JP5280325B2 - Multi-cylinder external combustion closed cycle heat engine with heat recovery device - Google Patents

Multi-cylinder external combustion closed cycle heat engine with heat recovery device Download PDF

Info

Publication number
JP5280325B2
JP5280325B2 JP2009215115A JP2009215115A JP5280325B2 JP 5280325 B2 JP5280325 B2 JP 5280325B2 JP 2009215115 A JP2009215115 A JP 2009215115A JP 2009215115 A JP2009215115 A JP 2009215115A JP 5280325 B2 JP5280325 B2 JP 5280325B2
Authority
JP
Japan
Prior art keywords
heater
cooler
cylinder
flow path
working gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009215115A
Other languages
Japanese (ja)
Other versions
JP2011064121A (en
Inventor
俊光 海法
省三 鶴野
宗平 関根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Seiki Co Ltd
Original Assignee
Yokohama Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Seiki Co Ltd filed Critical Yokohama Seiki Co Ltd
Priority to JP2009215115A priority Critical patent/JP5280325B2/en
Publication of JP2011064121A publication Critical patent/JP2011064121A/en
Application granted granted Critical
Publication of JP5280325B2 publication Critical patent/JP5280325B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device improving the thermal efficiency of an external combustion type closed cycle heat engine designed and manufactured under various conditions without relating the volume of a heater or a cooler to the efficiency of the engine. <P>SOLUTION: The cylinders of the external combustion type closed cycle heat engine are formed into a multiple cylinder type sharing a heater and a cooler. A heat exchanger is provided between flow passages on the side of the inlet of the heater and the side of the inlet of the cooler to recover quantity of heat. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、簡易構造にして効率が高く、操作、維持容易な外燃式クローズドサイクル熱機関に関するものである。
詳しくは、本発明は、多気筒外燃式クローズドサイクル熱機関であって、熱を回収し熱効率を向上させる方式に関するものである。
The present invention relates to an external combustion type closed cycle heat engine that has a simple structure, high efficiency, and is easy to operate and maintain.
Specifically, the present invention relates to a multi-cylinder external combustion type closed cycle heat engine, which relates to a method for recovering heat and improving thermal efficiency.

スターリングエンジンは、熱源の種類を問わず、現在、無駄となっているエネルギーの有効利用が可能であり、静粛で低公害であるので、各種のタイプが研究開発され、重要な将来熱機関の一つと目されている外燃式熱機関である。   Stirling engines, regardless of the type of heat source, can effectively use energy that is currently wasted, and are quiet and low-pollution, so various types have been researched and developed, and are one of the important future heat engines. It is an external combustion type heat engine that is regarded as one of the most important.

スターリングエンジンは、気室内に封入した作動ガスを加熱及び冷却して該作動ガスを膨張及び収縮させ、動力を得る外燃式熱機関である。
従来のディスプレーサ型スターリングエンジンは、ディスプレーサの往復動により、該作動ガスを加熱部と冷却部との間で往復させて該作動ガスを加熱及び冷却、即ち膨張及び収縮させて、パワーピストンを作用させることにより動力を得るものである。ディスプレーサは、パワーピストンと位相をもって連動するように構成されている(特許文献2)。
A Stirling engine is an external combustion heat engine that obtains power by heating and cooling a working gas sealed in an air chamber to expand and contract the working gas.
In a conventional displacer type Stirling engine, the working gas is reciprocated between a heating part and a cooling part by reciprocating the displacer to heat and cool the working gas, that is, expand and contract, thereby operating a power piston. To gain power. The displacer is configured to interlock with the power piston in phase (Patent Document 2).

しかしながら、従来のスターリングエンジンでは、気室、加熱器及び冷却器内の作動ガスが同時に加圧、減圧され、このため加熱時において、気室を加圧するために冷却器内の作動ガスも加圧しなければならず、また冷却時において、気室を減圧するために加熱器内の作動ガスも減圧しなければならない。このため、気室容積に比して加熱器又は冷却器の容積が大きくなるとエンジン効率が低下する。従って、エンジン効率を上げるために加熱器及び冷却器を小型化する必要がある。   However, in the conventional Stirling engine, the working gas in the air chamber, the heater and the cooler is pressurized and depressurized at the same time. Therefore, during heating, the working gas in the cooler is also pressurized to pressurize the air chamber. Also, during cooling, the working gas in the heater must be depressurized in order to depressurize the air chamber. For this reason, when the volume of the heater or the cooler is larger than the air chamber volume, the engine efficiency is lowered. Therefore, it is necessary to reduce the size of the heater and the cooler in order to increase the engine efficiency.

しかし、エンジンを作動させるには必要な熱量を取り込み、また排出する必要があり、加熱器及び冷却器は十分な能力を持たなければならない。加熱器を小型かつ充分な能力を持たせるには、伝熱面の肉厚を薄くし、また加熱温度を上げて面積当りの伝熱量を増やす手段があるが、精密な工作を要し、高価な耐熱金属を使用する必要があり、また高温により加熱器の腐蝕が促進されるといった弊害がある。
また、冷却期間中、加熱器は利用されず、全期間を通じた加熱器の効率は低下し、加熱器に加えられる外部熱量は無駄に消費され利用効率が低下している。加熱期間の冷却器も同様である。
However, to operate the engine, it is necessary to take in and discharge the necessary amount of heat, and the heater and cooler must have sufficient capacity. In order to make the heater small and have sufficient capacity, there are means to reduce the thickness of the heat transfer surface and increase the heat transfer amount per area by raising the heating temperature, but it requires precise work and is expensive. It is necessary to use a new refractory metal, and the high temperature promotes corrosion of the heater.
In addition, the heater is not used during the cooling period, and the efficiency of the heater throughout the entire period is reduced, and the amount of external heat applied to the heater is wasted and the utilization efficiency is reduced. The same applies to the cooler during the heating period.

上述するような従来技術に鑑み、加熱器又は冷却器の容積がエンジンの効率に関係せず、多気筒化、大型化、高出力化が可能で、低温熱源を有効に利用することができ、種々の条件下で設計、製作できる外燃式クローズドサイクル熱機関を、本発明の発明者らは開発し、先に出願した(特許文献1)(以下、「本発明者の先願発明」という)。
先の本発明者の先願発明では、特に、従来技術(特許文献2)で用いられているディスプレーサーピストンを用いることなく、加熱器と冷却器が全期間を通じて利用される外燃式クローズドサイクル熱機関を提案した。
すなわち、図2において、密閉された気室30と加熱器20及び冷却器10を設け、該気室30と該加熱器20の入り口側及び出口側と導通する流路25、26を設け、該気室30と冷却器10の入り口側及び出口側と導通する流路15、16を設け、それぞれ入り口側及び出口側の流路15、25、16、26に開閉弁11、21、12,22を設け、作動ガスの移動手段50を設け、冷却器10入り口側及び出口側の開閉弁11、12を閉として冷却器10を密閉し、加熱器20入り口側及び出口側の開閉弁21、22は開として気室30内の作動ガスを、加熱器20を通じて循環させて気室30内の作動ガスを加熱し、加熱器20入り口側及び出口側の開閉弁21、22を閉として加熱器20を密閉する一方、冷却器10入り口側及び出口側の開閉弁11,12は、開として気室30内の作動ガスを、冷却器10を通じて循環させて気室30内の作動ガスを冷却し、気室30内の作動ガスを膨張、収縮させて作用体を駆動する外燃式クローズドサイクル熱機関で、サイクル過程において、加熱器20は自動的に高圧になり、冷却器10は自動的に低圧になることを特徴としている。
In view of the prior art as described above, the volume of the heater or cooler is not related to the efficiency of the engine, can be multi-cylinder, large, and high output, and can effectively use a low-temperature heat source, The inventors of the present invention have developed an external combustion type closed cycle heat engine that can be designed and manufactured under various conditions, and filed it earlier (Patent Document 1) (hereinafter referred to as “the present invention of the prior application”). ).
In the prior application of the present inventor, in particular, an external combustion closed cycle in which the heater and the cooler are used throughout the entire period without using the displacer piston used in the prior art (Patent Document 2). Proposed heat engine.
That is, in FIG. 2, a sealed air chamber 30, a heater 20, and a cooler 10 are provided, and flow paths 25 and 26 that are connected to the air chamber 30 and an inlet side and an outlet side of the heater 20 are provided, Flow paths 15 and 16 are provided to communicate with the air chamber 30 and the inlet side and the outlet side of the cooler 10, and the opening / closing valves 11, 21, 12 and 22 are provided in the flow paths 15, 25, 16 and 26 on the inlet side and the outlet side, respectively. The working gas moving means 50 is provided, the on-off valves 11 and 12 on the inlet side and the outlet side of the cooler 10 are closed, the cooler 10 is sealed, and the on-off valves 21 and 22 on the inlet side and the outlet side of the heater 20 are closed. Is opened and the working gas in the air chamber 30 is circulated through the heater 20 to heat the working gas in the air chamber 30, and the opening and closing valves 21 and 22 on the inlet side and the outlet side of the heater 20 are closed. While the cooler 10 entrance side and The opening / closing valves 11 and 12 on the mouth side are opened to circulate the working gas in the air chamber 30 through the cooler 10 to cool the working gas in the air chamber 30 and expand and contract the working gas in the air chamber 30. In the external combustion type closed cycle heat engine that drives the working body, the heater 20 automatically becomes a high pressure and the cooler 10 automatically becomes a low pressure in the cycle process.

41は、気室30下部に設けたピストンシリンダー、40は、該ピストンシリンダー41内を摺動するピストン、42は、出力軸46に固設されたフライホイール、クランク室45のクランク機構43を介してピストン40と出力軸46が連接され作用体を構成している。気室及び作用体を有するものを気筒と定義する。50は、気室30上部に設けた作動ガスを移動する手段のファンである。
図3の構成は、図2の構成に対し、作動ガスの移動手段であるファン50を気室30と冷却器10の入り口側と導通する流路15と気室30と加熱器20の入り口側と導通する流路25に設け、加熱器20入り口側及び出口側の開閉弁21、22を一つの三方弁26に置き換え、冷却器10入り口側及び出口側の開閉弁11,12を一つの三方弁25に置き換え、配管を変更したものである。三方弁とは、一方向からの流れを選択的に二方向いずれか、または二方向からの流れを選択的にいずれか一方向を選択して一方向に切り替える開閉弁であり、図3の構成は図2の構成と同等の作用を有する。
41 is a piston cylinder provided in the lower part of the air chamber 30, 40 is a piston that slides in the piston cylinder 41, 42 is a flywheel fixed to the output shaft 46, and a crank mechanism 43 of the crank chamber 45. Thus, the piston 40 and the output shaft 46 are connected to constitute an action body. A cylinder having an air chamber and a working body is defined as a cylinder. Reference numeral 50 denotes a fan for moving the working gas provided in the upper part of the air chamber 30.
The configuration of FIG. 3 is different from the configuration of FIG. 2 in that the fan 50, which is a moving means for the working gas, is connected to the air chamber 30 and the inlet side of the cooler 10, and the flow path 15, the air chamber 30 and the inlet side of the heater 20. The on-off valves 21 and 22 on the inlet side and the outlet side of the heater 20 are replaced with one three-way valve 26, and the on-off valves 11 and 12 on the inlet side and the outlet side of the cooler 10 are arranged in one three-way. It replaces with the valve 25 and changes piping. The three-way valve is an on-off valve that selectively switches the flow from one direction to either one of the two directions, or selectively selects one of the two directions to switch to one direction. Has the same operation as that of FIG.

加熱器20及び冷却器10と導通する気室30への開口を少なくし気室30内作動ガスの流れを滑らかとすることが目的である。
上記構成で、加熱器20は常時高圧、冷却器10は常時低圧であってサイクル中の圧力変化は小さいため、加熱器20及び冷却器10を大きくしてもエンジンの効率低下は少ない。このため加熱器20及び冷却器10の大型化を図ることができる。
The purpose is to smooth the flow of the working gas in the air chamber 30 by reducing the number of openings to the air chamber 30 that are in conduction with the heater 20 and the cooler 10.
With the above configuration, the heater 20 is always at a high pressure, the cooler 10 is always at a low pressure, and the pressure change during the cycle is small. Therefore, even if the heater 20 and the cooler 10 are enlarged, the efficiency of the engine is small. For this reason, the heater 20 and the cooler 10 can be increased in size.

さらに加熱器20は常時高圧であり、冷却器10は常時低圧であるため、気室30を複数設けて多気筒化し、加熱器20および冷却器10を共有できる。また、その場合、気筒の半数は加熱期間であり他の半数は冷却期間とすることが可能であるため、共有する加熱器20及び冷却器10は常時使用されており、全期間を通じ加熱器20と冷却器10の利用効率を上げている。さらにまた、各気筒のクランク室45を共有一体化することにより、背圧の影響を受けないようにすることができる。   Furthermore, since the heater 20 is always at a high pressure and the cooler 10 is always at a low pressure, a plurality of air chambers 30 are provided to form a multi-cylinder so that the heater 20 and the cooler 10 can be shared. In this case, since half of the cylinders can be heating periods and the other half can be cooling periods, the shared heater 20 and cooler 10 are always used. And the utilization efficiency of the cooler 10 is raised. Furthermore, the crank chamber 45 of each cylinder can be shared and integrated so as not to be affected by back pressure.

図4の構成は、本発明者の先願発明を多気筒化した構成を説明するものである。
同図において、複数の気筒A、B、C、Dが一つの加熱器20と冷却器10を共有するもので、加熱器20入り口側のヘッダーとして加熱器入口側集合流路27、加熱器出口側のヘッダーとして加熱器出口側集合流路28、冷却器10入口側のヘッダーとして冷却器入口側集合流路13、冷却器出口側のヘッダーとして冷却器出口側集合流路14がそれぞれ設けられ、各気筒出口側に加熱器入口側集合流路27または冷却器入口側集合流路13へ選択的に作動ガスを流す三方弁23が設けられ、各気筒入口側に加熱器出口側集合流路28または冷却器出口側集合流路14から選択的に作動ガスを流す三方弁24が設けられている。
The configuration of FIG. 4 explains the configuration in which the inventor's prior invention is multi-cylinder.
In the figure, a plurality of cylinders A, B, C, and D share a single heater 20 and a cooler 10, and as a header on the inlet side of the heater 20, a heater inlet-side collective flow path 27, a heater outlet A heater outlet side collective flow path 28 as a header on the side, a cooler inlet side collective flow path 13 as a header on the cooler 10 inlet side, and a cooler outlet side collective flow path 14 as a header on the cooler outlet side, respectively. A three-way valve 23 is provided at the outlet side of each cylinder to selectively supply a working gas to the heater inlet side collective flow path 27 or the cooler inlet side collective flow path 13. The heater outlet side collective flow path 28 is provided at each cylinder inlet side. Alternatively, a three-way valve 24 for selectively flowing the working gas from the cooler outlet side collecting flow path 14 is provided.

51は、冷却器10と冷却器入口側集合流路13を導通する流路15に設けられたファン、52は、加熱器20と加熱器入口側集合流路27を導通する流路25に設けられたファンで、作動ガスを移動する手段である。図5は、図4のV−Vにおける断面図で、気筒A、B、C、Dは各々気室30と作用体を備えている。図4では、4気筒を例示しているが、2気筒以上で奇数筒であっても良い。   51 is a fan provided in the flow path 15 that conducts the cooler 10 and the cooler inlet-side collective flow path 13, and 52 is provided in the flow path 25 that conducts the heater 20 and the heater inlet-side collective flow path 27. It is a means for moving the working gas by the fan provided. FIG. 5 is a cross-sectional view taken along line V-V in FIG. 4, and each of the cylinders A, B, C, and D includes an air chamber 30 and an action body. In FIG. 4, four cylinders are illustrated, but two or more cylinders and an odd number cylinder may be used.

上記作用について詳述する。
半数の気筒A,Cが加熱過程にあり、他の半数の気筒B、Dが冷却過程にあるとする。図4において、作動ガスの流れを矢印で示している。気筒Aは加熱過程にあり、気筒A出口側三方弁23、及び気筒A入口側三方弁24により、作動ガスは、気筒A→気筒A出口側三方弁23→加熱器入口側集合流路27→加熱器側ファン52→加熱器20→加熱器出口側集合流路28→気筒A入口側三方弁24→気筒Aの流路を流れ、気筒A内の作動ガスは、加熱開始時においては冷却過程終了後であるため低温であるが、加熱器側ファン52の作用によりこの流路を循環し、加熱器20により熱せられて気筒Aに戻る。気筒Cも同様である。
The above operation will be described in detail.
Assume that half of the cylinders A and C are in the heating process and the other half of the cylinders B and D are in the cooling process. In FIG. 4, the flow of the working gas is indicated by arrows. The cylinder A is in the heating process, and the cylinder A → cylinder A outlet side three-way valve 23 is operated by the cylinder A outlet side three-way valve 23 and the cylinder A inlet side three-way valve 24 → the heater inlet side collective flow path 27 → Heater side fan 52 → heater 20 → heater outlet side collective flow path 28 → cylinder A inlet side three-way valve 24 → flow path of cylinder A, and the working gas in cylinder A is in the cooling process at the start of heating. Although the temperature is low because it is after the completion, it is circulated through this flow path by the action of the heater-side fan 52, heated by the heater 20, and returned to the cylinder A. The same applies to the cylinder C.

気筒Bは冷却過程にあり、気筒B出口側三方弁23、及び気筒B入口側三方弁24により、作動ガスは、気筒B→気筒B出口側三方弁23→冷却器入口側集合流路13→冷却器側ファン51→冷却器10→冷却器出口側集合流路14→気筒B入口側三方弁24→気筒Bの流路を流れ、気筒B内の作動ガスは、冷却開始時においては加熱過程終了後であるため高温であるが、冷却器側ファン51の作用によりこの流路を循環し、冷却器10により冷却されて気筒Bに戻る。気筒Dも同様である。   The cylinder B is in the cooling process, and the cylinder B outlet side three-way valve 23 and the cylinder B inlet side three-way valve 24 cause the working gas to flow from the cylinder B → the cylinder B outlet side three-way valve 23 → the cooler inlet side collective flow path 13 → Cooler side fan 51 → cooler 10 → cooler outlet side collective flow path 14 → cylinder B inlet side three-way valve 24 → flow path of cylinder B, and the working gas in cylinder B is a heating process at the start of cooling. Although it is after completion, the temperature is high, but it circulates in this flow path by the action of the cooler side fan 51, is cooled by the cooler 10, and returns to the cylinder B. The same applies to the cylinder D.

気筒A、Cが加熱過程を終了し冷却過程に入れば、気筒B、Dが加熱過程に入る。気筒Aは冷却過程にあり、気筒A出口側三方弁23、及び気筒A入口側三方弁24により、作動ガスは、気筒A→気筒A出口側三方弁23→冷却器入口側集合流路13→冷却器側ファン51→冷却器10→冷却器出口側集合流路14→気筒A入口側三方弁24→気筒Aの流路を流れ、気筒A内の作動ガスは、冷却開始時においては加熱過程終了後であるため高温であるが、冷却器側ファン51の作用によりこの流路を循環し、冷却器10により熱せられて気筒Aに戻る。気筒Cも同様である。   When the cylinders A and C finish the heating process and enter the cooling process, the cylinders B and D enter the heating process. Cylinder A is in the cooling process, and cylinder A → cylinder A outlet-side three-way valve 24 causes the working gas to flow from cylinder A → cylinder A outlet-side three-way valve 23 → cooler inlet-side collective flow path 13 → Cooler side fan 51 → cooler 10 → cooler outlet side collective flow path 14 → cylinder A inlet side three-way valve 24 → flow path of cylinder A, and the working gas in cylinder A is a heating process at the start of cooling. Although it is after completion, the temperature is high, but it circulates through this flow path by the action of the cooler side fan 51, is heated by the cooler 10, and returns to the cylinder A. The same applies to the cylinder C.

気筒Bは加熱過程にあり、気筒B出口側三方弁23、及び気筒B入口側三方弁24により、作動ガスは、気筒B→気筒B出口側三方弁23→加熱器入口側集合流路27→加熱器側ファン52→加熱器20→加熱器出口側集合流路28→気筒B入口側三方弁24→気筒Bの流路を流れ、気筒B内の作動ガスは、加熱開始時においては冷却過程終了後であるため低温であるが、加熱器側ファン52の作用によりこの流路を循環し、加熱器20により熱せられて気筒Bに戻る。気筒Dも同様である。   The cylinder B is in the heating process, and the working gas is changed from the cylinder B → the cylinder B outlet side three-way valve 23 → the heater inlet side collective flow path 27 → by the cylinder B outlet side three-way valve 23 and the cylinder B inlet side three-way valve 24 → Heater side fan 52 → heater 20 → heater outlet side collective flow path 28 → cylinder B inlet side three-way valve 24 → flow path of cylinder B, and the working gas in cylinder B is in a cooling process at the start of heating. Although the temperature is low because it is after the completion, it is circulated through this flow path by the action of the heater-side fan 52, heated by the heater 20, and returned to the cylinder B. The same applies to the cylinder D.

特願2009−008570号Japanese Patent Application No. 2009-008570 特開2006−275018号公報JP 2006-275018 A

上記外燃式クローズドサイクル熱機関において、加熱時、冷却器10入り口側及び出口側の開閉弁11、12を閉として冷却器10を密閉し、加熱器20入り口側及び出口側の開閉弁21、22は開として気室30内の作動ガスを加熱器20を通じて循環させ、気室30内の作動ガスを加熱して膨張させる際、ピストン40が下死点に達するまで作動ガスの循環を続け、冷却時は加熱器20入り口側及び出口側の開閉弁21、22を閉として加熱器20を密閉し、冷却器10入り口側及び出口側の開閉弁11、12は開として気室30内の作動ガスを冷却器10を通じて循環させて気室30内の作動ガスを冷却して収縮させる際、ピストン40が上死点に達するまで作動ガスの循環を続ければ熱力学的サイクルは等温過程(加熱時、作動ガスが等温膨張、冷却時、作動ガスが等温圧縮される。)となるが、発生する圧力差は低くなる。   In the external combustion type closed cycle heat engine, during heating, the on-off valves 11 and 12 on the inlet side and the outlet side of the cooler 10 are closed to close the cooler 10, and the on-off valves 21 on the inlet side and the outlet side of the heater 20 are closed. 22 is opened and the working gas in the air chamber 30 is circulated through the heater 20, and when the working gas in the air chamber 30 is heated and expanded, the working gas is continuously circulated until the piston 40 reaches the bottom dead center. During cooling, the opening and closing valves 21 and 22 on the inlet side and the outlet side of the heater 20 are closed to seal the heater 20, and the opening and closing valves 11 and 12 on the inlet side and outlet side of the cooler 10 are opened to operate in the air chamber 30. When the gas is circulated through the cooler 10 to cool and contract the working gas in the air chamber 30, if the working gas is circulated until the piston 40 reaches the top dead center, the thermodynamic cycle is an isothermal process (during heating). , Working gas Isothermal expansion, cooling, and working gas is being isothermal compression.), A pressure difference generated becomes low.

上記機関においては、ピストンストロークの途中において加熱器20及び冷却器10の開閉弁21、22、11、12を閉鎖して、気室30を加熱器20及び冷却器10から隔離し、作動ガスの循環を停止して以降は、気室30内の作動ガスのみの断熱変化によりピストン40を押し下げ、又は押し上げることができる。加熱時、冷却時ともピストンストロークの同じ位置において開閉弁21、22、11、12を閉鎖し、作動ガスの循環を停止すれば発生する圧力差は高くなるが、熱力学的サイクルは一部断熱過程となる。   In the above engine, the opening / closing valves 21, 22, 11, and 12 of the heater 20 and the cooler 10 are closed during the piston stroke to isolate the air chamber 30 from the heater 20 and the cooler 10. After the circulation is stopped, the piston 40 can be pushed down or pushed up by the adiabatic change of only the working gas in the air chamber 30. If the on-off valves 21, 22, 11, and 12 are closed at the same position of the piston stroke during heating and cooling and the working gas circulation is stopped, the pressure difference generated increases, but the thermodynamic cycle is partially insulated It becomes a process.

上記機関においては、熱力学的サイクルは等温過程、一部断熱過程を含むサイクル等、多種のサイクルで構成することが可能であり、これが該機関の特徴でもある。
いずれのサイクルにおいても、加熱過程終了時に気室30及びピストンシリンダー41内に存在する高温の作動ガスは、冷却過程開始とともに冷却器10内に移動し、冷却される。この過程において、高温の作動ガスの持っていた熱量は系外に運び去られることになる。この熱量の一部を回収し、加熱過程にフィードバックし、熱効率の向上を図る外燃式クローズドサイクル熱機関を提供することを課題とする。
In the above engine, the thermodynamic cycle can be composed of various cycles such as an isothermal process, a cycle including a part of adiabatic process, and this is also a feature of the engine.
In any cycle, the hot working gas existing in the air chamber 30 and the piston cylinder 41 at the end of the heating process moves into the cooler 10 and is cooled as the cooling process starts. In this process, the amount of heat that the hot working gas has is carried away from the system. It is an object of the present invention to provide an external combustion type closed cycle heat engine that collects a part of this heat amount and feeds back to the heating process to improve the thermal efficiency.

本発明の発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、以下の構成を有する発明を完成するに至った。
請求項1の発明は、密閉された気室と加熱器及び冷却器を設け、該気室と該加熱器の入り口側及び出口側と導通する流路を設け、該気室と該冷却器の入り口側及び出口側と導通する流路を設け、気室それぞれの入り口側及び出口側の流路に開閉弁を設け、作動ガスの移動手段を流路に設け、冷却器入り口側及び出口側の開閉弁を閉として冷却器を密閉し、加熱器入り口側及び出口側の開閉弁は開として気室内の作動ガスを加熱器を通じて循環させ、気室内の作動ガスを加熱し、また加熱器入り口側及び出口側の開閉弁を閉として加熱器を密閉する一方、冷却器入り口側及び出口側の開閉弁は開として気室内の作動ガスを冷却器を通じて循環させて気室内の作動ガスを冷却し、気室内の作動ガスを膨張、収縮させて作用体を駆動する単気筒の外燃式クローズドサイクル熱機関の気筒を複数配列した多気筒外燃式クローズドサイクル熱機関であって、各気筒が、加熱器および冷却器を共有し、加熱器入り口側および冷却器入り口側の流路間に熱交換器を設けたことを特徴とするもので、上記課題を実現できることを見出した。
The inventors of the present invention have intensively studied to solve the above problems, and as a result, have completed the invention having the following configuration.
The invention of claim 1 is provided with a sealed air chamber, a heater, and a cooler, provided with a flow path that communicates with the air chamber and an inlet side and an outlet side of the heater, and the air chamber and the cooler. Provide a flow path that communicates with the inlet side and the outlet side, provide an open / close valve in the flow path on the inlet side and the outlet side of each air chamber, provide a means for moving the working gas in the flow path, The on-off valve is closed and the cooler is sealed. The on-off valves on the inlet and outlet sides of the heater are opened and the working gas in the air chamber is circulated through the heater to heat the working gas in the air chamber. And the on-off valve on the outlet side is closed to seal the heater, while the on-off valves on the inlet side and outlet side of the cooler are opened to circulate the working gas in the air chamber through the cooler to cool the working gas in the air chamber, Outside the single cylinder that drives the working body by expanding and contracting the working gas in the air chamber Multi-cylinder external combustion type closed cycle heat engine in which a plurality of closed-cycle heat engine cylinders are arranged, each cylinder sharing a heater and a cooler, and between the flow paths on the heater inlet side and the cooler inlet side It has been found that the above-mentioned problems can be realized.

本発明の熱回収装置付多気筒外燃式クローズドサイクル熱機関は、気筒を複数配列した多気筒が加熱器および冷却器を共有し、加熱器入り口側および冷却器入り口側の流路間に熱交換器を設けたので、冷却器に供給される加熱終了後の高温作動ガスにより、加熱器に供給される冷却終了後の低温作動ガスに熱を移動するので、低い作動ガス温であっても、冷却器から本来外部に流出する熱量の一部を効率よく回収し、再利用できるために熱効率を高めることができる。   In the multi-cylinder external combustion type closed cycle heat engine with a heat recovery device of the present invention, a multi-cylinder in which a plurality of cylinders are arranged share a heater and a cooler, and heat is generated between the flow paths on the heater inlet side and the cooler inlet side. Since the exchanger is provided, heat is transferred to the low-temperature working gas after completion of cooling supplied to the heater by the high-temperature working gas after completion of heating supplied to the cooler. The heat efficiency can be increased because a part of the amount of heat originally flowing out of the cooler can be efficiently recovered and reused.

本発明の熱回収装置付多気筒外燃式クローズドサイクル熱機関の実施例を示す概念図The conceptual diagram which shows the Example of the multicylinder external combustion type closed cycle heat engine with the heat recovery apparatus of this invention 本発明者の先願発明にかかる外燃式クローズドサイクル熱機関の説明図Explanatory drawing of the external combustion type closed cycle heat engine concerning prior invention of this inventor 本発明者の先願発明にかかる外燃式クローズドサイクル熱機関の説明図Explanatory drawing of the external combustion type closed cycle heat engine concerning prior invention of this inventor 本発明者の先願発明にかかる外燃式クローズドサイクル熱機関の説明図Explanatory drawing of the external combustion type closed cycle heat engine concerning prior invention of this inventor 図4のV-Vにおける概略断面図Schematic cross-sectional view at VV in FIG.

以下、本発明を実施するための具体的な形態について、図面を参照しながら詳細に説明する。図中、先願発明で付与した符号と同じ部位には同一符号を付与する。また、図中の矢印は、開閉弁等が実線状態にある時の作動ガスの流れ方向を示す。   Hereinafter, specific modes for carrying out the present invention will be described in detail with reference to the drawings. In the figure, the same reference numerals are assigned to the same parts as those assigned in the prior application invention. Moreover, the arrow in a figure shows the flow direction of a working gas when an on-off valve etc. are in a continuous line state.

図1は、本発明の熱回収装置付多気筒外燃式クローズドサイクル熱機関の実施例を示す概念図である。
同図において、複数の気筒A、B、C、Dが一つの加熱器20と冷却器10を共有するもので、加熱器20入り口側のヘッダーとして加熱器入口側集合流路27、加熱器出口側のヘッダーとして加熱器出口側集合流路28、冷却器10入り口側のヘッダーとして冷却器入口側集合流路13、冷却器出口側のヘッダーとして冷却器出口側集合流路14がそれぞれ設けられ、各気筒出口側に加熱器入口側集合流路27または冷却器入口側集合流路13へ選択的に作動ガスを流す三方弁23が設けられ、各気筒入口側に加熱器出口側集合流路28または冷却器出口側集合流路14から選択的に作動ガスを流す三方弁24が設けられている。51は、冷却器10と冷却器入口側集合流路13を導通する流路15に設けられたファン、52は、加熱器20と加熱器入口側集合流路27と導通する流路25に設けられたファンで、作動ガスを移動する手段である。70は、内部に熱交換器71が設けられ、冷却器入口側集合流路13と流路15と導通する流路72、加熱器入口側集合流路27と流路25と導通する流路73が設けられた熱回収装置である。ファン51,52の設置位置は、熱回収装置70の上流側でも下流側でもよい。また、ここでは4気筒(偶数)を例示しているが、気筒数を3以上の奇数とすることも原理的には可能である。即ち、気筒容積の合計が、加熱過程と冷却過程でバランスがとれていれば良い。
FIG. 1 is a conceptual diagram showing an embodiment of a multi-cylinder external combustion type closed cycle heat engine with a heat recovery device of the present invention.
In the figure, a plurality of cylinders A, B, C, and D share a single heater 20 and a cooler 10, and as a header on the inlet side of the heater 20, a heater inlet-side collective flow path 27, a heater outlet A heater outlet side collective flow path 28 as a header on the side, a cooler inlet side collective flow path 13 as a header on the cooler 10 inlet side, and a cooler outlet side collective flow path 14 as a header on the cooler outlet side, respectively. A three-way valve 23 is provided at the outlet side of each cylinder to selectively supply a working gas to the heater inlet side collective flow path 27 or the cooler inlet side collective flow path 13. The heater outlet side collective flow path 28 is provided at each cylinder inlet side. Alternatively, a three-way valve 24 for selectively flowing the working gas from the cooler outlet side collecting flow path 14 is provided. 51 is a fan provided in the flow path 15 that conducts the cooler 10 and the cooler inlet-side collective flow path 13, and 52 is provided in the flow path 25 that conducts the heater 20 and the heater inlet-side collective flow path 27. It is a means for moving the working gas by the fan provided. 70 includes a heat exchanger 71 provided therein, a flow path 72 that communicates with the cooler inlet-side collective flow path 13 and the flow path 15, and a flow path 73 that communicates with the heater inlet-side collective flow path 27 and the flow path 25. Is a heat recovery device provided. The installation positions of the fans 51 and 52 may be upstream or downstream of the heat recovery apparatus 70. In addition, although four cylinders (even numbers) are illustrated here, the number of cylinders may be an odd number of 3 or more in principle. That is, the total cylinder volume only needs to be balanced between the heating process and the cooling process.

図1の各気筒の概略断面は、図4のV−Vにおける断面図(図5)と同じである。
同図において、41は、気筒上部の気室30下部に設けたピストンシリンダー、40は、該ピストンシリンダー41内を摺動するピストン、42は、出力軸46に固設されたフライホイール、クランク室45のクランク機構43を介してピストン40と出力軸46が連接され作用体を構成している。クランク機構43、回転軸46、フライホイール42は密閉されたクランク室45内に収められている。前記気室30が、加熱器20と導通されれば気室30内は高温、高圧となり、ピストン40は下降する。また気室30が、冷却器10と導通されれば気室30内は低温、低圧となり、ピストン40は上昇する。
The schematic cross-section of each cylinder in FIG. 1 is the same as the cross-sectional view along VV in FIG. 4 (FIG. 5).
In the figure, 41 is a piston cylinder provided in the lower part of the air chamber 30 above the cylinder, 40 is a piston sliding inside the piston cylinder 41, 42 is a flywheel fixed to the output shaft 46, a crank chamber The piston 40 and the output shaft 46 are connected via a crank mechanism 43 of 45 to constitute an action body. The crank mechanism 43, the rotation shaft 46, and the flywheel 42 are housed in a sealed crank chamber 45. If the air chamber 30 is electrically connected to the heater 20, the inside of the air chamber 30 becomes high temperature and high pressure, and the piston 40 descends. Further, if the air chamber 30 is electrically connected to the cooler 10, the inside of the air chamber 30 becomes low temperature and low pressure, and the piston 40 rises.

上記作用について述べる。半数の気筒A、Cが加熱過程にあり、他の半数の気筒B、Dが冷却過程にあるとする。
気筒Aは加熱過程にあり、気筒A出口側三方弁23、及び気筒A入口側三方弁24により、気筒A→気筒A出口側三方弁23→加熱器入口側集合流路27→加熱器側ファン52→加熱器20→加熱器出口側集合流路28→気筒A入口側三方弁24→気筒Aの流路が形成されている。気筒A内の作動ガスは、加熱開始時においては冷却過程終了後であるため低温であるが、加熱器側ファン52の作用により該流路を循環し、加熱器20により熱せられて気筒Aに戻る。気筒Cも同様である。
気筒Bは冷却過程にあり、気筒B出口側三方弁23、及び気筒B入口側三方弁24により、気筒B→気筒B出口側三方弁23→冷却器入口側集合流路13→冷却器側ファン51→冷却器10→冷却器出口側集合流路14→気筒B入口側三方弁24→気筒Bの流路が形成されている。気筒B内の作動ガスは、冷却開始時においては加熱過程終了後であるため高温であるが、冷却器側ファン51の作用により該流路を循環し、冷却器10により冷却されて気筒Bに戻る。気筒Dも同様である。
The above operation will be described. Assume that half of the cylinders A and C are in the heating process, and the other half of the cylinders B and D are in the cooling process.
Cylinder A is in the heating process, and cylinder A → cylinder A outlet side three-way valve 24 is connected to cylinder A → cylinder A outlet side three-way valve 23 → heater inlet side collective flow path 27 → heater side fan. 52 → heater 20 → heater outlet side collective flow path 28 → cylinder A inlet side three-way valve 24 → cylinder A flow path is formed. The working gas in the cylinder A is at a low temperature because it is after the end of the cooling process at the start of heating, but circulates in the flow path by the action of the heater side fan 52 and is heated by the heater 20 to the cylinder A. Return. The same applies to the cylinder C.
Cylinder B is in the cooling process, and cylinder B → cylinder B outlet side three-way valve 24 → cylinder B → cylinder B outlet side three-way valve 23 → cooler inlet side collective flow path 13 → cooler side fan 51 → Cooler 10 → Cooler outlet side collecting flow path 14 → Cylinder B inlet side three-way valve 24 → Cylinder B flow path is formed. The working gas in the cylinder B is hot because it is after the heating process is finished at the start of cooling, but circulates in the flow path by the action of the cooler side fan 51 and is cooled by the cooler 10 to the cylinder B. Return. The same applies to the cylinder D.

気筒A、Cが加熱過程を終了し冷却過程に入れば、気筒B、Dが加熱過程に入る。気筒Aは冷却過程にあり、気筒A出口側三方弁23、及び気筒A入口側三方弁24により、気筒A→気筒A出口側三方弁23→冷却器入口側集合流路13→冷却器側ファン51→冷却器10→冷却器出口側集合流路14→気筒A入口側三方弁24→気筒Aの流路が形成される。気筒A内の作動ガスは冷却開始時においては加熱過程終了後であるため高温であるが、冷却器側ファン51の作用により該流路を循環し、冷却器10により熱せられて気筒Aに戻る。気筒Cも同様である。   When the cylinders A and C finish the heating process and enter the cooling process, the cylinders B and D enter the heating process. Cylinder A is in a cooling process, and cylinder A → cylinder A outlet side three-way valve 23 → cylinder A outlet side three-way valve 23 → cooler inlet side collective flow path 13 → cooler side fan 51 → Cooler 10 → Cooler outlet side collective flow path 14 → Cylinder A inlet side three-way valve 24 → Cylinder A flow path is formed. The working gas in the cylinder A is at a high temperature because it is after the end of the heating process at the start of cooling, but circulates in the flow path by the action of the cooler-side fan 51 and is heated by the cooler 10 to return to the cylinder A. . The same applies to the cylinder C.

気筒Bは加熱過程にあり、気筒B出口側三方弁23、及び気筒B入口側三方弁24により、気筒B→気筒B出口側三方弁23→加熱器入口側集合流路27→加熱器側ファン52→加熱器20→加熱器出口側集合流路28→気筒B入口側三方弁24→気筒Bの流路が形成される。気筒B内の作動ガスは加熱開始時においては冷却過程終了後であるため低温であるが、加熱器側ファン52の作用により該流路を循環し、加熱器20により熱せられて気筒Bに戻る。気筒Dも同様である。
従って加熱器入口側集合流路27には常時、低温の作動ガスが流れ、冷却器入口側集合流路13には常時、高温の作動ガスが流れる。熱回収装置70内に熱交換器71が、加熱器入口側集合流路27と冷却器入口側集合流路13の間に設けられているため加熱器入口側集合流路27を流れる低温の作動ガスは、冷却器入口側集合流路13を流れる高温の作動ガスにより加熱されて加熱器20に供給され、加熱器の負荷が低減される。同様に冷却器の負荷も軽減され、システムの熱効率が改善される。
Cylinder B is in a heating process, and cylinder B → cylinder B outlet side three-way valve 23 → cylinder B outlet side three-way valve 23 → heater inlet side collecting flow path 27 → heater side fan 52 → heater 20 → heater outlet side collective flow path 28 → cylinder B inlet side three-way valve 24 → cylinder B flow path is formed. The working gas in the cylinder B is at a low temperature because it is after the cooling process is finished at the start of heating, but circulates in the flow path by the action of the heater-side fan 52 and is heated by the heater 20 to return to the cylinder B. . The same applies to the cylinder D.
Accordingly, a low-temperature working gas always flows through the heater inlet-side collecting flow path 27, and a high-temperature working gas always flows through the cooler inlet-side collecting flow path 13. Since the heat exchanger 71 is provided in the heat recovery apparatus 70 between the heater inlet-side collective flow path 27 and the cooler inlet-side collective flow path 13, the low-temperature operation flowing through the heater inlet-side collective flow path 27 is performed. The gas is heated by the high-temperature working gas flowing through the cooler inlet side collecting flow path 13 and supplied to the heater 20, and the load on the heater is reduced. Similarly, the cooler load is reduced and the thermal efficiency of the system is improved.

図1の作動ガスの移動手段であるファン51、51を他の移動手段、ルーツブロア等の容積圧縮機(図示せず)とすれば、該ルーツブロア等を当該多気筒外燃式クローズドサイクル熱機関の出力軸46により駆動することによりサイクル当りの作動ガス移動量を一定とすることができる。加熱過程終了後に気筒内に存在する高温高圧ガスが、気筒から三方弁23を通過し冷却器10に移動し、同時に冷却器10から供給される低温低圧ガスが、三方弁24を通過し気筒を充満通過して三方弁23に到達以前に三方弁23を切り替える冷却過程を行い、また冷却過程終了後に気筒内に存在する低温低圧ガスが、気筒から三方弁23を通過し過熱器20に移動し、同時に加熱器20から供給される高温高圧ガスが、三方弁24を通過し気筒を充満通過して三方弁23に到達以前に三方弁23を切り替える加熱過程を行うことにより、冷却器入口側集合流路13には常に高温の作動ガスが流れ、加熱器入口側集合流路27には常に低温の作動ガスが流れるため、冷却器入口側集合流路13と加熱器入口側集合流路27の出口側に設けられた熱回収装置70の熱交換器71により加熱器20に供給される低温作動ガスを加熱して熱量を効率よく回収することができる。   If the fans 51, 51, which are moving gas moving means in FIG. 1, are other moving means, and a volumetric compressor (not shown) such as a roots blower, the roots blower is used as the multi-cylinder external combustion closed cycle heat engine. By driving with the output shaft 46, the moving amount of working gas per cycle can be made constant. After the heating process is finished, the high-temperature and high-pressure gas existing in the cylinder passes from the cylinder through the three-way valve 23 and moves to the cooler 10, and at the same time, the low-temperature and low-pressure gas supplied from the cooler 10 passes through the three-way valve 24 and passes through the cylinder. A cooling process is performed in which the three-way valve 23 is switched before it reaches the three-way valve 23 after filling, and the low-temperature and low-pressure gas existing in the cylinder passes through the three-way valve 23 and moves to the superheater 20 after the cooling process ends. At the same time, the high-temperature high-pressure gas supplied from the heater 20 passes through the three-way valve 24, passes through the cylinder, passes through the cylinder, and performs a heating process for switching the three-way valve 23 before reaching the three-way valve 23. Since the high temperature working gas always flows in the flow path 13 and the low temperature working gas always flows in the heater inlet side collective flow path 27, the cooler inlet side collective flow path 13 and the heater inlet side collective flow path 27 Provided on the exit side The amount of heat to heat the low-temperature working gas supplied to the heater 20 by the heat exchanger 71 of the heat recovery unit 70 can be efficiently recovered was.

10 冷却器
11、12、21、22 開閉弁
13 冷却器入口側集合流路
14 冷却器出口側集合流路
15、16、25、26 流路
20 加熱器
27 加熱器入口側集合流路
28 加熱器出口側集合流路
23、24、25、26 三方弁
30 気室
40 ピストン
41 ピストンシリンダー
42 フライホイール
43 クランク機構
45 クランク室
46 出力軸
50、51、52 ファン
70 熱回収装置
71 熱交換器
72、73 流路
DESCRIPTION OF SYMBOLS 10 Cooler 11, 12, 21, 22 On-off valve 13 Cooler inlet side collecting flow path 14 Cooler outlet side collecting flow path 15, 16, 25, 26 Flow path 20 Heater 27 Heater inlet side collecting flow path 28 Heating Outlet collecting flow path 23, 24, 25, 26 Three-way valve 30 Air chamber 40 Piston 41 Piston cylinder 42 Flywheel 43 Crank mechanism 45 Crank chamber 46 Output shaft 50, 51, 52 Fan 70 Heat recovery device 71 Heat exchanger 72 73 channels

Claims (1)

密閉された気室と加熱器及び冷却器を設け、該気室と該加熱器の入り口側及び出口側と導通する流路を設け、該気室と該冷却器の入り口側及び出口側と導通する流路を設け、気室それぞれの入り口側及び出口側の流路に開閉弁を設け、作動ガスの移動手段を流路に設け、冷却器入り口側及び出口側の開閉弁を閉として冷却器を密閉し、加熱器入り口側及び出口側の開閉弁は開として気室内の作動ガスを加熱器を通じて循環させ、気室内の作動ガスを加熱し、また加熱器入り口側及び出口側の開閉弁を閉として加熱器を密閉する一方、冷却器入り口側及び出口側の開閉弁は開として気室内の作動ガスを冷却器を通じて循環させて気室内の作動ガスを冷却し、気室内の作動ガスを膨張、収縮させて作用体を駆動する単気筒の外燃式クローズドサイクル熱機関の気筒を複数配列した多気筒外燃式クローズドサイクル熱機関であって、各気筒が、加熱器および冷却器を共有し、加熱器入り口側および冷却器入り口側の流路間に熱交換器を設けたことを特徴とする熱回収装置付多気筒外燃式クローズドサイクル熱機関。   A sealed air chamber, a heater and a cooler are provided, and a flow path is provided to connect the air chamber to the inlet side and the outlet side of the heater, and the air chamber is connected to the inlet side and the outlet side of the cooler. The flow path is provided, the opening and closing valves are provided in the inlet and outlet flow paths of the air chambers, the working gas moving means is provided in the flow path, and the opening and closing valves on the cooler inlet and outlet sides are closed. The opening and closing valves on the inlet and outlet sides of the heater are opened and the working gas in the air chamber is circulated through the heater to heat the working gas in the air chamber, and the opening and closing valves on the inlet and outlet sides of the heater are opened. The heater is sealed as closed, while the opening and closing valves on the inlet side and outlet side of the cooler are opened, and the working gas in the air chamber is circulated through the cooler to cool the working gas in the air chamber, and the working gas in the air chamber is expanded. Single cylinder external combustion type closed cylinder that operates by contracting This is a multi-cylinder external combustion type closed-cycle heat engine in which multiple cylinders of the heat engine are arranged. Each cylinder shares a heater and a cooler, and heat is generated between the flow paths on the heater inlet side and the cooler inlet side. A multi-cylinder external combustion type closed cycle heat engine with a heat recovery device, characterized in that an exchanger is provided.
JP2009215115A 2009-09-17 2009-09-17 Multi-cylinder external combustion closed cycle heat engine with heat recovery device Expired - Fee Related JP5280325B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009215115A JP5280325B2 (en) 2009-09-17 2009-09-17 Multi-cylinder external combustion closed cycle heat engine with heat recovery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009215115A JP5280325B2 (en) 2009-09-17 2009-09-17 Multi-cylinder external combustion closed cycle heat engine with heat recovery device

Publications (2)

Publication Number Publication Date
JP2011064121A JP2011064121A (en) 2011-03-31
JP5280325B2 true JP5280325B2 (en) 2013-09-04

Family

ID=43950620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009215115A Expired - Fee Related JP5280325B2 (en) 2009-09-17 2009-09-17 Multi-cylinder external combustion closed cycle heat engine with heat recovery device

Country Status (1)

Country Link
JP (1) JP5280325B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3723289A1 (en) * 1987-01-13 1988-07-21 Wilhelm Hoevecke Device for conversion of heat energy
CN1098192A (en) * 1993-05-16 1995-02-01 朱绍伟 Rotary vascular refrigerator
DE19719190C2 (en) * 1997-05-08 1999-02-25 Gerhard Stock Hot water motor for converting thermal into electrical energy
NL1015383C1 (en) * 2000-06-06 2001-12-10 Sander Pels Stirling engine and heat pump.
JP4438070B2 (en) * 2004-12-13 2010-03-24 佐市 勘坂 Energy conversion system
JP4520527B2 (en) * 2009-01-19 2010-08-04 横浜製機株式会社 External combustion type closed cycle heat engine

Also Published As

Publication number Publication date
JP2011064121A (en) 2011-03-31

Similar Documents

Publication Publication Date Title
JP4520527B2 (en) External combustion type closed cycle heat engine
US20060248886A1 (en) Isothermal reciprocating machines
WO2011151888A1 (en) External-combustion, closed-cycle thermal engine
WO2004059155A1 (en) Isothermal reciprocating machines
US9021800B2 (en) Heat exchanger and associated method employing a stirling engine
CN110234863B (en) Regenerative cooling system
JP5525371B2 (en) External combustion type closed cycle heat engine
JP5317942B2 (en) External combustion type closed cycle heat engine
KR101018379B1 (en) External combustion engine and output method thereof
US6205788B1 (en) Multiple heat exchanging chamber engine
JP2008223622A (en) Thermal engine
JP5280325B2 (en) Multi-cylinder external combustion closed cycle heat engine with heat recovery device
US8640454B1 (en) Lower costs and increased power density in stirling cycle machines
RU2649523C2 (en) External combustion engine based on gamma-type stirling engine, drive system and method of engine power regulation
KR20060071827A (en) An external combustion engine combined with cylinder, re-generator and cooler
JP5597574B2 (en) Stirling engine
KR100849506B1 (en) Scroll-type stirling cycle engine
JP4438070B2 (en) Energy conversion system
WO2021259401A1 (en) Stirling engine
RU2464504C1 (en) Cooling plant with opposite stirling thermal engine
KR200435918Y1 (en) An external combustion engine combined with Cylinder, Re-generator and Cooler
RU2246021C2 (en) Engine with external delivery of heat
KR101256498B1 (en) Heat transfer accelerating type external combustion engine
JP2000018742A (en) Cooling device
WO2023048667A1 (en) Heat transfer system for stirling engines

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130522

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees