JP5282194B2 - Variable capacity device - Google Patents

Variable capacity device Download PDF

Info

Publication number
JP5282194B2
JP5282194B2 JP2008022433A JP2008022433A JP5282194B2 JP 5282194 B2 JP5282194 B2 JP 5282194B2 JP 2008022433 A JP2008022433 A JP 2008022433A JP 2008022433 A JP2008022433 A JP 2008022433A JP 5282194 B2 JP5282194 B2 JP 5282194B2
Authority
JP
Japan
Prior art keywords
diffusion region
type diffusion
variable capacitance
capacitance element
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008022433A
Other languages
Japanese (ja)
Other versions
JP2009182291A (en
Inventor
盛敬 佐久間
智之 古畑
清志 安齋
行雄 秋山
修司 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Seiko NPC Corp
Original Assignee
Seiko Epson Corp
Seiko NPC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Seiko NPC Corp filed Critical Seiko Epson Corp
Priority to JP2008022433A priority Critical patent/JP5282194B2/en
Publication of JP2009182291A publication Critical patent/JP2009182291A/en
Application granted granted Critical
Publication of JP5282194B2 publication Critical patent/JP5282194B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Semiconductor Integrated Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a variable capacitance device having the reduced series resistance of a variable capacitance element and having an increased DC interrupting capacity even when an active region width is set to be large. <P>SOLUTION: The variable capacitance device is provided, wherein the variable capacitance element with a PN junction is formed by forming a first conductivity type low resistance layer 23 in first conductivity type semiconductor regions 21 and 22, and by successively laminating a first conductivity type diffusion region 26 and a second conductivity type diffusion region 27 in a region surrounded by field oxide films 25a provided on the surfaces of the semiconductor regions 21 and 22 located in accordance with and above the low resistance layer 23, and wherein a fixed capacitance element composed by successively laminating a lower electrode 29, an insulating film 30 and an upper electrode 31 through an insulating layer 28 on the variable capacitance element is formed, and wherein a gate capacitance element is configured by the second conductivity type diffusion region 27, and the insulating layer 28 and the lower electrode 29 laminated on it. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、可変容量装置に関し、特に、半導体集積回路に搭載する可変容量装置に関する。   The present invention relates to a variable capacitance device, and more particularly to a variable capacitance device mounted on a semiconductor integrated circuit.

従来、固定容量素子と可変容量素子とを、半導体基板上の別々の領域に形成することによって生じる、半導体基板における面積の利用効率が劣るという不都合と、固定容量素子の下側の電極と半導体基板との間に寄生容量が発生し、容量変化率が低下して、周波数可変幅が小さくなるという不都合とを回避するために、固定容量素子と可変容量素子とを、半導体基板上のフィールド酸化膜で囲まれた同一活性領域に上下に重ねて形成することが提案されている。   Conventionally, the fixed capacitor and variable capacitor are formed in different regions on the semiconductor substrate, resulting in inferior use efficiency of the area in the semiconductor substrate, and the lower electrode of the fixed capacitor and the semiconductor substrate In order to avoid the inconvenience that a parasitic capacitance is generated between them and the capacitance change rate is reduced, and the frequency variable width is reduced, the fixed capacitance element and the variable capacitance element are connected to the field oxide film on the semiconductor substrate. It has been proposed to form the same active region surrounded by the upper and lower layers.

特開2000−315915号公報(図1)Japanese Unexamined Patent Publication No. 2000-315915 (FIG. 1) 特開2000−323729号公報(図3)JP 2000-323729 A (FIG. 3) 特開2003−86692号公報(図2)Japanese Patent Laying-Open No. 2003-86692 (FIG. 2)

上記改良提案においては、固定容量素子は可変容量素子の上に位置するとともに、フリンジエリアと称される配線領域やコンタクト領域を確保する必要があるため、固定容量素子の上部電極幅は、活性領域幅に対して一回り小さく設定されている。したがって、活性領域幅をできるだけ大きく取らないと、固定容量素子の上部電極のサイズを十分な大きさに設定できず、所望の容量値を得られない、という不都合を生じる。しかしながら、活性領域幅を大きくすると、可変容量素子の直列抵抗(例えば、特許文献3、図2における活性領域とP+型拡散領域との間の抵抗)が増加してしまうという不都合を生じる。一方、この不都合を避けるべく、活性領域幅を小さくすると、配線領域やコンタクト領域は活性領域幅の大きさに拘わらず所定面積が必要なので、固定容量素子、特にその上部電極のサイズを十分な大きさに設定できず、所望の容量値を得られないという上記不都合を解消できないという問題があった。本発明は、この問題を解消した可変容量装置を提供することを目的とする。 In the above improvement proposal, the fixed capacitor element is located on the variable capacitor element, and it is necessary to secure a wiring region and a contact region called a fringe area. It is set slightly smaller than the width. Therefore, unless the active region width is made as large as possible, the size of the upper electrode of the fixed capacitance element cannot be set to a sufficient size, resulting in a disadvantage that a desired capacitance value cannot be obtained. However, when the active region width is increased, there is a disadvantage that the series resistance of the variable capacitance element (for example, resistance between the active region and the P + -type diffusion region in Patent Document 3 and FIG. 2) increases. On the other hand, if the active region width is reduced in order to avoid this inconvenience, the wiring region and the contact region require a predetermined area regardless of the size of the active region width. There is a problem that the above inconvenience that the desired capacitance value cannot be obtained cannot be solved. It is an object of the present invention to provide a variable capacitance device that solves this problem.

すなわち、本発明の請求項1に係る可変容量装置は、第1導電型の半導体領域中に第1導電型の低抵抗層を形成し、この低抵抗層の上方に対応位置する前記半導体領域表面に設けたフィールド酸化膜によって囲まれた領域に、第1導電型拡散領域と第2導電型拡散領域を順次積層してPN接合を有する可変容量素子を形成し、この可変容量素子の上に絶縁層を介して下部電極と、絶縁膜と、上部電極とを順次積層してなる固定容量素子を形成し、前記第2導電型拡散領域とその上に積層した絶縁層、下部電極によってゲート容量素子を構成したものである。低抵抗層を形成することにより、活性領域幅を大きく設定しても、可変容量素子の直列抵抗を低減化することができ、また、ゲート容量素子を固定容量素子と可変容量素子との間に重ねて設けることにより、直流遮断容量を増加することが可能となる。   That is, in the variable capacitance device according to claim 1 of the present invention, a first conductive type low resistance layer is formed in the first conductive type semiconductor region, and the surface of the semiconductor region corresponding to above the low resistance layer is formed. A variable conductivity element having a PN junction is formed by sequentially laminating a first conductivity type diffusion region and a second conductivity type diffusion region in a region surrounded by a field oxide film provided on the substrate, and insulation is formed on the variable capacitance device. A fixed capacitance element is formed by sequentially laminating a lower electrode, an insulating film, and an upper electrode through layers, and the gate capacitance element is formed by the second conductive type diffusion region, the insulating layer laminated thereon, and the lower electrode. Is configured. By forming the low resistance layer, the series resistance of the variable capacitance element can be reduced even when the active region width is set large, and the gate capacitance element is interposed between the fixed capacitance element and the variable capacitance element. By providing them in an overlapping manner, the DC blocking capacity can be increased.

また、上記構成において、可変容量素子が隣接するフィールド酸化膜の外縁に位置して、第2の第1導電型拡散領域を、半導体領域表面から低抵抗層に達するよう形成することにより、可変容量素子の直列抵抗の低減化をより一層向上することができる。   In the above configuration, the variable capacitance element is positioned at the outer edge of the adjacent field oxide film, and the second first conductivity type diffusion region is formed so as to reach the low resistance layer from the surface of the semiconductor region. Reduction of the series resistance of the element can be further improved.

さらに、上記各構成において、半導体領域を、半導体基板とその表面に形成したエピタキシャル成長層とで構成し、低抵抗層の上部及び可変容量素子を前記エピタキシャル成長層に設けることにより、低抵抗層及び可変容量素子を形成する際の不純物導入を注入効率の高い高電流イオン注入装置で行うことができる。   Further, in each of the above configurations, the semiconductor region is configured by a semiconductor substrate and an epitaxial growth layer formed on the surface thereof, and the low resistance layer and the variable capacitance are provided by providing the upper portion of the low resistance layer and the variable capacitance element in the epitaxial growth layer. Impurity introduction at the time of forming an element can be performed by a high current ion implantation apparatus with high implantation efficiency.

またさらに、上記各構成において、可変容量素子が隣接するフィールド酸化膜の外縁に位置して半導体領域表面に第2の第2導電型拡散領域を形成し、この第2の第2導電型拡散領域と可変容量素子領域を接続するように前記フィールド酸化膜の下面に第3の第1導電型拡散領域を形成して、前記可変容量素子の第2導電型拡散領域と、前記第3の第1導電型拡散領域と、前記第2の第2導電型拡散領域とによって保護素子を構成すると、保護素子自体の寄生容量がなくなるとともに、可変容量素子に対して保護素子から加わる寄生容量もなくなり、可変容量の周波数特性を改善することができる。   Still further, in each of the above-described structures, the variable capacitance element is located at the outer edge of the adjacent field oxide film, and a second second conductivity type diffusion region is formed on the surface of the semiconductor region, and this second second conductivity type diffusion region is formed. A third first conductivity type diffusion region is formed on the lower surface of the field oxide film so as to connect the variable capacitance element region to the second capacitance type diffusion region of the variable capacitance element, and the third first When the protective element is configured by the conductive type diffusion region and the second second conductive type diffusion region, the parasitic capacitance of the protective element itself is eliminated, and the parasitic capacitance applied from the protective element to the variable capacitive element is also eliminated, and thus the variable capacitance element is variable. The frequency characteristic of the capacity can be improved.

本発明に係る可変容量装置によれば、容量素子の寄生容量を低減することで、容量変化率の低下を防止して周波数可変幅を拡大できることはもちろん、低抵抗層を設けることによって、可変容量素子の直列抵抗の低減化を図ることができ、また、ゲート容量素子を設けることによって、直流遮断容量が増大する。   According to the variable capacitance device of the present invention, by reducing the parasitic capacitance of the capacitive element, it is possible to prevent a decrease in the capacitance change rate and expand the frequency variable width. The series resistance of the element can be reduced, and the DC blocking capacity is increased by providing the gate capacitance element.

以下、本発明を発振回路に適用した場合の好適な実施形態を添付図面に基づいて説明する。ここにおいて、図1は発振回路の基本構成を示す回路図、図2は容量素子構造を示す断面図、図3〜図8は容量素子構造の製造工程を示す断面図である。まず、回路の基本構成を図1に基づいて説明する。発振回路1は、外付けされた水晶振動子2と、増幅用のインバータ3及びその帰還抵抗4を設ける一方、インバータ3の出力側には、直流遮断用の固定容量素子である上部電極(図2では31)と下部電極(図2では29)を備えてなるコンデンサ5と、同じく直流遮断用のゲート容量素子である上部電極(図2では29)と下部電極(図2では27)を備えてなるコンデンサ6とを直列接続し、さらに、コンデンサ6に発振周波数制御用の可変容量素子であるPN接合ダイオード7のカソード側を接続している。このPN接合ダイオード7のカソード側(図2では27)には、負荷抵抗8を介して、周波数制御用の外部電圧VCが印加される一方、アノード側(図2では26)は接地している。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments when the present invention is applied to an oscillation circuit will be described with reference to the accompanying drawings. Here, FIG. 1 is a circuit diagram showing a basic configuration of an oscillation circuit, FIG. 2 is a sectional view showing a capacitive element structure, and FIGS. 3 to 8 are sectional views showing manufacturing steps of the capacitive element structure. First, the basic configuration of the circuit will be described with reference to FIG. The oscillation circuit 1 is provided with an externally attached crystal resonator 2, an amplification inverter 3 and its feedback resistor 4. On the output side of the inverter 3, an upper electrode which is a fixed capacitance element for cutting off DC (see FIG. 2 includes 31) and a lower electrode (29 in FIG. 2), and also includes an upper electrode (29 in FIG. 2) and a lower electrode (27 in FIG. 2), which are gate capacitance elements for DC blocking. The capacitor 6 is connected in series, and the cathode side of a PN junction diode 7 that is a variable capacitance element for controlling the oscillation frequency is connected to the capacitor 6. An external voltage VC for frequency control is applied to the cathode side (27 in FIG. 2) of the PN junction diode 7 via the load resistor 8, while the anode side (26 in FIG. 2) is grounded. .

また、インバータ3の入力端側には、直流遮断用の固定容量素子である上部電極と下部電極を備えてなるコンデンサ9と、同じく直流遮断用のゲート容量素子である上部電極と下部電極を備えてなるコンデンサ10とを並列接続し、さらに、これらコンデンサ9,10に発振周波数制御用の可変容量素子であるPN接合ダイオード11のカソード側を接続している。このPN接合ダイオード11のカソード側には、負荷抵抗12を介して、周波数制御用の外部電圧VCが印加される一方、アノード側は接地している。   Further, on the input end side of the inverter 3, a capacitor 9 having an upper electrode and a lower electrode which are fixed capacitive elements for DC blocking, and an upper electrode and a lower electrode which are also gate capacitive elements for DC blocking are provided. The capacitors 10 and 10 are connected in parallel, and the capacitors 9 and 10 are connected to the cathode side of a PN junction diode 11 which is a variable capacitance element for controlling the oscillation frequency. An external voltage VC for frequency control is applied to the cathode side of the PN junction diode 11 via a load resistor 12, while the anode side is grounded.

続いて、図1の破線Aで囲まれた部分の容量素子構造を説明する。図2に示すように、P型半導体基板21上にはP型エピタキシャル成長層22を形成するとともに、このP型エピタキシャル成長層22で埋め込むようにP++型低抵抗層23を設け、このP++型低抵抗層23の上部はP型エピタキシャル成長層22に位置している。また、前記P型エピタキシャル成長層22にはP++型低抵抗層23と接合するようにプラグ層であるP++型拡散領域24を設け、また、前記P型エピタキシャル成長層22の上にはフィールド酸化膜25a,25bを設けている。 Next, the capacitive element structure of the part surrounded by the broken line A in FIG. 1 will be described. As shown in FIG. 2, a P type epitaxial growth layer 22 is formed on a P type semiconductor substrate 21, and a P ++ type low resistance layer 23 is provided so as to be embedded in the P type epitaxial growth layer 22. The upper part of the P ++ type low resistance layer 23 is located in the P type epitaxial growth layer 22. The P type epitaxial growth layer 22 is provided with a P ++ type diffusion region 24 as a plug layer so as to be joined to the P ++ type low resistance layer 23, and on the P type epitaxial growth layer 22. Are provided with field oxide films 25a and 25b.

フィールド酸化膜25aで囲まれた活性領域であるP型エピタキシャル成長層22には、P+型拡散領域26とN+型拡散領域27からなるPN接合ダイオード(図1では7)で構成される可変容量素子を形成している。このPN接合ダイオード26,27のN+型拡散領域27上には、絶縁膜28、下部電極29、絶縁膜30、上部電極31を順次積層して、ゲート容量素子であるコンデンサ(図1では6)と、固定容量素子であるコンデンサ(図1では5)を形成している。前記ゲート容量素子であるコンデンサの下部電極は可変容量素子のN+型拡散領域27で兼用し、その上部電極は固定容量素子の下部電極29で兼用している。なお、前記上部電極31及び下部電極29はポリシリコン、シリサイド材料、高融点金属等を用いることができる。 In the P type epitaxial growth layer 22, which is an active region surrounded by the field oxide film 25 a, a variable composed of a PN junction diode (7 in FIG. 1) composed of a P + type diffusion region 26 and an N + type diffusion region 27. Capacitance elements are formed. On the N + -type diffusion region 27 of the PN junction diodes 26 and 27, an insulating film 28, a lower electrode 29, an insulating film 30, and an upper electrode 31 are sequentially stacked to form a capacitor (6 in FIG. 1). ) And a capacitor (5 in FIG. 1) which is a fixed capacitance element. The lower electrode of the capacitor which is the gate capacitance element is also used as the N + -type diffusion region 27 of the variable capacitance element, and the upper electrode is also used as the lower electrode 29 of the fixed capacitance element. The upper electrode 31 and the lower electrode 29 can be made of polysilicon, silicide material, refractory metal, or the like.

続いて、上述した容量素子構造の製造工程を図3〜図8に基づいて説明する。まず、図3に示すように、P型半導体基板21上に酸化膜32を形成した後、この酸化膜32をエッチングして低抵抗層を埋め込む領域を開口する。 Subsequently, a manufacturing process of the above-described capacitive element structure will be described with reference to FIGS. First, as shown in FIG. 3, after an oxide film 32 is formed on the P type semiconductor substrate 21, the oxide film 32 is etched to open a region where the low resistance layer is embedded.

次いで、図4に示すように、前記開口部分に高電流イオン注入装置を用いたイオン注入法によってP++型低抵抗層23を形成し、残っている酸化膜32を除去する。このP++型低抵抗層23の高濃度の不純物導入は、P型半導体基板21の表面付近に行えばよいので、P型半導体基板21の深い位置に行う際に利用される高加速注入装置を用いた1000KeV以上のイオン注入によることなく、高電流イオン注入装置を用いた100KeV以下のイオン注入で効率よく行うことができる。 Next, as shown in FIG. 4, a P ++ type low resistance layer 23 is formed in the opening by an ion implantation method using a high current ion implantation apparatus, and the remaining oxide film 32 is removed. The high-concentration impurity introduction into the P ++ type low resistance layer 23 may be performed near the surface of the P type semiconductor substrate 21, so that the high acceleration used when performing in a deep position of the P type semiconductor substrate 21. It is possible to efficiently perform ion implantation of 100 KeV or less using a high current ion implantation apparatus without using ion implantation of 1000 KeV or more using an implantation apparatus.

次に、図5に示すように、P型半導体基板21上に、エピタキシャル法によりP型エピタキシャル成長層22をさらに積層すると、P++型低抵抗層23のP++イオンがP型エピタキシャル成長層22に染み出すことにより、P++型低抵抗層23の上部がP型エピタキシャル成長層22に位置する状態となる。このようにして、P++型低抵抗層23がP型エピタキシャル成長層22で埋め込まれる。 Next, as shown in FIG. 5, when a P type epitaxial growth layer 22 is further laminated on the P type semiconductor substrate 21 by an epitaxial method, the P ++ ions of the P ++ type low resistance layer 23 become P type. By oozing out into the epitaxial growth layer 22, the upper part of the P ++ type low resistance layer 23 is located in the P type epitaxial growth layer 22. In this way, the P ++ type low resistance layer 23 is buried with the P type epitaxial growth layer 22.

次に、図6に示すように、P型エピタキシャル成長層22にP++型低抵抗層23と接合するようにプラグ層となるP++型拡散領域24を設ける。このP++型拡散領域24の形成は、公知の手段で行うことができ、例えば、P型エピタキシャル成長層22の表面に、図示していない酸化膜を形成し、この酸化膜をエッチングしてP++型拡散領域24を形成する領域を開口し、この開口部分にイオン注入法によってP++型拡散領域24を形成し、残っている酸化膜を除去するものである。 Next, as shown in FIG. 6, a P ++ type diffusion region 24 serving as a plug layer is provided in the P type epitaxial growth layer 22 so as to be joined to the P ++ type low resistance layer 23. The P ++ type diffusion region 24 can be formed by a known means. For example, an oxide film (not shown) is formed on the surface of the P type epitaxial growth layer 22, and this oxide film is etched. and exposing the region for forming a P ++ type diffusion region 24, to form a P ++ type diffusion region 24 in the opening portion by ion implantation, is to remove the remaining oxide film.

次に、図7に示すように、P型エピタキシャル成長層22の上に、公知の手段によりフィールド酸化膜25a,25bを設ける。 Next, as shown in FIG. 7, field oxide films 25 a and 25 b are provided on the P -type epitaxial growth layer 22 by a known means.

次に、図8に示すように、フィールド酸化膜25aに囲まれた部分である活性領域に対応するP型エピタキシャル成長層22の表面に、公知の手段で不純物を導入して、可変容量素子であるP+型拡散領域26,N+型拡散領域27を順次形成する。この際、可変容量素子の可変特性に影響を与えないために、活性領域とP++型低抵抗層23及びP++型拡散領域24との距離を、最大空乏層よりも大きく設定する。具体的には、前記距離は3μm以上が好適である。 Next, as shown in FIG. 8, impurities are introduced into the surface of the P -type epitaxial growth layer 22 corresponding to the active region which is a portion surrounded by the field oxide film 25a by a known means, so that the variable capacitance element is formed. A certain P + -type diffusion region 26 and N + -type diffusion region 27 are sequentially formed. At this time, in order not to affect the variable characteristics of the variable capacitance element, the distance between the active region and the P ++ type low resistance layer 23 and the P ++ type diffusion region 24 is set larger than the maximum depletion layer. Specifically, the distance is preferably 3 μm or more.

次に、上述のフィールド酸化膜25aに囲まれた活性領域上に、公知の手段で、絶縁膜28、下部電極29、絶縁膜30、上部電極31を順次積層して、図2に示す、容量素子構造とするものである。   Next, an insulating film 28, a lower electrode 29, an insulating film 30, and an upper electrode 31 are sequentially stacked on the active region surrounded by the above-described field oxide film 25a by a known means, and the capacitance shown in FIG. It is an element structure.

続いて、保護素子として破壊電圧保護用のNPN型スナップバックトランジスタを設けた実施形態を説明する。なお、発振回路の基本構成は上述の図1に示す実施形態と同一であるから、図9に示す回路図には、可変容量素子たるPN接合ダイオード7のみを図示し、他の構成要素の図示及び説明は省略する。図9に示すように、PN接合ダイオード7のカソードには、NPN型スナップバックトランジスタ13のコレクタ端子を接続し、前記PN接合ダイオード7のアノードには、前記NPN型スナップバックトランジスタ13のエミッタ端子を接続している。そして、図示してはいないが、前記NPN型スナップバックトランジスタ13のゲート端子とエミッタ端子は接地している。   Next, an embodiment in which an NPN-type snapback transistor for protecting a breakdown voltage is provided as a protective element will be described. Since the basic configuration of the oscillation circuit is the same as that of the embodiment shown in FIG. 1, only the PN junction diode 7 as a variable capacitance element is shown in the circuit diagram shown in FIG. And description is abbreviate | omitted. As shown in FIG. 9, the collector terminal of the NPN type snapback transistor 13 is connected to the cathode of the PN junction diode 7, and the emitter terminal of the NPN type snapback transistor 13 is connected to the anode of the PN junction diode 7. Connected. Although not shown, the gate terminal and the emitter terminal of the NPN type snapback transistor 13 are grounded.

また、図示していないが、図1に示すPN接合ダイオード11にも同様に破壊電圧保護用のNPN型スナップバックトランジスタが設けられているものである。すなわち、前記PN接合ダイオード11のカソードには、NPN型スナップバックトランジスタのコレクタ端子を接続する一方、前記PN接合ダイオード11のアノードには、前記NPN型スナップバックトランジスタのエミッタ端子を接続し、前記スナップバックトランジスタのゲート端子とエミッタ端子は接地している。   Although not shown, the PN junction diode 11 shown in FIG. 1 is similarly provided with an NPN-type snapback transistor for protecting against breakdown voltage. That is, the collector terminal of the NPN type snapback transistor is connected to the cathode of the PN junction diode 11, while the emitter terminal of the NPN type snapback transistor is connected to the anode of the PN junction diode 11. The gate terminal and emitter terminal of the back transistor are grounded.

次に、図10に基づいて、容量素子とNPN型スナップバックトランジスタの構造を説明するが、容量素子構造については上述した実施形態と同様なので、対応する構成要素に同一符号を付するにとどめ、詳細な説明は省略する。図上フィールド酸化膜25b側のフィールド酸化膜25aの下には、可変容量素子のP+型拡散領域26及びN+型拡散領域27と接合するように、P+型拡散領域32を設け、フィールド酸化膜25a,25bに挟まれた部分にN+型拡散領域33を設けて、前記各N+型拡散領域27,33とP+型拡散領域32とによって、NPN型スナップバックトランジスタ(図9では13)を構成している。すなわち、前記N+型拡散領域27は、NPN型スナップバックトランジスタのコレクタとPN接合ダイオード(図9では7)のカソードを兼用しているものである。なお、前記P+型拡散領域32は、可変容量素子のP+型拡散領域26とN+型拡散領域27の一方のみと接合するよう構成してもよい。 Next, the structure of the capacitive element and the NPN-type snapback transistor will be described with reference to FIG. 10. Since the capacitive element structure is the same as that of the above-described embodiment, the same reference numerals are assigned to the corresponding components. Detailed description is omitted. Under the field oxide film 25a on the side of the field oxide film 25b in the figure, a P + type diffusion region 32 is provided so as to be joined to the P + type diffusion region 26 and the N + type diffusion region 27 of the variable capacitance element. An N + type diffusion region 33 is provided between the oxide films 25a and 25b, and the N + type diffusion region 27 and 33 and the P + type diffusion region 32 form an NPN type snapback transistor (in FIG. 9). 13). That is, the N + type diffusion region 27 serves as both the collector of the NPN type snapback transistor and the cathode of the PN junction diode (7 in FIG. 9). The P + -type diffusion region 32 may be configured to be joined to only one of the P + -type diffusion region 26 and the N + -type diffusion region 27 of the variable capacitance element.

従来はPN接合ダイオードとNPN型スナップバックトランジスタとを互いに独立して設けるとともに、PN接合ダイオードのカソードであるN+型拡散領域と、NPN型スナップバックトランジスタのコレクタであるN+型拡散領域とを結線して構成しているので、NPN型スナップバックトランジスタのコレクタであるN+型拡散領域に寄生容量が発生し、この寄生容量がPN接合ダイオードに加わるという不都合があった。これに対して上述の実施形態では、NPN型スナップバックトランジスタのコレクタであるN+型拡散領域をPN接合ダイオードのカソードと兼用するので、前記NPN型スナップバックトランジスタのコレクタであるN+型拡散領域に発生する寄生容量が存在せず、このため寄生容量がPN接合ダイオードに加わらないという利点を有する。 With conventionally provided a PN junction diode and the NPN snapback transistor independently of one another, and the N + -type diffusion region is a cathode of the PN junction diode, and an N + -type diffusion region is a collector of the NPN snapback transistor Since the connection is made, parasitic capacitance is generated in the N + diffusion region that is the collector of the NPN snapback transistor, and this parasitic capacitance is added to the PN junction diode. On the other hand, in the above-described embodiment, the N + type diffusion region that is the collector of the NPN type snapback transistor is also used as the cathode of the PN junction diode, and therefore the N + type diffusion region that is the collector of the NPN type snapback transistor. Therefore, there is an advantage that the parasitic capacitance is not added to the PN junction diode.

なお、NPN型スナップバックトランジスタ13は、他の保護素子に換えてもよいし、保護素子を必ずしも設ける必要はない。また、P++型低抵抗層23は可変容量素子であるPN接合ダイオード26,27とプラグ層であるP++型拡散領域24とに対応する部分にのみ形成すれば足りる。さらに、上述の各実施形態においては、第1導電型をP型、第2導電型をN型としたが、これを逆にして、第1導電型をN型、第2導電型をP型として構成してもよいものである。 Note that the NPN snapback transistor 13 may be replaced with another protection element, and the protection element is not necessarily provided. Further, the P ++ type low resistance layer 23 is only required to be formed in portions corresponding to the PN junction diodes 26 and 27 that are variable capacitance elements and the P ++ type diffusion region 24 that is a plug layer. Further, in each of the above-described embodiments, the first conductivity type is P type and the second conductivity type is N type. However, the first conductivity type is N type and the second conductivity type is P type. It may be configured as.

水晶振動子を外付けした状態の発振回路の基本構成を示す回路図。FIG. 2 is a circuit diagram showing a basic configuration of an oscillation circuit with a crystal resonator attached externally. 図1の鎖線Aで囲まれた部分における容量素子構造を示す断面図。Sectional drawing which shows the capacitive element structure in the part enclosed with the chain line A of FIG. 容量素子構造の製造工程の一工程を示す断面図。Sectional drawing which shows 1 process of the manufacturing process of capacitive element structure. 同じく容量素子構造の製造工程の一工程を示す断面図。Sectional drawing which similarly shows one process of the manufacturing process of a capacitive element structure. 同じく容量素子構造の製造工程の一工程を示す断面図。Sectional drawing which similarly shows one process of the manufacturing process of a capacitive element structure. 同じく容量素子構造の製造工程の一工程を示す断面図。Sectional drawing which similarly shows one process of the manufacturing process of a capacitive element structure. 同じく容量素子構造の製造工程の一工程を示す断面図。Sectional drawing which similarly shows one process of the manufacturing process of a capacitive element structure. 同じく容量素子構造の製造工程の一工程を示す断面図。Sectional drawing which similarly shows one process of the manufacturing process of a capacitive element structure. 保護素子を設けた可変容量素子を示す回路図。The circuit diagram which shows the variable capacitance element which provided the protection element. 保護素子を設けた容量素子構造を示す断面図。Sectional drawing which shows the capacitive element structure which provided the protective element.

符号の説明Explanation of symbols

1 発振回路
2 水晶振動子
3 インバータ
5,9 コンデンサ(固定容量素子)
6,10 コンデンサ(ゲート容量素子)
7,11 PN接合ダイオード(可変容量素子)
13 NPN型スナップバックトランジスタ
21 P型半導体基板
22 P型エピタキシャル成長層
23 P++型低抵抗層
24 P++型拡散領域
25a,25b フィールド酸化膜
26 P+型拡散領域
27 N+型拡散領域
28,30 絶縁膜
29 下部電極
31 上部電極
32 P+型拡散領域
33 N+型拡散領域
DESCRIPTION OF SYMBOLS 1 Oscillation circuit 2 Crystal oscillator 3 Inverter 5,9 Capacitor (fixed capacity element)
6,10 Capacitor (gate capacitance element)
7,11 PN junction diode (variable capacitance element)
13 NPN type snapback transistor 21 P type semiconductor substrate 22 P type epitaxial growth layer 23 P ++ type low resistance layer 24 P ++ type diffusion region 25a, 25b Field oxide film 26 P + type diffusion region 27 N + type diffusion Region 28, 30 Insulating film 29 Lower electrode 31 Upper electrode 32 P + type diffusion region 33 N + type diffusion region

Claims (4)

第1導電型の半導体領域中に第1導電型の低抵抗層を形成し、この低抵抗層の上方に対応位置する前記半導体領域表面に設けたフィールド酸化膜によって囲まれた領域に、第1導電型拡散領域と第2導電型拡散領域を順次積層してPN接合を有する可変容量素子を形成し、この可変容量素子の上に絶縁層を介して下部電極と、絶縁膜と、上部電極とを順次積層してなる固定容量素子を形成し、前記第2導電型拡散領域とその上に積層した絶縁層、下部電極によってゲート容量素子を構成してなる
ことを特徴とする可変容量装置。
A first conductivity type low resistance layer is formed in the first conductivity type semiconductor region, and a region surrounded by a field oxide film provided on the surface of the semiconductor region corresponding to the upper side of the low resistance layer is formed in a first region. A conductive type diffusion region and a second conductive type diffusion region are sequentially stacked to form a variable capacitance element having a PN junction, and a lower electrode, an insulating film, and an upper electrode are formed on the variable capacitance element via an insulating layer. A variable capacitance device, wherein a fixed capacitance element is formed by sequentially laminating layers, and a gate capacitance element is constituted by the second conductivity type diffusion region, an insulating layer laminated thereon, and a lower electrode.
可変容量素子が隣接するフィールド酸化膜の外縁に位置して、第2の第1導電型拡散領域を、半導体領域表面から低抵抗層に達するよう形成してなることを特徴とする請求項1記載の可変容量装置。   2. The variable capacitance element is located at an outer edge of an adjacent field oxide film, and the second first conductivity type diffusion region is formed so as to reach the low resistance layer from the surface of the semiconductor region. Variable capacity device. 半導体領域を、半導体基板とその表面に形成したエピタキシャル成長層とで構成し、低抵抗層の上部及び可変容量素子を前記エピタキシャル成長層に設けたことを特徴とする請求項1または請求項2記載の可変容量装置。   3. The variable according to claim 1, wherein the semiconductor region is constituted by a semiconductor substrate and an epitaxial growth layer formed on the surface thereof, and an upper portion of the low resistance layer and a variable capacitance element are provided in the epitaxial growth layer. Capacity device. 可変容量素子が隣接するフィールド酸化膜の外縁に位置して半導体領域表面に第2の第2導電型拡散領域を形成し、この第2の第2導電型拡散領域と可変容量素子領域を接続するように前記フィールド酸化膜の下面に第3の第1導電型拡散領域を形成して、前記可変容量素子の第2導電型拡散領域と、前記第3の第1導電型拡散領域と、前記第2の第2導電型拡散領域とによって保護素子を構成してなることを特徴とする請求項1〜3のいずれか1項に記載の可変容量装置。   A variable capacitance element is positioned on the outer edge of the adjacent field oxide film, a second second conductivity type diffusion region is formed on the surface of the semiconductor region, and the second second conductivity type diffusion region and the variable capacitance element region are connected to each other. As described above, a third first conductivity type diffusion region is formed on the lower surface of the field oxide film, the second conductivity type diffusion region of the variable capacitance element, the third first conductivity type diffusion region, and the first The variable capacitance device according to any one of claims 1 to 3, wherein a protective element is formed by the second conductive type diffusion region.
JP2008022433A 2008-02-01 2008-02-01 Variable capacity device Active JP5282194B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008022433A JP5282194B2 (en) 2008-02-01 2008-02-01 Variable capacity device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008022433A JP5282194B2 (en) 2008-02-01 2008-02-01 Variable capacity device

Publications (2)

Publication Number Publication Date
JP2009182291A JP2009182291A (en) 2009-08-13
JP5282194B2 true JP5282194B2 (en) 2013-09-04

Family

ID=41035988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008022433A Active JP5282194B2 (en) 2008-02-01 2008-02-01 Variable capacity device

Country Status (1)

Country Link
JP (1) JP5282194B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6186601B2 (en) * 2013-01-16 2017-08-30 セイコーNpc株式会社 Variable capacitance diode

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2613939B2 (en) * 1989-04-21 1997-05-28 日本電気アイシーマイコンシステム株式会社 Semiconductor device
JPH04112564A (en) * 1990-08-31 1992-04-14 Nec Ic Microcomput Syst Ltd Semiconductor device
US5745335A (en) * 1996-06-27 1998-04-28 Gennum Corporation Multi-layer film capacitor structures and method
JP2000307129A (en) * 1999-04-21 2000-11-02 Citizen Watch Co Ltd Variable capacitor circuit

Also Published As

Publication number Publication date
JP2009182291A (en) 2009-08-13

Similar Documents

Publication Publication Date Title
JP5168974B2 (en) Semiconductor variable capacitance element and manufacturing method thereof
US7456484B2 (en) Semiconductor device having IGBT and diode
JP5566540B2 (en) Power semiconductor device
US8169034B2 (en) Semiconductor device
JP2007294716A (en) Semiconductor device
JP2001257366A (en) Semiconductor device
JP4017573B2 (en) diode
JP2004214408A (en) Voltage controlled variable capacitor element
JP5282194B2 (en) Variable capacity device
JP2009009984A (en) Semiconductor device and its manufacturing method
JP2006261376A (en) Diode and semiconductor device
JPH0936307A (en) Mos capacitor
US7247925B2 (en) Semiconductor device and method for fabricating the same
JP3123489B2 (en) Electrostatic protection circuit in semiconductor integrated circuit and method of manufacturing the same
JP6158036B2 (en) Semiconductor device
JP6192952B2 (en) Manufacturing method of semiconductor device
JP2012195428A (en) Composite semiconductor device
JP5058551B2 (en) Oscillator circuit
JP5266955B2 (en) Semiconductor device
JP2009111112A (en) Variable-capacitance diode
JP4551513B2 (en) Variable capacitance circuit
JP2009010254A (en) Semiconductor device
JP2008108799A (en) Semiconductor device
JP2008004600A (en) Semiconductor device and method of manufacturing the same
JP2009059785A (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110131

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130502

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130502

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130502

R150 Certificate of patent or registration of utility model

Ref document number: 5282194

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250