JP5317942B2 - External combustion type closed cycle heat engine - Google Patents

External combustion type closed cycle heat engine Download PDF

Info

Publication number
JP5317942B2
JP5317942B2 JP2009277329A JP2009277329A JP5317942B2 JP 5317942 B2 JP5317942 B2 JP 5317942B2 JP 2009277329 A JP2009277329 A JP 2009277329A JP 2009277329 A JP2009277329 A JP 2009277329A JP 5317942 B2 JP5317942 B2 JP 5317942B2
Authority
JP
Japan
Prior art keywords
cooler
heater
external combustion
heat engine
combustion type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009277329A
Other languages
Japanese (ja)
Other versions
JP2011117411A (en
Inventor
俊光 海法
省三 鶴野
幾生 小井田
宗平 関根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Seiki Co Ltd
Original Assignee
Yokohama Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Seiki Co Ltd filed Critical Yokohama Seiki Co Ltd
Priority to JP2009277329A priority Critical patent/JP5317942B2/en
Priority to PCT/JP2010/071730 priority patent/WO2011070982A1/en
Publication of JP2011117411A publication Critical patent/JP2011117411A/en
Application granted granted Critical
Publication of JP5317942B2 publication Critical patent/JP5317942B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G3/00Combustion-product positive-displacement engine plants
    • F02G3/02Combustion-product positive-displacement engine plants with reciprocating-piston engines

Description

本発明は、簡易構造にして操作、維持容易な外燃式クローズドサイクル熱機関に関するものである。   The present invention relates to an external combustion type closed cycle heat engine that has a simple structure and is easy to operate and maintain.

スターリングエンジンは外燃式クローズドサイクル熱機関の一種であり、熱源の種類を問わず、現在、無駄となっているエネルギーの有効利用が可能であり、静粛で低公害であるので、各種のタイプが研究開発され、重要な将来熱機関の一つと目されている。   The Stirling engine is a type of external combustion closed cycle heat engine. Regardless of the type of heat source, the energy that is currently wasted can be used effectively, and it is quiet and has low pollution. It has been researched and developed and is regarded as one of the important future heat engines.

スターリングエンジンは、気室内に封入した作動ガスを加熱及び冷却して該作動ガスを膨張及び収縮させ、動力を得る外燃式熱機関である。
従来のディスプレーサ型スターリングエンジンは、ディスプレーサの往復動により、該作動ガスを加熱部と冷却部との間で往復させて該作動ガスを加熱及び冷却、即ち膨張及び収縮させて、パワーピストンを作用させることにより動力を得るものである。ディスプレーサは、パワーピストンと位相をもって連動するように構成されている(特許文献1)。
A Stirling engine is an external combustion heat engine that obtains power by heating and cooling a working gas sealed in an air chamber to expand and contract the working gas.
In a conventional displacer type Stirling engine, the working gas is reciprocated between a heating part and a cooling part by reciprocating the displacer to heat and cool the working gas, that is, expand and contract, thereby operating a power piston. To gain power. The displacer is configured to interlock with the power piston in phase (Patent Document 1).

しかしながら、従来のスターリングエンジンでは、気室、加熱器及び冷却器内の作動ガスが同時に加圧、減圧され、このため加熱時において、気室を加圧するために冷却器内の作動ガスも加圧しなければならず、また冷却時において、気室を減圧するために加熱器内の作動ガスも減圧しなければならない。このため、気室容積に比して加熱器又は冷却器の容積が大きくなるとエンジン効率が低下する。従って、エンジン効率を上げるために加熱器及び冷却器を小型化する必要がある。   However, in the conventional Stirling engine, the working gas in the air chamber, the heater and the cooler is pressurized and depressurized at the same time. Therefore, during heating, the working gas in the cooler is also pressurized to pressurize the air chamber. Also, during cooling, the working gas in the heater must be depressurized in order to depressurize the air chamber. For this reason, when the volume of the heater or the cooler is larger than the air chamber volume, the engine efficiency is lowered. Therefore, it is necessary to reduce the size of the heater and the cooler in order to increase the engine efficiency.

しかし、エンジンを作動させるには必要な熱量を取り込み、また排出する必要があり、加熱器及び冷却器は十分な能力を持たなければならない。加熱器を小型かつ充分な能力を持たせるには、伝熱面の肉厚を薄くし、また加熱温度を上げて面積当りの伝熱量を増やす手段があるが、精密な工作を要し、高価な耐熱金属を使用する必要があり、また高温により加熱器の腐蝕が促進されるといった弊害がある。
また、冷却期間中、加熱器は利用されず、全期間を通じた加熱器の効率は低下し、加熱器に加えられる外部熱量は無駄に消費され利用効率が低下している。加熱期間の冷却器も同様である。
However, to operate the engine, it is necessary to take in and discharge the necessary amount of heat, and the heater and cooler must have sufficient capacity. In order to make the heater small and have sufficient capacity, there are means to reduce the thickness of the heat transfer surface and increase the heat transfer amount per area by raising the heating temperature, but it requires precise work and is expensive. It is necessary to use a new refractory metal, and the high temperature promotes corrosion of the heater.
In addition, the heater is not used during the cooling period, and the efficiency of the heater throughout the entire period is reduced, and the amount of external heat applied to the heater is wasted and the utilization efficiency is reduced. The same applies to the cooler during the heating period.

上述するような従来技術に鑑み、加熱器又は冷却器の容積がエンジンの効率に関係せず、多気筒化、大型化、高出力化が可能で、低温熱源を有効に利用することができ、種々の条件下で設計、製作できる外燃式クローズドサイクル熱機関を、本発明の発明者らは開発し、先に出願した(特許文献2)(以下、「本発明者の先願発明」という)。   In view of the prior art as described above, the volume of the heater or cooler is not related to the efficiency of the engine, can be multi-cylinder, large, and high output, and can effectively use a low-temperature heat source, The inventors of the present invention developed an external combustion type closed cycle heat engine that can be designed and manufactured under various conditions, and filed it earlier (Patent Document 2) (hereinafter referred to as “the invention of the present invention of the present inventor”). ).

即ち、密閉された気室と加熱器及び冷却器を設け、該気室と該加熱器の入り口側及び出口側と導通する流路を設け、該気室と冷却器の入り口側及び出口側と導通する流路を設け、それぞれ入り口側及び出口側の流路に開閉弁を設け、作動ガスの移動手段を設け、冷却器入り口側及び出口側の開閉弁を閉として冷却器を密閉し、加熱器入り口側及び出口側の開閉弁は開として気室内の作動ガスを加熱器を通じて循環させ、気室内の作動ガスを加熱し、また加熱器入り口側及び出口側の開閉弁を閉として加熱器を密閉し、一方、冷却器入り口側及び出口側の開閉弁は開として気室内の作動ガスを冷却器を通じて循環させて気室内の作動ガスを冷却し、気室内の作動ガスを膨張、収縮させて気室下部に連接した作用体を駆動する外燃式クローズドサイクル熱機関で、加熱器又は冷却器の容積がエンジンの効率に関係せず、種々の条件下で設計、製作できる外燃式クローズドサイクル熱機関を提案した。   That is, a sealed air chamber, a heater and a cooler are provided, and a flow path is provided to communicate with the air chamber and the inlet side and the outlet side of the heater, and the air chamber and the inlet side and the outlet side of the cooler are provided. Provide a flow path that conducts, provide an open / close valve in the flow path on the inlet side and the outlet side, provide a means for moving the working gas, close the open / close valve on the cooler inlet side and the outlet side, seal the cooler, and heat Open / close valves on the inlet side and outlet side are opened and the working gas in the air chamber is circulated through the heater to heat the working gas in the air chamber, and the on / off valves on the inlet and outlet sides of the heater are closed. On the other hand, the opening and closing valves on the inlet side and outlet side of the cooler are opened and the working gas in the air chamber is circulated through the cooler to cool the working gas in the air chamber, and the working gas in the air chamber is expanded and contracted. An external combustion closed sensor that drives an action body connected to the lower part of the air chamber In cycle heat engine, the volume of the heater or cooler not related to the efficiency of the engine, the design under various conditions, and proposed fabrication can outer 燃式 closed cycle heat engine.

しかしながら、加熱過程終了時に気室及びピストンシリンダー内に存在する高温の作動ガスは、冷却過程開始とともに冷却器内に移動し冷却され、この過程において、高温の作動ガスの持っていた熱量は系外に運び去られることになり、熱効率低下の一因となっていた。   However, the hot working gas present in the air chamber and the piston cylinder at the end of the heating process moves into the cooler at the start of the cooling process and is cooled. In this process, the amount of heat that the hot working gas has is outside the system. It was carried away and contributed to the decrease in thermal efficiency.

特開2006−275018号公報JP 2006-275018 A 特願2009−008570号Japanese Patent Application No. 2009-008570

上述するような従来技術に鑑み、本発明では、加熱器又は冷却器の容積がエンジンの効率に関係せず、種々の条件下で設計、製作でき、簡易構造にして、より効率が高く、操作、維持容易な外燃式クローズドサイクル熱機関を提供することを課題とする。   In view of the prior art as described above, in the present invention, the volume of the heater or cooler is not related to the efficiency of the engine, and can be designed and manufactured under various conditions. It is an object of the present invention to provide an external combustion type closed cycle heat engine that is easy to maintain.

本発明の発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、以下の構成を有する発明を完成するに至った。
請求項1の発明は、密閉された気室と加熱器及び冷却器を設け、該気室と該加熱器の入り口部及び出口部と導通する流路を設け、該気室と冷却器の入り口部及び出口部と導通する流路を設け、それぞれ入り口部側及び出口部側の流路に開閉弁を設け、作動ガスの移動手段を設け、加熱器と導通する流路と該流路に開閉弁を設け、冷却器と導通する流路と該流路に開閉弁を設けて、加熱器と冷却器それぞれと導通する作用体を設けたことを特徴とするもので、加熱器又は冷却器の容積がエンジンの効率に関係せず、種々の条件下で設計、製作でき、簡易構造にして、より効率が高く、操作、維持容易な外燃式クローズドサイクル熱機関を実現できることを見出した。特に、特許文献2では、気室と作用体を一体で構成していたが、本発明は、気室と作用体を分離することにより、更なる熱効率の向上を図れる外燃式クローズドサイクル熱機関を実現できることを見出したものである。
The inventors of the present invention have intensively studied to solve the above problems, and as a result, have completed the invention having the following configuration.
The invention of claim 1 is provided with a sealed air chamber, a heater, and a cooler, and provided with a flow path that communicates with the air chamber and an inlet portion and an outlet portion of the heater, and the air chamber and the inlet of the cooler. A flow path that communicates with the head and outlet sections is provided, an opening / closing valve is provided for the flow path on the inlet side and the outlet section, respectively, a working gas moving means is provided, and a flow path that communicates with the heater and the flow path are opened and closed. It is characterized in that a valve is provided, a flow path that communicates with the cooler, an open / close valve is provided in the flow path, and an operating body that communicates with each of the heater and the cooler is provided. It was found that the external combustion type closed cycle heat engine whose volume is not related to the efficiency of the engine, can be designed and manufactured under various conditions, has a simple structure, and is more efficient, easy to operate and maintain. In particular, in Patent Document 2, the air chamber and the working body are integrally configured. However, the present invention is an external combustion type closed cycle heat engine that can further improve the thermal efficiency by separating the air chamber and the working body. It has been found that can be realized.

請求項2の発明は、請求項1記載の外燃式クローズドサイクル熱機関であって、上記開閉弁の内、冷却器の出口部、加熱器の入り口部の開閉弁が逆止弁であることを特徴とするものである。   Invention of Claim 2 is the external combustion type closed cycle heat engine of Claim 1, Comprising: The on-off valve of the exit part of a cooler and the entrance part of a heater is a check valve among the on-off valves. It is characterized by.

請求項3の発明は、請求項1記載の外燃式クローズドサイクル熱機関であって、開閉弁の流路が3分岐あり、1分岐から入り込む流体を、他の2分岐流路のいずれかを選択的に流路とする、又は2分岐流路のいずれかを選択し、他の1分岐を流路とする三方弁としたことを特徴とするものである。   The invention according to claim 3 is the external combustion closed cycle heat engine according to claim 1, wherein the flow path of the on-off valve has three branches, and the fluid entering from one branch is changed to one of the other two branch paths. A three-way valve having a selective flow path or a two-branch flow path and another one branch as a flow path is provided.

請求項4の発明は、請求項1〜3のいずれかに記載の外燃式クローズドサイクル熱機関であって、作用体が、ピストンであることを特徴とするものである。   The invention of claim 4 is the external combustion type closed cycle heat engine according to any one of claims 1 to 3, wherein the operating body is a piston.

請求項5の発明は、請求項1〜3のいずれかに記載の外燃式クローズドサイクル熱機関であって、作用体がタービンであることを特徴とするものである。本方式では作用体を通過する流れは一方向であり通常型のタービンが使用でき、必ずしも、往復流型である必要はない。本エンジンでは発生圧力差が大きい反面、ガス流量が少ないため特殊なタービンが必要になる。重比重ガスの使用は、発生圧力差を運動量に効率よく変換することができる。   A fifth aspect of the present invention is the external combustion closed cycle heat engine according to any one of the first to third aspects, wherein the operating body is a turbine. In this system, the flow passing through the working body is unidirectional, and a normal type turbine can be used, and it is not always necessary to be a reciprocating flow type. Although this engine has a large pressure difference, a special turbine is required because the gas flow rate is small. The use of heavy specific gravity gas can efficiently convert the generated pressure difference into momentum.

請求項6の発明は、請求項1〜5のいずれかに記載の外燃式クローズドサイクル熱機関であって、作用体を複数設け、加熱器および冷却器を共有することを特徴とするものである。   The invention of claim 6 is the external combustion type closed cycle heat engine according to any one of claims 1 to 5, wherein a plurality of operating bodies are provided and a heater and a cooler are shared. is there.

請求項7の発明は、請求項1〜6のいずれかに記載の外燃式クローズドサイクル熱機関であって、複数設けた作用体の駆動軸を共有することを特徴とするものである。   A seventh aspect of the present invention is the external combustion type closed cycle heat engine according to any one of the first to sixth aspects, wherein the drive shaft of a plurality of operating members is shared.

請求項8の発明は、請求項1〜4、6、7のいずれかに記載の外燃式クローズドサイクル熱機関であって、複数設けたピストンのクランク室を共有したことを特徴とするものである。   The invention of claim 8 is the external combustion type closed cycle heat engine according to any one of claims 1 to 4, 6, and 7, wherein a plurality of piston crank chambers are shared. is there.

請求項9の発明は、請求項1〜4、6〜8のいずれかに記載の外燃式クローズドサイクル熱機関であって、複数設けたピストンが、クランクを介して総和が360°となる位相差をもって共有する駆動軸に連接することを特徴とするものである。ピストン下及びクランク室の容積、及び圧力を一定としている。   The invention of claim 9 is the external combustion type closed cycle heat engine according to any one of claims 1 to 4 and 6 to 8, wherein a plurality of pistons are arranged such that the sum total is 360 ° via a crank. It is characterized by being connected to a common drive shaft with a phase difference. The volume under the piston and the crank chamber and the pressure are constant.

請求項10の発明は、請求項1〜9のいずれかに記載の外燃式クローズドサイクル熱機関であって、加熱器入り口部側及び冷却器入り口部側の流路間に熱交換器を設けたことを特徴とするものである。   Invention of Claim 10 is an external combustion type closed cycle heat engine in any one of Claims 1-9, Comprising: A heat exchanger is provided between the flow paths of the heater inlet part side and the cooler inlet part side. It is characterized by that.

請求項11の発明は、請求項1〜10のいずれかに記載の外燃式クローズドサイクル熱機関であって、気室を加熱器と冷却器に並列して2個設けたことを特徴とするものである。   Invention of Claim 11 is the external combustion type closed cycle heat engine in any one of Claims 1-10, Comprising: Two air chambers were provided in parallel with the heater and the cooler. Is.

本発明の外燃式クローズドサイクル熱機関は、気室加熱時、冷却器は開閉弁により加熱器から密閉分離されているので冷却器内の作動ガスは加圧されず、低温、低圧のままで、気室冷却時、加熱器は開閉弁により冷却器から密閉分離されているので加熱器内の作動ガスは減圧されず、高温・高圧のままで、温度・圧力の変化は気室内の作動ガスにのみ生じ、従来生じていた加熱器、冷却器内の作動ガスを加圧、減圧するための無駄なエネルギー消費は加熱器、冷却器の大きさにかかわりなく生じない。即ち、気室加熱時、冷却器は開閉弁により加熱器から密閉分離されているので、冷却器内の作動ガスを有効に冷却し続けることができ、気室冷却時、加熱器は開閉弁により冷却器から密閉分離されているので加熱器内の作動ガスを有効に加熱し続けることができ、加熱器・冷却器内を全期間有効に作用させることができるとともに、熱源、冷熱源の利用効率を高めることができる。このため加熱、冷却の効率が向上し、従来のスターリングエンジンに比し高いエンジン効率を得ることができる。
また、本発明者の先願発明に比し、本発明の外燃式クローズドサイクル熱機関は、加熱器と冷却器と開閉弁を介してそれぞれと導通する作用体を設けたので、それぞれの作用体が気室を共有できるため構造を簡易にすることができ、また作用体に対する作動ガスの流れは一方向であるため各作用体に対する開閉弁は2個、または三方弁1個ですみ、作用体周りの構造を簡易にすることができ、多気筒の場合は弁の総数を少なくできる。また作用体の温度は一定となるため作用体の熱設計が容易になる。
上記するように流路を含めた加熱器、冷却器及び気室の容積が効率に影響しなくなるために、加熱器、冷却器及び気室と作用体間の流路を長くでき、加熱器、冷却器及び気室を作用体本体と離れて設置することができるため機器配置にも自由度が生じ、作用体本体の設置しにくい場所の既存廃熱源なども有効に利用できる。
また加熱器、冷却器を大きくできるため伝熱面積を大きくでき、温度差が小さくても十分な伝熱量が得られ、廃熱等の低温熱源も有効に利用できるとともに、加熱器の設計条件が緩やかになり、加熱器の材料、構造、工作等に関し、目的に合う最適なものを選択できる。
作動ガスとして稀少なヘリウムを使う必要がなく、作動ガスは窒素、空気等でよい。また二酸化炭素、キセノン等の重比重のガスを使用することによりタービンを小型化できる。
またディスプレーサを使用しないため気室内に断熱材を設けることができ、気室外郭を通じた熱放散を減じることができるため熱効率を向上でき、さらに気室外郭を低温に保つことができるため、高価な耐熱合金を使用する必要がなくなる。
In the external combustion type closed cycle heat engine of the present invention, when the air chamber is heated, the cooler is hermetically separated from the heater by an on-off valve, so the working gas in the cooler is not pressurized, and remains at low temperature and low pressure. When the air chamber is cooled, the heater is hermetically separated from the cooler by an on-off valve, so the working gas in the heater is not depressurized. The wasteful energy consumption for pressurizing and depressurizing the working gas in the heater and cooler, which has occurred in the past, does not occur regardless of the size of the heater or cooler. That is, when the air chamber is heated, the cooler is hermetically separated from the heater by the on-off valve, so that the working gas in the cooler can be continuously cooled effectively. Since it is hermetically separated from the cooler, the working gas in the heater can continue to be heated effectively, the heater / cooler can be effectively operated for the entire period, and the utilization efficiency of the heat source and cold source Can be increased. For this reason, the efficiency of heating and cooling is improved, and higher engine efficiency can be obtained as compared with the conventional Stirling engine.
Further, as compared with the prior invention of the inventor of the present inventor, the external combustion type closed cycle heat engine of the present invention is provided with the operating body that is electrically connected to each other through the heater, the cooler, and the on-off valve. Since the body can share the air chamber, the structure can be simplified, and the flow of working gas to the working body is unidirectional, so there are only two on-off valves or one three-way valve for each working body. The structure around the body can be simplified, and in the case of multiple cylinders, the total number of valves can be reduced. Further, since the temperature of the working body is constant, the thermal design of the working body is facilitated.
Since the volume of the heater, cooler, and air chamber including the flow path does not affect the efficiency as described above, the flow path between the heater, the cooler, and the air chamber and the working body can be lengthened. Since the cooler and the air chamber can be installed apart from the working body, the arrangement of the equipment is also free, and the existing waste heat source in a place where the working body is difficult to install can be used effectively.
In addition, since the heater and cooler can be enlarged, the heat transfer area can be increased, a sufficient amount of heat transfer can be obtained even if the temperature difference is small, low temperature heat sources such as waste heat can be used effectively, and the design conditions of the heater It becomes gentler and it is possible to select the most suitable one for the purpose regarding the material, structure, work, etc. of the heater.
There is no need to use rare helium as the working gas, and the working gas may be nitrogen, air or the like. Moreover, the turbine can be reduced in size by using a gas having a heavy specific gravity such as carbon dioxide or xenon.
In addition, since a displacer is not used, a heat insulating material can be provided in the air chamber, heat dissipation through the air chamber outline can be reduced, thermal efficiency can be improved, and furthermore, the air chamber outline can be kept at a low temperature. There is no need to use a heat-resistant alloy.

開閉弁を三方弁形式とすれば、開閉弁数を二分の一に減ずることができて構造を簡易にすることができると同時に、作動ガス切り替え同期をタイミング良く行え、また開閉弁の制御装置を簡易化することができる。   If the on-off valve is a three-way valve type, the number of on-off valves can be reduced to one-half, the structure can be simplified, and at the same time the operation gas switching can be synchronized with good timing. It can be simplified.

作用体を公知のピストンやタービンとすれば、膨張・収縮する作動ガスから容易に動力として利用できる外燃式クローズドサイクル熱機関を提供することができる。   If the working body is a known piston or turbine, it is possible to provide an external combustion closed cycle heat engine that can be easily used as power from the working gas that expands and contracts.

本発明においては、全サイクルを通じ、加熱器内の作動ガスは高温、高圧のままであり、冷却器内の作動ガスは低温、低圧のままであるため、加熱器、冷却器及び気室各1台に複数の作用体を設けることができ、各々の作用体に対し各1個の加熱器、冷却器及び気室を必要とする従来の外燃式クローズドサイクル熱機関に比し加熱器、冷却器及び気室の構造が大幅に簡単化できる。   In the present invention, the working gas in the heater remains at a high temperature and a high pressure throughout the entire cycle, and the working gas in the cooler remains at a low temperature and a low pressure. A plurality of operating bodies can be provided on the base, and each operating body has one heater, one cooler and one air heater. The structure of the vessel and the air chamber can be greatly simplified.

複数の作用体の駆動軸を共有すれば、大きな動力を得ることができ、また、作用体をコンパクトにすることができ、複数の作用体を複数の群に分割し、それぞれの分割された群が駆動軸を共有すれば複数の動力を得ることができ、利用できる熱源や設備する場所、用途の諸条件により種々の設計に対応することができる。   If the drive shafts of a plurality of operating bodies are shared, a large power can be obtained, and the operating bodies can be made compact. The plurality of operating bodies are divided into a plurality of groups, and each divided group is divided. However, if a drive shaft is shared, a plurality of powers can be obtained, and various designs can be handled according to available heat sources, installation locations, and various conditions of use.

作用体としてピストンを使用する多気筒の外燃式クローズドサイクル式熱機関とする場合、クランク室を共有し、各々の気筒ピストンが総和360°となる位相差で動作するようにして、共有するクランク室、及び気筒室内ピストン下の総容積、及び圧力を一定とでき、ピストン裏側に働く力(背圧)が変動しないことでピストンの作動を円滑にできる。   In the case of a multi-cylinder external combustion type closed cycle heat engine that uses a piston as an operating body, the crank chamber is shared so that each cylinder piston operates with a phase difference of 360 ° in total. The total volume and pressure under the piston in the chamber and the cylinder chamber can be made constant, and the operation of the piston can be made smooth by the fact that the force (back pressure) acting on the back side of the piston does not fluctuate.

作用体から冷却器に向かう流路、および気室から冷却器に向かう流路を高温部とし、気室から加熱器に向かう流路を低温部として、高温部と低温部の間に熱交換器を設けて加熱器に流入する作動ガスを加熱することにより冷却器から本来外部に流出する熱量の一部を効率よく回収し、再利用できるために、熱効率を向上することができる。   The flow path from the operating body to the cooler and the flow path from the air chamber to the cooler are the high temperature part, and the flow path from the air chamber to the heater is the low temperature part. By heating the working gas flowing into the heater by providing a part of the amount of heat originally flowing out from the cooler to the outside, it can be efficiently recovered and reused, so that the thermal efficiency can be improved.

気室を加熱器と冷却器に並列して2個設け、開閉弁によりどちらかの気室が必ず加熱過程にあり、また、どちらかの気室が必ず冷却過程にあるようにすることにより加熱器に向かう低温部には低温ガスが常時流れ、冷却器に向かう高温部には高温ガスが常時流れるため、更なる熱エネルギー回収の効率を向上させることができる。   Heating by providing two air chambers in parallel with the heater and the cooler, and making sure that one of the air chambers is in the heating process by the open / close valve, and that one of the air chambers is always in the cooling process Since the low temperature gas always flows in the low temperature part toward the cooler and the high temperature gas always flows in the high temperature part toward the cooler, it is possible to further improve the efficiency of thermal energy recovery.

上記するように、本発明の外燃式クローズドサイクル熱機関は、多くの効果を有するものである。   As described above, the external combustion type closed cycle heat engine of the present invention has many effects.

本発明の外燃式クローズドサイクル熱機関の実施例を示す概念図The conceptual diagram which shows the Example of the external combustion type closed cycle heat engine of this invention 本発明の外燃式クローズドサイクル熱機関の実施例を示す概念図The conceptual diagram which shows the Example of the external combustion type closed cycle heat engine of this invention 本発明の異なる種類の作用体を用いた要部説明図Explanatory drawing of essential parts using different types of working bodies of the present invention 本発明の外燃式クローズドサイクル熱機関の実施例を示す概念図The conceptual diagram which shows the Example of the external combustion type closed cycle heat engine of this invention 本発明の外燃式クローズドサイクル熱機関の実施例を示す概念図The conceptual diagram which shows the Example of the external combustion type closed cycle heat engine of this invention 本発明の外燃式クローズドサイクル熱機関の実施例を示す概念図The conceptual diagram which shows the Example of the external combustion type closed cycle heat engine of this invention

以下、本発明を実施するための具体的な形態について、図1〜7を参照しながら詳細に説明する。図1以降と共通する構成部品に同一符号を付与し、詳述を省略する。   Hereinafter, specific modes for carrying out the present invention will be described in detail with reference to FIGS. The same reference numerals are given to components common to those in FIG.

図1は、本発明の外燃式クローズドサイクル熱機関の実施例を示す概念図である。
同図において、加熱器10、冷却器20、密閉された気室30、ファン1、作用体40を設け、該気室30の出口部32及び入り口部31と該加熱器10の入り口部11及び出口部12と導通する流路13、14をそれぞれ設け、該気室30の出口部32及び入り口部31と冷却器20の入り口部21及び出口部22と導通する流路23、24をそれぞれ設け、それぞれの流路13、14、23、24に開閉弁15、16、25、26を設け、気室30の出口部32流路へ作動ガスの移動手段1を設けている。該移動手段1は、気室30の入り口部31への流路に設けてもよい。移動手段1は、ファン1やポンプ等であり、作動ガスを強制的に移動できるものであればよい。尚、図中で電動機を図示せず、以下移動手段1をファン1と表記する。
作用体40は、41はピストンシリンダー、42は該ピストンシリンダー41内を摺動するピストン、43は駆動軸44に固設されたフライホイール、45はピストン42とフライホイール43を連接するクランク、クランク室46で構成されている。駆動軸44は、クランク室46外へ軸封装置(図示せず)を介して外部へ出力する。ピストンシリンダー41トップへ入り口部兼出口部47を設け、加熱器10の出口部17及び冷却器20入り口部27と導通する流路18、28をそれぞれ設け、該流路18、28にそれぞれ開閉弁19、29が設けられている。
作動ガスは、窒素ガス等が封入されている。
FIG. 1 is a conceptual diagram showing an embodiment of an external combustion type closed cycle heat engine of the present invention.
In the figure, a heater 10, a cooler 20, a sealed air chamber 30, a fan 1, and a working body 40 are provided, and an outlet portion 32 and an inlet portion 31 of the air chamber 30 and an inlet portion 11 of the heater 10 and Channels 13 and 14 are provided to communicate with the outlet 12, and channels 23 and 24 are provided to communicate with the outlet 32 and the inlet 31 of the air chamber 30 and the inlet 21 and the outlet 22 of the cooler 20. The on-off valves 15, 16, 25, and 26 are provided in the flow paths 13, 14, 23, and 24, and the working gas moving means 1 is provided in the outlet 32 flow path of the air chamber 30. The moving means 1 may be provided in the flow path to the entrance 31 of the air chamber 30. The moving means 1 is a fan 1, a pump, or the like and may be anything that can forcibly move the working gas. In the drawing, an electric motor is not shown, and the moving means 1 is hereinafter referred to as a fan 1.
The working body 40 includes a piston cylinder 41, a piston sliding inside the piston cylinder 41, a flywheel 43 fixed to the drive shaft 44, and a crank 45 connecting the piston 42 and the flywheel 43. The chamber 46 is configured. The drive shaft 44 outputs outside the crank chamber 46 via a shaft seal device (not shown). An inlet / outlet portion 47 is provided at the top of the piston cylinder 41, and flow paths 18 and 28 are respectively connected to the outlet portion 17 of the heater 10 and the cooler 20 inlet portion 27. 19 and 29 are provided.
The working gas is sealed with nitrogen gas or the like.

上記作用について詳述する。
冷却器20入り口部21及び出口部22の開閉弁25、26を実線で示すように閉として冷却器20を加熱器から密閉分離し、加熱器10入り口部11側及び出口部12側の開閉弁15、16を実線で示すように開として、気室30内の作動ガスを加熱器10→開閉弁16→気室30→ファン1→開閉弁15→加熱器10と図中実線矢印で示すように循環させて加熱する。このため気室30内の温度・圧力は加熱器10内の温度・圧力と等しくなる。この時の気室30内のガス量をmHとする。
つぎに加熱器10入り口部11側及び出口部12側の開閉弁15、16を破線で示すように閉として加熱器10を冷却器20から密閉分離する一方、冷却器20入り口部21側及び出口部22側の開閉弁25、26を破線で示すように開として、気室30内の作動ガスを冷却器20→開閉弁26→気室30→ファン1→開閉弁25→冷却器20と図中破線矢印で示すように循環させて冷却する。このため気室30内の温度・圧力は冷却器20内の温度・圧力と等しくなる。この時の気室30内のガス量をmLとする。
この過程において冷却器20はmHのガス量を取り込みmLのガス量を放出する。従ってmL>mHであれば冷却器20内のガス量は減少し圧力は低下する。一方、加熱器10はmHのガス量を放出し、mLのガス量を取り込む。従って加熱器10内のガス量は増加し圧力は上昇する。この過程においてサイクルあたり「mL−mH」のガス量が冷却器20から加熱器10に移動する。
この過程はmL=mHとなった時点で平衡に達するが、ボイル・シャルルの法則によれば平衡条件は「加熱器10内圧力/冷却器20内圧力=加熱内温度/冷却内温度」である。
一方、加熱器10の出口部17と作用体40の入り口部兼出口部47と導通する流路18に設けた開閉弁19を実線で示すように閉とし、冷却器20の入り口部27と作用体40の入り口部兼出口部47と導通する流路28に設けた開閉弁29を実線で示すように開とすれば、シリンダー41は冷却器20と連結されて低温・低圧になりピストン42は上昇する。尚、図中ピストン42は、上死点に位置しており加熱器10の加熱過程終了状態にある。
また、冷却器20の入り口部27と作用体40の入り口部兼出口部47と導通する流路28に設けた開閉弁29を破線で示すように閉とし、加熱器10の出口部17と作用体40の入り口部兼出口部47と導通する流路18に設けた開閉弁19を破線で示すように開とすれば、シリンダー41は、加熱器10と連結されて高温・高圧になりピストン42は下降する。
この過程において、ピストン42を介し、ガス量が加熱器10から冷却器20に移動する。従って、気室30を介した冷却器20から加熱器10への作動ガス量が、ピストン42を介した加熱器10から冷却器20への移動に等しい圧力差で、本発明の外燃式クローズドサイクル熱機関は作動する。
周知の如く内燃式エンジン(内燃式熱機関)は、シリンダー内で霧化したガソリン等に点火爆発させてピストンの上下駆動をさせて動力を発生させているが、本発明の外燃式クローズドサイクル熱機関は、気室30を介してのサイクル過程において、加熱器10は自動的に高圧になり、冷却器20は自動的に低圧になることを特徴とするものである。
The above operation will be described in detail.
The on-off valves 25 and 26 at the inlet portion 21 and the outlet portion 22 of the cooler 20 are closed as shown by solid lines, and the cooler 20 is hermetically separated from the heater, and the on-off valves at the inlet portion 11 side and the outlet portion 12 side of the heater 10 are separated. 15 and 16 are opened as indicated by solid lines, and the working gas in the air chamber 30 is indicated by a solid line arrow in the drawing of the heater 10 → the on-off valve 16 → the air chamber 30 → the fan 1 → the on-off valve 15 → the heater 10. Circulate and heat. For this reason, the temperature and pressure in the air chamber 30 are equal to the temperature and pressure in the heater 10. The amount of gas in the air chamber 30 at this time is m H.
Next, the heater 10 is hermetically separated from the cooler 20 by closing the on-off valves 15 and 16 on the heater 10 inlet 11 side and outlet 12 side as shown by broken lines, while the cooler 20 inlet 21 side and outlet are closed. The open / close valves 25 and 26 on the side of the section 22 are opened as indicated by broken lines, and the working gas in the air chamber 30 is changed to the cooler 20 → the open / close valve 26 → the air chamber 30 → the fan 1 → the open / close valve 25 → the cooler 20. Circulate and cool as shown by the middle dashed arrow. For this reason, the temperature and pressure in the air chamber 30 are equal to the temperature and pressure in the cooler 20. The amount of gas in the gas chamber 30 at this time is m L.
In this process, the cooler 20 takes in the m H gas amount and releases the m L gas amount. Therefore, if m L > m H , the amount of gas in the cooler 20 decreases and the pressure decreases. On the other hand, the heater 10 releases m H gas amount and takes in m L gas amount. Accordingly, the amount of gas in the heater 10 increases and the pressure rises. In this process, a gas amount of “m L −m H ” per cycle moves from the cooler 20 to the heater 10.
This process reaches equilibrium when m L = m H , but according to Boyle-Charle's law, the equilibrium condition is “heater 10 internal pressure / cooler 20 internal pressure = heating internal temperature / cooling internal temperature”. It is.
On the other hand, the on-off valve 19 provided in the flow path 18 that is connected to the outlet portion 17 of the heater 10 and the inlet / outlet portion 47 of the operating body 40 is closed as shown by the solid line, and the inlet portion 27 of the cooler 20 is operated. If the on-off valve 29 provided in the flow path 28 connected to the inlet / outlet portion 47 of the body 40 is opened as shown by the solid line, the cylinder 41 is connected to the cooler 20 to become low temperature / low pressure, and the piston 42 To rise. In the drawing, the piston 42 is located at the top dead center and is in a state where the heating process of the heater 10 is completed.
In addition, the on-off valve 29 provided in the flow path 28 that is connected to the inlet portion 27 of the cooler 20 and the inlet portion / outlet portion 47 of the operating body 40 is closed as shown by a broken line, and the outlet portion 17 of the heater 10 is operated. If the on-off valve 19 provided in the flow path 18 connected to the inlet / outlet portion 47 of the body 40 is opened as indicated by a broken line, the cylinder 41 is connected to the heater 10 to become a high temperature / high pressure, and the piston 42 becomes high. Descends.
In this process, the amount of gas moves from the heater 10 to the cooler 20 via the piston 42. Accordingly, the amount of working gas from the cooler 20 to the heater 10 via the air chamber 30 is equal to the movement from the heater 10 to the cooler 20 via the piston 42, and the external combustion closed loop of the present invention. The cycle heat engine operates.
As is well known, an internal combustion engine (internal combustion heat engine) generates power by igniting and exploding gasoline or the like atomized in a cylinder to drive a piston up and down, but the external combustion closed cycle of the present invention. The heat engine is characterized in that the heater 10 automatically becomes a high pressure and the cooler 20 automatically becomes a low pressure in the cycle process through the air chamber 30.

図2は、本発明の外燃式クローズドサイクル熱機関の実施例を示す概念図である。
同図において、50、51、52は、流路が3分岐あり、1分岐から入り込む流体を、他の2分岐流路のいずれかを選択的に流路とする、又は2分岐流路のいずれかを選択し、他の1分岐を流路とする三方弁である。即ち、図1における開閉弁16と26を三方弁50に置き換え、開閉弁15と25を三方弁51に置き換え、開閉弁19と29を三方弁52に置き換えたものである。
FIG. 2 is a conceptual diagram showing an embodiment of the external combustion type closed cycle heat engine of the present invention.
In the figure, reference numerals 50, 51, and 52 indicate that the flow path has three branches and the fluid entering from one branch is selectively used as one of the other two branch paths, or any of the two branch paths. This is a three-way valve that selects one and uses the other one branch as a flow path. That is, the on-off valves 16 and 26 in FIG. 1 are replaced with a three-way valve 50, the on-off valves 15 and 25 are replaced with a three-way valve 51, and the on-off valves 19 and 29 are replaced with a three-way valve 52.

上記図2の作用について詳述する。
加熱器10出口部12及び入り口部11と導通する三方弁50と51を実線で示すように閉として加熱器10を冷却器20から密閉分離し、冷却器20入り口部21及び出口部22と導通する三方弁51と50を実線で示すように開として、気室30内の作動ガスを冷却器20→三方弁50→気室30→ファン1→三方弁51→冷却器20と図中実線矢印で示すように循環させて冷却し、同時に冷却器20の入り口部27と作用体40の入り口部兼出口部47と導通する流路28に設けた三方弁52を実線で示すように閉とし、シリンダー41の作動ガスを流路18実線矢印で示すように流す。この際、三方弁51を三方弁50より早く開とし、気室30内の高温・高圧ガスを冷却器20内に導くことによりファン1に対する逆流を防ぐ。図中ピストン42は、下死点に位置しており冷却器20の冷却過程終了状態にある。
冷却器20出口部22及び入り口部21と導通する三方弁50と51を破線で示すように閉として冷却器20を加熱器10から密閉分離する一方、加熱器10出口部12及び入り口部11と導通する三方弁50、51を破線で示すように開として、気室30内の作動ガスを加熱器10→三方弁50→気室30→ファン1→三方弁51→加熱器10と図中破線矢印で示すように循環させて加熱し、同時に加熱器10の出口部17と作用体40の入り口部兼出口部47と導通する流路18に設けた三方弁52を破線で示すように閉とし、冷却器20の入り口部27と作用体40の入り口部兼出口部47と導通する流路28に設けた三方弁52を破線で示すように開として、冷却器20へ作動ガスを流路28破線矢印で示すように流す。この際、三方弁50を三方弁51より早く開とし、加熱器10内の高温・高圧ガスを気室30内に導くことによりファン1に対する逆流を防ぐ。
The operation of FIG. 2 will be described in detail.
The three-way valves 50 and 51 that are connected to the outlet portion 12 and the inlet portion 11 of the heater 10 are closed as indicated by solid lines, and the heater 10 is hermetically separated from the cooler 20 and is connected to the inlet portion 21 and the outlet portion 22 of the cooler 20. The three-way valves 51 and 50 are opened as indicated by a solid line, and the working gas in the air chamber 30 is changed to the cooler 20 → the three-way valve 50 → the air chamber 30 → the fan 1 → the three-way valve 51 → the cooler 20 and solid arrows in the figure. The three-way valve 52 provided in the flow path 28 connected to the inlet portion 27 of the cooler 20 and the inlet portion / outlet portion 47 of the working body 40 is closed as shown by a solid line, and is cooled as shown in FIG. The working gas of the cylinder 41 is caused to flow as indicated by the solid line arrow of the flow path 18. At this time, the three-way valve 51 is opened earlier than the three-way valve 50, and the high-temperature and high-pressure gas in the air chamber 30 is guided into the cooler 20, thereby preventing the backflow to the fan 1. In the figure, the piston 42 is located at the bottom dead center and is in a state where the cooling process of the cooler 20 is finished.
While the three-way valves 50 and 51 that are connected to the cooler 20 outlet portion 22 and the inlet portion 21 are closed as indicated by broken lines, the cooler 20 is hermetically separated from the heater 10, while the heater 10 outlet portion 12 and the inlet portion 11 The conducting three-way valves 50 and 51 are opened as indicated by broken lines, and the working gas in the air chamber 30 is heated by the heater 10 → the three-way valve 50 → the air chamber 30 → the fan 1 → the three-way valve 51 → the heater 10 and the broken line in the figure. The three-way valve 52 provided in the flow path 18 that is circulated and heated as indicated by the arrows and is connected to the outlet portion 17 of the heater 10 and the inlet portion / outlet portion 47 of the working body 40 is closed as indicated by the broken line. The three-way valve 52 provided in the flow path 28 that is in communication with the inlet portion 27 of the cooler 20 and the inlet / outlet portion 47 of the operating body 40 is opened as indicated by a broken line, and the working gas is supplied to the cooler 20 through the flow path 28. Flow as shown by dashed arrows. At this time, the three-way valve 50 is opened earlier than the three-way valve 51, and the high-temperature and high-pressure gas in the heater 10 is guided into the air chamber 30, thereby preventing the backflow to the fan 1.

三方弁50と51は連動して動作することが望ましいが、三方弁52はピストン42が上死点または下死点を過ぎてから切り替わることが望ましく、三方弁50、51と連動して動作する必要はない。   The three-way valves 50 and 51 are preferably operated in conjunction with each other, but the three-way valve 52 is preferably switched after the piston 42 passes the top dead center or the bottom dead center, and operates in conjunction with the three-way valves 50 and 51. There is no need.

図3は、要部断面図を示し、図3(a)は、作用体40を往復流型タービン60とし、高圧の加熱器10と低圧の冷却器20間に生じる作動ガス流により回転トルクを発生させ、軸封装置64を介して回転軸63を外部に出し、回転動力を得るように構成したものである。
図3(b)は、作用体40を通常型タービン59とし、高圧の加熱器10と低圧の冷却器20間に生じる作動ガス流により回転トルクを発生させ、軸封装置64を介して回転軸63を外部に出し、回転動力を得るように構成したものである。作動ガス流の流れ方向は、一方向である。
FIG. 3 shows a cross-sectional view of the main part, and FIG. 3A shows the working body 40 as a reciprocating turbine 60, and rotational torque is generated by the working gas flow generated between the high-pressure heater 10 and the low-pressure cooler 20. The rotating shaft 63 is taken out through the shaft seal device 64 to obtain rotational power.
In FIG. 3B, the working body 40 is a normal turbine 59, and rotational torque is generated by the working gas flow generated between the high-pressure heater 10 and the low-pressure cooler 20, and the rotating shaft is connected via the shaft seal device 64. 63 is taken out and the rotational power is obtained. The flow direction of the working gas flow is one direction.

図4は、本発明の外燃式クローズドサイクル熱機関の実施例を示す概念図である。
同図は、図2の作用体40を流路18と28に並列に2台設けたもので、図に示さない複数の作用体40を設け、一台の加熱器10及び冷却器20を共有する構成である。
上部側の作用体40(1)のピストン42は下死点に位置し、下部側の作用体40(2)のピストン42は上死点に位置し、ピストントップ48が上下死点中間の二点鎖線で示す位置になるように更に2台の作用体を設けた多気筒とすれば、スムーズに稼動させることができる。尚、気筒は偶数でなくてもピストンシリンダー41容積を勘案すれば奇数でもよい。
図4で示す作用体40の駆動軸44とクランク室46を複数の作用体40で共有することは、図4で示す作用体40上下を重ね合わせてみれば想像に難くないので図示せず。駆動軸44を共有することにより、大きな動力をえることができ、作用体40を複数台の群に分けて複数の動力を得ることもできる。また、クランク室46を複数の作用体40が共有し、ピストン42がクランク45を介して総和が360°となる位相差をもって駆動軸44と連接することにより、ピストン42の背圧を一定としてピストン42の作動を円滑にすることができる。
FIG. 4 is a conceptual diagram showing an embodiment of the external combustion type closed cycle heat engine of the present invention.
In FIG. 2, two working bodies 40 of FIG. 2 are provided in parallel to the flow paths 18 and 28. A plurality of working bodies 40 not shown in the figure are provided, and a single heater 10 and cooler 20 are shared. It is the structure to do.
The piston 42 of the upper acting body 40 (1) is located at the bottom dead center, the piston 42 of the lower acting body 40 (2) is located at the top dead center, and the piston top 48 is located between the upper and lower dead centers. If the multi-cylinder is further provided with two acting bodies so as to be in the position indicated by the chain line, the operation can be smoothly performed. The number of cylinders is not limited to an even number, but may be an odd number as long as the volume of the piston cylinder 41 is taken into consideration.
Sharing the drive shaft 44 and the crank chamber 46 of the working body 40 shown in FIG. 4 by the plurality of working bodies 40 is not illustrated because it is not difficult to imagine if the top and bottom of the working body 40 shown in FIG. By sharing the drive shaft 44, a large power can be obtained, and the working body 40 can be divided into a plurality of groups to obtain a plurality of powers. Further, the crank chamber 46 is shared by the plurality of operating members 40, and the piston 42 is connected to the drive shaft 44 through the crank 45 with a phase difference of 360.degree. So that the back pressure of the piston 42 is constant. The operation of 42 can be made smooth.

図5は、本発明の外燃式クローズドサイクル熱機関の熱回収に関する実施例を示す概念図である。
同図は、図4で示す冷却器20の入り口部21と三方弁51を導通する流路23を、冷却器20の入り口部21と切り離し、図5で示すように流路28と導通させ、該流路合流点70と冷却器20の入り口部27を導通する流路71を高温部72とし、加熱器10
入り口部11と三方弁51を導通する流路13を低温部73として、図示しない熱交換器74を設けたものである。
FIG. 5 is a conceptual diagram showing an embodiment relating to heat recovery of the external combustion closed cycle heat engine of the present invention.
In the figure, the flow path 23 that connects the inlet portion 21 of the cooler 20 and the three-way valve 51 shown in FIG. 4 is disconnected from the inlet portion 21 of the cooler 20, and is connected to the flow path 28 as shown in FIG. A flow path 71 that conducts the flow path junction 70 and the inlet 27 of the cooler 20 is defined as a high temperature section 72, and the heater 10
A heat exchanger 74 (not shown) is provided with the flow path 13 that connects the inlet portion 11 and the three-way valve 51 as a low temperature portion 73.

図5において、三方弁50、51が実線の位置にある時、冷却器20→三方弁50→気室30→ファン1→三方弁51→冷却器20と作動ガスが循環している。次に三方弁50、51が、三方弁50、51の破線の位置へ切り替わった瞬間、気室30容積分の冷却された作動ガスが流路13を流れて加熱器10へ向かう。従って、この時流路13は、低温部73を呈する。同時に図で示す上部側の作用体40(1)の三方弁52は、実線の位置から破線の位置に切り替わり、作用体40(1)に示すピストンシリンダー41内の高温作動ガスが流路28へ流れ、流路71を経て冷却器20へ向かう。従って、この時流路71において高温部72を呈し、また同時に、図で示す下部側の作用体40(2)の三方弁52は実線の位置で、ピストンシリンダー41内の高温作動ガスを流路28へ流し切り、三方弁52は破線の位置となり流路28への高温作動ガスの流れは停止される。
三方弁50、51が破線の位置にある時、加熱器10→三方弁50→気室30→ファン1→三方弁51→加熱器10と作動ガスが循環している。次に三方弁50、51が、三方弁50、51の実線の位置へ切り替わった瞬間、気室30容積分の加熱された作動ガスが流路23を流れて、流路71を経て冷却器20へ向かう。従って、この時流路71は高温部72を呈する。
従って低温部73は、常時低温に保たれ、高温部72は、常時高温に保たれるので、低温部73と高温部72間に熱交換器74(図示せず)を設けて、高温部72から低温部73へ熱移動を行うことができ、系外へ廃棄される熱を効率的に回収することができる。
In FIG. 5, when the three-way valves 50 and 51 are in the position of the solid line, the working gas circulates in the cooler 20, the three-way valve 50, the air chamber 30, the fan 1, the three-way valve 51, and the cooler 20. Next, at the moment when the three-way valves 50 and 51 are switched to the broken line positions of the three-way valves 50 and 51, the cooled working gas for 30 volumes of the air chamber flows through the flow path 13 toward the heater 10. Therefore, at this time, the flow path 13 presents the low temperature part 73. At the same time, the three-way valve 52 of the upper acting body 40 (1) shown in the drawing is switched from the position of the solid line to the position of the broken line, and the high-temperature working gas in the piston cylinder 41 shown in the working body 40 (1) enters the flow path 28. It flows to the cooler 20 through the flow path 71. Accordingly, at this time, the flow path 71 exhibits the high temperature portion 72, and at the same time, the three-way valve 52 of the lower acting body 40 (2) shown in the figure is at the position of the solid line, and the high temperature working gas in the piston cylinder 41 is passed through the flow path 28. The three-way valve 52 becomes the position of the broken line, and the flow of the high temperature working gas to the flow path 28 is stopped.
When the three-way valves 50 and 51 are at the positions indicated by broken lines, the working gas is circulated through the heater 10 → the three-way valve 50 → the air chamber 30 → the fan 1 → the three-way valve 51 → the heater 10. Next, at the moment when the three-way valves 50 and 51 are switched to the positions of the solid lines of the three-way valves 50 and 51, the heated working gas for 30 volumes of the air chamber flows through the flow path 23 and passes through the flow path 71 to cool the cooler 20. Head to. Accordingly, at this time, the flow path 71 exhibits a high temperature portion 72.
Therefore, the low temperature part 73 is always kept at a low temperature, and the high temperature part 72 is always kept at a high temperature. Therefore, a heat exchanger 74 (not shown) is provided between the low temperature part 73 and the high temperature part 72 to provide a high temperature part 72. The heat can be transferred from the heat source to the low temperature part 73, and the heat discarded outside the system can be efficiently recovered.

図6は、本発明の外燃式クローズドサイクル熱機関の熱回収に関する実施例を示す概念図である。
同図は、図5の気室30を2個30(1)、30(2)とし、加熱器10と冷却器20に並列して設けて構成したものである。共通する構成部品に同一符号を付与し、さらに(1)、(2)を付与した。
図6において、三方弁50(1)(2)と51(1)(2)が図示の実線の位置から破線の位置に変った瞬間、気室30(1)から低温の作動ガスが流路13(1)を流れ、低温部73を呈し、気室30(2)から高温の作動ガスが流路71に流れ、高温部72を呈し、三方弁50(1)(2)と51(1)(2)が図示の破線の位置から実線の位置に変った瞬間、気室30(1)から高温の作動ガスが流路71に流れ、高温部72を呈し、気室30(2)から低温の作動ガスが流路13(2)を流れ、低温部73を呈する。即ち加熱及び冷却過程全過程で、低温の作動ガスが流路13を流れ、低温部73を呈し、高温の作動ガスが流路71を流れて高温部72を呈する。言い換えると、どちらかの気室30が必ず加熱過程にあり、従って低温部には常時、加熱器に向かう低温ガスが流れ、また、どちらかの気室30が必ず冷却過程にあり、従って高温部には常時、冷却器に向かう高温ガスが流れているため熱エネルギー回収の効率を向上できる。
また、気室30(1)及び30(2)出口部34(1)及び34(2)側にそれぞれファン1を設けているので、加熱器10及び冷却器(2)内の作動ガスを全過程において停滞させることが無く、加熱器10及び冷却器20での熱交換効率の向上を図ることができる。
FIG. 6 is a conceptual diagram showing an embodiment relating to heat recovery of the external combustion closed cycle heat engine of the present invention.
In FIG. 5, two air chambers 30 (1) and 30 (2) in FIG. 5 are provided in parallel with the heater 10 and the cooler 20. The same code | symbol was provided to the common component, and also (1) and (2) were provided.
In FIG. 6, at the moment when the three-way valves 50 (1) (2) and 51 (1) (2) change from the solid line position to the broken line position, the low-temperature working gas flows from the air chamber 30 (1). 13 (1), presents a low temperature portion 73, and hot working gas flows from the air chamber 30 (2) to the flow path 71, presents a high temperature portion 72, and the three-way valves 50 (1) (2) and 51 (1 ) At the moment when (2) changes from the position of the broken line to the position of the solid line, the hot working gas flows from the air chamber 30 (1) to the flow path 71, presents the high temperature portion 72, and from the air chamber 30 (2). The low-temperature working gas flows through the flow path 13 (2) and presents the low-temperature part 73. That is, in the entire heating and cooling process, the low-temperature working gas flows through the flow path 13 and presents the low-temperature part 73, and the high-temperature working gas flows through the flow path 71 and exhibits the high-temperature part 72. In other words, one of the air chambers 30 is always in the heating process, and therefore the low temperature gas always flows to the heater in the low temperature part, and one of the air chambers 30 is always in the cooling process, so the high temperature part. Since the hot gas always flows to the cooler, the efficiency of heat energy recovery can be improved.
In addition, since the fans 1 are provided on the side of the air chambers 30 (1) and 30 (2) outlets 34 (1) and 34 (2), all the working gas in the heater 10 and the cooler (2) is exhausted. There is no stagnation in the process, and the heat exchange efficiency in the heater 10 and the cooler 20 can be improved.

1 移動手段(ファン、ポンプ等)
10 加熱器
11、21、27、31 入り口部
12、17、22、32 出口部
13、14、18、23、24、28 流路
15、16、19、25、26、29 開閉弁
20 冷却器
30 気室
40 作用体
41 ピストンシリンダー
42 ピストン
43 フライホイール
44 駆動軸
45 クランク
46 クランク室
47 入り口部兼出口部
48 ピストントップ
50、51、52 三方弁
59 タービン
60 往復流型タービン
61 上部気室
62 下部気室
63 回転軸
64 軸封装置
70 流路合流点
71 流路
72 高温部
73 低温部
74 熱交換器(図示せず)
1 Moving means (fan, pump, etc.)
10 Heater 11, 21, 27, 31 Inlet part 12, 17, 22, 32 Outlet part 13, 14, 18, 23, 24, 28 Flow path 15, 16, 19, 25, 26, 29 On-off valve 20 Cooler 30 Air chamber 40 Action body 41 Piston cylinder 42 Piston 43 Flywheel 44 Drive shaft 45 Crank 46 Crank chamber 47 Entrance / outlet portion 48 Piston top 50, 51, 52 Three-way valve 59 Turbine 60 Reciprocating turbine 61 Upper air chamber 62 Lower air chamber 63 Rotating shaft 64 Shaft seal device 70 Flow path confluence 71 Flow path 72 High temperature section 73 Low temperature section 74 Heat exchanger (not shown)

Claims (11)

密閉された気室と加熱器及び冷却器を設け、該気室と該加熱器の入り口部及び出口部と導通する流路を設け、該気室と冷却器の入り口部及び出口部と導通する流路を設け、それぞれ入り口部側及び出口部側の流路に開閉弁を設け、作動ガスの移動手段を設け、加熱器と導通する流路と該流路に開閉弁を設け、冷却器と導通する流路と該流路に開閉弁を設けて、加熱器と冷却器それぞれと導通する作用体を設けたことを特徴とする外燃式クローズドサイクル熱機関。   A sealed air chamber, a heater and a cooler are provided, and a flow path is provided to communicate with the air chamber and the inlet and outlet of the heater, and the air chamber and the inlet and outlet of the cooler are electrically connected. A flow path, an open / close valve is provided in each of the flow path on the inlet side and the outlet side, a working gas moving means is provided, a flow path that is in communication with the heater, an open / close valve is provided in the flow path, and a cooler An external combustion type closed cycle heat engine characterized in that a conducting channel and an opening / closing valve are provided in the channel, and an operating body is provided to conduct with each of a heater and a cooler. 上記開閉弁の内、冷却器の出口部、加熱器の入り口部が逆止弁であることを特徴とする請求項1に記載の外燃式クローズドサイクル熱機関。   2. The external combustion type closed cycle heat engine according to claim 1, wherein among the on-off valves, an outlet portion of the cooler and an inlet portion of the heater are check valves. 開閉弁の流路が3分岐あり、1分岐から入り込む流体を、他の2分岐流路のいずれかを選択的に流路とする、又は2分岐流路のいずれかを選択し、他の1分岐を流路とする三方弁としたことを特徴とする請求項1に記載の外燃式クローズドサイクル熱機関。   The flow path of the on-off valve has three branches, and the fluid entering from one branch is selectively set to one of the other two branch paths, or one of the two branch paths is selected and the other 1 The external combustion type closed cycle heat engine according to claim 1, wherein the three-way valve has a branch as a flow path. 作用体が、ピストンであることを特徴とする請求項1〜3のいずれかに記載の外燃式クローズドサイクル熱機関。   The external combustion type closed cycle heat engine according to any one of claims 1 to 3, wherein the operating body is a piston. 作用体が、タービンであることを特徴とする請求項1〜3のいずれかに記載の外燃式クローズドサイクル熱機関。   The external combustion type closed cycle heat engine according to any one of claims 1 to 3, wherein the operating body is a turbine. 作用体を複数設け、加熱器および冷却器を共有することを特徴とする請求項1〜5のいずれかに記載の外燃式クローズドサイクル熱機関。   The external combustion type closed cycle heat engine according to any one of claims 1 to 5, wherein a plurality of operating bodies are provided and a heater and a cooler are shared. 複数設けた作用体の駆動軸を共有することを特徴とする請求項1〜6のいずれかに記載の外燃式クローズドサイクル熱機関。   The external combustion type closed cycle heat engine according to any one of claims 1 to 6, wherein a plurality of actuating body drive shafts are shared. 複数設けたピストンのクランク室を共有したことを特徴とする請求項1〜4、6、7のいずれかに記載の外燃式クローズドサイクル熱機関。   The external combustion type closed cycle heat engine according to any one of claims 1 to 4, wherein a plurality of piston crank chambers are shared. 複数設けたピストンが、クランクを介して総和が360°となる位相差をもって共有する駆動軸に連接することを特徴とする請求項1〜4、6〜8のいずれかに記載の外燃式クローズドサイクル熱機関。   The external combustion type closed according to any one of claims 1 to 4, wherein a plurality of pistons are connected to a common drive shaft via a crank with a phase difference of a total sum of 360 °. Cycle heat engine. 加熱器入り口部側及び冷却器入り口部側の流路間に熱交換器を設けたことを特徴とする請求項1〜9のいずれかに記載の外燃式クローズドサイクル熱機関。   The external combustion type closed cycle heat engine according to any one of claims 1 to 9, wherein a heat exchanger is provided between the flow paths on the heater inlet side and the cooler inlet side. 気室を加熱器と冷却器に並列して2個設けたことを特徴とする請求項1〜10のいずれかに記載の外燃式クローズドサイクル熱機関。
The external combustion type closed cycle heat engine according to any one of claims 1 to 10, wherein two air chambers are provided in parallel with a heater and a cooler.
JP2009277329A 2009-12-07 2009-12-07 External combustion type closed cycle heat engine Expired - Fee Related JP5317942B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009277329A JP5317942B2 (en) 2009-12-07 2009-12-07 External combustion type closed cycle heat engine
PCT/JP2010/071730 WO2011070982A1 (en) 2009-12-07 2010-12-03 External combustion-type closed-cycle combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009277329A JP5317942B2 (en) 2009-12-07 2009-12-07 External combustion type closed cycle heat engine

Publications (2)

Publication Number Publication Date
JP2011117411A JP2011117411A (en) 2011-06-16
JP5317942B2 true JP5317942B2 (en) 2013-10-16

Family

ID=44145527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009277329A Expired - Fee Related JP5317942B2 (en) 2009-12-07 2009-12-07 External combustion type closed cycle heat engine

Country Status (2)

Country Link
JP (1) JP5317942B2 (en)
WO (1) WO2011070982A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102015136B (en) * 2008-05-07 2015-04-08 东芝三菱电机产业系统株式会社 Board thickness controller for rolling machine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2983916A1 (en) * 2011-12-12 2013-06-14 Leonello Acquaviva External combustion thermal engine for production of electrical energy from e.g. biomass, has closed circuit containing carbon-dioxide with constant density, and flywheel conserving mechanical energy produced by engine
JP2018003908A (en) * 2016-06-29 2018-01-11 アイシン精機株式会社 Clutch connection/disconnection device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5215947A (en) * 1975-07-25 1977-02-05 Nissan Motor Co Ltd External heat thermal engine
EP0162868B1 (en) * 1983-11-02 1989-05-31 MITCHELL, Matthew P. Stirling cycle engine and heat pump
JPS60207898A (en) * 1984-03-31 1985-10-19 Toshiba Corp Heat exchanger
AT500641B8 (en) * 2002-06-03 2007-02-15 Donauwind Erneuerbare Energieg METHOD AND DEVICE FOR CONVERTING HEAT ENERGY IN KINETIC ENERGY
JP4683975B2 (en) * 2005-03-30 2011-05-18 中国電力株式会社 Stirling engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102015136B (en) * 2008-05-07 2015-04-08 东芝三菱电机产业系统株式会社 Board thickness controller for rolling machine

Also Published As

Publication number Publication date
WO2011070982A1 (en) 2011-06-16
JP2011117411A (en) 2011-06-16

Similar Documents

Publication Publication Date Title
JP4520527B2 (en) External combustion type closed cycle heat engine
WO2011151888A1 (en) External-combustion, closed-cycle thermal engine
US20100139262A1 (en) 4-Cycle Stirling Machine with Two Double-Piston Units
WO2009066178A4 (en) Heat engines
CA2765439C (en) Heat exchanger and associated method employing a stirling engine
KR102505889B1 (en) A device in a heat cycle for converting heat into electrical energy
JP4580247B2 (en) Engine system
AU2018225327B2 (en) Regenerative cooling system
JP5317942B2 (en) External combustion type closed cycle heat engine
JP5525371B2 (en) External combustion type closed cycle heat engine
CA2652928A1 (en) Method and device for converting thermal energy into mechanical work
JP2008223622A (en) Thermal engine
KR20100136654A (en) External combustion engine and output method thereof
JP2020529550A (en) Efficient heat recovery engine
JP5280325B2 (en) Multi-cylinder external combustion closed cycle heat engine with heat recovery device
RU2649523C2 (en) External combustion engine based on gamma-type stirling engine, drive system and method of engine power regulation
US10989142B2 (en) Regenerative cooling system
US8671676B2 (en) Maximized thermal efficiency engines
KR20060071827A (en) An external combustion engine combined with cylinder, re-generator and cooler
CN103470397A (en) Cold pressing unit engine
JP2012172584A (en) Stirling engine
KR200435918Y1 (en) An external combustion engine combined with Cylinder, Re-generator and Cooler
BE1018375A3 (en) IMPROVED DEVICE FOR CONVERSING THERMAL IN MECHANICAL ENERGY.
WO2021259401A1 (en) Stirling engine
KR20120080522A (en) Heat engine system based on stirling cycle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130709

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees