JP2010248666A - Sound-absorbing material and sound-absorbing composite material - Google Patents

Sound-absorbing material and sound-absorbing composite material Download PDF

Info

Publication number
JP2010248666A
JP2010248666A JP2009101082A JP2009101082A JP2010248666A JP 2010248666 A JP2010248666 A JP 2010248666A JP 2009101082 A JP2009101082 A JP 2009101082A JP 2009101082 A JP2009101082 A JP 2009101082A JP 2010248666 A JP2010248666 A JP 2010248666A
Authority
JP
Japan
Prior art keywords
sound
absorbing
fiber
aromatic polyamide
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009101082A
Other languages
Japanese (ja)
Other versions
JP5390245B2 (en
Inventor
Tomoji Imagawa
智史 今川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Techno Products Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Techno Products Ltd filed Critical Teijin Techno Products Ltd
Priority to JP2009101082A priority Critical patent/JP5390245B2/en
Publication of JP2010248666A publication Critical patent/JP2010248666A/en
Application granted granted Critical
Publication of JP5390245B2 publication Critical patent/JP5390245B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sound-absorbing material which has good flame retardancy and heat resistance, is thin and lightweight, and is excellent in a sound-absorbing performance; and to provide a sound-absorbing composite material. <P>SOLUTION: There is provided the sound-absorbing material which comprises aromatic polyamide nanofibers each having a diameter of 10-500 nm on a cross section orthogonal to the axis of the fiber and has a sound-absorbing rate of ≥60% at a frequency of 4,000 Hz. And there is provided the sound-absorbing composite material which is produced by laminating one or more layers comprising aromatic polyamide nanofibers each having a diameter of 10-500 nm on a cross section orthogonal to the axis of the fiber, to one or more fiber structure layers comprising fibers each having a diameter of 0.5-100 μm on a cross section orthogonal to the axis of the fiber, and has a sound-absorbing rate of ≥60% at a frequency of 4,000 Hz. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、吸音材および吸音複合材に関し、さらには、難燃性、耐熱性が必要とされる車両、電気製品などに好適な吸音材に関する。   The present invention relates to a sound-absorbing material and a sound-absorbing composite material, and further relates to a sound-absorbing material suitable for vehicles, electrical products and the like that require flame retardancy and heat resistance.

従来から、車両、電気製品などに様々な吸音材が使用されている。車輌用の吸音材では、環境問題への対応と燃費向上のため、軽量で、かつ吸音性能に優れた吸音材、電気製品では省スペース化のため、薄く、吸音性能に優れた吸音材の要求が高まっている。   Conventionally, various sound absorbing materials have been used for vehicles, electrical products and the like. In order to respond to environmental problems and improve fuel efficiency, sound-absorbing materials for vehicles are lightweight and sound-absorbing materials with excellent sound-absorbing performance, and electrical appliances require thin and sound-absorbing materials to save space. Is growing.

例えば、断面直径が6μm以下の極細繊維を含有する目付が30〜200g/mの不織布と、断面直径が7〜40μmで目付が50〜2000g/mの短繊維不織布とがこれらの繊維の交絡により一体化されていることを特徴とする吸音材(特許文献1)や繊度1.0〜10dtexで面密度100〜500g/mのニードルパンチ有機繊維不織布の片側一面に、主に繊度1.0dtex以下で面密度20〜100g/mのメルトブロー熱可塑性繊維不織布が積層され、さらにニードルパンチされて、積層体全体の厚みが2〜30mmであることを特徴とする吸音材(特許文献2)が提案されている。しかしながら、十分な吸音特性を得るためには、吸音性能の大部分を有する超極細繊維不織布の目付が100g/m程度の必要であり、薄く、軽量な吸音材を得られているとは言えない。 For example, a nonwoven fabric having a basis weight of 30 to 200 g / m 2 containing ultrafine fibers having a cross-sectional diameter of 6 μm or less and a short fiber nonwoven fabric having a cross-sectional diameter of 7 to 40 μm and a basis weight of 50 to 2000 g / m 2 sound absorbing material, characterized in that it is integrated by entanglement on one side one side of (Patent Document 1) and in fineness 1.0~10dtex of surface density 100 to 500 g / m 2 needle punched organic fiber nonwoven fabric, mainly fineness 1 A sound-absorbing material characterized in that a melt blown thermoplastic fiber nonwoven fabric having a surface density of 20 to 100 g / m 2 at 0.0 dtex or less is laminated and further needle punched to have a total thickness of 2 to 30 mm (Patent Document 2) ) Has been proposed. However, in order to obtain sufficient sound absorption characteristics, the basis weight of the ultra-fine fiber nonwoven fabric having a large part of the sound absorption performance is required to be about 100 g / m 2 , and it can be said that a thin and lightweight sound absorbing material has been obtained. Absent.

また、吸音性能が向上する極細繊維では、高比表面積により燃焼しやすいという問題もあった。特に、メルトブロー法により紡糸された極細繊維はポリプロピレンが一般的であり素材の観点からさらに燃焼しやすい問題があり、車両エンジンルームやモーターなどの発熱体に近接あるいは接触する用途では安全の問題上適用しにくいのが現状である。   In addition, the ultrafine fiber with improved sound absorption performance has a problem that it is easy to burn due to its high specific surface area. In particular, ultrafine fibers spun by the melt-blowing method are generally polypropylene, and are more likely to burn from the viewpoint of the material, and are applied for safety reasons in applications that are close to or in contact with heating elements such as vehicle engine rooms and motors. The current situation is difficult to do.

特開2001−279567号公報JP 2001-279567 A 特開2002−200687号公報JP 2002-200747 A

本発明の目的は、難燃性、耐熱性を有し、薄く軽量であり、吸音性能に優れた吸音材および吸音複合材を提供することである。   An object of the present invention is to provide a sound-absorbing material and a sound-absorbing composite material that have flame retardancy and heat resistance, are thin and lightweight, and have excellent sound-absorbing performance.

本発明者が鋭意検討したところ、上記課題は、以下に記載する構成とすることにより、解決可能であることを見出した。
すなわち本発明は、繊維軸と直交する断面直径が10〜500nmの芳香族ポリアミドナノファイバーからなり、周波数4000Hzの吸音率が60%以上である吸音材である。
As a result of intensive studies by the present inventors, it has been found that the above problem can be solved by adopting the configuration described below.
That is, the present invention is a sound-absorbing material comprising aromatic polyamide nanofibers having a cross-sectional diameter of 10 to 500 nm perpendicular to the fiber axis and having a sound absorption coefficient of 60% or more at a frequency of 4000 Hz.

また、他の本発明は、繊維軸と直交する断面直径が10〜500nmの芳香族ポリアミドナノファイバーからなる1層以上のナノファイバー層と、繊維軸と直交する断面直径が0.5〜100μmの繊維からなる1層以上の繊維構造体層とを積層してなり、周波数4000Hzの吸音率が60%以上である吸音複合材である。   In another aspect of the present invention, one or more nanofiber layers composed of aromatic polyamide nanofibers having a cross-sectional diameter of 10 to 500 nm perpendicular to the fiber axis, and a cross-sectional diameter of 0.5 to 100 μm perpendicular to the fiber axis. It is a sound-absorbing composite material in which one or more fiber structure layers made of fibers are laminated and the sound absorption coefficient at a frequency of 4000 Hz is 60% or more.

上記の吸音材および吸音複合材においては、上記該芳香族ポリアミドは、下記の式(1)で示される反復構造単位を含む芳香族ポリアミド骨格中に、反復構造の主たる構造単位とは異なる芳香族ジアミン成分、または芳香族ジカルボン酸ハライド成分を、第3成分として芳香族ポリアミドの反復構造単位の全量に対し1〜10mol%となるように、共重合させた芳香族ポリアミドであることが好ましい。
−(NH−Ar1−NH−CO−Ar1−CO)− ・・・式(1)
ここで、Ar1はメタ配位又は平行軸方向以外に結合基を有する2価の芳香族基である。
In the above sound-absorbing material and sound-absorbing composite material, the aromatic polyamide is an aromatic polyamide different from the main structural unit of the repeating structure in the aromatic polyamide skeleton containing the repeating structural unit represented by the following formula (1). The diamine component or the aromatic dicarboxylic acid halide component is preferably an aromatic polyamide copolymerized so as to be 1 to 10 mol% based on the total amount of the repeating structural units of the aromatic polyamide as the third component.
-(NH-Ar1-NH-CO-Ar1-CO) -... Formula (1)
Here, Ar1 is a divalent aromatic group having a bonding group other than in the meta-coordinate or parallel axis direction.

本発明によれば、ナノファイバーの優位性を充分に発現できるため、薄く、軽量な繊維構造体においても、高い吸音性能が得られ、さらには難燃性、耐熱性に優れる全芳香族アラミドポリマーからなるナノファイバーを使用していることにより、極細繊維の適用が困難であった高温雰囲気下においても使用可能な吸音材が提供される。   According to the present invention, since the superiority of nanofibers can be fully expressed, even in a thin and lightweight fiber structure, high sound absorption performance can be obtained, and furthermore, a wholly aromatic aramid polymer excellent in flame retardancy and heat resistance By using the nanofiber made of, a sound-absorbing material that can be used even in a high-temperature atmosphere where it was difficult to apply ultrafine fibers is provided.

本発明における吸音材は繊維軸と直交する断面直径が10〜500nmの芳香族ポリアミドナノファイバーからなる周波数4000Hzの吸音率が60%以上であることを特徴とする。   The sound-absorbing material in the present invention is characterized in that the sound absorption coefficient at a frequency of 4000 Hz made of aromatic polyamide nanofibers having a cross-sectional diameter of 10 to 500 nm perpendicular to the fiber axis is 60% or more.

吸音材を構成するナノファイバーの断面直径は、10〜500nmである必要があるが、好ましくは50〜300nmである。断面直径が10nm未満であると得られる強力が著しく低下するために破損しやすくなり、一方、ナノファイバーの断面直径が500nmを越えると、ナノメートルオーダー特有とされる種々特徴、例えば、高い吸音特性が発現されにくくなる。
上記ナノファイバー目付は吸音性能ならびに厚み、重量の観点より、0.1〜20g/mが好ましい。
The nanofiber constituting the sound absorbing material needs to have a cross-sectional diameter of 10 to 500 nm, preferably 50 to 300 nm. If the cross-sectional diameter is less than 10 nm, the strength obtained is significantly reduced, so that the nanofiber is easily damaged. On the other hand, if the cross-sectional diameter of the nanofiber exceeds 500 nm, various characteristics peculiar to the nanometer order, for example, high sound absorption characteristics Becomes difficult to be expressed.
The nanofiber weight per unit area is preferably 0.1 to 20 g / m 2 from the viewpoint of sound absorption performance, thickness, and weight.

また、上記吸音材はナノファイバー単独でもよく、取扱性を向上させるため、芳香族ポリアミドナノファイバー以外の繊維が含まれてもよい。該繊維の繊維軸と直交する断面直径が0.5〜100μmであることが好ましい。   The sound absorbing material may be nanofibers alone, and fibers other than aromatic polyamide nanofibers may be included in order to improve handleability. The cross-sectional diameter of the fiber perpendicular to the fiber axis is preferably 0.5 to 100 μm.

本発明の吸音複合材は、上記芳香族ポリアミドナノファイバーからなる1層以上のナノファイバー層と、繊維軸と直交する断面直径が0.5〜100μmの繊維からなる1層以上の繊維構造体層とを積層してなり、周波数4000Hzの吸音率が60%以上であることを特徴とする。上記繊維構造体は、織物、編物、不織布あるいはこれらいずれかの組合せであってもよい。   The sound-absorbing composite material of the present invention includes one or more nanofiber layers composed of the above aromatic polyamide nanofibers and one or more fiber structure layers composed of fibers having a cross-sectional diameter of 0.5 to 100 μm perpendicular to the fiber axis. And the sound absorption coefficient at a frequency of 4000 Hz is 60% or more. The fiber structure may be a woven fabric, a knitted fabric, a nonwoven fabric, or any combination thereof.

上記吸音材に含有する繊維の含有量(目付換算)、および、上記吸音複合材に使用する繊維構造体の目付は、40〜2000g/mが好ましく、40〜1000g/mがより好ましい。一方、上記繊維の含有量(目付換算)、および、繊維構造体の目付が、40g/m未満であると取扱性があまり向上せず、一方、2000g/mを超えると軽量化ができず柔軟性も低下し、高コストにもなる。 40-2000 g / m < 2 > is preferable and 40-1000 g / m < 2 > is more preferable as content of the fiber (weight basis conversion) contained in the said sound-absorbing material, and the fabric weight of the fiber structure used for the said sound-absorbing composite material. On the other hand, if the fiber content (basis weight conversion) and the basis weight of the fiber structure are less than 40 g / m 2 , the handleability is not improved so much, and if it exceeds 2000 g / m 2 , the weight can be reduced. The flexibility is also reduced and the cost is increased.

また、前述したように上記吸音材に含有する繊維、および、上記吸音複合材に使用する繊維構造体を構成する繊維の、繊維軸と直交する断面直径は0.5〜100μmであり、好ましくは0.5〜50μmである。該断面直径が、0.5μm未満であると取扱性があまり向上せず、一方、100μmを超えると柔軟性が低下する。   Further, as described above, the cross-sectional diameter of the fiber contained in the sound absorbing material and the fiber constituting the fiber structure used in the sound absorbing composite material perpendicular to the fiber axis is 0.5 to 100 μm, preferably 0.5 to 50 μm. When the cross-sectional diameter is less than 0.5 μm, the handleability is not improved so much, while when it exceeds 100 μm, the flexibility is lowered.

上記吸音材に含有する繊維、および、上記吸音複合材に使用する繊維構造体を構成する繊維は、特に限定されるものではないが、セルロース繊維、タンパク質繊維、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリアクリロニトリル、ナイロン6、ナイロン66などのナイロン系、芳香族ポリアミドなどの有機繊維、ガラス繊維、炭素繊維などの無機繊維、スチール繊維などの金属繊維を使用することができる。
上記吸音材および吸音複合材は、カレンダー加工、エンボス加工等により、熱処理、加圧処理、熱圧処理を施されていてもしてもよい。
Fibers contained in the sound absorbing material and fibers constituting the fiber structure used in the sound absorbing composite material are not particularly limited, but are cellulose fiber, protein fiber, polyethylene, polypropylene, polyethylene terephthalate, polyacrylonitrile. Nylon type such as nylon 6 and nylon 66, organic fiber such as aromatic polyamide, inorganic fiber such as glass fiber and carbon fiber, and metal fiber such as steel fiber can be used.
The sound-absorbing material and the sound-absorbing composite material may be subjected to heat treatment, pressure treatment, and heat-pressure treatment by calendaring, embossing, or the like.

本発明の吸音材は、例えば以下の方法により製造することができる。一つの方法としては、芳香族ポリアミド溶液を、高電圧を印加して、後でナノファイバー層を剥離し易い、織物、フィルム、紙等の上に、スプレーしてナノファイバーを形成する方法を好ましく例示することができる。また、得られるナノファイバーの断面直径は印加電圧、溶液濃度、スプレーの飛散距離等に依存し、これらの条件を調整することで任意の断面直径とすることができる。溶媒としては、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、ジメチルスルホキシドなどを用いることができる。   The sound absorbing material of the present invention can be manufactured, for example, by the following method. One method is preferably a method of forming nanofibers by spraying an aromatic polyamide solution on a fabric, film, paper, etc., which is easy to peel off the nanofiber layer later by applying a high voltage. It can be illustrated. Further, the cross-sectional diameter of the obtained nanofiber depends on the applied voltage, the solution concentration, the spray scattering distance, and the like, and can be set to an arbitrary cross-sectional diameter by adjusting these conditions. As the solvent, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, dimethyl sulfoxide and the like can be used.

上記電解紡糸の条件として、濃度は1〜16%、電圧は5.0〜70kV、紡糸距離は5.0〜50cm、単位距離あたりの電圧に換算すると、0.5〜7.0kv/cmであるのが好ましい。   As conditions for the electrospinning, the concentration is 1 to 16%, the voltage is 5.0 to 70 kV, the spinning distance is 5.0 to 50 cm, and the voltage per unit distance is 0.5 to 7.0 kv / cm. Preferably there is.

具体的には、芳香族ポリアミドポリマーと溶媒とを1:99〜16:84の重量比で溶解させたポリマー溶液を調製し、5〜70kVの電圧下で行うことにより前述した断面直径を有するアラミドナノファイバーを作製することができる。   Specifically, an aramid having the aforementioned cross-sectional diameter is prepared by preparing a polymer solution in which an aromatic polyamide polymer and a solvent are dissolved in a weight ratio of 1:99 to 16:84 and performing under a voltage of 5 to 70 kV. Nanofibers can be made.

紡糸溶液の供給は、ノズルや口金から押し出す方法や、紡糸溶液中に浸した円盤やドラムに、必要量となるように紡糸溶液を付着させ、連続回転させることにより供給する方法が挙げられる。ノズルや口金から供給する場合、吐出部の内径はナノファイバーの断面直径と相関がないため、限定はない。   Examples of the spinning solution supply include a method of extruding from a nozzle and a base, and a method of supplying the spinning solution by attaching it to a disk or drum immersed in the spinning solution so that it becomes a required amount and continuously rotating it. When supplying from a nozzle or a nozzle | cap | die, since the internal diameter of a discharge part has no correlation with the cross-sectional diameter of nanofiber, there is no limitation.

ポリアクリロニトリル、ポリビニルアルコール、ナイロン6、ポリウレタンなどナノファイバーを容易に成形可能な材料もあるが、難燃性および耐熱性に劣り、高温雰囲気下において長時間使用しにくく、好ましくない。   Some materials such as polyacrylonitrile, polyvinyl alcohol, nylon 6, and polyurethane can be easily molded, but they are not preferable because they are inferior in flame retardancy and heat resistance and are difficult to use in a high temperature atmosphere for a long time.

吸音材を構成する芳香族ポリアミドナノファイバーにおいて、該芳香族ポリアミドは、下記の式(1)で示される反復構造単位を含む芳香族ポリアミド骨格中に、反復構造の主たる構造単位とは異なる芳香族ジアミン成分、または芳香族ジカルボン酸ハライド成分を、第3成分として芳香族ポリアミドの反復構造単位の全量に対し1〜10mol%となるように、共重合させた芳香族ポリアミドであることが好ましい。
−(NH−Ar1−NH−CO−Ar1−CO)− ・・・式(1)
ここで、Ar1はメタ配位又は平行軸方向以外に結合基を有する2価の芳香族基である。
In the aromatic polyamide nanofiber constituting the sound absorbing material, the aromatic polyamide is an aromatic polyamide different from the main structural unit of the repeating structure in the aromatic polyamide skeleton including the repeating structural unit represented by the following formula (1). The diamine component or the aromatic dicarboxylic acid halide component is preferably an aromatic polyamide copolymerized so as to be 1 to 10 mol% based on the total amount of the repeating structural units of the aromatic polyamide as the third component.
-(NH-Ar1-NH-CO-Ar1-CO) -... Formula (1)
Here, Ar1 is a divalent aromatic group having a bonding group other than in the meta-coordinate or parallel axis direction.

さらに好ましくは、第3成分となる芳香族ジアミンが、式(2)または(3)、芳香族ジカルボン酸ハライドが、式(4)または(5)であることが好ましい。
N−Ar2−NH ・・・式(2)
N−Ar2−Y−Ar2−NH ・・・式(3)
XOC−Ar3−COX ・・・式(4)
XOC−Ar3−Y−Ar3−COX ・・・式(5)
ここで、Ar2はAr1とは異なる2価の芳香族基、Ar3はAr1と異なる2価の芳香族基、Yは酸素原子、硫黄原子、アルキレン基からなる群から選ばれる少なくとも1種の原子又は官能基であり、Xはハロゲン原子を表す。
More preferably, the aromatic diamine serving as the third component is preferably the formula (2) or (3), and the aromatic dicarboxylic acid halide is preferably the formula (4) or (5).
H 2 N—Ar 2 —NH 2 Formula (2)
H 2 N-Ar2-Y- Ar2-NH 2 ··· formula (3)
XOC-Ar3-COX Formula (4)
XOC-Ar3-Y-Ar3-COX Formula (5)
Here, Ar2 is a divalent aromatic group different from Ar1, Ar3 is a divalent aromatic group different from Ar1, Y is at least one atom selected from the group consisting of an oxygen atom, a sulfur atom, and an alkylene group, or It is a functional group, and X represents a halogen atom.

上記の第3成分を共重合することにより、分子鎖構造が乱れて結晶性が低下し、紡糸溶液の安定性が向上するため、該紡糸溶液から成形されたナノファイバーはフィルム化発生が抑制されるため、吸音材として使用する際に、音波の反射が減少し、吸音性能が向上する。   By copolymerizing the third component, the molecular chain structure is disturbed, the crystallinity is lowered, and the stability of the spinning solution is improved. Therefore, the nanofibers formed from the spinning solution are prevented from being formed into a film. Therefore, when used as a sound absorbing material, the reflection of sound waves is reduced and the sound absorbing performance is improved.

第3成分の含有率が1mol%未満であると、紡糸溶液にゲル化が生じるため好ましくなく、また、10mol%を超えると、紡糸溶液の粘度が上昇し、目的の断面直径を有するナノファイバーを得にくく、好ましくない。   If the content of the third component is less than 1 mol%, gelation occurs in the spinning solution, which is not preferable. If the content exceeds 10 mol%, the viscosity of the spinning solution increases, and nanofibers having a target cross-sectional diameter are not obtained. It is difficult to obtain and is not preferable.

また、紡糸溶液の安定化を向上させる方法として上記方法以外に、アルカリ金属塩および/またはアルカリ土類金属塩などを添加する方法もあるが、ナノファイバー中に塩が残留し、該残留塩の漏出により、該複合繊維構造体に近接する部材の腐食を引き起こす可能性があり、好ましくない。   In addition to the above method, there is a method of adding an alkali metal salt and / or an alkaline earth metal salt as a method for improving the stabilization of the spinning solution, but the salt remains in the nanofiber, and the residual salt Leakage may cause corrosion of members adjacent to the composite fiber structure, which is not preferable.

前述した芳香族ポリアミドナノファイバー以外の他の繊維を含む吸音材は、電界紡糸によりナノファイバーを形成する際に、同時にスパンボンド法、メルトブロー法、フラッシュ紡糸法などにより該他の繊維を紡糸し、風等にて電界紡糸空間に該他の繊維を浮遊させるなどして、ナノファイバー中に混在させることによって製造することができる。   The sound-absorbing material containing fibers other than the aromatic polyamide nanofibers described above, when forming nanofibers by electrospinning, simultaneously spinning the other fibers by a spunbond method, a melt blow method, a flash spinning method, It can be manufactured by mixing the other fibers in the electrospinning space by wind or the like and mixing them in the nanofibers.

また、ナノファイバー層と繊維構造体層とを積層した吸音複合材の製造方法としては、電界紡糸によりナノファイバーを紡糸する際に、直接、繊維構造体上にナノファイバーを積層する方法が好ましい。また、前述したようにナノファイバー層を別途作成しておき、後で繊維構造体に積層してもよい。   In addition, as a method for producing a sound-absorbing composite material in which a nanofiber layer and a fiber structure layer are laminated, a method of laminating nanofibers directly on the fiber structure when spinning nanofibers by electrospinning is preferable. Further, as described above, a nanofiber layer may be separately prepared and later laminated on the fiber structure.

さらに、本発明においては、ナノファイバー層と繊維構造体層とを積層させた後、熱処理、加圧加熱処理などを施すことにより、これらを強固に接着させることができる。また、ナノファイバー層と繊維構造体とを積層させる際、ナノファイバー層を積層させる繊維構造体の一方の面に接着剤を塗布しておき、これらをより強固に接着させてもよい。かかる接着加工を施すことにより、ナノファイバー層と繊維構造体の密着性が向上し、より加工性、取扱性に優れた吸音複合材を得ることができる。   Furthermore, in this invention, after laminating | stacking a nanofiber layer and a fiber structure layer, these can be firmly adhere | attached by giving heat processing, a pressurization heat processing, etc. Moreover, when laminating | stacking a nanofiber layer and a fiber structure, an adhesive agent may be apply | coated to one side of the fiber structure on which a nanofiber layer is laminated | stacked, and these may be adhered more firmly. By performing such an adhesion process, the adhesion between the nanofiber layer and the fiber structure is improved, and a sound-absorbing composite material with more excellent processability and handleability can be obtained.

上記接着剤は、特に限定されるものではないが、アクリル樹脂系接着剤、ウレタン樹脂系接着剤、エポキシ樹脂エマルジョン接着剤、酢酸ビニル樹脂エマルジョン接着剤、シリコーン系接着剤などの有機系接着剤でもよく、シリカ系接着剤などの無機系接着剤が挙げられる。   The adhesive is not particularly limited, but may be an organic adhesive such as an acrylic resin adhesive, a urethane resin adhesive, an epoxy resin emulsion adhesive, a vinyl acetate resin emulsion adhesive, or a silicone adhesive. Often, an inorganic adhesive such as a silica-based adhesive is used.

上記熱処理方法は、特に限定されるものではないが、スルーエアー加工などの熱処理、カレンダー加工、エンボス加工などの加圧加熱処理などが挙げられる。該加圧加熱処理では、加工条件として、温度30〜350℃、線圧30〜300kg/cmを好ましく採用することができる。   The heat treatment method is not particularly limited, and examples thereof include heat treatment such as through-air processing, pressure heat treatment such as calendar processing and embossing. In the pressurization heat treatment, a processing temperature of 30 to 350 ° C. and a linear pressure of 30 to 300 kg / cm can be preferably employed.

ナノファイバー層、繊維構造体層は、ナノファイバー構造体、繊維構造体をそれぞれ複数層積層したものであってもよい。さらに、繊維構造体層上に積層したナノファイバー層の上にさらに、繊維構造体層を設け、ナノファイバー層を繊維構造体層では挟んだ構造としてもよい。   The nanofiber layer and the fiber structure layer may be obtained by laminating a plurality of nanofiber structures and fiber structures. Further, a fiber structure layer may be further provided on the nanofiber layer laminated on the fiber structure layer, and the nanofiber layer may be sandwiched between the fiber structure layers.

以上により得られる本発明の吸音材および吸音複合材は、薄く軽量でありながら、周波数4000Hzの吸音率が60%以上と高い吸音性能を有しており、さらに難燃性、耐熱性に優れる芳香族アラミドナノファイバーを使用していることにより、高温雰囲気下においても使用が可能である。   The sound-absorbing material and sound-absorbing composite material of the present invention obtained as described above have a high sound-absorbing performance of 60% or more at a frequency of 4000 Hz while being thin and light, and further have an excellent aroma and flame resistance. By using the group aramid nanofiber, it can be used even in a high temperature atmosphere.

以下、実施例に基づいて本発明をさらに詳細に説明する。しかし、以下の例によって、本発明が限定されることはない。なお、実施例中の各特性値は下記の方法で測定した。
(1)断面直径
任意にサンプリングした100本のナノファイバーについて、走査型電子顕微鏡JSM6330F(JEOL社製)にて測定し、断面直径の平均値を求めた。なお測定は、上層および下層は3,000倍、中層は30,000倍の倍率で行った。
(2)目付
ナノファイバー層および繊維構造体を15cm角にサンプリング、質量を測定し、1m当たりの質量に換算し目付とした。また、ナノファイバーを直接、繊維構造体上に積層した場合は、同様に15cm角にサンプリング、繊維構造体およびナノファイバー積層後の複合繊維構造体の質量を測定し、両者の差を計算し、1m当たりの質量に換算し、目付とした。
(3)吸音率
ISO 10534−2(音響−インピーダンス管の吸音率及びインピーダンスの測定)に定める伝達関数法に準じて測定した。
Hereinafter, the present invention will be described in more detail based on examples. However, the present invention is not limited by the following examples. In addition, each characteristic value in an Example was measured with the following method.
(1) Section diameter About 100 nanofibers sampled arbitrarily, it measured with the scanning electron microscope JSM6330F (made by JEOL), and calculated | required the average value of section diameter. The measurement was performed at a magnification of 3,000 times for the upper layer and the lower layer, and 30,000 times for the middle layer.
(2) Weight per unit area The nanofiber layer and the fiber structure were sampled in a 15 cm square, the mass was measured, and the mass per 1 m 2 was converted into the basis weight. In addition, when the nanofibers are directly laminated on the fiber structure, similarly, sampling at 15 cm square, measuring the mass of the fiber structure and the composite fiber structure after the nanofiber lamination, calculating the difference between the two, The mass per 1 m 2 was converted into mass per unit area.
(3) Sound absorption rate It measured according to the transfer function method defined in ISO 10534-2 (measurement of sound absorption rate and impedance of an acoustic-impedance tube).

[実施例1]
特公昭47−10863号公報記載の方法に準じた界面重合法により本発明の芳香族ポリアミドポリマーを下記のように製造した。
イソフタル酸ジクロライド25.25g(100mol%)を水分含有率2mg/100mlのテトラヒドロフラン125mlに溶解し、−25℃に冷却した。これを撹拌しながらメタフェニレンジアミン13.52g(100mol%)を、上記テトラヒドロフラン125mlに溶解した溶液を細流として約15分間にわたって添加し、白色の乳濁液(A)を作製した。これとは別に無水炭酸ナトリウム13.25gを水250mlに室温で溶かし、これを撹拌しながら5℃まで冷却して炭酸ナトリウム水和物結晶を析出させ分散液(B)を作製した。上記乳濁液(A)と分散液(B)とを激しく混合した。更に2分間混合を続けた後、200mlの水を加えて希釈し、生成重合体を白色粉末として沈殿させた。重合終了系からろ過、水洗、乾燥して目的とするポリマーを得た。
[Example 1]
The aromatic polyamide polymer of the present invention was produced by the interfacial polymerization method according to the method described in Japanese Patent Publication No. 47-10863 as follows.
25.25 g (100 mol%) of isophthalic acid dichloride was dissolved in 125 ml of tetrahydrofuran having a water content of 2 mg / 100 ml and cooled to −25 ° C. While stirring this, 13.52 g (100 mol%) of metaphenylenediamine was added over about 15 minutes as a trickle of a solution obtained by dissolving 125 ml of the above tetrahydrofuran to prepare a white emulsion (A). Separately, 13.25 g of anhydrous sodium carbonate was dissolved in 250 ml of water at room temperature, and this was cooled to 5 ° C. with stirring to precipitate sodium carbonate hydrate crystals to prepare a dispersion (B). The emulsion (A) and dispersion (B) were mixed vigorously. After further mixing for 2 minutes, 200 ml of water was added for dilution, and the resulting polymer was precipitated as a white powder. Filtration, washing with water and drying were carried out from the polymerization completed system to obtain the desired polymer.

エレクトロスピニングは特開2006−336173号公報記載の方法に準じ、ナノファイバーを製造した。得られたポリマーをN,N−ジメチルアセトアミドに、10重量%となるように溶解させ、1kV/cmとなるように電界を作用させてエレクトロスピニングを実施し、導電性ポリオレフィンフィルムにナノファイバーを積層させ、さらに、これを導電性ポリオレフィンフィルムより剥離させ、ナノファイバー層のみからなる吸音材を得た。得られた吸音材の目付は5g/mであった。結果を表1に示す。
得られた吸音材を、市販の掃除機の外装遮音樹脂カバー内側に取り付け、比較例1と比較し騒音が小さくなっていることを確認した。また、ナノファイバーの熱による劣化も認められなかった。
Electrospinning produced nanofibers according to the method described in JP-A-2006-336173. The obtained polymer is dissolved in N, N-dimethylacetamide so as to be 10% by weight, electrospun is performed by applying an electric field so as to be 1 kV / cm, and nanofibers are laminated on the conductive polyolefin film. Furthermore, this was peeled from the conductive polyolefin film to obtain a sound-absorbing material consisting only of the nanofiber layer. The basis weight of the obtained sound absorbing material was 5 g / m 2 . The results are shown in Table 1.
The obtained sound absorbing material was attached to the inside of the exterior sound insulation resin cover of a commercially available vacuum cleaner, and it was confirmed that the noise was reduced as compared with Comparative Example 1. Moreover, the deterioration by the heat | fever of nanofiber was not recognized.

[実施例2]
イソフタル酸ジクロライド25.25g(100mol%)に代えて、イソフタル酸ジクロライド25.13g(99mol%)とテレフタル酸ジクロライド0.25g(1mol%)を使用した以外は、実施例1と同様にしてナノファイバー層のみからなる吸音材を得た。結果を表1に示す。
また、得られた吸音材を実施例1と同様にして掃除機に取り付けて騒音を評価したが、比較例1と比較し騒音が小さくなっていることを確認した。また、ナノファイバーの熱による劣化も認められなかった。
[Example 2]
Nanofibers in the same manner as in Example 1 except that 25.25 g (100 mol%) of isophthalic acid dichloride and 25.13 g (99 mol%) of isophthalic acid dichloride and 0.25 g (1 mol%) of terephthalic acid dichloride were used. A sound absorbing material consisting only of layers was obtained. The results are shown in Table 1.
Moreover, although the obtained sound-absorbing material was attached to a vacuum cleaner in the same manner as in Example 1 and the noise was evaluated, it was confirmed that the noise was lower than that in Comparative Example 1. Moreover, the deterioration by the heat | fever of nanofiber was not recognized.

[実施例3]
導電性ポリオレフィンフィルムに代えて、断面直径24.1μm、目付300g/m、厚み1.5cmのポリエチレンテレフタレート不織布(日本不織布製ボンニップ)を用いた以外は実施例1と同様にして該不織布上にナノファイバーを積層させ積層体を得た。この際、ナノファイバー層の目付を0.5g/mに変更した。その後、得られた積層体に、温度150℃、線圧50kg/cm、スペーサー1cm、ロール速度1m/minにてカレンダー加工を施し、ナノファイバー層と繊維構造体層からなる吸音複合材を得た。結果を表1に示す。
また、得られた吸音材を実施例1と同様にして掃除機に取り付けて騒音を評価したが、比較例1と比較し騒音が小さくなっていることを確認した。また、ナノファイバーの熱による劣化も認められなかった。
[Example 3]
In place of the conductive polyolefin film, a polyethylene terephthalate nonwoven fabric (Japanese nonwoven fabric bonnip) having a cross-sectional diameter of 24.1 μm, a basis weight of 300 g / m 2 and a thickness of 1.5 cm was used. Nanofibers were laminated to obtain a laminate. At this time, the basis weight of the nanofiber layer was changed to 0.5 g / m 2 . Thereafter, the obtained laminate was calendered at a temperature of 150 ° C., a linear pressure of 50 kg / cm, a spacer of 1 cm, and a roll speed of 1 m / min to obtain a sound-absorbing composite material comprising a nanofiber layer and a fiber structure layer. . The results are shown in Table 1.
Moreover, although the obtained sound-absorbing material was attached to a vacuum cleaner in the same manner as in Example 1 and the noise was evaluated, it was confirmed that the noise was lower than that in Comparative Example 1. Moreover, the deterioration by the heat | fever of nanofiber was not recognized.

[実施例4]
導電性ポリオレフィンフィルムに代えて、断面直径24.1μm、目付300g/m、厚み1.5cmのポリエチレンテレフタレート不織布(日本不織布製ボンニップ)を用いた以外は実施例2と同様にして該不織布上にナノファイバーを積層させ積層体を得た。この際、ナノファイバー層の目付を0.5g/mに変更した。その後、得られた積層体に、温度150℃、50kg/cm、スペーサー1cm、ロール速度1m/minにてカレンダー加工を施し、ナノファイバー層と繊維構造体層からなる吸音複合材を得た。結果を表1に示す。
また、得られた吸音材を実施例1と同様にして掃除機に取り付けて騒音を評価したが、比較例1と比較し騒音が小さくなっていることを確認した。また、ナノファイバーの熱による劣化も認められなかった。
[Example 4]
In place of the conductive polyolefin film, a polyethylene terephthalate nonwoven fabric (Japanese nonwoven fabric bonnip) having a cross-sectional diameter of 24.1 μm, a basis weight of 300 g / m 2 and a thickness of 1.5 cm was used. Nanofibers were laminated to obtain a laminate. At this time, the basis weight of the nanofiber layer was changed to 0.5 g / m 2 . Thereafter, the obtained laminate was calendered at a temperature of 150 ° C., 50 kg / cm, a spacer of 1 cm, and a roll speed of 1 m / min to obtain a sound-absorbing composite material comprising a nanofiber layer and a fiber structure layer. The results are shown in Table 1.
Moreover, although the obtained sound-absorbing material was attached to a vacuum cleaner in the same manner as in Example 1 and the noise was evaluated, it was confirmed that the noise was lower than that in Comparative Example 1. Moreover, the deterioration by the heat | fever of nanofiber was not recognized.

[実施例5]
ナノファイバー目付を15g/mに変更する以外は、実施例4と同様にして、ナノファイバー層と繊維構造体層からなる吸音複合材を得た。結果を表1に示す。
また、得られた吸音材を実施例1と同様にして掃除機に取り付けて騒音を評価したが、比較例1と比較し騒音が小さくなっていることを確認した。また、ナノファイバーの熱による劣化も認められなかった。
[Example 5]
A sound-absorbing composite material comprising a nanofiber layer and a fiber structure layer was obtained in the same manner as in Example 4 except that the nanofiber weight per unit area was changed to 15 g / m 2 . The results are shown in Table 1.
Moreover, although the obtained sound-absorbing material was attached to a vacuum cleaner in the same manner as in Example 1 and the noise was evaluated, it was confirmed that the noise was lower than that in Comparative Example 1. Moreover, the deterioration by the heat | fever of nanofiber was not recognized.

[実施例6]
芳香族ポリアミドポリマーをN,N−ジメチルアセトアミドに、13%となるように溶解させる以外は、実施例4と同様にして、ナノファイバー層と繊維構造体層からなる吸音複合材を得た。結果を表1に示す。
また、得られた吸音材を実施例1と同様にして掃除機に取り付けて騒音を評価したが、比較例1と比較し騒音が小さくなっていることを確認した。また、ナノファイバーの熱による劣化も認められなかった。
[Example 6]
A sound-absorbing composite material comprising a nanofiber layer and a fiber structure layer was obtained in the same manner as in Example 4 except that the aromatic polyamide polymer was dissolved in N, N-dimethylacetamide so as to be 13%. The results are shown in Table 1.
Moreover, although the obtained sound-absorbing material was attached to a vacuum cleaner in the same manner as in Example 1 and the noise was evaluated, it was confirmed that the noise was lower than that in Comparative Example 1. Moreover, the deterioration by the heat | fever of nanofiber was not recognized.

[実施例7]
ナノファイバーを積層させる不織布を断面直径15.5μm、目付80g/m、厚み1cmからなるポリエチレンテレフタレート不織布に変更する以外は、実施例4と同様にして、ナノファイバー層と繊維構造体層からなる吸音複合材を得た。結果を表1に示す。
また、得られた吸音材を実施例1と同様にして掃除機に取り付けて騒音を評価したが、比較例1と比較し騒音が小さくなっていることを確認した。また、ナノファイバーの熱による劣化も認められなかった。
[Example 7]
A nanofiber layer and a fiber structure layer are formed in the same manner as in Example 4 except that the nonwoven fabric on which the nanofibers are laminated is changed to a polyethylene terephthalate nonwoven fabric having a cross-sectional diameter of 15.5 μm, a basis weight of 80 g / m 2 , and a thickness of 1 cm. A sound absorbing composite material was obtained. The results are shown in Table 1.
Moreover, although the obtained sound-absorbing material was attached to a vacuum cleaner in the same manner as in Example 1 and the noise was evaluated, it was confirmed that the noise was lower than that in Comparative Example 1. Moreover, the deterioration by the heat | fever of nanofiber was not recognized.

[比較例1]
ナノファイバーを積層させない以外は、実施例3と同様にして、吸音材を得た。結果を表1に示す。
また、得られた吸音材を実施例1と同様にして掃除機に取り付け騒音を評価し、これを基準として、実施例1〜5の騒音を比較した。
[Comparative Example 1]
A sound absorbing material was obtained in the same manner as in Example 3 except that the nanofibers were not laminated. The results are shown in Table 1.
Further, the obtained sound absorbing material was attached to a vacuum cleaner in the same manner as in Example 1, and the noise was evaluated. Based on this, the noise in Examples 1 to 5 was compared.

[比較例2]
(株)クラレ製ポリビニルアルコール、を7:93の重量比で水に溶解させたポリマー溶液を調製して全芳香族ポリアミドポリマー溶液の代わりに用いた以外は、実施例3と同様にして、吸音複合材を得た。加熱加圧処理の後、操作型電子顕微鏡にて観察したところ、ナノファイバーが確認できなかったため、評価は実施しなかった。
[Comparative Example 2]
Absorbing sound in the same manner as in Example 3 except that a polymer solution in which Kuraray polyvinyl alcohol was dissolved in water at a weight ratio of 7:93 was used instead of the wholly aromatic polyamide polymer solution. A composite material was obtained. After the heat and pressure treatment, the nanofibers could not be confirmed when observed with an operation electron microscope, and thus the evaluation was not performed.

Figure 2010248666
Figure 2010248666

本発明の吸音材および吸音複合材は、難燃性、耐熱性を有し、薄く軽量であり、吸音性能に優れているため、車両、電気製品などに好適に用いることができる。   The sound-absorbing material and sound-absorbing composite material of the present invention have flame retardancy and heat resistance, are thin and lightweight, and have excellent sound-absorbing performance, so that they can be suitably used for vehicles, electrical products and the like.

Claims (7)

繊維軸と直交する断面直径が10〜500nmの芳香族ポリアミドナノファイバーからなり、周波数4000Hzの吸音率が60%以上である吸音材。   A sound-absorbing material comprising an aromatic polyamide nanofiber having a cross-sectional diameter of 10 to 500 nm perpendicular to the fiber axis and having a sound absorption coefficient of 60% or more at a frequency of 4000 Hz. 該芳香族ポリアミドが、下記の式(1)で示される反復構造単位を含む芳香族ポリアミド骨格中に、反復構造の主たる構造単位とは異なる芳香族ジアミン成分、または芳香族ジカルボン酸ハライド成分を、第3成分として芳香族ポリアミドの反復構造単位の全量に対し1〜10mol%となるように、共重合させた芳香族ポリアミドである請求項1記載の吸音材。
−(NH−Ar1−NH−CO−Ar1−CO)− ・・・式(1)
ここで、Ar1はメタ配位又は平行軸方向以外に結合基を有する2価の芳香族基である。
In the aromatic polyamide skeleton containing the repeating structural unit represented by the following formula (1), the aromatic polyamide contains an aromatic diamine component or an aromatic dicarboxylic acid halide component different from the main structural unit of the repeating structure. The sound-absorbing material according to claim 1, wherein the third component is an aromatic polyamide copolymerized so as to be 1 to 10 mol% with respect to the total amount of repeating structural units of the aromatic polyamide.
-(NH-Ar1-NH-CO-Ar1-CO) -... Formula (1)
Here, Ar1 is a divalent aromatic group having a bonding group other than in the meta-coordinate or parallel axis direction.
第3成分となる芳香族ジアミンが、式(2)又は(3)、芳香族ジカルボン酸ハライドが、式(4)又は(5)である請求項1または2記載の吸音材。
N−Ar2−NH ・・・式(2)
N−Ar2−Y−Ar2−NH ・・・式(3)
XOC−Ar3−COX ・・・式(4)
XOC−Ar3−Y−Ar3−COX ・・・式(5)
ここで、Ar2はAr1とは異なる2価の芳香族基、Ar3はAr1と異なる2価の芳香族基、Yは酸素原子、硫黄原子、アルキレン基からなる群から選ばれる少なくとも1種の原子又は官能基であり、Xはハロゲン原子を表す。
The sound absorbing material according to claim 1 or 2, wherein the aromatic diamine as the third component is represented by the formula (2) or (3), and the aromatic dicarboxylic acid halide is represented by the formula (4) or (5).
H 2 N—Ar 2 —NH 2 Formula (2)
H 2 N-Ar2-Y- Ar2-NH 2 ··· formula (3)
XOC-Ar3-COX Formula (4)
XOC-Ar3-Y-Ar3-COX Formula (5)
Here, Ar2 is a divalent aromatic group different from Ar1, Ar3 is a divalent aromatic group different from Ar1, Y is at least one atom selected from the group consisting of an oxygen atom, a sulfur atom, and an alkylene group, or It is a functional group, and X represents a halogen atom.
芳香族ポリアミドの反復構造単位がメタフェニレンイソフタルアミドである請求項1〜3いずれか1項に記載の吸音材。   The sound-absorbing material according to any one of claims 1 to 3, wherein the repeating structural unit of the aromatic polyamide is metaphenylene isophthalamide. 繊維軸と直交する断面直径が0.5〜100μmの繊維を含む請求項1〜4記載いずれかに記載の吸音材。   The sound-absorbing material according to any one of claims 1 to 4, comprising a fiber having a cross-sectional diameter orthogonal to the fiber axis of 0.5 to 100 µm. 繊維軸と直交する断面直径が10〜500nmの芳香族ポリアミドナノファイバーからなる1層以上のナノファイバー層と、繊維軸と直交する断面直径が0.5〜100μmの繊維からなる1層以上の繊維構造体層とを積層してなり、周波数4000Hzの吸音率が60%以上である吸音複合材。   One or more nanofiber layers made of aromatic polyamide nanofibers having a cross-sectional diameter of 10 to 500 nm perpendicular to the fiber axis, and one or more layers of fibers made of fibers having a cross-sectional diameter of 0.5 to 100 μm perpendicular to the fiber axis A sound-absorbing composite material obtained by laminating a structure layer and having a sound absorption coefficient of a frequency of 4000 Hz of 60% or more. 繊維構造体層が、布帛織物、編物、不織布のいずれか、あるいはこれらの組合せからなる請求項6項記載の吸音複合材。   The sound-absorbing composite material according to claim 6, wherein the fiber structure layer is made of any one of a fabric woven fabric, a knitted fabric, and a non-woven fabric, or a combination thereof.
JP2009101082A 2009-04-17 2009-04-17 Sound absorbing material and sound absorbing composite material Expired - Fee Related JP5390245B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009101082A JP5390245B2 (en) 2009-04-17 2009-04-17 Sound absorbing material and sound absorbing composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009101082A JP5390245B2 (en) 2009-04-17 2009-04-17 Sound absorbing material and sound absorbing composite material

Publications (2)

Publication Number Publication Date
JP2010248666A true JP2010248666A (en) 2010-11-04
JP5390245B2 JP5390245B2 (en) 2014-01-15

Family

ID=43311303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009101082A Expired - Fee Related JP5390245B2 (en) 2009-04-17 2009-04-17 Sound absorbing material and sound absorbing composite material

Country Status (1)

Country Link
JP (1) JP5390245B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014047449A (en) * 2012-09-03 2014-03-17 Teijin Ltd Acoustic material
JP2014214398A (en) * 2013-04-25 2014-11-17 帝人株式会社 Sound absorber
JP2014232281A (en) * 2013-05-30 2014-12-11 帝人株式会社 Sound absorption material
JP2015030218A (en) * 2013-08-05 2015-02-16 東レ株式会社 Nonwoven fabric excellent in absorbing property
CN106048885A (en) * 2016-06-28 2016-10-26 华南理工大学 Composite sound insulation material comprising cellulose fibers and nanofibers and preparation method of composite sound insulation material
JP2018169555A (en) * 2017-03-30 2018-11-01 Jnc株式会社 Laminated sound absorbing material including nanofibers
JP2018199253A (en) * 2017-05-26 2018-12-20 Jnc株式会社 Laminate sound absorber containing ultra-fine fiber
US10580395B2 (en) 2014-09-30 2020-03-03 Compagnie Generale Des Etablissements Michelin Sound absorbing body
CN112927668A (en) * 2019-12-05 2021-06-08 财团法人工业技术研究院 Sound insulation member
CN113306238A (en) * 2020-12-21 2021-08-27 芜湖尚唯汽车饰件有限公司 Processing technology of environment-friendly sound insulation pad

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10254452A (en) * 1997-03-12 1998-09-25 Kuraray Co Ltd Sound absorbing material
JP2005200779A (en) * 2004-01-14 2005-07-28 Teijin Ltd Para-type aromatic polyamide-based fiber, fiber structure and method for producing the same
JP2005232598A (en) * 2000-02-16 2005-09-02 Teijin Techno Products Ltd Process for producing dense meta-type aromatic polyamide fiber
JP2007279649A (en) * 2006-03-14 2007-10-25 Du Pont Toray Co Ltd Acoustic material
JP2008537798A (en) * 2005-04-11 2008-09-25 エルマルコ、エス.アール.オー Laminated sound-absorbing nonwoven fabric
JP2009062630A (en) * 2007-09-04 2009-03-26 Univ Of Fukui Method for melt-electrospinning and ultrafine fiber

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10254452A (en) * 1997-03-12 1998-09-25 Kuraray Co Ltd Sound absorbing material
JP2005232598A (en) * 2000-02-16 2005-09-02 Teijin Techno Products Ltd Process for producing dense meta-type aromatic polyamide fiber
JP2005200779A (en) * 2004-01-14 2005-07-28 Teijin Ltd Para-type aromatic polyamide-based fiber, fiber structure and method for producing the same
JP2008537798A (en) * 2005-04-11 2008-09-25 エルマルコ、エス.アール.オー Laminated sound-absorbing nonwoven fabric
JP2007279649A (en) * 2006-03-14 2007-10-25 Du Pont Toray Co Ltd Acoustic material
JP2009062630A (en) * 2007-09-04 2009-03-26 Univ Of Fukui Method for melt-electrospinning and ultrafine fiber

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014047449A (en) * 2012-09-03 2014-03-17 Teijin Ltd Acoustic material
JP2014214398A (en) * 2013-04-25 2014-11-17 帝人株式会社 Sound absorber
JP2014232281A (en) * 2013-05-30 2014-12-11 帝人株式会社 Sound absorption material
JP2015030218A (en) * 2013-08-05 2015-02-16 東レ株式会社 Nonwoven fabric excellent in absorbing property
US10580395B2 (en) 2014-09-30 2020-03-03 Compagnie Generale Des Etablissements Michelin Sound absorbing body
CN106048885A (en) * 2016-06-28 2016-10-26 华南理工大学 Composite sound insulation material comprising cellulose fibers and nanofibers and preparation method of composite sound insulation material
JP2018169555A (en) * 2017-03-30 2018-11-01 Jnc株式会社 Laminated sound absorbing material including nanofibers
JP2018199253A (en) * 2017-05-26 2018-12-20 Jnc株式会社 Laminate sound absorber containing ultra-fine fiber
CN112927668A (en) * 2019-12-05 2021-06-08 财团法人工业技术研究院 Sound insulation member
CN113306238A (en) * 2020-12-21 2021-08-27 芜湖尚唯汽车饰件有限公司 Processing technology of environment-friendly sound insulation pad
CN113306238B (en) * 2020-12-21 2022-09-30 芜湖尚唯汽车饰件有限公司 Processing technology of environment-friendly sound insulation pad

Also Published As

Publication number Publication date
JP5390245B2 (en) 2014-01-15

Similar Documents

Publication Publication Date Title
JP5390245B2 (en) Sound absorbing material and sound absorbing composite material
US8477480B2 (en) Laminate, separator for capacitor, and capacitor
JP4657782B2 (en) A filter that combines high collection efficiency and low pressure loss
TW201032885A (en) Filter medium for filter and filter cartridge
US10106923B2 (en) Extra-fine fiber sheet
WO2018143430A1 (en) Laminate sound-absorbing material including ultrafine fiber
EP3763521B1 (en) Laminated acoustic absorption member
JP6856888B2 (en) Laminated sound absorbing material containing ultrafine fibers
EP3730285A1 (en) Multilayer sound absorbing material
JP6646267B1 (en) Laminated sound absorbing material
JP6774042B2 (en) Laminated sound absorbing material
JP2010248667A (en) Moisture-permeable water-proof sheet and moisture-permeable water-proof composite sheet
JP6642811B2 (en) Laminated sound absorbing material
JP5284855B2 (en) Damping materials and damping composites
JP2013136855A (en) Sound absorbing material and sound absorbing composite material

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110705

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110705

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131010

R150 Certificate of patent or registration of utility model

Ref document number: 5390245

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees