポリアミド粉末状体、溶媒N,N−ジメチルアセトアミドを7:93の重量比で溶解させたポリマー溶液を使用した以外は、実施例1と同様にして制振複合材を得た。結果を表1に示す。また、参考例と同様にスピーカーを作成し試聴を行ったが、音質は比較例1より明瞭であった。
[ Example 3 ]
A damping composite material was obtained in the same manner as in Example 1 except that a wholly aromatic polyamide powder and a polymer solution in which the solvent N, N-dimethylacetamide was dissolved at a weight ratio of 7:93 were used. The results are shown in Table 1. In addition, a speaker was created and auditioned as in the reference example , but the sound quality was clearer than in Comparative Example 1.

実施例4
全芳香族ポリアミド粉末状体、溶媒N,N−ジメチルアセトアミドを12:88の重量比で溶解させたポリマー溶液を使用した以外は、実施例1と同様にして制振複合材を得た。結果を表1に示す。また、参考例と同様にスピーカーを作成し試聴を行ったが、音質は比較例1より明瞭であった。
[ Example 4 ]
A damping composite material was obtained in the same manner as in Example 1 except that a wholly aromatic polyamide powder and a polymer solution in which the solvent N, N-dimethylacetamide was dissolved at a weight ratio of 12:88 were used. The results are shown in Table 1. In addition, a speaker was created and auditioned as in the reference example , but the sound quality was clearer than in Comparative Example 1.

[比較例1]
全芳香族ポリアミドナノファイバーを積層せず、基材のみを用いた以外は、参考例と同様にして制振材を得た。結果を表1に示す。また、参考例と同様にスピーカーを作成し試聴を行い、これを基準として参考例および実施例1〜4の音質を比較した。
[Comparative Example 1]
A damping material was obtained in the same manner as in the Reference Example except that the wholly aromatic polyamide nanofibers were not laminated and only the base material was used. The results are shown in Table 1. Moreover, and creating audition speaker in the same manner as in Reference Example were compared Reference Examples and quality of Examples 1 to 4 and as a reference.

[比較例2]
(株)クラレ製ポリビニルアルコール、を17:85の重量比で水に溶解させたポリマー溶液を調製して全芳香族ポリアミドポリマー溶液の代わりに用いた。加熱加圧処理の後、操作型電子顕微鏡にて観察したところ、ナノファイバーが確認できなかったため、評価は実施しなかった。
[Comparative Example 2]
A polymer solution was prepared by dissolving polyvinyl alcohol manufactured by Kuraray Co., Ltd. in water at a weight ratio of 17:85 and used instead of the wholly aromatic polyamide polymer solution. After the heat and pressure treatment, the nanofibers could not be confirmed when observed with an operation electron microscope, and thus the evaluation was not performed.

Figure 0005284855
Figure 0005284855

本発明の制振材および制振複合材は、損失係数が格段に向上し、制振性が改善されており、精密測定機器や、オーディオ機器などの広い分野で適用することができる。また、本発明の制振複合材は、音響部材、特にピーカー用ダンパーに好適に用いることができる。 The vibration damping material and the vibration damping composite material of the present invention have a significantly improved loss factor and improved vibration damping properties, and can be applied in a wide range of fields such as precision measurement equipment and audio equipment. Moreover, vibration-damping composite material of the present invention, the acoustic member may be suitably used especially speaker damper.

Claims (5)

繊維軸方向に直交する断面直径が10〜500nmの全芳香族ポリアミドナノファイバーからなり、該全芳香族ポリアミドナノファイバーが、下記の式(1)で示される反復構造単位を含む芳香族ポリアミド骨格中に、反復構造の主たる構造単位とは異なる芳香族ジアミン成分、または芳香族ジカルボン酸ハライド成分を、第3成分として芳香族ポリアミドの反復構造単位の全量に対し1〜10mol%となるように共重合させた全芳香族ポリアミドからなる制振材。
−(NH−Ar1−NH−CO−Ar1−CO)− ・・・式(1)
ここで、Ar1はメタ配位又は並行軸方向以外に結合基を有する2価の芳香族基である。
In the aromatic polyamide skeleton comprising a wholly aromatic polyamide nanofiber having a cross-sectional diameter of 10 to 500 nm perpendicular to the fiber axis direction, the wholly aromatic polyamide nanofiber comprising a repeating structural unit represented by the following formula (1) In addition, an aromatic diamine component or an aromatic dicarboxylic acid halide component different from the main structural unit of the repeating structure is copolymerized so as to be 1 to 10 mol% based on the total amount of the repeating structural unit of the aromatic polyamide as the third component. Damping material made of wholly aromatic polyamide .
-(NH-Ar1-NH-CO-Ar1-CO) -... Formula (1)
Here, Ar1 is a divalent aromatic group having a bonding group other than in the meta-coordination or parallel axis direction.
第3成分となる芳香族ジアミンが式(2)または(3)、芳香族ジカルボン酸ハライドが、式(4)または(5)である請求項1記載の制振材
N−Ar−NH ・・・式(2)
N−Ar−Y−Ar−NH ・・・式(3)
XOC−Ar−COX ・・・式(4)
XOC−Ar−Y−Ar−COX ・・・式(5)
ここで、Ar2はAr1とは異なる2価の芳香族基、Ar3はAr1とは異なる2価の芳香族基、Yは酸素原子、硫黄原子、アルキレン基からなるから選ばれる少なくとも1種の原子又は官能基であり、Xはハロゲン原子を表す。
The damping material according to claim 1, wherein the aromatic diamine as the third component is represented by formula (2) or (3), and the aromatic dicarboxylic acid halide is represented by formula (4) or (5).
H 2 N—Ar 2 —NH 2 Formula (2)
H 2 N-Ar 2 -Y- Ar 2 -NH 2 ··· formula (3)
XOC-Ar 3 -COX ··· formula (4)
XOC-Ar 3 -Y-Ar 3 -COX ··· formula (5)
Here, Ar2 is a divalent aromatic group different from Ar1, Ar3 is a divalent aromatic group different from Ar1, Y is at least one atom selected from the group consisting of an oxygen atom, a sulfur atom, and an alkylene group Or it is a functional group and X represents a halogen atom.
繊維軸方向に直交する断面直径が0.5〜30μmの繊維よりなる織物、編物、乾式不織布、湿式不織布、またはフィルムのうち少なくとも1種からなる基材上に、繊維軸方向に直交する断面直径が10〜500nmの全芳香族ポリアミドナノファイバーを積層してなり、該全芳香族ポリアミドナノファイバーが、下記の式(1)で示される反復構造単位を含む芳香族ポリアミド骨格中に、反復構造の主たる構造単位とは異なる芳香族ジアミン成分、または芳香族ジカルボン酸ハライド成分を、第3成分として芳香族ポリアミドの反復構造単位の全量に対し1〜10mol%となるように共重合させた全芳香族ポリアミドからなる制振複合材。
−(NH−Ar1−NH−CO−Ar1−CO)− ・・・式(1)
ここで、Ar1はメタ配位又は並行軸方向以外に結合基を有する2価の芳香族基である。
Fabric cross-sectional diameter perpendicular to the fiber axis direction is made of fibers of 0.5 to 30 m, knitted, dry nonwoven fabric, wet-laid nonwoven fabric or onto a substrate made of at least one of the film, the cross-sectional diameter perpendicular to the fiber axis Is formed by laminating wholly aromatic polyamide nanofibers of 10 to 500 nm, and the wholly aromatic polyamide nanofibers have a repeating structure in an aromatic polyamide skeleton containing repeating structural units represented by the following formula (1). A wholly aromatic copolymerized aromatic diamine component or aromatic dicarboxylic acid halide component different from the main structural unit so as to be 1 to 10 mol% based on the total amount of repeating structural units of the aromatic polyamide as the third component Damping composite material made of polyamide .
-(NH-Ar1-NH-CO-Ar1-CO) -... Formula (1)
Here, Ar1 is a divalent aromatic group having a bonding group other than in the meta-coordination or parallel axis direction.
全芳香族ポリアミドナノファイバーの重量が、基材の重量に対して0.1〜5重量%である請求項3記載の制振複合材。 The vibration-damping composite material according to claim 3 , wherein the weight of the wholly aromatic polyamide nanofiber is 0.1 to 5% by weight with respect to the weight of the substrate. 請求項3または4記載の制振複合材からなるスピーカー用ダンパー。 A speaker damper comprising the vibration-damping composite material according to claim 3 .
JP2009101085A 2009-04-17 2009-04-17 Damping materials and damping composites Expired - Fee Related JP5284855B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009101085A JP5284855B2 (en) 2009-04-17 2009-04-17 Damping materials and damping composites

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009101085A JP5284855B2 (en) 2009-04-17 2009-04-17 Damping materials and damping composites

Publications (2)

Publication Number Publication Date
JP2010248669A JP2010248669A (en) 2010-11-04
JP5284855B2 true JP5284855B2 (en) 2013-09-11

Family

ID=43311306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009101085A Expired - Fee Related JP5284855B2 (en) 2009-04-17 2009-04-17 Damping materials and damping composites

Country Status (1)

Country Link
JP (1) JP5284855B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103189139B (en) 2010-11-05 2015-09-02 旭化成化学株式会社 The manufacture method of the manufacture method of oxide catalyst, oxide catalyst, the manufacture method of unsaturated acids and unsaturated nitrile
WO2016132655A1 (en) * 2015-02-19 2016-08-25 住友理工株式会社 Fiber-reinforced resin molded body having damping properties and automobile part using same
JPWO2021246397A1 (en) 2020-06-05 2021-12-09

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003241765A (en) * 2002-02-21 2003-08-29 Toray Ind Inc Fiber laminated structure having damping and sound absorbing property
JP2005213663A (en) * 2004-01-28 2005-08-11 Teijin Techno Products Ltd Method for producing meta type wholly aromatic polyamide fiber
JP5140886B2 (en) * 2007-05-07 2013-02-13 帝人株式会社 Composite fiber structure

Also Published As

Publication number Publication date
JP2010248669A (en) 2010-11-04

Similar Documents

Publication Publication Date Title
JP6801643B2 (en) Laminated non-woven fabric
KR102014688B1 (en) Fine fibers made from polymer crosslinked with resinous aldehyde composition
JP6251392B2 (en) Flame retardant sheet material
JP2010248666A (en) Sound-absorbing material and sound-absorbing composite material
JP5284855B2 (en) Damping materials and damping composites
JP2011208015A (en) Fiber composite material
EP3763521A1 (en) Laminated acoustic absorption member
KR20030066823A (en) Non-woven sheet of aramid floc
EP3730285A1 (en) Multilayer sound absorbing material
KR100601061B1 (en) Wholly aromatic polyamide fiber synthetic paper sheet
JP2011184815A (en) Method for producing aromatic polyamide ultrafine fiber and aromatic polyamide ultrafine fiber
JP7167980B2 (en) Epoxy resin composition for carbon fiber reinforced composite material, prepreg, carbon fiber reinforced composite material
TWI773835B (en) Chopped fibers for compression moldings, compression moldings using the same, and methods for producing the same
JP2008150723A (en) Polyketone fiber paper
JP2004100047A (en) Method for producing polyester thermocompression bonded nonwoven fabric
JP6211882B2 (en) Wet non-woven fabric and separator
JPWO2011021446A1 (en) Electrical insulating sheet and manufacturing method thereof
JP2012067409A (en) Heat-adhesive polyester composite fiber
JP2013122102A (en) Wet nonwoven fabric
US20210245469A1 (en) Laminate sound-absorbing material
JP6715352B2 (en) Polyester binder fiber
KR19990036900A (en) Non-woven reinforcement for printed wiring boards and its manufacturing method
JP2012172285A (en) Base material for honeycomb and method for manufacturing the same
JPWO2019021978A1 (en) Liquid crystalline polyester fiber and method for producing the same
Nair et al. Reinforcement of electrospun polyurethane fibers with resorcinol–formaldehyde resin

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110705

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110705

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120411

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130530

R150 Certificate of patent or registration of utility model

Ref document number: 5284855

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees