JP4438070B2 - Energy conversion system - Google Patents

Energy conversion system Download PDF

Info

Publication number
JP4438070B2
JP4438070B2 JP2004360410A JP2004360410A JP4438070B2 JP 4438070 B2 JP4438070 B2 JP 4438070B2 JP 2004360410 A JP2004360410 A JP 2004360410A JP 2004360410 A JP2004360410 A JP 2004360410A JP 4438070 B2 JP4438070 B2 JP 4438070B2
Authority
JP
Japan
Prior art keywords
chamber
piston
auxiliary
pressure
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004360410A
Other languages
Japanese (ja)
Other versions
JP2006169986A (en
Inventor
佐市 勘坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2004360410A priority Critical patent/JP4438070B2/en
Publication of JP2006169986A publication Critical patent/JP2006169986A/en
Application granted granted Critical
Publication of JP4438070B2 publication Critical patent/JP4438070B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Description

本発明は新規エネルギー変換システムに関する。   The present invention relates to a novel energy conversion system.

従来の熱機関は主として高圧の動作流体を作り、それを膨張させる過程で外部仕事をさせることが多かった。ガソリンエンジン、ディーゼルエンジン、蒸気タービン等である。これらの熱機関は高圧の動作流体を作るのに燃焼ガス等の高温流体が必要であった。そのため仕事をし終わった燃焼ガス等は一部熱回収されたが大部分捨てられた。従って「動作流体は高温の熱源から熱を受け高温高圧になり熱機関に流して仕事をさせ、仕事をし終わった動作流体を低温側に捨てなけねばならない。従って必ず損失があるので熱効率は100%にならない」のである。ボイラは常圧の高温燃焼ガスで水または蒸気を加熱し高温高圧の蒸気を作り出す。このようにボイラは大きな熱交換器である。   Conventional heat engines often produce high-pressure working fluid and do external work in the process of expanding it. Gasoline engines, diesel engines, steam turbines, etc. These heat engines required a high temperature fluid such as combustion gas to produce a high pressure working fluid. As a result, some of the combustion gases that had finished work were recovered, but most of them were discarded. Therefore, “the working fluid must receive heat from a high-temperature heat source, become high-temperature and high-pressure and flow to the heat engine to work, and the working fluid that has finished the work must be thrown away to the low-temperature side. % ". The boiler heats water or steam with high-temperature combustion gas at normal pressure to produce high-temperature and high-pressure steam. Thus, the boiler is a large heat exchanger.

熱力学の第2法則によると「熱はそれ自体で低温の物体から高温の物体に移れない」。これを言い換えると「熱は必ず高温物体から低温物体に移動する。熱の移動は両物体が同温になると止まる」ことになる。熱は物体の持つ温度のみに依存して移動し、物体の持つ圧力には関係しない。力学的仕事は圧力に依存し温度に依存しない。熱は動作流体の圧力を高めるのに必要であり熱自身は仕事をしない。従って圧力低下した動作流体は多くの熱量を持ちながら捨てられる。この熱エネルギを理論上100%熱回収し低圧の動作流体から高圧の動作流体に移動できる。実機では放熱、摩擦、漏れ等により損失が生ずるので100%にならないが、これらの損失は製作上または材料選択により変化するので無視し、理論上排気で捨てる熱量を0とする。カルノーサイクルは最高の熱効率を持つサイクルといわれるが、熱回収が出来ないので熱回収の出来る熱機関より熱効率は落ちる。
「圧縮比、膨張比をそれぞれ独自に選べる熱機関」(特許第3521183号公報)の理論と共に原理図(図9)で示した熱機関では高温シリンダと膨張シリンダは一体で作られ1回の行程のみで連続運転ができなかった。これを連続運転させるため別々のシリンダとすると高温シリンダと膨張シリンダの間の通気弁、及びその通路が長くなり死空間となって熱効率を下げた。従って原理図のように径の小さい高温シリンダと径の大きい膨張シリンダを直線上に並べ、1行程完了ごとに次の行程の準備が完了していれば連続運転ができることを見いだして本発明に至ったものである。
According to the second law of thermodynamics, "heat cannot move from a cold object to a hot object by itself". In other words, “heat always moves from a hot object to a cold object. Heat transfer stops when both objects reach the same temperature”. Heat moves only depending on the temperature of the object, and is not related to the pressure of the object. Mechanical work is pressure dependent and temperature independent. Heat is necessary to increase the pressure of the working fluid and heat itself does not work. Therefore, the working fluid whose pressure has dropped is discarded while having a large amount of heat. The heat energy can theoretically be recovered 100% and transferred from a low-pressure working fluid to a high-pressure working fluid. In the actual machine, losses occur due to heat dissipation, friction, leakage, etc., so it does not reach 100%. However, these losses change depending on the production or material selection, so they are ignored, and the amount of heat that is thrown away in the exhaust is theoretically zero. The Carnot cycle is said to be the cycle with the highest thermal efficiency, but since heat recovery is not possible, the thermal efficiency is lower than the heat engine that can recover heat.
In the heat engine shown in the principle diagram (FIG. 9) together with the theory of “a heat engine in which the compression ratio and the expansion ratio can be independently selected” (Patent No. 3521183), the high-temperature cylinder and the expansion cylinder are integrally formed in one stroke. Only continuous operation was not possible. If this was made a separate cylinder for continuous operation, the vent valve between the high temperature cylinder and the expansion cylinder and its passage became longer, resulting in a dead space and lowering the thermal efficiency. Accordingly, as shown in the principle diagram, a high-temperature cylinder having a small diameter and an expansion cylinder having a large diameter are arranged in a straight line, and it is found that continuous operation can be performed if the preparation for the next stroke is completed for each stroke. It is a thing.

特許第3521183号公報Japanese Patent No. 3521183

本発明は、エネルギー損失が非常に小さいエネルギー変換システムの提供を目的とする。   The present invention aims to provide an energy conversion system with very low energy loss.

請求項1記載の発明は、3連式シリンダを基本構成とする断熱膨張型の熱機関であり、
エンジン部と熱交換部とを備え、エンジン部と加熱器(1)および熱回収用熱交換器(8)の高圧部通路(87)を配管接続する系統を高圧部とし、エンジン部と冷却器(2)および熱回収用熱交換器(8)の低圧部通路(86)を配管接続する系統を低圧部とし、エンジン部にはシリンダ3個を直列に配設し、真ん中を動作室シリンダ(20A)、動作室シリンダ内径より小さく、かつ、両側を同じ内径の第1補助シリンダ(10A)と第2補助シリンダ(30A)とし、各シリンダは仕切板(17A,18A,37A,38A)により区切り、仕切板には切替弁と通気路を設けて外部配管につなぎ、各シリンダ(10A,20A,30A)内の第1補助ピストン(11A),動作室ピストン(21A),第2補助ピストン(31A)は1本のピストン軸(3A)にて連結するとともに、ピストン軸は直線運動を回転運動に変えるピストンリンク(9A)につなぎ回転出力とし、ピストンの上死点または下死点にて切替弁(14A,15A,16A,23A,24A,28A,29A,34A,35A,36A)を交互に開閉し、通気路を切り替えるようにし、加熱器出口の動作流体温度と冷却器出口の動作流体温度の比をこのシステムの温度比=圧力比とし、出力変化は装置の動作流体を注入または排出させ、全体の圧力を変化させることにより行い、熱回収用熱交換器(8)は熱交換板(80)の両側の単位面積当たり容積を高圧部より低圧部を大きくし、その比を圧力比とすることにより動作流体の質量および熱量を同量として熱交換し、第1補助シリンダ内を第1補助ピストン(11A)にて第1補助室(12A)と第1準備室(13A)とを形成し、動作室シリンダ内を動作室ピストン(21A)にて第1動作室(22A)と第2動作室(27A)とを形成し、第2補助シリンダ内を第2補助ピストン(31A)にて第2準備室(33A)と第2補助室(32A)とを形成し、この6室を切替弁の開閉により2室を連結して3つの動作エリアを作り、ピストンが上死点で切替弁を開閉し、第1準備室(13A)と隣接する第1動作室(22A)を第1通気弁(24A)を開いて連結し、第1補助ピストン(11A)と動作室ピストン(21A)の受圧面積差でピストンを下降させ、第1準備室(13A)の動作流体を第1動作室(22A)に断熱膨張変化をさせながら移動させ、第2動作室(27A)と第1補助室(12A)を第2排気弁(28A)と第1吸入弁(14A)を開いて連結し、断熱変化する第1動作室(22A)と第1準備室(13A)のピストン背圧を同圧とし断熱変化を助け、第2動作室(27A)の動作流体を熱回収用熱交換器(8)の低圧部通路(86)および冷却器(2)を通して第1補助室(12A)に移動させ、第2補助室(32A)と同じシリンダの第2準備室(33A)を第2吐出弁(35A)と第2給気弁(36A)を開いて連結し、第2補助ピストン(31A)により、第2補助室(32A)の動作流体を熱回収用熱交換器(8)の高圧部通路(87)および加熱器(1)を通して第2準備室(33A)に移動させ、ピストンの下死点で次の動作の準備を完了させ、開いていた切替弁を閉じ、閉じていた切替弁を開いて動作エリアの構成を替え、第2準備室(33A)と第2動作室(27A)を連結し、第1動作室(22A)と第2補助室(32A)を連結し、第1補助室(12A)と同じシリンダの第1準備室(13A)を連結しピストン下降時と同じ変化によりピストンを上昇させ、ピストンの上死点で次の動作の準備を完了させ連続運転する断熱膨張型熱機関からなることを特徴とする(図1参照)。
The invention according to claim 1 is an adiabatic expansion type heat engine having a triple cylinder as a basic configuration.
A system comprising an engine part and a heat exchanging part, piped to the engine part and the high pressure passage (87) of the heater (1) and the heat recovery heat exchanger (8) is defined as a high pressure part. (2) and the system connecting the low pressure section passage (86) of the heat exchanger (8) for heat recovery to the low pressure section, three cylinders are arranged in series in the engine section, and the middle of the operating chamber cylinder ( 20A), the first auxiliary cylinder (10A) and the second auxiliary cylinder (30A) are smaller than the inner diameter of the operating chamber cylinder and have the same inner diameter on both sides, and each cylinder is separated by a partition plate (17A, 18A, 37A, 38A) The partition plate is provided with a switching valve and an air passage, and is connected to an external pipe. The first auxiliary piston (11A), the operating chamber piston (21A), the second auxiliary piston (31A) in each cylinder (10A, 20A, 30A). ) Is 1 The piston shaft (3A) is connected to the piston link (9A) that changes the linear motion into a rotational motion, and is used as a rotational output. At the top dead center or bottom dead center of the piston, the switching valve (14A, 15A , 16A, 23A, 24A, 28A, 29A, 34A, 35A, 36A) are alternately opened and closed to switch the air passage, and the ratio of the operating fluid temperature at the heater outlet to the operating fluid temperature at the cooler outlet The temperature ratio is equal to the pressure ratio, and the output is changed by injecting or discharging the working fluid of the apparatus and changing the overall pressure. The heat recovery heat exchanger (8) is provided on both sides of the heat exchange plate (80). By making the volume per unit area larger than the high-pressure part and making the ratio the pressure ratio, the mass and heat of the working fluid are exchanged with the same amount, and the first auxiliary cylinder is exchanged in the first auxiliary cylinder. The first auxiliary chamber (12A) and the first preparation chamber (13A) are formed by the tons (11A), and the first operation chamber (22A) and the second operation are formed in the operation chamber cylinder by the operation chamber piston (21A). Chamber (27A) is formed, and the second auxiliary cylinder (32A) is formed in the second auxiliary cylinder by the second auxiliary piston (31A), and these six chambers are switched over. The two chambers are connected by opening and closing to create three operation areas, the piston opens and closes the switching valve at the top dead center, and the first operation chamber (22A) adjacent to the first preparation chamber (13A) is the first vent valve. (24A) is opened and connected, and the piston is lowered by the pressure receiving area difference between the first auxiliary piston (11A) and the working chamber piston (21A), and the working fluid in the first preparation chamber (13A) is transferred to the first working chamber (22A). ) While changing the adiabatic expansion, the second working chamber (27A) and the first auxiliary The auxiliary chamber (12A) is connected by opening the second exhaust valve (28A) and the first intake valve (14A), and the piston back pressure in the first operation chamber (22A) and the first preparation chamber (13A) changing in adiabaticity is reduced. The same pressure helps the heat insulation change, and the working fluid in the second working chamber (27A) passes through the low pressure passage (86) and the cooler (2) of the heat exchanger (8) for heat recovery to the first auxiliary chamber (12A). The second auxiliary chamber (33A) of the same cylinder as the second auxiliary chamber (32A) is connected by opening the second discharge valve (35A) and the second air supply valve (36A), and the second auxiliary piston (31A) ), The working fluid in the second auxiliary chamber (32A) is moved to the second preparation chamber (33A) through the high pressure passage (87) of the heat recovery heat exchanger (8) and the heater (1), and the piston The preparation for the next operation is completed at the bottom dead center, the switching valve that was open is closed, and the switching valve that was closed Open and change the configuration of the operation area, connect the second preparation chamber (33A) and the second operation chamber (27A), connect the first operation chamber (22A) and the second auxiliary chamber (32A), the first auxiliary The first adiabatic chamber (13A) of the same cylinder as the chamber (12A) is connected, the piston is raised by the same change as when the piston is lowered, the preparation for the next operation is completed at the top dead center of the piston, and the adiabatic expansion type is continuously operated It consists of a heat engine (see FIG. 1).

請求項2に記載の発明は、請求項1に係わる発明とは逆に、断熱収縮型の機関であり、エンジン部と熱交換部とを備え、エンジン部と加熱器(1)および熱回収用熱交換器(8)の高圧部通路(87)を配管接続する系統を高圧部とし、エンジン部と冷却器(2)および熱回収用熱交換器(8)の低圧部通路(86)を配管接続する系統を低圧部とし、エンジン部にはシリンダ3個を直列に配設し、真ん中を動作室シリンダ(20B)、動作室シリンダ内径より大きく、かつ、両側を同じ内径の第1補助シリンダ(10B)、第2補助シリンダ(30B)とし、各シリンダは仕切板(17B,18B,37B,38B)により区切り、仕切板には切替弁と通気路を設けて、外部配管につなぎ、各シリンダ(10B,20B,30B)内の第1補助ピストン(11B),動作室ピストン(21B),第2補助ピストン(31B)は1本のピストン軸(3B)にて連結するとともに、ピストン軸は直線運動を回転運動に変えるピストンリンク(9B)につなぎ回転出力とし、ピストンの上死点または下死点にて切替弁(14B,15B,16B,23B,24B,28B,29B,34B,35B,36B)を交互に開閉し、通気路を切り替えるようにし、加熱器出口の動作流体温度と冷却器出口の動作流体温度の比をこのシステムの温度比=圧力比とし、出力変化は装置の動作流体を注入または排出させ、全体の圧力を変化させることにより行い、熱回収用熱交換器(8)は熱交換板(80)の両側の単位面積当たり容積を高圧部より低圧部を大きくし、その比を圧力比とすることにより動作流体の質量および熱量を同量として熱交換し、第1補助シリンダ内を第1補助ピストン(11B)にて第1補助室(12B)と第1準備室(13B)とを形成し、動作室シリンダ内を動作室ピストン(21B)にて第1動作室(22B)と第2動作室(27B)とを形成し、第2補助シリンダ内を第2補助ピストン(31B)にて第2準備室(33B)と第2補助室(32B)とを形成し、この6室を切替弁の開閉により2室を連結して3つの動作エリアを作り、ピストンが上死点で切替弁を開閉し、第1準備室(13B)と隣接する第1動作室(22B)を第1通気弁(24B)を開いて連結し、第1補助室(12B)が第1準備室(13B)より高圧にし、第1準備室(13B)の動作流体を第1動作室(22B)に断熱収縮変化をさせながら移動させ、第2動作室(27B)と第1補助室(12B)を第2排気弁(28B)と第1吸入弁(14B)を開いて連結し、断熱変化する第1動作室(22B)と第1準備室(13B)のピストン背圧を同圧とし断熱変化を助け、第1補助ピストン(11B)と動作室ピストン(21B)の受圧面積差でピストンを下降させることで、第2動作室(27B)の動作流体を熱回収用熱交換器(8)の高圧部通路(87)および加熱器(1)を通して第1補助室(12B)に移動させ、第2補助室(32B)と同じシリンダの第2準備室(33B)を第2吐出弁(35B)と第2給気弁(36B)を開いて連結し、第2補助ピストン(31B)により、第2補助室(32B)の動作流体を熱回収用熱交換器(8)の低圧部通路(86)および冷却器(2)を通して第2準備室(33B)に移動させ、ピストンの下死点で次の動作の準備を完了させ、開いていた切替弁を閉じ、閉じていた切替弁を開いて動作エリアの構成を替え、第2準備室(33B)と第2動作室(27B)を連結し、第1動作室(22B)と第2補助室(32B)を連結し、第1補助室(12B)と同じシリンダの第1準備室(13B)を連結しピストン下降時と同じ変化によりピストンを上昇させ、ピストンの上死点で次の動作の準備を完了させ連続運転する断熱収縮型熱機関からなることを特徴とする(図2参照)。 The invention according to claim 2 is an adiabatic shrinkage type engine, contrary to the invention according to claim 1, comprising an engine part and a heat exchanging part, the engine part, the heater (1), and for heat recovery. The system connecting the high pressure passage (87) of the heat exchanger (8) to the high pressure portion is a high pressure portion, and the engine portion and the cooler (2) and the low pressure passage (86) of the heat recovery heat exchanger (8) are piping. The system to be connected is a low pressure part, and three cylinders are arranged in series in the engine part. The middle is a working chamber cylinder (20B), the first auxiliary cylinder (20B) is larger than the working chamber cylinder inner diameter, and both sides have the same inner diameter. 10B), the second auxiliary cylinder (30B), and each cylinder is separated by a partition plate (17B, 18B, 37B, 38B). The partition plate is provided with a switching valve and an air passage, connected to external piping, and each cylinder ( 10B, 20B, 30B) The auxiliary piston (11B), the operating chamber piston (21B), and the second auxiliary piston (31B) are connected by a single piston shaft (3B), and the piston shaft is a piston link (9B) that converts linear motion into rotational motion. The switching valve (14B, 15B, 16B, 23B, 24B, 28B, 29B, 34B, 35B, 36B) is alternately opened and closed at the top dead center or bottom dead center of the piston to switch the air passage. The ratio of the working fluid temperature at the heater outlet to the working fluid temperature at the cooler outlet is the temperature ratio = pressure ratio of this system, and the output change causes the working fluid of the apparatus to be injected or discharged, thereby changing the overall pressure. In the heat recovery heat exchanger (8), the volume per unit area on both sides of the heat exchange plate (80) is made larger in the low pressure portion than in the high pressure portion, and the ratio is taken as the pressure ratio. Heat exchange with the same mass and heat quantity of the working fluid, the first auxiliary cylinder (12B) and the first auxiliary chamber (12B) and the first preparation chamber (13B) are formed in the first auxiliary cylinder, The first working chamber (22B) and the second working chamber (27B) are formed in the working chamber cylinder by the working chamber piston (21B), and the second auxiliary piston (31B) in the second auxiliary cylinder (second). The preparation chamber (33B) and the second auxiliary chamber (32B) are formed, and the six chambers are connected by opening and closing the switching valve to create three operating areas. The piston opens and closes the switching valve at the top dead center. Then, the first operation chamber (22B) adjacent to the first preparation chamber (13B) is connected by opening the first vent valve (24B), and the first auxiliary chamber (12B) is higher in pressure than the first preparation chamber (13B). And the working fluid in the first preparation chamber (13B) is changed to the first working chamber (22B). The first operating chamber is changed in adiabatic state by connecting the second operating chamber (27B) and the first auxiliary chamber (12B) by opening the second exhaust valve (28B) and the first suction valve (14B). (22B) and the first preparatory chamber (13B) with the same piston back pressure and help adiabatic change, and by lowering the piston by the pressure receiving area difference between the first auxiliary piston (11B) and the operating chamber piston (21B), The working fluid in the second working chamber (27B) is moved to the first auxiliary chamber (12B) through the high pressure passage (87) and the heater (1) of the heat exchanger (8) for heat recovery, and the second auxiliary chamber ( 32B) is connected to the second preparatory chamber (33B) of the same cylinder as the second discharge chamber (35B) and the second air supply valve (36B) by the second auxiliary piston (31B). 32B) the working fluid in the low pressure section passage (86) of the heat recovery heat exchanger (8). And move to the second preparation chamber (33B) through the cooler (2), complete the preparation for the next operation at the bottom dead center of the piston, close the open switching valve, open the closed switching valve and operate The configuration of the area is changed, the second preparation chamber (33B) and the second operation chamber (27B) are connected, the first operation chamber (22B) and the second auxiliary chamber (32B) are connected, and the first auxiliary chamber (12B From the adiabatic contraction type heat engine that continuously operates by connecting the first preparation chamber (13B) of the same cylinder as in (1) and raising the piston by the same change as when the piston is lowered, completing the preparation for the next operation at the top dead center of the piston. (Refer to FIG. 2).

請求項3に記載の発明は、請求項1の3連式シリンダエンジン部の基本である補助室、準備室、動作室の3室を2連式シリンダとし、複数個のエンジン部をリンク連結するが、エンジン部と熱交換部とを備え、エンジン部と加熱器(1)および熱回収用熱交換器(8)の高圧部通路(87)を配管接続する系統を高圧部とし、エンジン部と冷却器(2)および熱回収用熱交換器(8)の低圧部通路(86)を配管接続する系統を低圧部とし、エンジン部は動作室シリンダ(20a)、動作室シリンダ内径より小さい内径の補助シリンダ(10a)とを直列に配設し、補助シリンダの両側を仕切板(17a,18a)により区切り、仕切板には切替弁と通気路を設けて外部配管につなぎ、各シリンダ(10a,20a)の補助ピストン(11a),動作室ピストン(21a)は1本のピストン軸(3a)にて連結し、動作室ピストンはピストンの直線運動を回転運動に変えるピストンリンクを備え回転出力とし、ピストンの上死点または下死点にて切替弁(14a,15a,16a,23a,24a)を交互に開閉し、通気路を切り替え、加熱器出口の動作流体温度と冷却器出口の動作流体温度の比をこのシステムの温度比=圧力比とし、出力変化は装置の動作流体を注入または排出させ、全体の圧力を変化させることにより行い、熱回収用熱交換器(8)は熱交換板(80)の両側の単位面積当たり容積を高圧部より低圧部を大きくし、その比を圧力比とすることにより動作流体の質量および熱量を同量として熱交換し、補助シリンダ内を補助ピストンにて補助室(12a)と準備室(13a)とを形成し、動作室シリンダ内を動作室(22a)とし、ピストン上死点で切替弁を開閉し、準備室(13a)と隣接する動作室(22a)を通気弁(24a)を開いて連結し、補助ピストン(11a)と動作室ピストン(21a)は受圧面積差でピストンを下降させ、準備室(13a)の高圧動作流体を動作室(22a)に断熱膨張変化をさせながら移動し、ピストンを下降させ、補助室(12a)は吸入弁(14a)を開いて低圧部とつなぎ、動作流体を熱回収用熱交換器(8)の低圧部通路(86)および冷却器(2)を通して低圧部から補助室(12a)に移動させ、ピストン下死点で切替弁を開閉し、開いていた切替弁を閉じ、閉じていた切替弁を開いて動作エリアの構成を替え、補助室(12a)と準備室(13a)を吐出弁(15a)と給気弁(16a)を開いて連結し、高圧部とつなぎ、補助ピストン(11a)上昇により、補助室(12a)の動作流体を熱回収用熱交換器(8)の高圧部通路(87)および加熱器(1)を通して高圧部から準備室(13a)に移動させ、動作室(22a)は排気弁(23a)を開いて動作流体を低圧部に移動させ、ピストンの上死点にて1サイクルを完了させ、開いていた切替弁を閉じ、閉じていた切替弁を開いて動作エリアの構成を替え連続運転する、エンジン部を複数個つくり、それぞれのエンジン部の前記ピストン軸を相互に1サイクル÷ピストン軸数の時間差を設けて上下運動するようにリンクで連結し、共通の高圧部から複数のエンジン部の各準備室に動作流体が移動し、共通の低圧部から複数のエンジン部の各補助室に動作流体が移動する、断熱膨張型熱機関からなることを特徴とする(図3参照)。 According to the third aspect of the present invention, the auxiliary chamber, the preparation chamber, and the operation chamber, which are the basis of the triple cylinder engine section of the first aspect, are made into a dual cylinder, and a plurality of engine sections are linked. However, the engine part and the heat exchange part are provided, and the system connecting the engine part, the high pressure passage (87) of the heater (1) and the heat recovery heat exchanger (8) by piping is defined as a high pressure part. The system connecting the low pressure section passage (86) of the cooler (2) and the heat recovery heat exchanger (8) with a pipe is a low pressure section, and the engine section has an inner diameter smaller than the inner diameter of the operating chamber cylinder (20a) and the operating chamber cylinder. The auxiliary cylinder (10a) is arranged in series, both sides of the auxiliary cylinder are separated by a partition plate (17a, 18a), a switching valve and a ventilation path are provided on the partition plate and connected to an external pipe, and each cylinder (10a, 20a) auxiliary piston (11a The working chamber piston (21a) is connected by a single piston shaft (3a), and the working chamber piston has a piston link that changes the linear motion of the piston into a rotational motion and serves as a rotational output. At the point, the switching valves (14a, 15a, 16a, 23a, 24a) are alternately opened and closed, the air passage is switched, and the ratio of the operating fluid temperature at the heater outlet to the operating fluid temperature at the cooler outlet is the temperature ratio of this system. = Pressure ratio, output change is performed by injecting or discharging the working fluid of the apparatus and changing the overall pressure, and the heat recovery heat exchanger (8) is per unit area on both sides of the heat exchange plate (80). The volume of the low-pressure part is made larger than the high-pressure part, and the ratio is set to the pressure ratio to exchange heat with the same amount of mass and heat of the working fluid, and the auxiliary cylinder is prepared with the auxiliary chamber (12a) by the auxiliary piston. (13a), the working chamber cylinder is the working chamber (22a), the switching valve is opened and closed at the top dead center of the piston, and the working chamber (22a) adjacent to the preparation chamber (13a) is a vent valve (24a). The auxiliary piston (11a) and the working chamber piston (21a) are lowered by the pressure receiving area difference, and the high pressure working fluid in the preparation chamber (13a) is adiabatically expanded and changed in the working chamber (22a). The auxiliary chamber (12a) opens the suction valve (14a) to connect to the low pressure section, and the working fluid is transferred to the low pressure section passage (86) and the cooler (8) of the heat exchanger for heat recovery (8). 2) Move from the low pressure part to the auxiliary chamber (12a) through 2), open and close the switching valve at the bottom dead center of the piston, close the switching valve that was open, open the switching valve that was closed, and change the configuration of the operating area to assist Room (12a) and preparation room (13a) The discharge valve (15a) and the air supply valve (16a) are opened and connected, connected to the high pressure section, and the auxiliary piston (11a) is lifted to transfer the working fluid in the auxiliary chamber (12a) to the heat recovery heat exchanger (8). The high pressure section passage (87) and the heater (1) are moved from the high pressure section to the preparation chamber (13a), and the working chamber (22a) opens the exhaust valve (23a) to move the working fluid to the low pressure section. Complete one cycle at the top dead center, close the open switching valve, open the closed switching valve, change the configuration of the operating area, and create multiple engine units. The piston shafts are linked by a link so as to move up and down with a time difference of 1 cycle / the number of piston shafts, and the working fluid moves from a common high-pressure part to each of the preparation chambers of a plurality of engine parts. Multiple engines from the department Working fluid is moved to the storage chamber parts, characterized by comprising the adiabatic expansion heat engine (see Figure 3).

請求項4に記載の発明は、請求項3に記載の発明を収縮機関として展開したもので、エンジン部と熱交換部とを備え、エンジン部と加熱器(1)および熱回収用熱交換器(8)の高圧部通路(87)を配管接続する系統を高圧部とし、エンジン部と冷却器(2)および熱回収用熱交換器(8)の低圧部通路(86)を配管接続する系統を低圧部とし、エンジン部は動作室シリンダ(20b)、動作室シリンダ内径より大きい内径の補助シリンダ(10b)とを直列に配設し、補助シリンダの両側を仕切板(17b,18b)により区切り、仕切板には切替弁と通気路を設けて外部配管につなぎ、各シリンダ(10b,20b)の補助ピストン(11b),動作室ピストン(21b)は1本のピストン軸(3b)にて連結し、動作室ピストンはピストンの直線運動を回転運動に変えるピストンリンクを備え回転出力とし、ピストンの上死点または下死点にて切替弁(14b,15b,16b,23b,24b)を交互に開閉し、通気路を切り替え、加熱器出口の動作流体温度と冷却器出口の動作流体温度の比をこのシステムの温度比=圧力比とし、出力変化は装置の動作流体を注入または排出させ、全体の圧力を変化させることにより行い、熱回収用熱交換器(8)は熱交換板(80)の両側の単位面積当たり容積を高圧部より低圧部を大きくし、その比を圧力比とすることにより動作流体の質量および熱量を同量として熱交換し、補助シリンダ内を補助ピストンにて補助室(12b)と準備室(13b)とを形成し、動作室シリンダ内を動作室(22b)とし、ピストン上死点で切替弁を開閉し、準備室(13b)と隣接する動作室(22b)を通気弁(24b)を開いて連結し、補助室(12b)を準備室(13b)より高圧にし、準備室(13b)の低圧動作流体を動作室(22b)に断熱収縮変化をさせながら移動し、補助ピストン(11b)と動作室ピストン(21b)の受圧面積差でピストンを下降させ、補助室(12b)は吸入弁(14b)を開いて高圧部とつなぎ、動作流体を熱回収用熱交換器(8)の高圧部通路(87)および加熱器(1)を通して高圧部から補助室(12b)に移動させ、ピストン下死点で切替弁を開閉し、開いていた切替弁を閉じ、閉じていた切替弁を開いて動作エリアの構成を替え、補助室(12b)と準備室(13b)を吐出弁(15b)と給気弁(16b)を開いて連結し、低圧部とつなぎ、補助ピストン(11b)上昇により、補助室(12b)の動作流体を熱回収用熱交換器(8)の低圧部通路(86)および冷却器(2)を通して低圧部から準備室(13b)に移動させ、動作室(22b)は排気弁(23b)を開いて動作流体を高圧部に移動させ、ピストンの上死点にて1サイクルを完了させ、開いていた切替弁を閉じ、閉じていた切替弁を開いて動作エリアの構成を替え連続運転する、エンジン部を複数個つくり、それぞれのエンジン部の前記ピストン軸を相互に1サイクル÷ピストン軸数の時間差を設けて上下運動するようにリンクで連結し、共通の高圧部から複数のエンジン部の各補助室に動作流体が移動し、共通の低圧部から複数のエンジン部の各準備室に動作流体が移動する、断熱収縮型熱機関からなることを特徴とする(図4参照)。 The invention according to claim 4 is an expansion of the invention according to claim 3 as a contraction engine, and comprises an engine part and a heat exchange part, the engine part and the heater (1), and a heat recovery heat exchanger. A system in which the system connecting the high-pressure section passage (87) in (8) is connected to the high-pressure section and the engine section, the cooler (2), and the low-pressure section passage (86) in the heat recovery heat exchanger (8) are connected by piping. Is the low pressure part, and the engine part is arranged in series with the operating chamber cylinder (20b) and the auxiliary cylinder (10b) having an inner diameter larger than the inner diameter of the operating chamber cylinder, and the both sides of the auxiliary cylinder are separated by partition plates (17b, 18b). The partition plate is provided with a switching valve and an air passage, and is connected to an external pipe. The auxiliary piston (11b) and the operating chamber piston (21b) of each cylinder (10b, 20b) are connected by a single piston shaft (3b). And the operating chamber piston A piston link that changes the linear motion of the stone into a rotational motion is provided, which is used as a rotational output, and the switching valves (14b, 15b, 16b, 23b, 24b) are alternately opened and closed at the top dead center or bottom dead center of the piston, Switch, the ratio of the working fluid temperature at the heater outlet to the working fluid temperature at the cooler outlet is the temperature ratio = pressure ratio of this system, and the output change will cause the working fluid of the device to be injected or discharged to change the overall pressure In the heat recovery heat exchanger (8), the volume per unit area on both sides of the heat exchange plate (80) is made larger in the low pressure portion than in the high pressure portion, and the ratio is taken as the pressure ratio. The heat exchange is performed with the same amount of heat, and the auxiliary chamber (12b) and the preparation chamber (13b) are formed by the auxiliary piston in the auxiliary cylinder, the operation chamber (22b) is formed in the operation chamber cylinder, and at the piston top dead center. Cut off The valve is opened and closed, the operation chamber (22b) adjacent to the preparation chamber (13b) is connected by opening the vent valve (24b), the auxiliary chamber (12b) is set to a higher pressure than the preparation chamber (13b), and the preparation chamber (13b) The low-pressure working fluid is moved to the working chamber (22b) while undergoing adiabatic contraction, and the piston is lowered by the pressure receiving area difference between the auxiliary piston (11b) and the working chamber piston (21b), and the auxiliary chamber (12b) is a suction valve. (14b) is opened and connected to the high-pressure section, and the working fluid is moved from the high-pressure section to the auxiliary chamber (12b) through the high-pressure section passage (87) and the heater (1) of the heat exchanger for heat recovery (8), and the piston The switching valve is opened and closed at the bottom dead center, the opened switching valve is closed, the closed switching valve is opened, the configuration of the operation area is changed, and the auxiliary chamber (12b) and the preparation chamber (13b) are connected to the discharge valve (15b). And open the supply valve (16b) When the auxiliary piston (11b) rises, the working fluid in the auxiliary chamber (12b) is moved from the low-pressure section through the low-pressure section passage (86) and the cooler (2) of the heat recovery heat exchanger (8). (13b), the working chamber (22b) opens the exhaust valve (23b), moves the working fluid to the high pressure section, completes one cycle at the top dead center of the piston, and closes the open switching valve. Open the closed switching valve and change the configuration of the operation area to operate continuously. Create multiple engine parts, and move the piston shafts of each engine part one cycle ÷ a time difference of the number of piston axes. In this way, the working fluid moves from the common high-pressure part to each auxiliary chamber of the plurality of engine parts, and the working fluid moves from the common low-pressure part to each preparation chamber of the plurality of engine parts. Mold heat engine It becomes possible wherein the (see FIG. 4).

以下、発明の内容を原理図に基づいて説明する。
図14イ、ロに断熱膨張型熱機関(以下単に膨張機関と称する)の原理図とPV線図を示し、図15イ、ロに断熱収縮型熱機関(以下単に収縮機関と称する)の原理図とPV線図を示す。PV図は両者を比較するため温度差を同じくした。しかし常温の空気や水を熱源とすると膨張機関の低温側温度保持は難しく、図12,13のように温度比は小さくなる。収縮機関は膨張機関と全く逆の構成となり動作流体の変化も逆になる。図18に熱回収用熱交換器(以下、熱回収器と称する)の原理図を示す。エネルギ変換システムはエンジン部と熱交換部からなり両者を配管でつなぐ。図14イは膨張機関、図15イは収縮機関の原理図を示し、ピストンが上死点で切替弁を開閉し下降行程を示す。シリンダ3個を直列に置き真ん中を動作室シリンダ20、両側を同じサイズの第1補助シリンダ10、第2補助シリンダ30とし、外部に加熱器1、冷却器2、熱回収器8を置き、膨張機関では補助シリンダの径より動作室シリンダの径を大きくし、ピストン行程容積比を断熱膨張比とする。収縮機関では補助シリンダの径より動作室シリンダの径を小さくし、ピストン行程容積比を断熱収縮比とする。各シリンダには1本のピストン軸3に固定されたピストン11,21,31が付き、押し板47、ピストンリンク9を付ける。各シリンダは仕切板によって隔てられ、仕切板には動作流体の流れを変える切替弁と通気路をつける。切替弁はピストンと押し板47の上死点または下死点にて交互に押して開閉し、動作流体の流れを切り替える。加熱器1の属する系統を高圧部、冷却器2の属する系統を低圧部とする。装置は開放部のない全閉方式として動作流体は空気以外のガスも使用できる。
The contents of the invention will be described below based on the principle diagram.
14A and 14B show a principle diagram and PV diagram of an adiabatic expansion type heat engine (hereinafter simply referred to as an expansion engine), and FIGS. 15A and 15B show a principle of an adiabatic contraction type heat engine (hereinafter simply referred to as a contraction engine). Figure and PV diagram are shown. The PV diagram has the same temperature difference in order to compare the two. However, if normal temperature air or water is used as the heat source, it is difficult to maintain the low temperature side temperature of the expansion engine, and the temperature ratio becomes small as shown in FIGS. The contraction engine is completely opposite in configuration to the expansion engine, and the change in working fluid is also reversed. FIG. 18 shows a principle diagram of a heat recovery heat exchanger (hereinafter referred to as a heat recovery unit). The energy conversion system consists of an engine part and a heat exchange part, and connects both with piping. 14A shows the principle of the expansion engine, and FIG. 15A shows the principle of the contraction engine. The piston opens and closes the switching valve at the top dead center, and shows the lowering stroke. Three cylinders are placed in series, the middle is the operating chamber cylinder 20, the first auxiliary cylinder 10 and the second auxiliary cylinder 30 are the same size on both sides, and the heater 1, cooler 2, and heat recovery device 8 are placed outside and expanded. In the engine, the diameter of the operating chamber cylinder is made larger than the diameter of the auxiliary cylinder, and the piston stroke volume ratio is defined as the adiabatic expansion ratio. In the contraction engine, the diameter of the operating chamber cylinder is made smaller than the diameter of the auxiliary cylinder, and the piston stroke volume ratio is set as the adiabatic contraction ratio. Each cylinder has pistons 11, 21, 31 fixed to one piston shaft 3, and a push plate 47 and a piston link 9 are attached. Each cylinder is separated by a partition plate, and a switching valve and a ventilation path for changing the flow of the working fluid are attached to the partition plate. The switching valve is alternately opened and closed at the top dead center or the bottom dead center of the piston and the push plate 47 to switch the flow of the working fluid. Let the system | strain to which the heater 1 belongs be a high voltage | pressure part, and let the system | strain to which the cooler 2 belong be a low voltage | pressure part. The device is a fully closed system with no opening, and the working fluid can use a gas other than air.

図18は熱回収器の原理を示す。熱回収器は重要な働きをするのでエネルギ変換システム全体の動作説明の前に説明する。本発明エネルギ変換システムは廃熱の全熱量回収を目的とする。熱力学の第2法則によると「熱はそれ自体で低温の物体から高温の物体に移れない」。これを言い換えると「熱は必ず高温物体から低温物体に移動する。熱の移動は両物体が同温になると止まる」ことになる。今抱き合わされた同じ断面積を持つ2本の管8がある。管内には動作流体があり、管相互の熱移動はできるが外界に対しての熱移動はないとする。管は環状につながり上方に加熱器1、下方に冷却器2がある。管の低温部にシリンダ・ピストン装置を置く。ピストン11を移動させ動作流体を移動させるとやがて管内は高温部から低温部まで温度は傾斜分布になる。ここでピストン11を準静的移動させると抱き合った各位置の管内温度差は限りなく0に近くなり、これを0と仮定すると隣接する位置の双方の単位容積当たりの質量は同じくなる。動作流体は循環していても高温部での加熱側温度と被加熱側温度の差は0となり加熱量も0になる。また低温部での冷却側温度と被冷却側温度の差も0になり冷却熱量も0になる。装置の上方は高温で質量は軽く、下方は低温で質量が重いので対流は起こらず質量移動もなく、容積変化もないので圧力変化もなくなる。実機ではピストンの移動は早く熱交換器の伝熱面積も有限であり双方の温度差は0にはならず、これを冷却器2、加熱器1で補う。隣接する熱交換部の加熱側、被加熱側の圧力が異なっても断面積を高圧側で狭く低圧側で広くし、その比を圧力比とすると隣接する質量が同じになる。
伝熱面積を大きくすると動作流体の変化は準静的変化に近づく。
FIG. 18 shows the principle of the heat recovery unit. Since the heat recovery unit plays an important role, it will be described before explaining the operation of the entire energy conversion system. The energy conversion system of the present invention aims to recover the total amount of waste heat. According to the second law of thermodynamics, "heat cannot move from a cold object to a hot object by itself". In other words, “heat always moves from a hot object to a cold object. Heat transfer stops when both objects reach the same temperature”. There are two tubes 8 with the same cross-sectional area that are now entangled. It is assumed that there is a working fluid in the pipe and heat transfer between the pipes is possible, but there is no heat transfer to the outside world. The tubes are connected in a ring, and there are a heater 1 above and a cooler 2 below. Place the cylinder / piston device in the low temperature part of the pipe. When the piston 11 is moved and the working fluid is moved, the temperature gradually becomes a gradient distribution from the high temperature portion to the low temperature portion. Here, when the piston 11 is moved quasi-statically, the temperature difference in the tube at each position embraced is almost zero, and assuming that this is zero, the mass per unit volume at both adjacent positions is the same. Even if the working fluid circulates, the difference between the heating side temperature and the heated side temperature in the high temperature part is 0, and the heating amount is also 0. Further, the difference between the cooling side temperature and the cooled side temperature in the low temperature part is also zero, and the amount of cooling heat is also zero. The upper part of the apparatus has a high temperature and a light mass, and the lower part has a low temperature and a heavy mass. Therefore, there is no convection, no mass transfer, no volume change, and no pressure change. In the actual machine, the piston moves quickly and the heat transfer area of the heat exchanger is also finite, and the temperature difference between the two does not become zero, and this is compensated by the cooler 2 and the heater 1. Even if the pressures on the heating side and the heated side of adjacent heat exchanging parts are different, if the cross-sectional area is narrow on the high pressure side and wide on the low pressure side, and the ratio is the pressure ratio, the adjacent masses are the same.
When the heat transfer area is increased, the change in the working fluid approaches a quasi-static change.

図14ロは膨張機関の動作流体の変化を表したPV線図である。図15ロは収縮機関の動作流体の変化を表したPV線図である。PV線図と合わせてエネルギ変換システムの動作を説明する。シリンダ3個とピストン3個で6室ができる。この室は上から順に第1補助室12、第1準備室13、第1動作室22、第2動作室27、第2準備室33、第2補助室32とする。この6室を切替弁の開閉により2室を連結して3つの動作エリアを作る。ピストンが上死点にあるとき、第1補助室12,第1動作室22,第2準備室33の容積は0である。第1準備室13(図14ロ、2・図15ロ、1)、第2動作室27(図14ロ、3・図15ロ、2)、第2補助室32(図14ロ、1orイ・図15ロ、3orイ)は全行程容積である。第1吐出弁15、第1給気弁16、第1排気弁23、第2通気弁29、第2吸入弁34を閉じ、その他の切替弁を開き、2室を連結して3つの動作エリアを作りピストンが下降し始める。   FIG. 14B is a PV diagram showing changes in the working fluid of the expansion engine. FIG. 15B is a PV diagram showing changes in the working fluid of the contraction engine. The operation of the energy conversion system will be described together with the PV diagram. Six cylinders are created with three cylinders and three pistons. This chamber is a first auxiliary chamber 12, a first preparation chamber 13, a first operation chamber 22, a second operation chamber 27, a second preparation chamber 33, and a second auxiliary chamber 32 in order from the top. The six chambers are connected to each other by opening and closing a switching valve to create three operation areas. When the piston is at top dead center, the volumes of the first auxiliary chamber 12, the first operation chamber 22, and the second preparation chamber 33 are zero. First preparation chamber 13 (FIGS. 14B, 2, 15B, 1), second operation chamber 27 (FIGS. 14B, 3, 15B, 2), second auxiliary chamber 32 (FIG. 14B, 1or 1) -FIG. 15 b, 3 or i) is the total stroke volume. The first discharge valve 15, the first air supply valve 16, the first exhaust valve 23, the second ventilation valve 29, the second intake valve 34 are closed, the other switching valves are opened, and the two chambers are connected to provide three operation areas. And the piston begins to descend.

第1準備室13と第1動作室22を第1通気弁24開で連結し、第1補助ピストン11と第1動作室ピストン21の受圧面積差でピストンを下降させ動作流体を膨張機関では断熱膨張(図14ロ、2→3)させ、収縮機関では断熱収縮(図15ロ、1→2)させる。   The first preparation chamber 13 and the first working chamber 22 are connected by opening the first vent valve 24, and the piston is lowered by the pressure receiving area difference between the first auxiliary piston 11 and the first working chamber piston 21 to insulate the working fluid in the expansion engine. Inflate (FIG. 14B, 2 → 3), and in the contraction engine, adiabatic contraction (FIG. 15B, 1 → 2).

第2動作室27と第1補助室12を第2排気弁28開、第1吸入弁14開にて連結させるが、断熱変化する第1動作室22と第1準備室13のピストン背圧を同圧とし断熱変化を助け、第1動作室ピストン21、第1補助ピストン11下降にて膨張機関では膨張完了している第2動作室27の動作流体を押し出し熱回収器8の低圧部通路86を通し(図14ロ、3→1)、冷却器2を通して定圧流動冷却収縮し、収縮機関では収縮完了している第2動作室27の動作流体を押し出し熱回収器8の高圧部通路87を通し(図15ロ、2→3)、加熱器1を通して定圧流動加熱膨張し第1補助室12に入れる。   The second working chamber 27 and the first auxiliary chamber 12 are connected by opening the second exhaust valve 28 and the first suction valve 14, but the piston back pressure in the first working chamber 22 and the first preparation chamber 13 changing adiabatically is reduced. The same pressure is used to help change the heat insulation, and when the first working chamber piston 21 and the first auxiliary piston 11 descend, the working fluid in the second working chamber 27 that has been expanded in the expansion engine is pushed out, and the low pressure section passage 86 of the heat recovery unit 8 is pushed out. (FIG. 14B, 3 → 1), the constant pressure flow is cooled and contracted through the cooler 2, and the operating fluid in the second operating chamber 27, which has been contracted in the contracting engine, is pushed out, and the high pressure section passage 87 of the heat recovery unit 8 is passed through. Through (FIG. 15B, 2 → 3), the heater 1 is heated and expanded at a constant pressure through the heater 1, and is put into the first auxiliary chamber 12.

第2補助室32と同じシリンダの第2準備室33を第2吐出弁35開、第2給気弁36開にて連結させるが、膨張機関では第2吐出弁35開にて高圧部の管路から第2補助室32に動作流体を自由膨張により流入させ(図14ロ、1→イ)、高圧部と同圧とし、第2補助ピストン31下降ですぐに第2補助室32の動作流体を押し出し、熱回収器8の高圧部87を通し(図14ロ、イ→ロ)、加熱器1を通して加熱し(図14ロ、ロ→2)、第2準備室33に入れ自由注入昇圧後定圧流動加熱膨張する。収縮機関では第2吐出弁35開にて第2補助室32から低圧部の管路へ動作流体を自由膨張により流出させ(図15ロ、3→イ)、低圧部と同圧とし、第2補助ピストン31下降でそのまま第2補助室32の動作流体を押し出し、熱回収器8の低圧部86を通し(図15ロ、イ→ロ)、冷却器2を通して冷却し(図14ロ、ロ→1)、第2準備室33に入れ自由放出降圧後定圧流動冷却収縮する。この行程は第2補助ピストン31の両側が同圧であり外部仕事はなく、補助シリンダ、配管、熱回収器8、加熱器1または冷却器2の容積が変わらず定容変化ともいえる。ピストンが下死点になると第1補助室12(図14ロ、1→イ・図15ロ、3→イ)、第1動作室22(図14ロ、3・図15ロ、2)、第2準備室33(図14ロ、2・図15ロ、1)は全行程容積になり次行程の準備が完了する。   The second preparatory chamber 33 of the same cylinder as the second auxiliary chamber 32 is connected by opening the second discharge valve 35 and the second air supply valve 36, but in an expansion engine, the second discharge valve 35 is opened and the pipe of the high pressure section is connected. The working fluid is allowed to flow into the second auxiliary chamber 32 from the passage by free expansion (FIG. 14B, 1 → i), the same pressure as the high pressure portion, and immediately after the second auxiliary piston 31 descends, the working fluid in the second auxiliary chamber 32 Is passed through the high-pressure section 87 of the heat recovery device 8 (FIG. 14B, B), heated through the heater 1 (FIGS. 14B, B → 2), placed in the second preparation chamber 33, and after free injection pressure increase Constant-pressure flow heating expansion. In the contraction engine, when the second discharge valve 35 is opened, the working fluid is allowed to flow out from the second auxiliary chamber 32 to the low-pressure line by free expansion (FIG. 15B, 3 → i), and the pressure is the same as that of the low-pressure part. When the auxiliary piston 31 descends, the working fluid in the second auxiliary chamber 32 is pushed out as it is, passed through the low pressure portion 86 of the heat recovery device 8 (FIG. 15 b, b), and cooled through the cooler 2 (FIG. 14 b, b) 1) After entering the second preparation chamber 33, the free discharge pressure drop and the constant pressure flow cooling shrinkage. In this stroke, both sides of the second auxiliary piston 31 are at the same pressure, there is no external work, and the volume of the auxiliary cylinder, piping, heat recovery device 8, heater 1 or cooler 2 does not change and can be said to be a constant volume change. When the piston is at the bottom dead center, the first auxiliary chamber 12 (FIG. 14B, 1 → B, FIG. 15B, 3 → B), the first working chamber 22 (FIGS. 14B, 3, FIG. 15B, 2), the first 2 The preparation chamber 33 (FIGS. 14B, 2 and 15B, 1) becomes the full stroke volume and the preparation for the next stroke is completed.

膨張機関では断熱膨張行程のみが動作流体の閉空間膨張として外部仕事をする。
定圧流動冷却収縮する第2動作室23,第1補助室12から見ると低圧部全体は開放形の空間であり、動作流体は温度差のある不平衡系であり、ピストン移動に伴い自由収縮し断熱膨張動作を助ける。動作流体の質量は断熱膨張行程、冷却収縮行程、定容加熱行程の完了時において同一でなけねばならない。図14ロ、1→2は同容積で温度比が圧力比となり、図14ロ、2→3は断熱膨張で質量変化はなく、図14ロ、3→1は圧力が同じで温度比が容積比となり、1行程中、常に一定量の質量が移動する。図14ロ、1→2は見かけ上であり第2補助室32には動作流体が流入し、自由膨張昇圧し等温変化によりイ点に移り高圧になる。配管、熱回収器8、加熱器1の総容積に対して流入容積は非常に小さく高圧部はほとんど圧力低下しない。熱回収器8の高圧部温度差(図14ロ、イ→ロ)と低圧部温度差(図14ロ、1→3)は等しく、全熱量回収し冷却器2の熱交換(図14ロ、1→1)は理論上ない。しかしこのことは理論上損失を0としてのことであり実機は機械であるから損失は免れず熱交換に不平衡として現れ、この補正に冷却器2を置き、常時低温部の温度保持をさせるが、変圧過渡期や起動時の低温確保にも必要である。加熱量は図14ロ、ロ→2に示し、この温度差は断熱膨張による温度差図14ロ、3→ハと等しく、加熱量がそのまま外部仕事になり理論上熱効率100%の熱機関が出来る。この加熱器の加熱用流体は加熱を終えて温度を下げ放出されるが、加熱用の流体熱効率は含まない。膨張熱機関は高温側に加熱用熱源を必要とし、低温側は冷却熱量が少ないが温度差を作るのに冷却用熱源も必要としている。加熱用の流体熱効率を含めると熱効率は100%にはならない。
In an expansion engine, only the adiabatic expansion stroke performs external work as a closed space expansion of the working fluid.
When viewed from the second working chamber 23 and the first auxiliary chamber 12 which are cooled and contracted at a constant pressure, the entire low pressure part is an open space, and the working fluid is an unbalanced system with a temperature difference, and freely contracts as the piston moves. Helps adiabatic expansion. The mass of the working fluid must be the same at the completion of the adiabatic expansion stroke, the cooling contraction stroke, and the constant volume heating stroke. 14B, 1 → 2 has the same volume and temperature ratio becomes the pressure ratio, FIG. 14B, 2 → 3 has adiabatic expansion and no mass change, and FIG. 14B, 3 → 1 has the same pressure and the temperature ratio is volume. It becomes a ratio, and a certain amount of mass always moves during one stroke. 14B and 1 → 2 are apparent, the working fluid flows into the second auxiliary chamber 32, the pressure of the free expansion is increased, the point is changed to point a due to isothermal change, and the pressure becomes high. The inflow volume is very small with respect to the total volume of the piping, the heat recovery device 8 and the heater 1, and the pressure in the high pressure portion hardly decreases. The high-pressure part temperature difference (FIG. 14B, A → B) and the low-pressure part temperature difference (FIGS. 14B, 1 → 3) of the heat recovery unit 8 are equal, and the total heat is recovered and the heat exchange of the cooler 2 (FIG. 14B, 1 → 1) is not theoretical. However, this means that the loss is theoretically 0, and the actual machine is a machine, so the loss is inevitable and appears as an unbalance in heat exchange, and the cooler 2 is placed in this correction to keep the temperature of the low temperature part constantly. It is also necessary for securing a low temperature during the transformation transition period and startup. The amount of heating is shown in FIG. 14 b, b → 2, and this temperature difference is the same as the temperature difference due to adiabatic expansion in FIG. 14 b, 3 → c, and the amount of heating becomes external work as it is and a heat engine with a theoretically 100% thermal efficiency can be created. . The heating fluid of this heater finishes heating and is released at a reduced temperature, but does not include the fluid thermal efficiency for heating. The expansion heat engine requires a heating heat source on the high temperature side, and the cooling heat source on the low temperature side requires a cooling heat source to produce a temperature difference, although the cooling heat amount is small. Including the fluid thermal efficiency for heating, the thermal efficiency is not 100%.

収縮機関では断熱収縮行程のみが動作流体の閉空間収縮としてピストンに力を及ぼす。定圧流動加熱膨張する第2動作室27,第1補助室12から見ると高圧部全体は開放形の空間であり、動作流体は温度差のある不平衡系であり、ピストン移動に伴い自由膨張し断熱収縮動作を助ける。動作流体の質量は断熱収縮行程、加熱膨張行程、定容冷却行程の完了時において同一でなけねばならない。図15ロ、1→2は断熱収縮で質量変化はなく、図15ロ、2→3は圧力が同じで温度比が容積比となり、3→1は同容積で温度比が圧力比となり、1行程中、常に一定量の質量が移動する。図15ロ、3→1は見かけ上であり補助室B32は動作流体が流出して自由膨張降圧し等温変化によりイ点に移り低圧になる。配管、熱回収器8、冷却器2の総容積に対して流入容積は非常に小さく低圧部はほとんど圧力上昇しない。熱回収器8の高圧部温度差(図15ロ、2→3)と低圧部温度差(図15ロ、ロ→イ)は等しく、全熱量回収し加熱器1の熱交換(図15ロ、イ→イ)は理論上ない。しかしこのことは理論上損失を0としてのことであり実機は機械であるから損失は免れず熱交換に不平衡として現れ、この補正に加熱器1を置き、常時高温部の温度保持をさせるが、変圧過渡期や起動時の高温確保にも必要である。冷却量は図15ロ、ロ→1に示し、この温度差は断熱収縮による温度差図15ロ、2→ハと等しく、冷却量がそのまま外部仕事になり理論上熱効率100%の熱機関が出来る。この冷却器の冷却用流体は冷却を終えて温度を上げ放出される。   In a contraction engine, only the adiabatic contraction stroke exerts a force on the piston as a closed space contraction of the working fluid. When viewed from the second working chamber 27 and the first auxiliary chamber 12, which are heated and expanded at a constant pressure, the entire high-pressure part is an open space, and the working fluid is an unbalanced system with a temperature difference, and freely expands as the piston moves. Helps adiabatic shrinkage. The mass of the working fluid must be the same upon completion of the adiabatic contraction stroke, the heating expansion stroke, and the constant volume cooling stroke. 15 b, 1 → 2 is adiabatic shrinkage and there is no mass change, and FIG. 15 b, 2 → 3 are the same pressure and the temperature ratio is volume ratio, and 3 → 1 is the same volume and the temperature ratio is pressure ratio. A certain amount of mass always moves during the process. 15B and 3 → 1 are apparent, and the auxiliary chamber B32 flows into the auxiliary chamber B32 and freely expands and depressurizes. The inflow volume is very small with respect to the total volume of the pipe, the heat recovery unit 8 and the cooler 2, and the pressure in the low pressure part hardly increases. The high-pressure part temperature difference (FIG. 15B, 2 → 3) and the low-pressure part temperature difference (FIG. 15B, B → B) of the heat recovery unit 8 are equal, and the total heat is recovered and the heat exchange of the heater 1 (FIG. 15B, B) There is no theory. However, this means that the loss is theoretically 0, and the actual machine is a machine, so the loss is unavoidable and appears as an unbalance in heat exchange, and the heater 1 is placed in this correction to keep the temperature of the high temperature part constantly. It is also necessary to ensure a high temperature at the time of transformation transition and startup. The amount of cooling is shown in FIG. 15B, B → 1, and this temperature difference is the same as the temperature difference due to adiabatic shrinkage in FIG. 15B, 2 → C. . The cooling fluid of this cooler finishes cooling and is discharged after raising its temperature.

膨張機関と収縮機関の特徴を比較してみる。両者とも最高温度と最低温度の温度比を圧力比としている。膨張機関では高温側の熱量が外部仕事になり高温の熱源が必要であり、低温側は温度保持のみである。従来の熱機関は膨張機関であり高温熱源を必要とし、熱回収分の熱量を捨てていたので非常に熱効率の悪い熱機関であった。収縮機関では低温側の熱量が外部仕事になり低温の熱源が必要であり、高温側は温度保持のみである。収縮機関は負荷に発電機を付け、加熱器を電気ヒーターにすると簡単に温度差が作れ温度調節が出来る。しかしヒーターは理論上は常時不要であるから熱効率を下げない。低温側は冷却熱量分外部出力になるが、これを常温の空気や水でまかなえる。また特別の高温熱源は不要であり、燃料等は不要となる。PV線図の温度差は膨張機関、収縮機関共に450K−300K=150Kであるが、断熱変化後の温度差は膨張機関と収縮機関で異なる。しかし両者は断熱変化前の容積と質量が異なり、膨張機関の補助シリンダ容積と、収縮機間の動作室シリンダ容積をを同じくし、膨張機関の動作室シリンダ容積と、収縮機関の補助シリンダ容積を同じくすると、断熱変化による外部出力は膨張機関、収縮機関共同じくなる。   Compare the characteristics of expansion and contraction engines. In both cases, the pressure ratio is the temperature ratio between the highest temperature and the lowest temperature. In an expansion engine, the amount of heat on the high temperature side is external work and a high temperature heat source is required, while the low temperature side only holds the temperature. The conventional heat engine is an expansion engine, which requires a high-temperature heat source, and discards the amount of heat recovered. In a contraction engine, the amount of heat on the low temperature side is external work and a low temperature heat source is required, and the high temperature side only holds the temperature. A shrinkage engine can be adjusted easily by creating a temperature difference by attaching a generator to the load and using an electric heater as the heater. However, since the heater is theoretically unnecessary at all times, the thermal efficiency is not lowered. On the low temperature side, the amount of cooling heat becomes an external output, which can be covered with air or water at normal temperature. In addition, no special high-temperature heat source is required, and no fuel or the like is required. The temperature difference in the PV diagram is 450K-300K = 150K for both the expansion engine and the contraction engine, but the temperature difference after the adiabatic change is different between the expansion engine and the contraction engine. However, the volume and mass before the adiabatic change are different, and the auxiliary cylinder volume of the expansion engine and the operating chamber cylinder volume between the contractors are the same, and the operating chamber cylinder volume of the expansion engine and the auxiliary cylinder volume of the contracting engine are the same. In the same way, the external output due to adiabatic change is the same for both expansion and contraction engines.

エンジン部の構造は3連シリンダ型のほかに2連シリンダ型がある。図16は2連シリンダ型膨張機関の原理図であり、図17は2連シリンダ型収縮機関の原理図である。2連シリンダ型は3連シリンダ型の動作室シリンダと動作室ピストンを2分した形である。3連シリンダ型ではエンジンのサイズが大きくなるので小型化を目的とする。2分したそれぞれのピストン軸を回転位相差180°とすれば3連シリンダ型と全く同じ動作をする。2連シリンダ型エンジン部は同じサイズの装置を複数個つくり、ピストンのクランク回転位相角を360°÷ピストン軸数とし、エンジン部を2個とすると360°÷2=180°とする。熱回収器を流れる動作流体は、2連シリンダエンジン部2個で3連シリンダエンジンと同じ働きをするが、1個でも運転できる。その場合動作流体の動きは間歇移動になるが、シリンダ容積より高圧部、低圧部の容積が充分に大きいので平滑化される。エンジン部を3個以上とすると動作流体はさらに平滑化され熱交換器の機能が充分に発揮される。2連シリンダ型にも増圧、減圧装置は必要であるが図15、図16には省略してある。エンジン部の構造説明は主として3連シリンダ型を説明し、2連シリンダ型に特別変わった所がある場合はその都度説明する。。   In addition to the triple cylinder type, the engine has a double cylinder type. FIG. 16 is a principle diagram of a dual cylinder type expansion engine, and FIG. 17 is a principle diagram of a dual cylinder type contraction engine. The double cylinder type is a triple cylinder type operating chamber cylinder and operating chamber piston divided into two. The triple cylinder type increases the size of the engine and is therefore aimed at miniaturization. If each piston shaft divided into two has a rotational phase difference of 180 °, the same operation as the triple cylinder type is performed. In the double cylinder type engine unit, a plurality of devices of the same size are manufactured, and the crank rotation phase angle of the piston is 360 ° ÷ the number of piston shafts, and when two engine units are used, 360 ° ÷ 2 = 180 °. The working fluid flowing through the heat recovery unit works in the same manner as a triple cylinder engine with two double cylinder engine units, but even one can be operated. In this case, the movement of the working fluid is intermittent, but is smoothed because the volume of the high pressure portion and the low pressure portion is sufficiently larger than the cylinder volume. When the number of engine parts is three or more, the working fluid is further smoothed and the function of the heat exchanger is fully exhibited. The double cylinder type also requires a pressure increase / decrease device, but is omitted in FIGS. 15 and 16. The structure of the engine part will be mainly explained for the triple cylinder type, and if there is a special change to the double cylinder type, it will be explained each time. .

エンジン部は仕切板で区切られたシリンダが数個直列につながり、仕切板につながる吸排気管の熱ひずみでシリンダの直線性を悪くする。そのため仕切板の外径を同じくし、ケーシングの内部寸法に合わせる。シリンダと仕切板は嵌め合いとする。シリンダとケーシングの間に空間を設け、この空間を高圧部または低圧部と同圧にするよう仕切板に通気孔を設ける。仕切板およびシリンダは一体のケースに填め込み、シリンダの繋ぎ目による歪みを是正させ、直線性をよくしてピストンの動きを円滑にする。吸排気管の熱応力をケーシングに持たせる。熱機関とケーシングとの間の空間により放熱防止させる。   In the engine part, several cylinders separated by a partition plate are connected in series, and the linearity of the cylinder is deteriorated by the thermal strain of the intake and exhaust pipes connected to the partition plate. Therefore, the outer diameter of the partition plate is made the same and matched with the internal dimension of the casing. The cylinder and the partition plate are fitted together. A space is provided between the cylinder and the casing, and a vent hole is provided in the partition plate so that the space has the same pressure as the high pressure portion or the low pressure portion. The partition plate and the cylinder are fitted into an integrated case, which corrects the distortion caused by the joint of the cylinder, improves the linearity, and makes the piston move smoothly. Give the casing the thermal stress of the intake and exhaust pipes. Heat is prevented by the space between the heat engine and the casing.

ピストンを取り付けるピストン軸には補助ピストン、動作室ピストンが付くほか、押し板、ピストンリンク等が付き、仕切板を貫通し摺動する。ピストンは切替弁を押す押し板機能も持たせ、ストロークを合わせ、位置がずれないようにする。このような理由でピストン軸に数個の摺動管を嵌め、摺動管と摺動管の間にピストン、押し板、ピストンリンクを嵌めて固定し、ピストン軸の両端からナットを付けて締め、ロックしてゆるまないようにする。   The piston shaft to which the piston is attached is provided with an auxiliary piston and an operating chamber piston, as well as a push plate, a piston link, etc., and slides through the partition plate. The piston also has a push-plate function that pushes the switching valve, and adjusts the stroke so that the position does not shift. For this reason, several sliding pipes are fitted on the piston shaft, and a piston, a push plate, and a piston link are fitted and fixed between the sliding pipes, and nuts are attached and tightened from both ends of the piston shaft. , Lock it so that it won't come loose.

補助ピストンの往復運動で補助室と準備室の行程エリアが重なり高温部と低温部が交互になることにより熱損失が増える。補助ピストンを大きくして行程エリアが重ならないようにして熱損失を抑える。補助ピストンを大きくするならば動作室ピストンも大きくする。ピストンはピストン軸に数個つき、往復でピストンヘッドとして働くため両面を平面にする。そのため厚みがあると重くなり機械的損失が出る。ピストンを軽くするためピストンを中空にする。エネルギ変換システムは変圧運転のため出力が大きくなるとシステムの圧力が高くなり、ピストン中空圧との差が大きくなりピストンを変形させる。そのためピストンの中空部を加圧してこれを防ぐ。上記の理由によりピストン軸表面に軸方向にみぞを設け、ピストン軸と摺動管との間に通気路を設け、押し板室とピストン中空部と通気路で結び、押し板室を低圧部または高圧部と結び加圧してピストン中空部を加圧する。   The reciprocating motion of the auxiliary piston overlaps the stroke area of the auxiliary chamber and the preparatory chamber, and the high temperature portion and the low temperature portion are alternated to increase heat loss. The auxiliary piston is enlarged so that the stroke areas do not overlap to reduce heat loss. If the auxiliary piston is enlarged, the operating chamber piston is also enlarged. Several pistons are attached to the piston shaft, and both sides are made flat because they reciprocate as piston heads. Therefore, if it is thick, it becomes heavy and mechanical loss occurs. To make the piston light, make the piston hollow. In the energy conversion system, when the output is increased due to the transformation operation, the pressure of the system is increased, and the difference from the piston hollow pressure is increased to deform the piston. Therefore, the hollow part of the piston is pressurized to prevent this. For the above reasons, a groove is provided in the axial direction on the surface of the piston shaft, an air passage is provided between the piston shaft and the sliding tube, and the push plate chamber and the piston hollow portion are connected by the air passage, and the push plate chamber is connected to the low pressure portion or the high pressure portion. To pressurize the piston hollow part.

ピストンはピストンヘッドを両側に持ち、さらにピストン軸に数個付きピストン摺動面への潤滑給油ができない。そのような理由でピストンは両ピストンヘッド側にピストンリングを持ち、その設置位置間隔をピストン移動距離より大きくし、シリンダの摺動面にピストンリングの摺動しない範囲をつくり、シリンダ外部より潤滑油の注入口および排出口をつくり、ピストンリングに挟まれたピストンとシリンダの間に一方から潤滑油を注入し他方から排出する。   The piston has a piston head on both sides, and several piston shafts cannot lubricate the piston sliding surface. For this reason, the piston has piston rings on both piston heads, the interval between the installation positions is larger than the piston travel distance, and the piston ring has a range where the piston ring does not slide. The injection port and the discharge port are made, and lubricating oil is injected from one side between the piston and the cylinder sandwiched between the piston rings and discharged from the other side.

仕切板は補助シリンダの両側に付き、仕切板には切替弁を設け、切替弁に出入りする動作流体の通気路をつくる。切替弁とその通気路はエンジン部の構造上、動作流体の入る方と出る方に分かれる。そのため流入側ブロックと流出側ブロックで2分すると、補助仕切板は吸入弁ブロックと吐出弁ブロックに分かれる。動作室仕切板は排気弁ブロックと給気弁ブロックに分かれる。動作室仕切板には通気弁が付き、両ブロックに等分に配置し、排気弁、給気弁の数に合わせる。弁の数は仕切板の面積と強度の許す限り多いほどよい。仕切板にはピストン軸が貫通し摺動する。そのため摺動管にリング状の軸封装置を付ける。エンジン部の組立は、ピストン軸に予め軸封装置を嵌めた摺動管とピストンを固定し、後にシリンダおよび仕切板を組み込む。上記の理由により仕切板は両面を平面とし内側を中空とする。中空部には切替弁を取り付け、通気路を設け動作流体を通し、通気路はシリンダに設けた開口部に合わせ外部とつなぐ。2分した仕切板は摺動管に付けた軸封装置を挟むようにして組み立てる。仕切板合わせ目には溝を設け、軸封装置の潤滑油管を通す。   The partition plate is attached to both sides of the auxiliary cylinder, and a switching valve is provided on the partition plate to create a ventilation path for the working fluid entering and exiting the switching valve. The switching valve and its air passage are divided into a direction where the working fluid enters and a direction where it exits due to the structure of the engine part. Therefore, when the inflow side block and the outflow side block are divided into two, the auxiliary partition plate is divided into an intake valve block and a discharge valve block. The operation chamber partition plate is divided into an exhaust valve block and an air supply valve block. The operating chamber partition plate is equipped with a vent valve, and it is equally placed on both blocks, and is matched to the number of exhaust valves and air supply valves. The number of valves is better as the area and strength of the partition plate allow. The piston shaft passes through the partition plate and slides. Therefore, a ring-shaped shaft seal device is attached to the sliding tube. For assembling the engine part, the piston is fixed to a sliding tube in which a shaft seal device is fitted in advance, and a cylinder and a partition plate are assembled later. For the above reason, the partition plate is flat on both sides and hollow on the inside. A switching valve is attached to the hollow portion, an air passage is provided to allow working fluid to pass, and the air passage is connected to the outside in accordance with an opening provided in the cylinder. The two-partition plate is assembled so as to sandwich the shaft seal device attached to the sliding tube. A groove is provided at the partition plate joint, and the lubricating oil pipe of the shaft seal device is passed through.

仕切板は切替弁のシリンダ室側空間が死空間になり、この空間が小さいほどエネルギー変換効率はよくなる。通気路側の空間は死空間にならない。切替弁はストロークを小さくし、開口部を大きくする相反する機能が要求される。エンジン部は温度差が小さくエネルギー密度も小さいため弁開閉の動力も小さくする。切替弁はピストンによりピストンの上死点または下死点で同時に開閉され、ストロークが大きいとピストンの上死点または下死点に達する以前から開き初め、閉止弁が開いている間に開く同時開の時期があり動作流体の素通しが起きる。そのため最小のストロークで最大の開口面積が要求され切替弁は大きくできない。   In the partition plate, the space on the cylinder chamber side of the switching valve becomes a dead space, and the smaller this space, the better the energy conversion efficiency. The space on the airway side does not become a dead space. The switching valve is required to have a conflicting function of reducing the stroke and increasing the opening. Since the engine part has a small temperature difference and a small energy density, the valve opening / closing power is also reduced. The switching valve is simultaneously opened and closed by the piston at the top dead center or bottom dead center of the piston. When the stroke is large, the switching valve starts to open before reaching the top dead center or bottom dead center of the piston, and opens simultaneously while the shut-off valve is open. There is a period of time, and the working fluid passes through. Therefore, the maximum opening area is required with the minimum stroke, and the switching valve cannot be enlarged.

切替弁の弁開時、吸入弁、給気弁は弁の両側は同圧であり、排気弁、通気弁は動作流体の流れる側のピストン位置が上死点または下死点であり、動作流体の流れは弁の死空間のみで少ない。吐出弁のみ弁開と同時に動作流体が流れ、すぐに外部配管と同圧になり動作流体はピストンの移動に従うようになる。弁閉の初めはピストンの上死点または下死点付近であり、動作流体の移動は少なく、弁閉になると開になった弁の影響で急激に差圧ができて弁を押す。上記の理由で切替弁は弁棒、弁箱、上下2個の弁棒ガイド、弁リングで構成する。弁棒には弁を付ける。弁箱は内部に弁座を設け、弁箱通気孔を設け、外側に溝を設け、弁の用途による通路を設け、弁リングと合わせて通気路を構成する。弁棒ガイドは弁棒の保持、ストッパ、摺動部の漏れを防ぐ。弁全体は仕切板に填め込まれ、ピストンは弁棒を交互に押して開閉し、弁閉止時弁側を高圧側とし、弁を弁座に押しつけるようにし、弁開時は弁をポケットに嵌るようにする。弁棒に棒状の磁石を埋め込み、弁ガイドに2個のリング状磁性体を埋め込み、弁棒がピストンによって押され一方に移動すると磁石とリング状磁性体が引き合うようにし、逆から押されるとこのリング状磁性体から磁石が離れ、他方のリング状磁性体に引かれて弁棒の位置を確保させる。弁棒が回転しても常に同じ性能を維持する。   When the switching valve is open, the suction valve and air supply valve have the same pressure on both sides of the valve, and the exhaust valve and vent valve have the top dead center or bottom dead center on the side where the working fluid flows. There is little flow in the dead space of the valve. When only the discharge valve is opened, the working fluid flows and immediately becomes the same pressure as the external pipe, and the working fluid follows the movement of the piston. The beginning of the valve closing is near the top dead center or the bottom dead center of the piston, and there is little movement of the working fluid. When the valve is closed, the pressure is suddenly increased due to the open valve, and the valve is pushed. For the above reasons, the switching valve is composed of a valve stem, a valve box, two upper and lower valve stem guides, and a valve ring. A valve is attached to the valve stem. The valve box is provided with a valve seat inside, provided with a valve box vent hole, provided with a groove on the outside, provided with a passage according to the use of the valve, and constitutes a vent path together with the valve ring. The valve stem guide prevents valve stem retention, stoppers and sliding parts from leaking. The whole valve is inserted into the partition plate, and the piston pushes the valve rod alternately to open and close, so that the valve side is the high pressure side when the valve is closed, and the valve is pressed against the valve seat, and when the valve is open, the valve fits in the pocket To. A rod-shaped magnet is embedded in the valve stem, and two ring-shaped magnetic bodies are embedded in the valve guide. When the valve rod is pushed by the piston and moved to one side, the magnet and the ring-shaped magnetic body attract each other. The magnet is separated from the ring-shaped magnetic body and pulled by the other ring-shaped magnetic body to secure the position of the valve stem. Even if the valve stem rotates, the same performance is always maintained.

速度が速くて質量の大きいピストンで弁棒を叩くと、ピストンが上死点または下死点でスピードが落ちていても弁棒に大きな力が働き切替弁を破損する。切替弁を押すピストンおよび押し板の当たり部分にプランジャーを埋め込み、プランジャーは押し込まれているときピストンヘッドの高さ以下とし、飛び出しているときはピストンヘッドよりやや高くし、ピストン移動が後半でスピードが落ちてくるとプランジャーは慣性で飛び出し、ピストンに先行して切替弁の弁棒を押す。プランジャーは質量が小さく弁棒への衝撃を小さくする。ピストン、押し板およびピストンリンクは摺動管と嵌め合い部をつくり相互の位置がずれないようにし、プランジャーが確実に弁棒を押すようにする。   When the valve stem is hit with a piston with high speed and high mass, even if the piston is slowing down at top dead center or bottom dead center, a large force is applied to the valve stem and the switching valve is damaged. A plunger is embedded in the contact area of the piston and push plate that pushes the switching valve, and when the plunger is pushed in, it is below the height of the piston head, when it is popping out, it is slightly higher than the piston head, and the piston moves in the second half. When the speed drops, the plunger pops out by inertia and pushes the valve stem of the switching valve ahead of the piston. The plunger has a small mass and reduces the impact on the valve stem. The piston, push plate, and piston link make a mating part with the sliding tube so that they are not displaced from each other, and the plunger reliably pushes the valve stem.

本発明の熱回収器8の構造を図11に示す。熱回収器8は熱交換ユニット85を数枚重ねて必要熱交換面積とし、熱交換ユニット85内部を低圧部通路86とし、外部を高圧部通路87とし、全体を耐圧ケース90に納める。動作流体は低圧部の全量を高圧部に向流として流し、両者の質量および熱量が常に同量熱回収板80の両側に有るように高圧部通路87より低圧部通路86の間隔を大きくしその比を圧力比とする。両者の熱交換時間を同じくすることにより排気熱量全量熱回収する。   The structure of the heat recovery device 8 of the present invention is shown in FIG. The heat recovery unit 8 has several heat exchange units 85 stacked to form a necessary heat exchange area, the inside of the heat exchange unit 85 serves as a low-pressure section passage 86, the outside serves as a high-pressure section passage 87, and the whole is housed in a pressure-resistant case 90. The working fluid flows the entire amount of the low-pressure part as a counter-current to the high-pressure part, and the interval between the low-pressure part passage 86 is made larger than the high-pressure part passage 87 so that the mass and heat amount of both are always on both sides of the heat recovery plate 80. The ratio is the pressure ratio. By using the same heat exchange time for both, the exhaust heat quantity is recovered in total.

熱交換ユニットをブロックにして耐圧ケースに納める。ブロックは熱交換ユニットを数枚重ね、全体をボルトで締めて作る。ボルトは低圧側動作流体を通す入口、出口ヘッダの中を通すが、側板、出入口セットのすべてを一括して締める。熱交換ユニットは内部に低圧部通気路の空間ができるようにした2枚の熱交換板を袋状にし、全周を圧封し、動作流体の入口および出口部分はスリットのできるヘッダースペーサを挟み、ユニットを重ねて高圧部の動作流体通路を確保し、熱交換ユニット内部および外部にはスペーサを入れて変形を防ぐようにする。ヘッダスペーサは2枚合わせて周囲に孔またはスリットができるように凹凸を付け、動作流体の通気路を確保し、入口・出口ヘッダ、熱交換板を含めて嵌め合いとする。熱交換板は高圧部と低圧部の差圧に耐えるようにし、板に波を付けることにより圧力変動に対処し、変形を防ぐほかに伝熱交換面積を増やし、動作流体の乱流を起こさせる。スペーサは差圧によって波付熱交換板が変形しないように波に合わせて製作し、常に動作流体の通る通路を確保する。耐圧ケースと側板の間の空間を均圧室とし、動作流体が均等に各通気路に出入りするようにする。耐圧ケースと接する熱交換ユニット端部は動作流体の流動を防ぐスペーサを填め、介物をして動作流体のショートパスを防ぐ。   Place the heat exchange unit in a block and place it in a pressure-resistant case. The block is made by stacking several heat exchange units and bolting the whole. The bolt passes through the inlet and outlet header through which the low-pressure side working fluid is passed, but all the side plates and the inlet / outlet set are tightened together. The heat exchanging unit has two heat exchanging plates that form a space for the low-pressure part air passage inside. The heat exchanging unit has a bag shape and is sealed all around. The working fluid inlet and outlet parts are sandwiched by slit-type header spacers. The units are stacked to ensure a working fluid passage in the high-pressure section, and spacers are inserted inside and outside the heat exchange unit to prevent deformation. The two header spacers are made uneven so that holes or slits can be formed around them, ensuring a working fluid vent, and including the inlet / outlet header and heat exchange plate. The heat exchange plate is designed to withstand the pressure difference between the high pressure and low pressure parts, and it is possible to cope with pressure fluctuations by corrugating the plate, to prevent deformation and increase the heat transfer exchange area, causing turbulent flow of the working fluid. . The spacer is manufactured according to the wave so that the waved heat exchange plate is not deformed by the differential pressure, and always ensures a passage through which the working fluid passes. The space between the pressure-resistant case and the side plate is a pressure equalizing chamber so that the working fluid enters and exits the air passages evenly. The end of the heat exchange unit that is in contact with the pressure-resistant case is filled with a spacer that prevents the flow of the working fluid, and serves as a medium to prevent a short path of the working fluid.

本発明のエネルギー変換システムは、エンジン部の断熱変化する容積比が機械的に固定され一定であるので、温度比も一定にして出力変動に対しては圧力を変化させる。温度一定に対して圧力を高くすれば質量が増えて熱量が増え、外部仕事が増える。逆に圧力を下げれば質量が減って熱量が減り、外部仕事が減る。熱機関の常温に近い位置に高圧タンクを昇圧自動弁を介してつなぎ、低圧タンクを降圧自動弁を介してつなぐ。昇圧自動弁を開くと高圧タンクから動作流体が熱機関内に入り昇圧し出力が増え、降圧自動弁を開くと熱機関から動作流体が低圧タンクに入り降圧し出力が減る。低圧タンクと高圧タンクの間に空気圧縮機を置き、常に低圧タンクの圧力が最低圧になっているように空気圧縮機を運転し出力制御する。高圧部に低圧タンクを、低圧部に高圧タンクをつなぐと変圧運転がより効果的になる。圧力は出力に応じて制御する。高圧タンクおよび低圧タンクは空気以外の動作流体を使用する時必要であるが、空気を除湿して使用する場合も必要である。   In the energy conversion system of the present invention, the volume ratio at which the adiabatic change of the engine unit is mechanically fixed and fixed, the temperature ratio is also fixed and the pressure is changed with respect to the output fluctuation. If the pressure is increased for a constant temperature, the mass increases, the amount of heat increases, and external work increases. Conversely, if the pressure is lowered, the mass is reduced, the amount of heat is reduced, and external work is reduced. A high pressure tank is connected to the heat engine at a temperature close to normal temperature via an automatic pressure increase valve, and a low pressure tank is connected via an automatic pressure reduction valve. When the boost automatic valve is opened, the working fluid enters the heat engine from the high pressure tank and the pressure is increased to increase the output. When the automatic pressure reducing valve is opened, the working fluid enters the low pressure tank from the heat engine and the pressure is lowered to reduce the output. An air compressor is placed between the low pressure tank and the high pressure tank, and the output is controlled by operating the air compressor so that the pressure in the low pressure tank is always the lowest. If a low pressure tank is connected to the high pressure section and a high pressure tank is connected to the low pressure section, the transformation operation becomes more effective. The pressure is controlled according to the output. The high-pressure tank and the low-pressure tank are necessary when a working fluid other than air is used, but are also necessary when dehumidifying air.

膨張機関は低温側は低温保持のみであり、高温側の加熱熱量が外部仕事になる。加熱流体は加熱器を加熱し、排気流体は温度を下げて排出される。加熱流体を常温の空気または水にすると常温の空気または水は温度を下げて排出される。外部負荷に発電機を置き、この電気で冷凍機を運転し低温側の温度を確保する。冷凍機による低温側温度は温度保持のみであり、常時の負荷は少ない。冷凍機蒸発器を冷却器とし低温熱源の温度差を確保し、加熱器を冷房熱交換器として運転し、発電量に見合った冷房が出来る。また膨張機関を発電専用とすると低温側温度が確保しにくく大きな温度差が得られない。冷房しながら発電できるのは今までの常識では考えられないことであるが、温度設定が高温側で常温まで下げ体温以下で運転されるからである。   The expansion engine is only kept at a low temperature on the low temperature side, and the amount of heating heat on the high temperature side becomes external work. The heating fluid heats the heater and the exhaust fluid is discharged at a reduced temperature. When the heating fluid is room temperature air or water, the room temperature air or water is discharged at a reduced temperature. A generator is placed on an external load, and the refrigerator is operated with this electricity to ensure a low temperature. The temperature on the low temperature side by the refrigerator is only temperature holding, and the load at normal times is small. The refrigerator evaporator is used as a cooler, the temperature difference between the low-temperature heat sources is secured, and the heater is operated as a cooling heat exchanger, so that cooling can be performed in accordance with the amount of power generation. If the expansion engine is exclusively used for power generation, it is difficult to secure a low temperature, and a large temperature difference cannot be obtained. Although it is unthinkable in the common sense that it is possible to generate power while cooling, it is because the temperature setting is lowered to room temperature on the high temperature side and is operated below body temperature.

収縮機関は高温側は高温保持のみであり、低温側の冷却熱量が外部仕事になる。冷却流体は冷却器を冷却し、排気流体は温度を上げて排出される。冷却流体を常温の空気または水にすると常温の空気または水は温度を上げて排出される。外部負荷に発電機を置き、この電気で電気ヒーターを加熱し高温側の温度を確保する。電気ヒーターによる高温側温度は温度保持のみであり、常時の負荷は少ない。電気ヒーターで高温側温度差を確保し、冷却器を暖房熱交換器として運転し、外部仕事とすると発電量に見合った暖房が出来る。また電気ヒーターによる暖房も合わせてできる。暖房に使う冷却流体と電気ヒーターが共に温度を上げる方向に働くので熱力学の法則に反しているようであるが、もし暖房される部屋が温度一定に保持されるならばそれは暖房している部屋の外側に同じ熱量が放出されているからである。放熱量が少ないならば温度が上昇し、高温側温度に近づき冷却温度が上昇し温度差が保てなくなり発電量が小さくなる。   In the contraction engine, the high temperature side can only hold the high temperature, and the cooling heat quantity on the low temperature side becomes the external work. The cooling fluid cools the cooler, and the exhaust fluid is discharged at an elevated temperature. When the cooling fluid is room temperature air or water, the room temperature air or water is discharged at an elevated temperature. A generator is placed on an external load, and the electric heater is heated with this electricity to ensure a high temperature. The temperature on the high temperature side with the electric heater is only temperature holding, and the load at all times is small. An electric heater ensures a high temperature side temperature difference, and the cooler is operated as a heating heat exchanger. It can also be heated with an electric heater. It seems to be against the laws of thermodynamics because both the cooling fluid used for heating and the electric heater work in the direction to raise the temperature, but if the room to be heated is kept at a constant temperature, it is the room that is heating This is because the same amount of heat is released outside. If the amount of heat radiation is small, the temperature rises, approaches the high temperature side temperature, the cooling temperature rises, the temperature difference cannot be maintained, and the power generation amount becomes small.

収縮機関について
収縮機関は負荷に発電機をつなぎ高温部に電気ヒーターを使い、温度制御がしやすく理論的に熱量0のため実機では損失も小さく、低温部は常温の空気、水が使用できるから何れの所でも使用可能であり燃料不要である。また全く公害になる物質は出ない。
膨張機関について
膨張機関は従来の熱機関に属する。膨張機関は高温の熱源を必要とし、加熱し終わった熱源の熱量は捨てられて損失となる。高温側の温源を常温の空気または水とすると低温側の温度を低くする必要がある。しかし低温側の温源は温度保持のみであり損失は少ないが、低温をつくるのが難しく温度差を大きくできない。
About the contraction engine The contraction engine uses a generator connected to the load and uses an electric heater in the high-temperature part. The temperature is easy to control and theoretically has no heat, so the loss is small in the actual machine, and air and water at normal temperature can be used in the low-temperature part. It can be used anywhere and no fuel is required. In addition, no substances will be polluted.
About expansion engines Expansion engines belong to conventional heat engines. The expansion engine requires a high-temperature heat source, and the amount of heat of the heat source that has been heated is discarded and lost. If the temperature source on the high temperature side is air or water at normal temperature, the temperature on the low temperature side needs to be lowered. However, the temperature source on the low temperature side is only holding the temperature and there is little loss, but it is difficult to create a low temperature and the temperature difference cannot be increased.

温度差は熱効率には影響せず、温度差が小さいと機関は大きくなり、温度差が大きいと機関を小型にできる。
加熱器、冷却器、熱回収器の容積が死空間とならないので熱交換面積を自由に選択できる。
冷却器、加熱器の負担が小さくなる。
膨張機関では冷房に使用できる。
3個のシリンダにあるピストンが1本のピストン軸により駆動され、装置が簡素になり機械損が低減される。
仕切板に切替弁が付くので死空間容積が小さい。
弁体は小さく、またピストンは中空であるため質量も小さく駆動動力が小さい。
ピストンで切替弁を開閉するので押し板以外の特別の弁開閉装置が不要。
切替弁は上死点または下死点付近で動作するので弁体に与える衝撃が小さい。
動作流体は大気に出ないので騒音が小さい。
ピストンの上昇中も、下降中も断熱行程がありトルクの脈動が低減される。
ピストンリンクの振れが少ないのでピストンの摺動摩擦が小さい。
The temperature difference does not affect the thermal efficiency. If the temperature difference is small, the engine becomes large, and if the temperature difference is large, the engine can be made small.
Since the volume of the heater, cooler, and heat recovery unit does not become a dead space, the heat exchange area can be freely selected.
The burden on the cooler and heater is reduced.
Can be used for cooling in expansion engines.
The pistons in the three cylinders are driven by one piston shaft, the device is simplified and the mechanical loss is reduced.
Since the switching plate is attached to the partition plate, the dead space volume is small.
Since the valve body is small and the piston is hollow, the mass is small and the driving power is small.
Since the switching valve is opened and closed with a piston, no special valve opening / closing device other than the push plate is required.
Since the switching valve operates near the top dead center or the bottom dead center, the impact applied to the valve body is small.
Since the working fluid does not go out to the atmosphere, noise is low.
There is an adiabatic stroke both when the piston is moving up and down, and torque pulsation is reduced.
Since the piston link has little runout, the sliding friction of the piston is small.

発明の実施の形態を実施例にもとずき図面を参照して説明する。図1は膨張機関、図2は収縮機関を示し請求の範囲を斜線で示したエンジン部の断面図であり、静止部分と可動部分を斜線の描き方で区別し、熱機関の動作説明のために駆動部および配管系統を含めた総合系統図である。ピストンは上下運動するものとし、管路の動作流体は実線はピストンが上死点を通過して下降中とする。弁の開閉状態はピストン下降中を示すが詳細は図14,図15により示す。点線は下死点を通過して上昇中とする。共通部分は実線で示す。   An embodiment of the invention will be described based on an example with reference to the drawings. FIG. 1 is an expansion engine, and FIG. 2 is a cross-sectional view of the engine portion showing a contraction engine and the claims are hatched. The stationary part and the movable part are distinguished by the hatching method for explaining the operation of the heat engine. It is a comprehensive system diagram including a drive unit and a piping system. The piston is assumed to move up and down, and the working fluid in the pipeline is shown by the solid line that the piston passes through the top dead center and is descending. The open / close state of the valve indicates that the piston is being lowered, but the details are shown in FIGS. The dotted line passes the bottom dead center and rises. Common parts are indicated by solid lines.

図1の膨張機関はシリンダ3個を直列に置き、真ん中を動作室シリンダ20A、上下を同じサイズの第1補助シンダ10A,第2補助シリンダ30Aとし、ギャー室60Aに据え付け、押し板室48Aを設ける。外部に加熱器1、冷却器2、熱回収器8を置き、補助シリンダ10A、30Aの径より動作室シリンダ20Aの径を大きくし、ピストン行程容積比を断熱膨張比とする。各シリンダには1本のピストン軸3Aに固定されたピストン11A,21A,31Aが付き、押し板47A、ピストンリンク9Aを付ける。各シリンダは仕切板17A,18A,37A,38A,49Aによって隔てられ、仕切板17A,18A,37A,38Aには動作流体の通気路と切替弁14A,15A,16A,23A,24A,28A,29A,34A,35A,36Aをつける。切替弁はピストン11A,21A,31Aと押し板47Aの上死点または下死点にて交互に押して開閉し、動作流体の流れを切り替える。シリンダ3個とピストン3個で6室ができ、この室は上から順に第1補助室12A,第1準備室13A、第1動作室22A、第2動作室27A、第2準備室33A、第2補助室32Aとし、この6室を切替弁の開閉により2室を連結して3つの動作エリアを作る。   The expansion engine of FIG. 1 has three cylinders in series, the middle is an operating chamber cylinder 20A, the upper and lower sides are the first auxiliary cinder 10A and the second auxiliary cylinder 30A of the same size, and is installed in the gear chamber 60A to provide a push plate chamber 48A. . The heater 1, the cooler 2, and the heat recovery device 8 are placed outside, the diameter of the operating chamber cylinder 20A is made larger than the diameters of the auxiliary cylinders 10A and 30A, and the piston stroke volume ratio is set as the adiabatic expansion ratio. Each cylinder is provided with pistons 11A, 21A, 31A fixed to one piston shaft 3A, and a push plate 47A and a piston link 9A are attached. The cylinders are separated by partition plates 17A, 18A, 37A, 38A, and 49A. The partition plates 17A, 18A, 37A, and 38A have working fluid vents and switching valves 14A, 15A, 16A, 23A, 24A, 28A, and 29A. , 34A, 35A, 36A. The switching valve is alternately opened and closed at the top dead center or the bottom dead center of the pistons 11A, 21A, 31A and the push plate 47A to switch the flow of the working fluid. Three cylinders and three pistons form six chambers, which are in order from the top, the first auxiliary chamber 12A, the first preparation chamber 13A, the first operation chamber 22A, the second operation chamber 27A, the second preparation chamber 33A, Two auxiliary chambers 32A are provided, and these six chambers are connected to each other by opening and closing a switching valve to create three operation areas.

ピストン11A,21A,31Aおよび押し板47Aがが上死点で第1吐出弁15A,第1給気弁16A,第1排気弁23A,第2通気弁29A,第2吸入弁34Aを閉じ、その他の切替弁を開く。第1通気弁24A開で第1準備室13Aと第1動作室22Aを連結し、第1補助ピストン11Aと第1動作室ピストン21Aの受圧面積差でピストンを下降させて動作流体を断熱膨張させる。第2排気弁28A開、第1吸入弁14A開にて第2動作室27Aと第1補助室12Aを連結し、第1動作室ピストン21A、第1補助ピストン11A下降にて膨張完了している第2動作室27Aの動作流体を押し出し熱回収器8の低圧部86を通し、冷却器2を通して冷却収縮し第1補助室12Aに入れる。また第2吐出弁35A開、第2給気弁36A開にて第2補助室32Aと第2準備室33Aを連結するが、第2吐出弁35A開にて高圧部の管路から第2補助室32Aに動作流体を自由膨張により流入させ、高圧部と同圧とし、第2補助ピストン31A下降ですぐに第2補助室32Aの動作流体を押し出し、熱回収器8の高圧部87を通し、加熱器1を通して加熱し、同じシリンダの第2準備室33Aに入れ定容加熱する。このように断熱膨張行程、冷却収縮行程、定容加熱行程の3行程同時に行う。ピストン11A,21A,31A下死点で開いていた切替弁14A,24A,28A,35A,36Aを閉じ、閉じていた切替弁15A,16A,23A,29A,34Aを開いて動作エリアの構成を替え、ピストン11A,21A,31A上昇中も断熱膨張、冷却収縮、定容加熱の3行程同時に行い連続運転する。   The piston 11A, 21A, 31A and the push plate 47A close the first discharge valve 15A, the first air supply valve 16A, the first exhaust valve 23A, the second ventilation valve 29A, the second intake valve 34A when the top dead center is reached. Open the selector valve. The first preparatory chamber 13A and the first working chamber 22A are connected by opening the first vent valve 24A, and the working fluid is adiabatically expanded by lowering the piston by the pressure receiving area difference between the first auxiliary piston 11A and the first working chamber piston 21A. . The second operating chamber 27A and the first auxiliary chamber 12A are connected by opening the second exhaust valve 28A and the first intake valve 14A, and the expansion is completed when the first operating chamber piston 21A and the first auxiliary piston 11A are lowered. The working fluid in the second working chamber 27A is pushed out, passed through the low pressure part 86 of the heat recovery unit 8, cooled and contracted through the cooler 2, and put into the first auxiliary chamber 12A. The second auxiliary chamber 32A and the second preparatory chamber 33A are connected when the second discharge valve 35A and the second air supply valve 36A are open, but when the second discharge valve 35A is open, the second auxiliary chamber 32A is connected to the second auxiliary chamber 32A. The working fluid is allowed to flow into the chamber 32A by free expansion, the pressure is the same as that of the high pressure portion, and immediately after the second auxiliary piston 31A descends, the working fluid in the second auxiliary chamber 32A is pushed out and passed through the high pressure portion 87 of the heat recovery device 8, Heat through the heater 1 and place in the second preparation chamber 33A of the same cylinder and heat at constant volume. In this way, the three processes of the adiabatic expansion process, the cooling contraction process, and the constant volume heating process are performed simultaneously. The switching valves 14A, 24A, 28A, 35A, and 36A that were open at the bottom dead center of the pistons 11A, 21A, and 31A are closed, and the closed switching valves 15A, 16A, 23A, 29A, and 34A are opened to change the configuration of the operation area. While the pistons 11A, 21A, and 31A are being lifted, three strokes of adiabatic expansion, cooling contraction, and constant volume heating are performed simultaneously for continuous operation.

図2の収縮機関はシリンダ3個を直列に置き、真ん中を動作室シリンダ20B、上下を同じサイズの第1補助シンダ10B,第2補助シリンダ30Bとし、ギャー室60Bに据え付け、押し板室48Bを設ける。外部に加熱器1、冷却器2、熱回収器8を置き、補助シリンダ10B、30Bの径より動作室シリンダ20Bの径を小さくし、ピストン行程容積比を断熱収縮比とする。各シリンダには1本のピストン軸3Bに固定されたピストン11B,21B,31Bが付き、押し板47B、ピストンリンク9Bを付ける。各シリンダは仕切板17B,18B,37B,38B,49Bによって隔てられ、仕切板17B,18B,37B,38Bには動作流体の通気路と切替弁14B,15B,16B,23B,24B,28B,29B,34B,35B,36Bをつける。切替弁はピストン11B,21B,31Bと押し板47Bの上死点または下死点にて交互に押して開閉し、動作流体の流れを切り替える。シリンダ3個とピストン3個で6室ができ、この室は上から順に第1補助室12B,第1準備室13B、第1動作室22B、第2動作室27B、第2準備室33B、第2補助室32Bとし、この6室を切替弁の開閉により2室を連結して3つの動作エリアを作る。   The contraction engine of FIG. 2 has three cylinders in series, the middle is an operating chamber cylinder 20B, the upper and lower sides are the first auxiliary cinder 10B and the second auxiliary cylinder 30B of the same size, and is installed in the gear chamber 60B, and a push plate chamber 48B is provided. . The heater 1, the cooler 2, and the heat recovery device 8 are placed outside, the diameter of the operation chamber cylinder 20B is made smaller than the diameters of the auxiliary cylinders 10B and 30B, and the piston stroke volume ratio is set as the adiabatic contraction ratio. Each cylinder has pistons 11B, 21B, and 31B fixed to one piston shaft 3B, and a push plate 47B and a piston link 9B. The cylinders are separated by partition plates 17B, 18B, 37B, 38B, and 49B. The partition plates 17B, 18B, 37B, and 38B have working fluid vents and switching valves 14B, 15B, 16B, 23B, 24B, 28B, and 29B. , 34B, 35B, 36B. The switching valve is alternately opened and closed at the top dead center or the bottom dead center of the pistons 11B, 21B, 31B and the push plate 47B to switch the flow of the working fluid. Three cylinders and three pistons form six chambers, which are in order from the top, the first auxiliary chamber 12B, the first preparation chamber 13B, the first operation chamber 22B, the second operation chamber 27B, the second preparation chamber 33B, Two auxiliary chambers 32B are provided, and these six chambers are connected to each other by opening and closing a switching valve to create three operation areas.

ピストン11B,21B,31Bおよび押し板47Bがが上死点で第1吐出弁15B,第1給気弁16B,第1排気弁23B,第2通気弁29B,第2吸入弁34Bを閉じ、その他の切替弁を開く。第1通気弁24B開で第1準備室13Bと第1動作室22Bを連結し、第1補助ピストン11Bと第1動作室ピストン21Bの受圧面積差でピストンを下降させて動作流体を断熱収縮させる。第2排気弁28B開、第1吸入弁14B開にて第2動作室27Bと第1補助室12Bを連結し、第1動作室ピストン21B、第1補助ピストン11B下降にて収縮完了している第2動作室27Bの動作流体を押し出し熱回収器8の低圧部86を通し、冷却器2を通して冷却収縮し第1補助室12Bに入れる。また第2吐出弁35B開、第2給気弁36B開にて第2補助室32Bと第2準備室33Bを連結するが、第2吐出弁35B開にて低圧部の管路に第2補助室32Bの動作流体を自由膨張により放出し、低圧部と同圧とし、第2補助ピストン31A下降でそのまま第2補助室32Aの動作流体を押し出し、熱回収器8の低圧部86を通し、冷却器2を通して冷却し、同じシリンダの第2準備室33Bに入れ定容冷却する。このように断熱収縮行程、加熱膨張行程、定容冷却行程の3行程同時に行う。ピストン11B,21B,31B下死点で開いていた切替弁14B,24B,28B,35B,36Bを閉じ、閉じていた切替弁15B,16B,23B,29B,34Bを開いて動作エリアの構成を替え、ピストン11B,21B,31B上昇中も断熱収縮、加熱膨張、定容冷却の3行程同時に行い連続運転する。   When the pistons 11B, 21B, 31B and the push plate 47B are at top dead center, the first discharge valve 15B, the first air supply valve 16B, the first exhaust valve 23B, the second vent valve 29B, the second intake valve 34B are closed, and the others. Open the selector valve. When the first vent valve 24B is opened, the first preparation chamber 13B and the first working chamber 22B are connected, and the piston is lowered by the pressure receiving area difference between the first auxiliary piston 11B and the first working chamber piston 21B, and the working fluid is adiabatically contracted. . The second operating chamber 27B and the first auxiliary chamber 12B are connected by opening the second exhaust valve 28B and the first intake valve 14B, and the contraction is completed by lowering the first operating chamber piston 21B and the first auxiliary piston 11B. The working fluid in the second working chamber 27B is pushed out, passed through the low pressure part 86 of the heat recovery unit 8, cooled through the cooler 2, and put into the first auxiliary chamber 12B. The second auxiliary chamber 32B and the second preparatory chamber 33B are connected by opening the second discharge valve 35B and the second air supply valve 36B. The working fluid in the chamber 32B is released by free expansion and is set to the same pressure as that of the low pressure portion. When the second auxiliary piston 31A descends, the working fluid in the second auxiliary chamber 32A is pushed out as it is, passed through the low pressure portion 86 of the heat recovery device 8, and cooled. Cool through the vessel 2 and place in the second preparation chamber 33B of the same cylinder to cool at a constant volume. In this way, the three processes of the adiabatic contraction process, the heating expansion process, and the constant volume cooling process are performed simultaneously. The switching valves 14B, 24B, 28B, 35B, and 36B opened at the bottom dead center of the pistons 11B, 21B, and 31B are closed, and the closed switching valves 15B, 16B, 23B, 29B, and 34B are opened to change the operation area configuration. While the pistons 11B, 21B, and 31B are raised, the three strokes of adiabatic shrinkage, heating expansion, and constant volume cooling are performed simultaneously for continuous operation.

図3の2連シリンダ膨張機関は同じサイズの第1エンジン部と第2エンジン部の2個つくり、ギャー室60aに据え付け、エンジン部はシリンダ2個を直列に置き、上を補助シンダ,下を動作室シリンダとし、押し板室を設ける。外部に加熱器1、冷却器2、熱回収器8を置き、補助シリンダの径より動作室シリンダの径を大きくし、ピストン行程容積比を断熱膨張比とする。各シリンダには1本のピストン軸に固定されたピストンが付き、押し板、ピストンリンクを付ける。エンジン部が2個であるからピストンリンクの回転位相角は360°÷2=180°とする。各補助シリンダは仕切板によって隔てられ、仕切板には動作流体の通気路と切替弁をつける。切替弁はピストンと押し板の上死点または下死点にて交互に押して開閉し、動作流体の流れを切り替える。第1エンジン部の構成要素の名称に第1を付け、第2エンジン部の構成要素の名称に第2を付ける。補助シリンダと補助ピストンで2室ができ、動作室シリンダと動作室ピストンで1室ができ、エンジン部が2個で6室ができる。この室は上から順に第1エンジン部では第1補助室12a,第1準備室13a、第1動作室22aとなり、第2エンジン部では上から順に第2補助室32a,第2準備室33a、第2動作室27aとなり、この6室を切替弁の開閉により2室を連結して3つの動作エリアを作る。   The two-cylinder expansion engine shown in FIG. 3 has two first and second engine parts of the same size, and is installed in the gear chamber 60a. The engine part has two cylinders arranged in series, with the upper cinder and the lower A push plate chamber is provided as an operating chamber cylinder. Heater 1, cooler 2, and heat recovery device 8 are placed outside, the diameter of the operating chamber cylinder is made larger than the diameter of the auxiliary cylinder, and the piston stroke volume ratio is defined as the adiabatic expansion ratio. Each cylinder has a piston fixed to one piston shaft, and a push plate and a piston link are attached. Since there are two engine parts, the rotational phase angle of the piston link is 360 ° / 2 = 180 °. Each auxiliary cylinder is separated by a partition plate, and a working fluid vent and a switching valve are attached to the partition plate. The switching valve is alternately opened and closed at the top dead center or bottom dead center of the piston and the push plate to switch the flow of the working fluid. The first is given to the name of the component of the first engine part, and the second is given to the name of the component of the second engine part. The auxiliary cylinder and the auxiliary piston form two chambers, the working chamber cylinder and the working chamber piston form one chamber, and two engine units form six chambers. This chamber is, in order from the top, the first auxiliary chamber 12a, the first preparation chamber 13a, and the first operation chamber 22a in the first engine portion, and the second auxiliary chamber 32a, the second preparation chamber 33a, in order from the top in the second engine portion. The second operation chamber 27a is formed, and the six chambers are connected to each other by opening / closing a switching valve to form three operation areas.

第1補助ピストン11a,第1動作室ピストン21aが上死点、第2補助ピストン31aおよび押し板47aがが下死点で第1吐出弁15a,第1給気弁16a,第1排気弁23a,第2通気弁29a,第2吸入弁34aを閉じ、その他の切替弁を開く。第1通気弁24a開で第1準備室13aと第1動作室22aを連結し、第1補助ピストン11aと第1動作室ピストン21aの受圧面積差で第1エンジン部のピストンを下降させて動作流体を断熱膨張させ、第2エンジン部のピストンを上昇させる。第2排気弁28a開、第1吸入弁14a開にて第2動作室27aと第1補助室12aを連結し、第2動作室ピストン26a上昇にて膨張完了している第2動作室27aの動作流体を押し出し熱回収器8の低圧部86を通し、冷却器2を通して冷却収縮し第1補助室12aに入れる。また第2吐出弁35a開、第2給気弁36a開にて第2補助室32aと第2準備室33aを連結するが、第2吐出弁35a開にて高圧部の管路から第2補助室32aに動作流体を自由膨張により流入させ、高圧部と同圧とし、第2補助ピストン31a上昇ですぐに第2補助室32aの動作流体を押し出し、熱回収器8の高圧部87を通し、加熱器1を通して加熱し、同じシリンダの第2準備室33aに入れ定容加熱する。このように第1ピストン下降で断熱膨張行程、第2ピストン上昇で定容加熱行程、両ピストンの共同作業で冷却収縮行程の3行程を同時に行う。第1ピストン11a,21aが下死点、第2ピストン26a,31a上死点で開いていた切替弁14a,24a,28a,35a,36aを閉じ、閉じていた切替弁15a,16a,23a,29a,34aを開いて動作エリアの構成を替え第2ピストン下降で断熱膨張行程、第1ピストン上昇で定容加熱行程、両ピストンの共同作業で冷却収縮行程の3行程同時に行い連続運転する。   The first auxiliary piston 11a, the first operating chamber piston 21a are at the top dead center, the second auxiliary piston 31a and the push plate 47a are at the bottom dead center, the first discharge valve 15a, the first supply valve 16a, and the first exhaust valve 23a. The second ventilation valve 29a and the second suction valve 34a are closed, and the other switching valves are opened. The first preparatory chamber 13a and the first operating chamber 22a are connected by opening the first vent valve 24a, and the piston of the first engine unit is lowered by the pressure receiving area difference between the first auxiliary piston 11a and the first operating chamber piston 21a. The fluid is adiabatically expanded to raise the piston of the second engine unit. The second working chamber 27a and the first auxiliary chamber 12a are connected by opening the second exhaust valve 28a and the first suction valve 14a, and the second working chamber 27a that has completed expansion when the second working chamber piston 26a is lifted. The working fluid is pushed out, passed through the low pressure part 86 of the heat recovery unit 8, cooled and contracted through the cooler 2, and put into the first auxiliary chamber 12 a. The second auxiliary chamber 32a and the second preparatory chamber 33a are connected when the second discharge valve 35a and the second air supply valve 36a are open. When the second discharge valve 35a is opened, the second auxiliary chamber 32a is connected to the second auxiliary chamber 32a. The working fluid is allowed to flow into the chamber 32a by free expansion, the pressure is the same as that of the high pressure portion, the working fluid in the second auxiliary chamber 32a is pushed out immediately after the second auxiliary piston 31a is raised, and the high pressure portion 87 of the heat recovery device 8 is passed through. Heated through the heater 1 and placed in the second preparation chamber 33a of the same cylinder and heated at a constant volume. In this way, the adiabatic expansion process is performed simultaneously when the first piston is lowered, the constant volume heating process is performed when the second piston is lifted, and the cooling and contraction process is performed jointly by both pistons. The switching valves 14a, 24a, 28a, 35a, 36a that are open at the bottom dead center and the top dead center of the second pistons 26a, 31a are closed, and the switching valves 15a, 16a, 23a, 29a that are closed are closed. , 34a are opened, the operation area is changed, the adiabatic expansion process is performed by lowering the second piston, the constant volume heating process is performed by moving the first piston, and the cooling and contracting process is performed jointly by the two pistons simultaneously.

図4の2連シリンダ収縮機関は同じサイズの第1エンジン部と第2エンジン部の2個つくり、ギャー室60bに据え付け、エンジン部はシリンダ2個を直列に置き、上を補助シンダ,下を動作室シリンダとし、押し板室を設ける。外部に加熱器1、冷却器2、熱回収器8を置き、補助シリンダの径より動作室シリンダの径を小さくし、ピストン行程容積比を断熱収縮比とする。各シリンダには1本のピストン軸に固定されたピストンが付き、押し板、ピストンリンクを付ける。エンジン部が2個であるからピストンリンクの回転位相角は360°÷2=180°とする。各補助シリンダは仕切板によって隔てられ、仕切板には動作流体の通気路と切替弁をつける。切替弁はピストンと押し板の上死点または下死点にて交互に押して開閉し、動作流体の流れを切り替える。第1エンジン部の構成要素の名称に第1を付け、第2エンジン部の構成要素の名称に第2を付ける。補助シリンダと補助ピストンで2室ができ、動作室シリンダと動作室ピストンで1室ができ、エンジン部が2個で6室ができる。この室は上から順に第1エンジン部では第1補助室12b,第1準備室13b、第1動作室22bとなり、第2エンジン部では上から順に第2補助室32b,第2準備室33b、第2動作室27bとなり、この6室を切替弁の開閉により2室を連結して3つの動作エリアを作る。   The two-cylinder contraction engine of FIG. 4 is made up of two first engine parts and second engine parts of the same size, and is installed in the gear chamber 60b. The engine part places two cylinders in series, the upper is an auxiliary cinder and the lower is A push plate chamber is provided as an operating chamber cylinder. Heater 1, cooler 2, and heat recovery device 8 are placed outside, the diameter of the operating chamber cylinder is made smaller than the diameter of the auxiliary cylinder, and the piston stroke volume ratio is defined as the adiabatic contraction ratio. Each cylinder has a piston fixed to one piston shaft, and a push plate and a piston link are attached. Since there are two engine parts, the rotational phase angle of the piston link is 360 ° / 2 = 180 °. Each auxiliary cylinder is separated by a partition plate, and a working fluid vent and a switching valve are attached to the partition plate. The switching valve is alternately opened and closed at the top dead center or bottom dead center of the piston and the push plate to switch the flow of the working fluid. The first is given to the name of the component of the first engine part, and the second is given to the name of the component of the second engine part. The auxiliary cylinder and the auxiliary piston form two chambers, the working chamber cylinder and the working chamber piston form one chamber, and two engine units form six chambers. This chamber is, in order from the top, the first auxiliary chamber 12b, the first preparation chamber 13b, and the first operation chamber 22b in the first engine portion, and the second auxiliary chamber 32b, the second preparation chamber 33b, in order from the top in the second engine portion, The second operation chamber 27b is formed, and the six chambers are connected to each other by opening / closing a switching valve to form three operation areas.

第1補助ピストン11b,第1動作室ピストン21bが上死点、第2補助ピストン31bおよび押し板47bがが下死点で第1吐出弁15b,第1給気弁16b,第1排気弁23b,第2通気弁29b,第2吸入弁34bを閉じ、その他の切替弁を開く。第1通気弁24b開で第1準備室13bと第1動作室22bを連結し、第1補助ピストン11bと第1動作室ピストン21bの受圧面積差で第1エンジン部のピストンを下降させて動作流体を断熱収縮させ、第2エンジン部のピストンを上昇させる。第2排気弁28b開、第1吸入弁14b開にて第2動作室27bと第1補助室12bを連結し、第2動作室ピストン26b上昇にて収縮完了している第2動作室27bの動作流体を押し出し熱回収器8の高圧部87を通し、加熱器1を通して加熱膨張し第1補助室12bに入れる。また第2吐出弁35b開、第2給気弁36b開にて第2補助室32bと第2準備室33bを連結するが、第2吐出弁35b開にて第2補助室32bから低圧部の管路に動作流体を自由膨張により放出させ、低圧部と同圧とし、第2補助ピストン31b上昇でそのまま第2補助室32bの動作流体を押し出し、熱回収器8の低圧部86を通し、冷却器2を通して冷却し、同じシリンダの第2準備室33bに入れ定容冷却する。このように第1ピストン下降で断熱収縮行程、第2ピストン上昇で定容冷却行程、両ピストンの共同作業で加熱膨張行程の3行程を同時に行う。第1ピストン11b,21bが下死点、第2ピストン26b,31b上死点で開いていた切替弁14b,24b,28b,35b,36bを閉じ、閉じていた切替弁15b,16b,23b,29b,34bを開いて動作エリアの構成を替え第2ピストン下降で断熱収縮行程、第1ピストン上昇で定容冷却行程、両ピストンの共同作業で加熱膨張行程の3行程同時に行い連続運転する。   The first auxiliary piston 11b and the first operating chamber piston 21b are at the top dead center, the second auxiliary piston 31b and the push plate 47b are at the bottom dead center, and the first discharge valve 15b, the first supply valve 16b, and the first exhaust valve 23b. The second ventilation valve 29b and the second suction valve 34b are closed, and the other switching valves are opened. The first preparatory chamber 13b and the first working chamber 22b are connected by opening the first vent valve 24b, and the piston of the first engine unit is moved down by the pressure receiving area difference between the first auxiliary piston 11b and the first working chamber piston 21b. The fluid is adiabatically contracted to raise the piston of the second engine part. The second working chamber 27b and the first auxiliary chamber 12b are connected by opening the second exhaust valve 28b and the first suction valve 14b, and the second working chamber 27b is fully contracted by raising the second working chamber piston 26b. The working fluid is pushed out, passed through the high pressure portion 87 of the heat recovery unit 8, heated and expanded through the heater 1, and put into the first auxiliary chamber 12b. Further, the second auxiliary chamber 32b and the second preparation chamber 33b are connected when the second discharge valve 35b and the second air supply valve 36b are opened, but when the second discharge valve 35b is opened, the second auxiliary chamber 32b is connected to the low pressure portion. The working fluid is discharged into the pipe line by free expansion, and the pressure is the same as that of the low pressure portion. When the second auxiliary piston 31b is raised, the working fluid in the second auxiliary chamber 32b is pushed out as it is, and is passed through the low pressure portion 86 of the heat recovery device 8 to be cooled. It cools through the container 2, puts into the 2nd preparation chamber 33b of the same cylinder, and cools by constant volume. In this way, the adiabatic contraction process is performed simultaneously when the first piston is lowered, the constant volume cooling process is performed when the second piston is lifted, and the heating and expansion process is performed simultaneously by joint operation of both pistons. The switching valves 14b, 24b, 28b, 35b, 36b opened at the bottom dead center of the first piston 11b, 21b and the top dead center of the second piston 26b, 31b are closed, and the switching valves 15b, 16b, 23b, 29b closed. , 34b are changed, the structure of the operation area is changed, and the adiabatic contraction process is performed by lowering the second piston, the constant volume cooling process is performed by raising the first piston, and the three processes of heating and expansion are performed simultaneously by joint operation of both pistons.

図1と図2は製作上の構造はほとんど変わらず、機能上の構成のみが変わる。また図3と図4の2連シリンダエンジン部も同じようにつくられるので製作上の構造はほとんど変わらない。   1 and 2 are almost the same in manufacturing structure, only in functional configuration. Also, since the dual cylinder engine portion of FIGS. 3 and 4 is produced in the same manner, the construction structure is almost the same.

以下、共通に説明する場合にはA,B、a,bの符号をとって記載する。
図1および図2は4個の仕切板17,18,37,38の外径を同じくし、ケーシング6の内部寸法に合わせる。シリンダ10,20,30と仕切板17,18,37,38とは嵌め合いとする。シリンダ10,20,30とケーシング6との間に空間を設け、この空間を高圧部または低圧部と同圧にするよう仕切板の通気路に通気口62を設ける。円筒部より駆動部までを一体のケーシング6に填め込み、シリンダ10,20,30の繋ぎ目による歪みを是正させ、直線性をよくしてピストン11,21,31の動きを円滑にする。吸排気管の熱応力をケーシング6に持たせる。シリンダ10,20,30とケーシング6との間の空間により放熱防止させる。ギャー室仕切板49は押し板室48とギャー室60を区分する。
In the following description, A, B, a, and b are used in common description.
1 and 2 have the same outer diameter of the four partition plates 17, 18, 37, and 38, and match the internal dimensions of the casing 6. The cylinders 10, 20, 30 and the partition plates 17, 18, 37, 38 are fitted. A space is provided between the cylinders 10, 20, 30 and the casing 6, and a ventilation port 62 is provided in the ventilation path of the partition plate so that this space has the same pressure as the high pressure portion or the low pressure portion. From the cylindrical part to the driving part is fitted into the integral casing 6 to correct the distortion caused by the joints of the cylinders 10, 20, and 30, and the linearity is improved to make the movement of the pistons 11, 21, and 31 smooth. The casing 6 is provided with the thermal stress of the intake / exhaust pipe. The space between the cylinders 10, 20, 30 and the casing 6 prevents heat dissipation. The gear chamber partition plate 49 separates the push plate chamber 48 and the gear chamber 60.

図1,図2にはピストン11,21,31とその固定の方法および中空部への加圧方法も示す断面図でもある。ピストン11,21,31はピストン軸3に付き、往復でピストンヘッドとして働くため両面を平面にし、ピストンを中空にする。ピストン中空部を加圧して変形を防ぐ。上記の理由によりピストン軸3表面に軸方向にみぞを設け、摺動管4との間に通気路を設け、押し板室48とピストン中空部と通気路で結び、押し板室48に加圧してピストン中空部を加圧する。補助仕切板B39の通気路に押し板室48に通ずる孔を開け高圧部または低圧部に通ずる。押し板室48には溜まった潤滑油を排出する排出弁を取り付ける。   1 and 2 are also cross-sectional views showing the pistons 11, 21, 31, a method for fixing the pistons 11, 21, and a method for pressurizing the hollow portion. The pistons 11, 21, 31 are attached to the piston shaft 3 and reciprocate to function as a piston head, so that both surfaces are flat and the piston is hollow. The piston hollow part is pressurized to prevent deformation. For the above reasons, a groove is provided in the axial direction on the surface of the piston shaft 3 and an air passage is provided between the sliding tube 4 and connected to the push plate chamber 48 and the piston hollow portion through the air passage. Pressurize the hollow part. A hole communicating with the push plate chamber 48 is formed in the air passage of the auxiliary partition plate B39 and communicated with the high pressure portion or the low pressure portion. A discharge valve for discharging the accumulated lubricating oil is attached to the push plate chamber 48.

図5はピストン摺動面の潤滑系統を示す。ピストン11,21,31は両ピストンヘッド側にピストンリング5を持ち、その設置位置間隔をピストン移動距離より大きくし、シリンダ10,20,30の摺動面にピストンリング5の摺動しない範囲をつくり、シリンダ外部より潤滑油の注入口および排出口をつくる。ピストンリング5に挟まれたピストン11,21,31とシリンダ10,20,30の間に一方から潤滑油を注入し他方から排出する。潤滑油は給油ポンプ70により潤滑給油管71を通って潤滑油ヘッダー72に押し上げられ、潤滑配油管73により各ピストンの摺動面および軸封装置78に配られ、出てきた潤滑油は潤滑排油管76を通ってピストンオイルタンク77に入り給油ポンプ70により吸い上げられ循環する。ピストンオイルタンク77と潤滑油ヘッダ72は導圧管75によって同圧とし、空間部圧力調整をし、過剰な潤滑油は越流管74を通ってピストンオイルタンク77に帰る。導圧管75は低圧部86または高圧部87につなぐ。   FIG. 5 shows a lubrication system for the piston sliding surface. The pistons 11, 21, 31 have the piston rings 5 on both piston head sides, the interval between the installation positions is larger than the piston moving distance, and the piston ring 5 does not slide on the sliding surfaces of the cylinders 10, 20, 30. Make a lubricating oil inlet and outlet from outside the cylinder. Lubricating oil is injected from one side between the pistons 11, 21, 31 and the cylinders 10, 20, 30 sandwiched between the piston rings 5 and discharged from the other side. The lubricating oil is pushed up to the lubricating oil header 72 through the lubricating oil supply pipe 71 by the oil supply pump 70, and is distributed to the sliding surface of each piston and the shaft seal device 78 by the lubricating oil distribution pipe 73. The oil enters the piston oil tank 77 through the oil pipe 76 and is sucked up by the oil supply pump 70 and circulated. The piston oil tank 77 and the lubricating oil header 72 are adjusted to the same pressure by the pressure guiding pipe 75 to adjust the space pressure, and excess lubricating oil returns to the piston oil tank 77 through the overflow pipe 74. The pressure guiding pipe 75 is connected to the low pressure part 86 or the high pressure part 87.

図6は各仕切板を代表して第1動作室仕切板18を第1準備室13側から見た図である。内部通気路等は点線で示してある。第1給気弁16ブロックと、第1排気弁23ブロックとして2分割した。第1給気弁16と、第1排気弁23は各ブロックに同数設置し、第1通気弁24は両ブロックに等分に配置することにより3種類の弁の数をおおよそ等分に配置する。第2動作室仕切板38は第1動作室仕切板18と全く同じである。第1補助仕切板17は第1動作室仕切板18と弁の配置は同じであり、通気弁はなく第1吐出弁15ブロックと第1吸入弁14ブロックとする。通気路はそれぞれの弁の用途によってつくる。また第2補助仕切板37は第1補助仕切板17と全く同じである。仕切板17,18,37,38は板の両面を平面とし、内側を中空とする。中空部には切替弁を取り付け動作流体を通し、通気路はケーシング6に設けた開口部にあわせ外部とつなぎ、切替弁の取り付け位置と通気路を含めて流入側ブロックと流出側ブロックで2分し、摺動管4に付けた軸封装置78を挟むようにして組み立てる。仕切板の合わせ目には溝を設け、軸封装置78の潤滑油管73,76を通す。   FIG. 6 is a view of the first operation chamber partition plate 18 as seen from the first preparation chamber 13 side, representing each partition plate. The internal ventilation path and the like are indicated by dotted lines. The first supply valve 16 block and the first exhaust valve 23 block were divided into two. The same number of first supply valves 16 and first exhaust valves 23 are installed in each block, and the first ventilation valve 24 is arranged equally in both blocks, so that the number of the three types of valves is approximately equal. . The second operation chamber partition plate 38 is exactly the same as the first operation chamber partition plate 18. The first auxiliary partition plate 17 has the same valve arrangement as the first operation chamber partition plate 18, has no vent valve, and has a first discharge valve 15 block and a first intake valve 14 block. Ventilation paths are created according to the use of each valve. The second auxiliary partition plate 37 is exactly the same as the first auxiliary partition plate 17. The partition plates 17, 18, 37, and 38 are flat on both sides of the plate and hollow on the inside. A switching valve is attached to the hollow part to allow the working fluid to pass, and the air passage is connected to the outside according to the opening provided in the casing 6, and the inflow side block and the outflow side block are divided into 2 minutes including the attachment position of the switching valve and the air passage. Then, the shaft seal device 78 attached to the sliding tube 4 is assembled. A groove is provided at the joint of the partition plates, and the lubricating oil pipes 73 and 76 of the shaft seal device 78 are passed therethrough.

図7イは切替弁の断面を示す。切替弁14,15,16,23,24,28,29,34,35,36は弁棒50、弁箱51、第1弁棒ガイド52、第2弁棒ガイド53、弁リング57の5点で構成する。弁棒50には弁を付け、弁箱51は内部に弁座を設け、外側に通ずる弁箱通気孔56を設け、弁棒ガイド52,53は弁棒50の保持、ストッパ、摺動部の漏れを防ぎ、全体は仕切板に填め込まれる。弁箱通気孔56は弁箱の周囲に上側と下側の2段にあけ、弁箱通気孔からシリンダ室または外部通気路に通ずる通気路は弁箱の外側に溝をつけ、弁リング57と合わせて用途による通気路を構成する。切替弁はピストンにより交互に押されて開閉する。弁閉止時弁側を高圧側とし、弁を弁座に押しつけるようにし、弁開時は弁がポケットに嵌るようにし、弁棒を押して開閉する以外弁棒が移動しないようにする。さらに弁棒50に棒状の磁石54を埋め込み、第1弁ガイド52に2個のリング状磁性体55を埋め込み、弁棒50がピストンによって押され一方に移動すると磁石54とリング状磁性体55が引き合うようにし、逆から押されるとこのリング状磁性体56から磁石55が離れ、他のリング状磁性体56に引かれて弁棒50の位置を確保させる。図7ロは棒状磁石54とリング状磁性体55の平面的な相互の関係図である。磁石54は弁棒に埋め込まれ開閉動作をするうちに回転しても、磁性体がリング状のためどの方向も同じ性能を維持する。   FIG. 7A shows a cross section of the switching valve. The switching valves 14, 15, 16, 23, 24, 28, 29, 34, 35, and 36 are a valve stem 50, a valve box 51, a first valve stem guide 52, a second valve stem guide 53, and a valve ring 57. Consists of. A valve is attached to the valve stem 50, a valve seat 51 is provided with a valve seat inside, a valve box vent hole 56 leading to the outside is provided, and valve stem guides 52 and 53 are provided for holding the valve stem 50, stoppers, and sliding parts. Leakage is prevented and the whole is fitted in the partition plate. The valve box vent hole 56 is opened in two stages, the upper and lower sides, around the valve box. The vent path leading from the valve box vent hole to the cylinder chamber or the external vent path is provided with a groove on the outside of the valve box, In addition, the air passage according to the application is configured. The switching valve is alternately opened and closed by the piston. The valve side is set to the high pressure side when the valve is closed, and the valve is pressed against the valve seat. When the valve is opened, the valve is fitted into the pocket so that the valve rod does not move except for opening and closing the valve rod. Further, a rod-shaped magnet 54 is embedded in the valve stem 50, and two ring-shaped magnetic bodies 55 are embedded in the first valve guide 52. When the valve stem 50 is pushed by the piston and moved to one side, the magnet 54 and the ring-shaped magnetic body 55 are When attracted and pushed from the opposite side, the magnet 55 is separated from the ring-shaped magnetic body 56 and is pulled by another ring-shaped magnetic body 56 to secure the position of the valve stem 50. FIG. 7B is a plan view of the mutual relationship between the rod-shaped magnet 54 and the ring-shaped magnetic body 55. Magnet 54 also rotates while the embedded opening and closing operation in the valve stem, the magnetic body to maintain any direction the same performance for a ring.

図7イはピストンヘッドのプランジャー断面をも示す。切替弁を押すピストン11,21,31および押し板47の弁棒50との当たり部分にプランジャー58を埋め込む。プランジャー58は押し込まれているときピストンヘッドの高さ以下とし、飛び出しているときはピストンヘッドよりやや高くし、プランジャー58がピストンに先行して切替弁の弁棒50を押し、ピストンの上死点または下死点で確実に弁棒50を押す。ピストン11,21,31、押し板47およびピストンリンク9は摺動管4と嵌め合い部をつくり相互の位置がずれないようにする。   FIG. 7a also shows the plunger cross-section of the piston head. A plunger 58 is embedded in a contact portion between the pistons 11, 21, 31 that push the switching valve and the valve rod 50 of the push plate 47. Plunger 58 should be below the height of the piston head when pushed in, and slightly higher than the piston head when popped out. Plunger 58 pushes valve rod 50 of the switching valve ahead of piston, Push the valve stem 50 securely at the dead center or bottom dead center. The pistons 11, 21, 31, the push plate 47, and the piston link 9 are fitted with the sliding tube 4 so that their positions are not displaced.

図8は切替弁の外形図を示す。図8イは弁箱通気孔を上下2段とし仕切板の通気路が上下交錯しない所に使用する。図8ロは弁箱通気孔56を上下2段とし仕切板の通気路が上下交錯する所に使用する。弁箱通気路は半減するが仕切板の通気路面積を大きくすることにより流通抵抗を小さくする。   FIG. 8 shows an external view of the switching valve. In FIG. 8A, the valve box ventilation holes are arranged in two upper and lower stages and used in a place where the ventilation passages of the partition plate do not cross up and down. In FIG. 8B, the valve box ventilation holes 56 are arranged in two upper and lower stages and used in a place where the ventilation passages of the partition plates cross each other. Although the valve box air passage is halved, the flow resistance is reduced by increasing the air passage area of the partition plate.

図9は膨張機関の補助仕切板17,18の切替弁に特定した断面図である。弁の開閉状態は図1および図3に合わせピストンが上死点で下から押した状態である。仕切板の左側が高圧部となり右側が低圧部となる。矢印は弁開時の動作流体の流れの方向を示す。第1吐出弁15,第1給気弁16,第1排気弁23が閉を示し、第1吸入弁14,第1通気弁24が開となる。   FIG. 9 is a cross-sectional view specific to the switching valve of the auxiliary partition plates 17 and 18 of the expansion engine. The open / closed state of the valve is a state in which the piston is pushed from below at the top dead center in accordance with FIGS. The left side of the partition plate is the high pressure part and the right side is the low pressure part. Arrows indicate the direction of working fluid flow when the valve is open. The first discharge valve 15, the first air supply valve 16, and the first exhaust valve 23 are closed, and the first intake valve 14 and the first vent valve 24 are opened.

図10は収縮機関の補助仕切板17,18の切替弁に特定した断面図である。弁の開閉状態は図2および図4に合わせピストンが上死点で下から押した状態である。仕切板の右側が高圧部となり左側が低圧部となる。矢印は弁開時の動作流体の流れの方向を示す。第1吐出弁15,第1給気弁16,第1排気弁23が閉を示し、第1吸入弁14,第1通気弁24が開となる。   FIG. 10 is a cross-sectional view specific to the switching valve of the auxiliary partition plates 17 and 18 of the contraction engine. The open / closed state of the valve is a state in which the piston is pushed from below at the top dead center in accordance with FIGS. The right side of the partition plate is the high pressure part and the left side is the low pressure part. Arrows indicate the direction of working fluid flow when the valve is open. The first discharge valve 15, the first air supply valve 16, and the first exhaust valve 23 are closed, and the first intake valve 14 and the first vent valve 24 are opened.

図11イは熱回収器8の断面構造を示し、図11ロは熱交換ユニットと波付熱交換板80の平面構造を示す。図10ハはヘッダ部の断面図を示す。図10ニは熱交換部分の分解図である。熱回収器8は熱交換ユニット85を数枚重ねて必要熱交換面積とし、熱交換ユニット85内部を低圧部通路86とし、外部を高圧部通路87とし、全体を耐圧ケース90に納める。動作流体は低圧部の全量を高圧部に向流として流し、両者の質量および熱量が常に同量熱回収板の両側に有るように高圧部通路87より低圧部通路86の間隔を大きくしその比を圧力比とする。両者の熱交換時間を同じくすることにより排気熱量全量熱回収する。   11A shows a cross-sectional structure of the heat recovery unit 8, and FIG. 11B shows a planar structure of the heat exchange unit and the corrugated heat exchange plate 80. FIG. 10C shows a sectional view of the header portion. FIG. 10D is an exploded view of the heat exchange part. The heat recovery unit 8 has several heat exchange units 85 stacked to form a necessary heat exchange area, the inside of the heat exchange unit 85 serves as a low-pressure section passage 86, the outside serves as a high-pressure section passage 87, and the whole is housed in a pressure-resistant case 90. The working fluid flows the entire amount of the low-pressure part as a counter-current to the high-pressure part, and the interval between the low-pressure part passage 86 is made larger than the high-pressure part passage 87 so that the mass and heat amount of both are always on both sides of the heat recovery plate. Is the pressure ratio. By using the same heat exchange time for both, the exhaust heat quantity is recovered in total.

熱交換ユニット85をブロックにして耐圧ケース90に納める。ブロックは熱交換ユニット85を数枚重ね、全体をボルトで締めて作る。ボルトは低圧側動作流体を通す入口、出口ヘッダ82の中を通すが、側板89、出入口セット88のすべてを一括して締める。熱交換ユニット85は両端に入口・出口ヘッダ82を設け、間に低圧部通路を確保するスペーサ81を置き、両面から波付熱交換板80を張り付け、周囲の合わせ目をU字板84で挟んで圧封する。入口・出口ヘッダ82はヘッダスペーサ83を挟み、縁を折り曲げた2枚の板で作り、合わせ目に動作流体を通すスリットを設ける。ヘッダスペーサ83は2枚合わせて周囲に孔またはスリットができるように凹凸を付け、低圧部通路86を確保し、入口・出口ヘッダ82、波付熱交換板80を含めて嵌め合いとする。波付熱交換板80は高圧部と低圧部の差圧に耐えるようにし、板に波を付けることにより圧力変動に対処し、変形を防ぐほかに伝熱交換面積を増やす。スペーサ81は差圧によって波付熱交換板80が変形しないように波に合わせて製作し、常に低圧部通路86を確保する。耐圧ケース90と側板89の間の空間を均圧室91,92,95,96とし、動作流体が均等に各通気路に出入りするようにする。耐圧ケース90と接触する熱交換ユニット85端部は低圧部、高圧部共スペーサ81を填め、動作流体のショートパスを防ぐ。   The heat exchange unit 85 is made into a block and stored in the pressure-resistant case 90. The block is made by stacking several heat exchange units 85 and bolting the whole. The bolt passes through the inlet and outlet header 82 through which the low-pressure side working fluid passes, but all of the side plate 89 and the inlet / outlet set 88 are tightened together. The heat exchange unit 85 is provided with inlet / outlet headers 82 at both ends, a spacer 81 for securing a low-pressure section passage is placed between them, a corrugated heat exchange plate 80 is attached from both sides, and a peripheral joint is sandwiched between U-shaped plates 84 Seal with. The inlet / outlet header 82 is made of two plates having a bent edge and sandwiching a header spacer 83, and is provided with a slit through which a working fluid passes. The two header spacers 83 are uneven so that a hole or slit is formed around them, and a low-pressure section passage 86 is secured, and the inlet / outlet header 82 and the corrugated heat exchange plate 80 are fitted together. The corrugated heat exchange plate 80 is designed to withstand the differential pressure between the high pressure portion and the low pressure portion, copes with pressure fluctuations by corrugating the plate, prevents deformation, and increases the heat transfer exchange area. The spacer 81 is manufactured according to the wave so that the waved heat exchange plate 80 is not deformed by the differential pressure, and the low pressure portion passage 86 is always secured. The space between the pressure-resistant case 90 and the side plate 89 is defined as pressure equalizing chambers 91, 92, 95, 96 so that the working fluid can enter and exit the air passages evenly. The end of the heat exchange unit 85 that comes into contact with the pressure-resistant case 90 fills the spacer 81 in both the low-pressure part and the high-pressure part to prevent a short path of the working fluid.

図12、13、14、15のイは当発明のエネルギ変換システムの応用であり、温度条件を変えた基本的な系統図である。ロはそのPV線図であり参考温度を示してある。図12、13、14は膨張機関であり、図15は収縮機関である。図14は図15との比較図であり温度比を統一してある。   12, 13, 14, 15 are applications of the energy conversion system of the present invention and are basic system diagrams in which temperature conditions are changed. B is a PV diagram showing a reference temperature. 12, 13 and 14 are expansion engines, and FIG. 15 is a contraction engine. FIG. 14 is a comparison diagram with FIG. 15, and the temperature ratio is unified.

図12は膨張機関として安定した低温熱源および高温熱源がある場合である。加熱器1、熱回収器8、冷却器2はそれぞれ独立に据える。高温源は温泉等を利用し、冷温源は河川水等を利用する。この方式は外乱等による温度変化があり温度比補正は難しい。   FIG. 12 shows a case where there is a stable low temperature heat source and high temperature heat source as an expansion engine. The heater 1, the heat recovery device 8, and the cooler 2 are installed independently. Hot springs are used for high temperature sources, and river water is used for cold sources. This method has a temperature change due to disturbance or the like, and temperature ratio correction is difficult.

図13は膨張機関として低温側熱源を冷凍機100により作り蒸発器を熱回収器8の底部に冷却器2として据え、温度比を大きくして出力を増す。加熱器1を室内におけば冷房しながら発電できる。温度比は高温側を基準として調節も比較的簡単に出来る。外部仕事は常温の熱源であり損失も少ないが温度差は大きくできない。   In FIG. 13, a low-temperature side heat source as an expansion engine is made by the refrigerator 100 and an evaporator is installed at the bottom of the heat recovery unit 8 as the cooler 2 to increase the temperature ratio and increase the output. If the heater 1 is placed indoors, power can be generated while cooling. The temperature ratio can be adjusted relatively easily based on the high temperature side. External work is a normal temperature heat source with little loss, but the temperature difference cannot be increased.

図14は膨張機関として低温側熱源を常温の空気や水により作り熱回収器8の底部に冷却器2として据え、高温源をボイラによりつくり温度比を大きくし、加熱器1を熱回収器8の出口に置く。この熱機関の高温加熱流体は加熱後そのまま放出し損失が多い。この方式は従来の熱機関の方式であり、高温高圧の動作流体を断熱膨張させて外部仕事を得る熱機関である。エネルギ変換システムの熱効率が100%になっても総合熱効率は100%にならず、また燃料が必要である。   In FIG. 14, a low temperature side heat source as an expansion engine is made of room temperature air or water and placed at the bottom of the heat recovery unit 8 as a cooler 2, a high temperature source is formed by a boiler to increase the temperature ratio, and the heater 1 is replaced with the heat recovery unit 8. Put on the exit. The high-temperature heating fluid of this heat engine is released as it is after heating and has a large loss. This system is a conventional heat engine system, which obtains external work by adiabatic expansion of a high-temperature and high-pressure working fluid. Even if the thermal efficiency of the energy conversion system is 100%, the overall thermal efficiency is not 100%, and fuel is required.

図15は収縮機関として低温側熱源を常温の空気や水により作り熱回収器8の底部に冷却器2として据え、高温源は熱機関出力に発電機を付け電気ヒーターにより温度制御する。この方式は温度比を高くすることが出来、且つ熱回収が出来て損失も少なく、燃料不要の熱機関である。   In FIG. 15, a low temperature side heat source is made as a contraction engine by air or water at normal temperature and is installed as a cooler 2 at the bottom of the heat recovery unit 8, and the high temperature source is temperature controlled by an electric heater with a generator attached to the heat engine output. This method is a heat engine that can increase the temperature ratio, recover heat, reduce loss, and does not require fuel.

熱機関の動作流体圧力は常温に近い動作流体通路に高圧タンク113を昇圧自動弁114を介してつなぎ、低圧タンク111を降圧自動弁110を介してつなぐ。昇圧自動弁114を開くと高圧タンク113の流体が熱機関内に入り昇圧し出力が増え、降圧自動弁110を開くと熱機関の動作流体が低圧タンク111に入り降圧し出力が減る。低圧タンク111と高圧タンク113の間に空気圧縮機112を置き、常に低圧タンク111の圧力が最低圧になっているように空気圧縮機112を運転する。図1は熱回収器8と冷却器2の間の低圧部に空気の昇降圧出入口を一括してつないだ系統図である。図2、図11、図13、図14は熱回収器8の低圧部出口に昇圧自動弁114を介して高圧タンク113をつなぎ、熱回収器8の高圧部入口に降圧自動弁110を介して低圧タンク111をつないだ系統図である。図12は熱回収器8の低圧部入口に昇圧自動弁114を介して高圧タンク113をつなぎ、加熱器1出口の高圧部に降圧自動弁110を介して低圧タンク111をつないだ系統図である。   The working fluid pressure of the heat engine is such that the high-pressure tank 113 is connected to the working fluid passage close to normal temperature via the boost automatic valve 114 and the low-pressure tank 111 is connected via the pressure automatic valve 110. When the boost automatic valve 114 is opened, the fluid in the high pressure tank 113 enters the heat engine and the pressure is increased to increase the output. When the automatic pressure drop valve 110 is opened, the working fluid of the heat engine enters the low pressure tank 111 and the pressure is decreased. The air compressor 112 is placed between the low-pressure tank 111 and the high-pressure tank 113, and the air compressor 112 is operated so that the pressure of the low-pressure tank 111 is always the lowest pressure. FIG. 1 is a system diagram in which a step-up / down pressure inlet / outlet for air is collectively connected to a low-pressure portion between the heat recovery unit 8 and the cooler 2. 2, 11, 13, and 14, the high pressure tank 113 is connected to the outlet of the low pressure portion of the heat recovery unit 8 via the boost automatic valve 114, and the pressure reduction valve 110 is connected to the high pressure portion of the heat recovery unit 8. FIG. 3 is a system diagram in which a low-pressure tank 111 is connected. FIG. 12 is a system diagram in which the high pressure tank 113 is connected to the low pressure portion inlet of the heat recovery unit 8 via the pressure boosting automatic valve 114 and the low pressure tank 111 is connected to the high pressure portion of the heater 1 outlet via the pressure reduction automatic valve 110. .

3連シリンダエンジン部の膨張機関断面図であり、動作流体の流れを示した総合系統図である。It is an expansion engine sectional view of a triple cylinder engine part, and is a comprehensive system diagram showing a flow of working fluid. 3連シリンダエンジン部の収縮機関断面図であり、動作流体の流れを示した総合系統図である。It is a contraction engine sectional view of a triple cylinder engine part, and is a comprehensive system diagram showing a flow of working fluid. 2連シリンダエンジン部の膨張機関断面図であり、動作流体の流れを示した総合系統図である。It is an expansion engine sectional view of a double cylinder engine part, and is a comprehensive system diagram showing a flow of working fluid. 2連シリンダエンジン部の収縮機関断面図であり、動作流体の流れを示した総合系統図である。It is a contraction engine sectional view of a double cylinder engine part, and is a comprehensive system diagram showing a flow of working fluid. ピストン及び仕切板摺動部の潤滑系統図である。It is a lubrication system figure of a piston and a partition plate sliding part. 第1動作室仕切板を第1準備室側からみた図である。It is the figure which looked at the 1st operation room partition plate from the 1st preparation room side. 切替弁と弁棒に当たる直前のプランジャーであり、両者の断面図であり、切替弁に埋め込まれた磁石およびリング状磁性体の平面関係図である。It is a plunger just before hitting a switching valve and a valve stem, is a sectional view of both, and is a plane relation diagram of a magnet and a ring-shaped magnetic body embedded in the switching valve. 切替弁の外形図であり弁箱通気孔と動作流体の流れを矢印で示す。It is an external view of a switching valve, and the flow of a valve box vent and working fluid is shown by arrows. 膨張機関の第1補助仕切板、第1動作室仕切板の仕切弁開閉を示す断面図である。It is sectional drawing which shows the gate valve opening and closing of the 1st auxiliary partition plate of an expansion engine, and a 1st action | operation chamber partition plate. 収縮機関の第1補助仕切板、第1動作室仕切板の仕切弁開閉を示す断面図である。It is sectional drawing which shows the gate valve opening and closing of the 1st auxiliary | assistant partition plate of a contraction engine, and a 1st action | operation chamber partition plate. 熱回収器の構造を示す。The structure of a heat recovery device is shown. 膨張機関の応用例とそのPV図、安定高温と安定低温がある場合を示す。An application example of an expansion engine, its PV diagram, and a case where there is a stable high temperature and a stable low temperature are shown. 膨張機関の応用例とそのPV図、常温と人工低温がある場合を示す。An application example of an expansion engine, its PV diagram, and normal temperature and artificial low temperature are shown. 膨張機関の応用例とそのPV図、常温と人工高温がある場合を示す。An application example of an expansion engine, its PV diagram, and normal temperature and artificial high temperature are shown. 収縮機関の応用例とそのPV図、常温と人工高温がある場合を示す。An application example of a contraction engine, its PV diagram, and the case of normal temperature and artificial high temperature are shown. 膨張機関の2連シリンダエンジン基本図を示す。A basic diagram of a double cylinder engine of an expansion engine is shown. 収縮機関の2連シリンダエンジン基本図を示す。A basic diagram of a twin cylinder engine of a contraction engine is shown. 熱回収器の原理図を示す。The principle figure of a heat recovery device is shown.

符号の説明Explanation of symbols

1 加熱器
2 冷却器
3 ピストン軸
4 摺動管
5 ピストンリング
6 ケーシング
8 熱回収用熱交換器
9 ピストンリンク
10 第1補助シリンダ
11 第1補助ピストン
12 第1補助室
13 第1準備室
14 第1吸入弁
15 第1吐出弁
16 第1給気弁
17 第1補助室仕切板
18 第1動作室仕切板
20 第1動作室シリンダ
21 第1動作室ピストン
22 第1動作室
23 第1排気弁
24 第1通気弁
25 第2動作室シリンダ
26 第2動作室ピストン
27 第2動作室
28 第2排気弁
29 第2通気弁
30 第2補助シリンダ
31 第2補助ピストン
32 第2補助室
33 第2準備室
34 第2吸入弁
35 第2吐出弁
36 第2給気弁
37 第2補助室仕切板
38 第2動作室仕切板
47 押し板
48 押し板室
49 ギャー室仕切板
50 弁棒
51 弁箱
52 第1弁棒ガイド
53 第2弁棒ガイド
54 磁石
55 リング状磁性体
56 弁箱通気孔
57 弁リング
58 プランジャー
60 ギャー室
62 通気口
63 ピストン通気路
65 ギャーボックス
66 動力軸
67 第1アーム歯車
68 第2アーム歯車
69 タイロッド
70 給油ポンプ
71 潤滑給油管
72 潤滑油ヘッダ
73 潤滑配油管
74 越流管
75 導圧管
76 潤滑排油管
77 ピストンオイルタンク
78 軸封装置
80 熱交換板
81 スペーサ
82 ヘッダ
83 ヘッダスペーサ
84 U字板
85 熱交換ユニット
86 低圧部通路
87 高圧部通路
88 出入口セット
89 側板
90 耐圧ケース
91 低圧部側入口、均圧室
92 低圧部側出口、均圧室
93 冷却器入口
94 冷却器出口
95 高圧部側入口、均圧室
96 高圧部側出口、均圧室
97 加熱器入口
98 加熱器出口
100 冷凍機
101 冷却膨張弁
102 放熱器
103 熱ポンプ
104 集熱膨張弁
105 集熱器
106 冷却水ポンプ
107 発電機
110 降圧自動弁
111 低圧タンク、ライン
112 空気圧縮機
113 高圧タンク、ライン
114 昇圧自動弁
115 空気吸入口
DESCRIPTION OF SYMBOLS 1 Heater 2 Cooler 3 Piston shaft 4 Sliding tube 5 Piston ring 6 Casing 8 Heat recovery heat exchanger 9 Piston link 10 First auxiliary cylinder 11 First auxiliary piston 12 First auxiliary chamber 13 First preparation chamber 14 First 1 intake valve 15 1st discharge valve 16 1st air supply valve 17 1st auxiliary chamber partition plate 18 1st operation chamber partition plate 20 1st operation chamber cylinder
21 First operating chamber piston
22 1st operation chamber 23 1st exhaust valve 24 1st ventilation valve 25 2nd operation chamber cylinder
26 Second operating chamber piston
27 Second operation chamber 28 Second exhaust valve 29 Second vent valve 30 Second auxiliary cylinder 31 Second auxiliary piston 32 Second auxiliary chamber 33 Second preparation chamber 34 Second intake valve 35 Second discharge valve 36 Second air supply Valve 37 Second auxiliary chamber partition plate 38 Second operation chamber partition plate 47 Push plate 48 Push plate chamber 49 Gear chamber partition plate 50 Valve rod 51 Valve box 52 First valve rod guide 53 Second valve rod guide 54 Magnet 55 Ring-shaped magnetism Body 56 Valve box vent 57 Valve ring 58 Plunger 60 Gear chamber 62 Vent 63 Piston vent 65 Gear box 66 Power shaft 67 First arm gear 68 Second arm gear 69 Tie rod 70 Oil pump 71 Lubricating oil pipe 72 Lubricating oil Header 73 Lubricating oil distribution pipe 74 Overflow pipe 75 Pressure guiding pipe 76 Lubrication drain oil pipe 77 Piston oil tank 78 Shaft seal device 80 Heat exchange plate 81 Spacer 82 Header 83 Ddasupesa
84 U-shaped plate 85 Heat exchange unit 86 Low-pressure section passage 87 High-pressure section passage 88 Entrance / exit set 89 Side plate 90 Pressure-resistant case 91 Low-pressure section inlet, pressure equalization chamber 92 Low-pressure section outlet, pressure equalization chamber 93 Cooler inlet 94 Cooler outlet 95 High pressure side inlet, pressure equalizing chamber 96 High pressure side outlet, pressure equalizing chamber 97 Heater inlet 98 Heater outlet 100 Refrigerator 101 Cooling expansion valve 102 Radiator 103 Heat pump 104 Heat collecting expansion valve 105 Heat collecting device 106 Cooling Water pump 107 Generator 110 Step-down automatic valve 111 Low-pressure tank, line 112 Air compressor 113 High-pressure tank, line 114 Step-up automatic valve 115 Air inlet

Claims (4)

エンジン部と熱交換部とを備え、エンジン部と加熱器(1)および熱回収用熱交換器(8)の高圧部通路(87)を配管接続する系統を高圧部とし、エンジン部と冷却器(2)および熱回収用熱交換器(8)の低圧部通路(86)を配管接続する系統を低圧部とし、エンジン部にはシリンダ3個を直列に配設し、真ん中を動作室シリンダ(20A)、動作室シリンダ内径より小さく、かつ、両側を同じ内径の第1補助シリンダ(10A)と第2補助シリンダ(30A)とし、各シリンダは仕切板(17A,18A,37A,38A)により区切り、仕切板には切替弁と通気路を設けて外部配管につなぎ、各シリンダ(10A,20A,30A)内の第1補助ピストン(11A),動作室ピストン(21A),第2補助ピストン(31A)は1本のピストン軸(3A)にて連結するとともに、ピストン軸は直線運動を回転運動に変えるピストンリンク(9A)につなぎ回転出力とし、ピストンの上死点または下死点にて切替弁(14A,15A,16A,23A,24A,28A,29A,34A,35A,36A)を交互に開閉し、通気路を切り替えるようにし、加熱器出口の動作流体温度と冷却器出口の動作流体温度の比をこのシステムの温度比=圧力比とし、出力変化は装置の動作流体を注入または排出させ、全体の圧力を変化させることにより行い、熱回収用熱交換器(8)は熱交換板(80)の両側の単位面積当たり容積を高圧部より低圧部を大きくし、その比を圧力比とすることにより動作流体の質量および熱量を同量として熱交換し、第1補助シリンダ内を第1補助ピストン(11A)にて第1補助室(12A)と第1準備室(13A)とを形成し、動作室シリンダ内を動作室ピストン(21A)にて第1動作室(22A)と第2動作室(27A)とを形成し、第2補助シリンダ内を第2補助ピストン(31A)にて第2準備室(33A)と第2補助室(32A)とを形成し、この6室を切替弁の開閉により2室を連結して3つの動作エリアを作り、ピストンが上死点で切替弁を開閉し、第1準備室(13A)と隣接する第1動作室(22A)を第1通気弁(24A)を開いて連結し、第1補助ピストン(11A)と動作室ピストン(21A)の受圧面積差でピストンを下降させ、第1準備室(13A)の動作流体を第1動作室(22A)に断熱膨張変化をさせながら移動させ、第2動作室(27A)と第1補助室(12A)を第2排気弁(28A)と第1吸入弁(14A)を開いて連結し、断熱変化する第1動作室(22A)と第1準備室(13A)のピストン背圧を同圧とし断熱変化を助け、第2動作室(27A)の動作流体を熱回収用熱交換器(8)の低圧部通路(86)および冷却器(2)を通して第1補助室(12A)に移動させ、第2補助室(32A)と同じシリンダの第2準備室(33A)を第2吐出弁(35A)と第2給気弁(36A)を開いて連結し、第2補助ピストン(31A)により、第2補助室(32A)の動作流体を熱回収用熱交換器(8)の高圧部通路(87)および加熱器(1)を通して第2準備室(33A)に移動させ、ピストンの下死点で次の動作の準備を完了させ、開いていた切替弁を閉じ、閉じていた切替弁を開いて動作エリアの構成を替え、第2準備室(33A)と第2動作室(27A)を連結し、第1動作室(22A)と第2補助室(32A)を連結し、第1補助室(12A)と同じシリンダの第1準備室(13A)を連結しピストン下降時と同じ変化によりピストンを上昇させ、ピストンの上死点で次の動作の準備を完了させ連続運転する断熱膨張型熱機関からなることを特徴とするエネルギ変換システム。   A system comprising an engine part and a heat exchanging part, piped to the engine part and the high pressure passage (87) of the heater (1) and the heat recovery heat exchanger (8) is defined as a high pressure part. (2) and the system connecting the low pressure section passage (86) of the heat exchanger (8) for heat recovery to the low pressure section, three cylinders are arranged in series in the engine section, and the middle of the operating chamber cylinder ( 20A), the first auxiliary cylinder (10A) and the second auxiliary cylinder (30A) are smaller than the inner diameter of the operating chamber cylinder and have the same inner diameter on both sides, and each cylinder is separated by a partition plate (17A, 18A, 37A, 38A) The partition plate is provided with a switching valve and an air passage, and is connected to an external pipe. The first auxiliary piston (11A), the operating chamber piston (21A), the second auxiliary piston (31A) in each cylinder (10A, 20A, 30A). ) Is 1 The piston shaft (3A) is connected to the piston link (9A) that changes the linear motion into a rotational motion, and is used as a rotational output. At the top dead center or bottom dead center of the piston, the switching valve (14A, 15A , 16A, 23A, 24A, 28A, 29A, 34A, 35A, 36A) are alternately opened and closed to switch the air passage, and the ratio of the operating fluid temperature at the heater outlet to the operating fluid temperature at the cooler outlet The temperature ratio is equal to the pressure ratio, and the output is changed by injecting or discharging the working fluid of the apparatus and changing the overall pressure. The heat recovery heat exchanger (8) is provided on both sides of the heat exchange plate (80). By making the volume per unit area larger than the high-pressure part and making the ratio the pressure ratio, the mass and heat of the working fluid are exchanged with the same amount, and the first auxiliary cylinder is exchanged in the first auxiliary cylinder. The first auxiliary chamber (12A) and the first preparation chamber (13A) are formed by the tons (11A), and the first operation chamber (22A) and the second operation are formed in the operation chamber cylinder by the operation chamber piston (21A). Chamber (27A) is formed, and the second auxiliary cylinder (32A) is formed in the second auxiliary cylinder by the second auxiliary piston (31A), and these six chambers are switched over. The two chambers are connected by opening and closing to create three operation areas, the piston opens and closes the switching valve at the top dead center, and the first operation chamber (22A) adjacent to the first preparation chamber (13A) is the first vent valve. (24A) is opened and connected, and the piston is lowered by the pressure receiving area difference between the first auxiliary piston (11A) and the working chamber piston (21A), and the working fluid in the first preparation chamber (13A) is transferred to the first working chamber (22A). ) While changing the adiabatic expansion, the second working chamber (27A) and the first auxiliary The auxiliary chamber (12A) is connected by opening the second exhaust valve (28A) and the first intake valve (14A), and the piston back pressure in the first operation chamber (22A) and the first preparation chamber (13A) changing in adiabaticity is reduced. The same pressure helps the heat insulation change, and the working fluid in the second working chamber (27A) passes through the low pressure passage (86) and the cooler (2) of the heat exchanger (8) for heat recovery to the first auxiliary chamber (12A). The second auxiliary chamber (33A) of the same cylinder as the second auxiliary chamber (32A) is connected by opening the second discharge valve (35A) and the second air supply valve (36A), and the second auxiliary piston (31A) ), The working fluid in the second auxiliary chamber (32A) is moved to the second preparation chamber (33A) through the high pressure passage (87) of the heat recovery heat exchanger (8) and the heater (1), and the piston The preparation for the next operation is completed at the bottom dead center, the switching valve that was open is closed, and the switching valve that was closed Open and change the configuration of the operation area, connect the second preparation chamber (33A) and the second operation chamber (27A), connect the first operation chamber (22A) and the second auxiliary chamber (32A), the first auxiliary Adiabatic expansion type in which the first preparation chamber (13A) of the same cylinder as the chamber (12A) is connected, the piston is raised by the same change as when the piston is lowered, the preparation for the next operation is completed at the top dead center of the piston, and continuous operation is performed. An energy conversion system comprising a heat engine. エンジン部と熱交換部とを備え、エンジン部と加熱器(1)および熱回収用熱交換器(8)の高圧部通路(87)を配管接続する系統を高圧部とし、エンジン部と冷却器(2)および熱回収用熱交換器(8)の低圧部通路(86)を配管接続する系統を低圧部とし、エンジン部にはシリンダ3個を直列に配設し、真ん中を動作室シリンダ(20B)、動作室シリンダ内径より大きく、かつ、両側を同じ内径の第1補助シリンダ(10B)、第2補助シリンダ(30B)とし、各シリンダは仕切板(17B,18B,37B,38B)により区切り、仕切板には切替弁と通気路を設けて、外部配管につなぎ、各シリンダ(10B,20B,30B)内の第1補助ピストン(11B),動作室ピストン(21B),第2補助ピストン(31B)は1本のピストン軸(3B)にて連結するとともに、ピストン軸は直線運動を回転運動に変えるピストンリンク(9B)につなぎ回転出力とし、ピストンの上死点または下死点にて切替弁(14B,15B,16B,23B,24B,28B,29B,34B,35B,36B)を交互に開閉し、通気路を切り替えるようにし、加熱器出口の動作流体温度と冷却器出口の動作流体温度の比をこのシステムの温度比=圧力比とし、出力変化は装置の動作流体を注入または排出させ、全体の圧力を変化させることにより行い、熱回収用熱交換器(8)は熱交換板(80)の両側の単位面積当たり容積を高圧部より低圧部を大きくし、その比を圧力比とすることにより動作流体の質量および熱量を同量として熱交換し、第1補助シリンダ内を第1補助ピストン(11B)にて第1補助室(12B)と第1準備室(13B)とを形成し、動作室シリンダ内を動作室ピストン(21B)にて第1動作室(22B)と第2動作室(27B)とを形成し、第2補助シリンダ内を第2補助ピストン(31B)にて第2準備室(33B)と第2補助室(32B)とを形成し、この6室を切替弁の開閉により2室を連結して3つの動作エリアを作り、ピストンが上死点で切替弁を開閉し、第1準備室(13B)と隣接する第1動作室(22B)を第1通気弁(24B)を開いて連結し、第1補助室(12B)が第1準備室(13B)より高圧にし、第1準備室(13B)の動作流体を第1動作室(22B)に断熱収縮変化をさせながら移動させ、第2動作室(27B)と第1補助室(12B)を第2排気弁(28B)と第1吸入弁(14B)を開いて連結し、断熱変化する第1動作室(22B)と第1準備室(13B)のピストン背圧を同圧とし断熱変化を助け、第1補助ピストン(11B)と動作室ピストン(21B)の受圧面積差でピストンを下降させることで、第2動作室(27B)の動作流体を熱回収用熱交換器(8)の高圧部通路(87)および加熱器(1)を通して第1補助室(12B)に移動させ、第2補助室(32B)と同じシリンダの第2準備室(33B)を第2吐出弁(35B)と第2給気弁(36B)を開いて連結し、第2補助ピストン(31B)により、第2補助室(32B)の動作流体を熱回収用熱交換器(8)の低圧部通路(86)および冷却器(2)を通して第2準備室(33B)に移動させ、ピストンの下死点で次の動作の準備を完了させ、開いていた切替弁を閉じ、閉じていた切替弁を開いて動作エリアの構成を替え、第2準備室(33B)と第2動作室(27B)を連結し、第1動作室(22B)と第2補助室(32B)を連結し、第1補助室(12B)と同じシリンダの第1準備室(13B)を連結しピストン下降時と同じ変化によりピストンを上昇させ、ピストンの上死点で次の動作の準備を完了させ連続運転する断熱収縮型熱機関からなることを特徴とするエネルギ変換システム。   A system comprising an engine part and a heat exchanging part, piped to the engine part and the high pressure passage (87) of the heater (1) and the heat recovery heat exchanger (8) is defined as a high pressure part. (2) and the system connecting the low pressure section passage (86) of the heat exchanger (8) for heat recovery to the low pressure section, three cylinders are arranged in series in the engine section, and the middle of the operating chamber cylinder ( 20B), a first auxiliary cylinder (10B) and a second auxiliary cylinder (30B) that are larger than the inner diameter of the operating chamber cylinder and have the same inner diameter on both sides, and each cylinder is separated by a partition plate (17B, 18B, 37B, 38B) The partition plate is provided with a switching valve and an air passage, connected to the external pipe, and the first auxiliary piston (11B), the operation chamber piston (21B), the second auxiliary piston (in each cylinder (10B, 20B, 30B)) 31B) The piston shaft is connected to a piston shaft (3B), and the piston shaft is connected to a piston link (9B) that changes linear motion to rotational motion to produce a rotational output, and a switching valve (14B, 15B, 16B, 23B, 24B, 28B, 29B, 34B, 35B, and 36B) are alternately opened and closed to switch the air passage, and the ratio of the operating fluid temperature at the heater outlet to the operating fluid temperature at the cooler outlet The temperature ratio of the system is equal to the pressure ratio, and the output is changed by injecting or discharging the working fluid of the apparatus and changing the overall pressure. The heat recovery heat exchanger (8) is on both sides of the heat exchange plate (80). The volume per unit area of the high-pressure part is made larger than the high-pressure part, and the ratio is made the pressure ratio, so that the mass and heat of the working fluid are the same amount, and the heat is exchanged. The first auxiliary chamber (12B) and the first preparation chamber (13B) are formed by the stone (11B), and the first operation chamber (22B) and the second operation are operated by the operation chamber piston (21B) in the operation chamber cylinder. And a second preparation chamber (33B) and a second auxiliary chamber (32B) are formed in the second auxiliary cylinder by the second auxiliary piston (31B). The two chambers are connected by opening and closing to create three operation areas, the piston opens and closes the switching valve at the top dead center, and the first operation chamber (22B) adjacent to the first preparation chamber (13B) is the first ventilation valve (24B) is opened and connected, and the first auxiliary chamber (12B) has a higher pressure than the first preparation chamber (13B), and the working fluid in the first preparation chamber (13B) is changed to adiabatic contraction into the first operation chamber (22B). The second operating chamber (27B) and the first auxiliary chamber (12B) are moved to the second exhaust valve ( 28B) and the first suction valve (14B) are opened and connected, and the piston back pressure in the first working chamber (22B) and the first preparation chamber (13B), which change adiabatically, is set to the same pressure to assist in the adiabatic change. By lowering the piston by the pressure receiving area difference between the piston (11B) and the working chamber piston (21B), the working fluid in the second working chamber (27B) is passed through the high pressure section passage (87) of the heat exchanger for heat recovery (8). And the heater (1) to the first auxiliary chamber (12B), the second preparation chamber (33B) of the same cylinder as the second auxiliary chamber (32B), the second discharge valve (35B) and the second air supply valve (36B) is opened and connected, and the working fluid in the second auxiliary chamber (32B) is transferred by the second auxiliary piston (31B) to the low pressure section passage (86) and the cooler (2) of the heat exchanger for heat recovery (8). ) To the second preparation chamber (33B) To complete the preparation of the operation, close the open switching valve, open the closed switching valve to change the configuration of the operation area, connect the second preparation chamber (33B) and the second operation chamber (27B), The first working chamber (22B) and the second auxiliary chamber (32B) are connected, the first preparation chamber (13B) of the same cylinder as the first auxiliary chamber (12B) is connected, and the piston is raised by the same change as when the piston is lowered. An energy conversion system comprising an adiabatic contraction type heat engine continuously operating by completing preparation for the next operation at the top dead center of the piston. エンジン部と熱交換部とを備え、エンジン部と加熱器(1)および熱回収用熱交換器(8)の高圧部通路(87)を配管接続する系統を高圧部とし、エンジン部と冷却器(2)および熱回収用熱交換器(8)の低圧部通路(86)を配管接続する系統を低圧部とし、エンジン部は動作室シリンダ(20a)、動作室シリンダ内径より小さい内径の補助シリンダ(10a)とを直列に配設し、補助シリンダの両側を仕切板(17a,18a)により区切り、仕切板には切替弁と通気路を設けて外部配管につなぎ、各シリンダ(10a,20a)の補助ピストン(11a),動作室ピストン(21a)は1本のピストン軸(3a)にて連結し、動作室ピストンはピストンの直線運動を回転運動に変えるピストンリンクを備え回転出力とし、ピストンの上死点または下死点にて切替弁(14a,15a,16a,23a,24a)を交互に開閉し、通気路を切り替え、加熱器出口の動作流体温度と冷却器出口の動作流体温度の比をこのシステムの温度比=圧力比とし、出力変化は装置の動作流体を注入または排出させ、全体の圧力を変化させることにより行い、熱回収用熱交換器(8)は熱交換板(80)の両側の単位面積当たり容積を高圧部より低圧部を大きくし、その比を圧力比とすることにより動作流体の質量および熱量を同量として熱交換し、補助シリンダ内を補助ピストンにて補助室(12a)と準備室(13a)とを形成し、動作室シリンダ内を動作室(22a)とし、ピストン上死点で切替弁を開閉し、準備室(13a)と隣接する動作室(22a)を通気弁(24a)を開いて連結し、補助ピストン(11a)と動作室ピストン(21a)は受圧面積差でピストンを下降させ、準備室(13a)の高圧動作流体を動作室(22a)に断熱膨張変化をさせながら移動し、ピストンを下降させ、補助室(12a)は吸入弁(14a)を開いて低圧部とつなぎ、動作流体を熱回収用熱交換器(8)の低圧部通路(86)および冷却器(2)を通して低圧部から補助室(12a)に移動させ、ピストン下死点で切替弁を開閉し、開いていた切替弁を閉じ、閉じていた切替弁を開いて動作エリアの構成を替え、補助室(12a)と準備室(13a)を吐出弁(15a)と給気弁(16a)を開いて連結し、高圧部とつなぎ、補助ピストン(11a)上昇により、補助室(12a)の動作流体を熱回収用熱交換器(8)の高圧部通路(87)および加熱器(1)を通して高圧部から準備室(13a)に移動させ、動作室(22a)は排気弁(23a)を開いて動作流体を低圧部に移動させ、ピストンの上死点にて1サイクルを完了させ、開いていた切替弁を閉じ、閉じていた切替弁を開いて動作エリアの構成を替え連続運転する、エンジン部を複数個つくり、それぞれのエンジン部の前記ピストン軸を相互に1サイクル÷ピストン軸数の時間差を設けて上下運動するようにリンクで連結し、共通の高圧部から複数のエンジン部の各準備室に動作流体が移動し、共通の低圧部から複数のエンジン部の各補助室に動作流体が移動する、断熱膨張型熱機関からなることを特徴とするエネルギ変換システム。 A system comprising an engine part and a heat exchanging part, piped to the engine part and the high pressure passage (87) of the heater (1) and the heat recovery heat exchanger (8) is defined as a high pressure part. (2) and the system connecting the low-pressure section passage (86) of the heat recovery heat exchanger (8) with a low-pressure section, the engine section is an operating chamber cylinder (20a) and an auxiliary cylinder having an inner diameter smaller than the inner diameter of the operating chamber cylinder (10a) are arranged in series, both sides of the auxiliary cylinder are separated by a partition plate (17a, 18a), a switching valve and a ventilation path are provided on the partition plate and connected to an external pipe, and each cylinder (10a, 20a) The auxiliary piston (11a) and the operating chamber piston (21a) are connected by a single piston shaft (3a), and the operating chamber piston is provided with a piston link that changes the linear motion of the piston into a rotational motion and is used as a rotational output. At the top dead center or bottom dead center, the switching valves (14a, 15a, 16a, 23a, 24a) are alternately opened and closed, the air passage is switched, and the operating fluid temperature at the heater outlet and the operating fluid temperature at the cooler outlet are switched. The ratio is the temperature ratio of this system = pressure ratio, and the output is changed by injecting or discharging the working fluid of the apparatus and changing the overall pressure. The heat recovery heat exchanger (8) has a heat exchange plate (80 ) The volume per unit area on both sides is larger than the high pressure part, and the ratio is made the pressure ratio, so that the mass and heat of the working fluid are the same amount, and the auxiliary cylinder is assisted by the auxiliary piston. The chamber (12a) and the preparation chamber (13a) are formed, the inside of the working chamber cylinder is the working chamber (22a), the switching valve is opened and closed at the top dead center of the piston, and the working chamber (22a) adjacent to the preparation chamber (13a) ) The ventilation valve (24a) The auxiliary piston (11a) and the operating chamber piston (21a) are moved down while the piston is lowered by the pressure receiving area difference, and the high-pressure operating fluid in the preparation chamber (13a) is changed into the operating chamber (22a) while undergoing adiabatic expansion change. The piston is lowered, the auxiliary chamber (12a) opens the suction valve (14a) and is connected to the low pressure portion, and the working fluid is connected to the low pressure portion passage (86) and the cooler (2) of the heat recovery heat exchanger (8). Through the low pressure section to the auxiliary chamber (12a), open and close the switching valve at the bottom dead center of the piston, close the switching valve that was open, open the switching valve that was closed, change the configuration of the operating area, 12a) and the preparatory chamber (13a) are connected by opening the discharge valve (15a) and the air supply valve (16a), and connected to the high pressure section, and the auxiliary piston (11a) is raised to heat the working fluid in the auxiliary chamber (12a). High pressure of recovery heat exchanger (8) The working chamber (22a) opens the exhaust valve (23a) to move the working fluid to the low pressure section and moves the working fluid to the low pressure section through the section passage (87) and the heater (1). Complete one cycle at the dead center, close the open switching valve, open the closed switching valve and change the configuration of the operating area to create a plurality of engine parts, and the piston of each engine part The shafts are linked with each other so as to move up and down with a time difference of 1 cycle / piston axis number, and the working fluid moves from the common high-pressure part to each preparation chamber of multiple engine parts. An energy conversion system comprising an adiabatic expansion heat engine in which a working fluid moves to each auxiliary chamber of a plurality of engine units . エンジン部と熱交換部とを備え、エンジン部と加熱器(1)および熱回収用熱交換器(8)の高圧部通路(87)を配管接続する系統を高圧部とし、エンジン部と冷却器(2)および熱回収用熱交換器(8)の低圧部通路(86)を配管接続する系統を低圧部とし、エンジン部は動作室シリンダ(20b)、動作室シリンダ内径より大きい内径の補助シリンダ(10b)とを直列に配設し、補助シリンダの両側を仕切板(17b,18b)により区切り、仕切板には切替弁と通気路を設けて外部配管につなぎ、各シリンダ(10b,20b)の補助ピストン(11b),動作室ピストン(21b)は1本のピストン軸(3b)にて連結し、動作室ピストンはピストンの直線運動を回転運動に変えるピストンリンクを備え回転出力とし、ピストンの上死点または下死点にて切替弁(14b,15b,16b,23b,24b)を交互に開閉し、通気路を切り替え、加熱器出口の動作流体温度と冷却器出口の動作流体温度の比をこのシステムの温度比=圧力比とし、出力変化は装置の動作流体を注入または排出させ、全体の圧力を変化させることにより行い、熱回収用熱交換器(8)は熱交換板(80)の両側の単位面積当たり容積を高圧部より低圧部を大きくし、その比を圧力比とすることにより動作流体の質量および熱量を同量として熱交換し、補助シリンダ内を補助ピストンにて補助室(12b)と準備室(13b)とを形成し、動作室シリンダ内を動作室(22b)とし、ピストン上死点で切替弁を開閉し、準備室(13b)と隣接する動作室(22b)を通気弁(24b)を開いて連結し、補助室(12b)を準備室(13b)より高圧にし、準備室(13b)の低圧動作流体を動作室(22b)に断熱収縮変化をさせながら移動し、補助ピストン(11b)と動作室ピストン(21b)の受圧面積差でピストンを下降させ、補助室(12b)は吸入弁(14b)を開いて高圧部とつなぎ、動作流体を熱回収用熱交換器(8)の高圧部通路(87)および加熱器(1)を通して高圧部から補助室(12b)に移動させ、ピストン下死点で切替弁を開閉し、開いていた切替弁を閉じ、閉じていた切替弁を開いて動作エリアの構成を替え、補助室(12b)と準備室(13b)を吐出弁(15b)と給気弁(16b)を開いて連結し、低圧部とつなぎ、補助ピストン(11b)上昇により、補助室(12b)の動作流体を熱回収用熱交換器(8)の低圧部通路(86)および冷却器(2)を通して低圧部から準備室(13b)に移動させ、動作室(22b)は排気弁(23b)を開いて動作流体を高圧部に移動させ、ピストンの上死点にて1サイクルを完了させ、開いていた切替弁を閉じ、閉じていた切替弁を開いて動作エリアの構成を替え連続運転する、エンジン部を複数個つくり、それぞれのエンジン部の前記ピストン軸を相互に1サイクル÷ピストン軸数の時間差を設けて上下運動するようにリンクで連結し、共通の高圧部から複数のエンジン部の各補助室に動作流体が移動し、共通の低圧部から複数のエンジン部の各準備室に動作流体が移動する、断熱収縮型熱機関からなることを特徴とするエネルギ変換システム。 A system comprising an engine part and a heat exchanging part, piped to the engine part and the high pressure passage (87) of the heater (1) and the heat recovery heat exchanger (8) is defined as a high pressure part. (2) and the system connecting the low-pressure section passage (86) of the heat recovery heat exchanger (8) by piping is a low-pressure section, and the engine section is an operating chamber cylinder (20b) and an auxiliary cylinder having an inner diameter larger than the inner diameter of the operating chamber cylinder (10b) are arranged in series, both sides of the auxiliary cylinder are separated by a partition plate (17b, 18b), a switching valve and a ventilation path are provided on the partition plate and connected to an external pipe, and each cylinder (10b, 20b) The auxiliary piston (11b) and the operating chamber piston (21b) are connected by a single piston shaft (3b). The operating chamber piston is provided with a piston link that changes the linear motion of the piston into a rotational motion, and is used as a rotational output. At the top dead center or bottom dead center, the switching valves (14b, 15b, 16b, 23b, 24b) are alternately opened and closed, the air passage is switched, and the operating fluid temperature at the heater outlet and the operating fluid temperature at the cooler outlet are changed. The ratio is the temperature ratio of this system = pressure ratio, and the output is changed by injecting or discharging the working fluid of the apparatus and changing the overall pressure. The heat recovery heat exchanger (8) has a heat exchange plate (80 ) The volume per unit area on both sides is larger than the high pressure part, and the ratio is made the pressure ratio, so that the mass and heat of the working fluid are the same amount, and the auxiliary cylinder is assisted by the auxiliary piston. The chamber (12b) and the preparation chamber (13b) are formed, the operation chamber cylinder is the operation chamber (22b), the switching valve is opened and closed at the top dead center of the piston, and the operation chamber (22b) adjacent to the preparation chamber (13b) ) The ventilation valve (24b) And connecting the auxiliary chamber (12b) to a pressure higher than that of the preparation chamber (13b), moving the low-pressure working fluid in the preparation chamber (13b) into the operation chamber (22b) while changing the adiabatic contraction, and the auxiliary piston (11b). The piston is lowered by the pressure receiving area difference of the working chamber piston (21b), the auxiliary chamber (12b) opens the suction valve (14b) and connects to the high pressure portion, and the working fluid is connected to the high pressure portion of the heat recovery heat exchanger (8). Move from the high pressure section to the auxiliary chamber (12b) through the passage (87) and the heater (1), open and close the switching valve at the bottom dead center of the piston, close the switching valve that was open, and open the switching valve that was closed The structure of the operation area is changed, the auxiliary chamber (12b) and the preparation chamber (13b) are connected by opening the discharge valve (15b) and the supply valve (16b), and connected to the low pressure part, and the auxiliary piston (11b) is raised, Working fluid in auxiliary chamber (12b) The heat recovery heat exchanger (8) is moved from the low pressure section to the preparation chamber (13b) through the low pressure section passage (86) and the cooler (2), and the operation chamber (22b) operates by opening the exhaust valve (23b). Move the fluid to the high pressure section, complete one cycle at the top dead center of the piston, close the open switching valve, open the closed switching valve, change the configuration of the operating area, and continuously run the engine section. A plurality of the piston shafts of each engine unit are linked by a link so as to move up and down with a time difference of 1 cycle / the number of piston shafts from each other, and from a common high pressure unit to each auxiliary chamber of the plurality of engine units An energy conversion system comprising an adiabatic contraction type heat engine in which a working fluid moves and a working fluid moves from a common low-pressure part to each preparation chamber of a plurality of engine parts .
JP2004360410A 2004-12-13 2004-12-13 Energy conversion system Expired - Fee Related JP4438070B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004360410A JP4438070B2 (en) 2004-12-13 2004-12-13 Energy conversion system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004360410A JP4438070B2 (en) 2004-12-13 2004-12-13 Energy conversion system

Publications (2)

Publication Number Publication Date
JP2006169986A JP2006169986A (en) 2006-06-29
JP4438070B2 true JP4438070B2 (en) 2010-03-24

Family

ID=36671023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004360410A Expired - Fee Related JP4438070B2 (en) 2004-12-13 2004-12-13 Energy conversion system

Country Status (1)

Country Link
JP (1) JP4438070B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5280325B2 (en) * 2009-09-17 2013-09-04 横浜製機株式会社 Multi-cylinder external combustion closed cycle heat engine with heat recovery device
KR101208052B1 (en) 2012-04-04 2012-12-04 양상걸 Cylinder units for internal combustion engine
JP5340506B1 (en) * 2013-07-01 2013-11-13 直文 越智 Piston air engine

Also Published As

Publication number Publication date
JP2006169986A (en) 2006-06-29

Similar Documents

Publication Publication Date Title
EP1492940B1 (en) Scroll-type expander having heating structure and steam engine employing the expander
EP0920572B1 (en) Thermal hydraulic engine
US7076941B1 (en) Externally heated engine
US8991170B2 (en) Solar air conditioning heat pump with minimized dead volume
US8590302B2 (en) Thermodynamic cycle and heat engine
WO2014005229A1 (en) Temperature management in gas compression and expansion
US5916140A (en) Hydraulic engine powered by introduction and removal of heat from a working fluid
US20110203267A1 (en) Method and device for operating a stirling cycle process
JP2007064222A (en) Hydrogen equalizing system for double-acting stirling engine
WO2011151888A1 (en) External-combustion, closed-cycle thermal engine
US9945321B2 (en) Hot gas engine
US20130067906A1 (en) Heat exchanging cylinder head
US20100186405A1 (en) Heat engine and method of operation
JP5525371B2 (en) External combustion type closed cycle heat engine
JP2011513641A (en) Liquid displacer engine
JP4438070B2 (en) Energy conversion system
JPH071028B2 (en) Stirling cycle engine and heat pump
US10982543B2 (en) Near-adiabatic engine
KR100849506B1 (en) Scroll-type stirling cycle engine
WO2005108769A1 (en) Reciprocating engine with cyclical displacement of working medium
US11808503B2 (en) Heat engines and heat pumps with separators and displacers
KR20060071827A (en) An external combustion engine combined with cylinder, re-generator and cooler
CN216477603U (en) Novel temperature difference engine
MXPA04012100A (en) Method and device for converting thermal energy into kinetic energy.
SK1812022U1 (en) Stirling engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091226

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4438070

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160115

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees