JP5280055B2 - Shielded wire - Google Patents

Shielded wire Download PDF

Info

Publication number
JP5280055B2
JP5280055B2 JP2008003664A JP2008003664A JP5280055B2 JP 5280055 B2 JP5280055 B2 JP 5280055B2 JP 2008003664 A JP2008003664 A JP 2008003664A JP 2008003664 A JP2008003664 A JP 2008003664A JP 5280055 B2 JP5280055 B2 JP 5280055B2
Authority
JP
Japan
Prior art keywords
layer
electric wire
metal plating
insulating resin
adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008003664A
Other languages
Japanese (ja)
Other versions
JP2009170113A (en
Inventor
隆宏 小松
岳志 芹澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissei Electric Co Ltd
Original Assignee
Nissei Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissei Electric Co Ltd filed Critical Nissei Electric Co Ltd
Priority to JP2008003664A priority Critical patent/JP5280055B2/en
Publication of JP2009170113A publication Critical patent/JP2009170113A/en
Application granted granted Critical
Publication of JP5280055B2 publication Critical patent/JP5280055B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation

Description

本発明は、シールド電線に関し、就中、優れた高周波特性が要求される情報通信機器、通信端末機器、さらには計測機器などの高周波部品の信号伝達線路として用いられる同軸ケーブルに関する。 The present invention relates to a shielded wire, and more particularly to a coaxial cable used as a signal transmission line of a high-frequency component such as an information communication device, a communication terminal device, or a measuring device that requires excellent high-frequency characteristics.

昨今、シールド電線のなかでも特に同軸ケーブルについては益々細径化が要求されている。これは、情報通信機器や通信端末機器のさらなる小型化に伴う要求である。そこで、該ケーブルの絶縁樹脂層(フッ素樹脂からなる誘電体層)の外周に配するシールド層として、これまで常用されてきた金属編組層あるいは横巻層に比べて、より薄くできる金属メッキ層を採用する方策が注目を浴びている。 In recent years, there is an increasing demand for reducing the diameter of a coaxial cable, particularly a coaxial cable. This is a requirement accompanying further downsizing of information communication devices and communication terminal devices. Therefore, as a shield layer disposed on the outer periphery of the insulating resin layer (a dielectric layer made of a fluororesin) of the cable, a metal plating layer that can be made thinner than a metal braided layer or a horizontal winding layer that has been conventionally used is used. The strategy to adopt is attracting attention.

しかしながら、該絶縁樹脂層には元々、金属メッキ層が付着しにくいという問題がある。そのため、本出願人は先に、該絶縁樹脂層と金属メッキ層とを固着する方策を提案した(例えば、特許文献1参照)。この提案によれば、絶縁樹脂層の外周面に先ず低融点の変性ナイロンなどの接着性樹脂膜が配され、さらに該樹脂膜の外周面に無電解金属メッキ層が配される。そして、この無電解金属メッキ層の外周面に電解金属メッキ層が形成される。この場合、該接着性樹脂膜は電解金属の析出を促進するために採用されている。 However, the insulating resin layer originally has a problem that the metal plating layer hardly adheres. Therefore, the present applicant has previously proposed a measure for fixing the insulating resin layer and the metal plating layer (for example, see Patent Document 1). According to this proposal, an adhesive resin film such as low-melting modified nylon is first disposed on the outer peripheral surface of the insulating resin layer, and an electroless metal plating layer is further disposed on the outer peripheral surface of the resin film. An electrolytic metal plating layer is formed on the outer peripheral surface of the electroless metal plating layer. In this case, the adhesive resin film is employed to promote the deposition of electrolytic metal.

上記の同軸ケーブルは一見、安定した構造に見える。しかし、この同軸ケーブルは繰返し曲げによる応力に耐えられず、各層間での剥離現象や電解メッキ層の亀裂現象が生じ易い。これは、接着性樹脂膜の接着能の限界とメッキ時の対金属析出能不足に因るものである。そして、このような剥離現象は、導通状態が途切れるという同軸ケーブルの品質上の問題につながる。 The above coaxial cable appears to have a stable structure. However, this coaxial cable cannot withstand the stress caused by repeated bending, and is liable to cause a peeling phenomenon between layers and a cracking phenomenon of an electrolytic plating layer. This is due to the limit of the adhesive ability of the adhesive resin film and the insufficient ability to deposit metal against plating. And such a peeling phenomenon leads to the quality problem of the coaxial cable that the conduction state is interrupted.

特開2007−335124号公報JP 2007-335124 A

したがって、本発明の課題は、金属メッキ層をシールド層とするシールド電線に改善された耐剥離性を付与することにある。 Accordingly, an object of the present invention is to provide improved peel resistance to a shielded electric wire having a metal plating layer as a shield layer.

本発明者は、上記提案におけるナイロンの接着性樹脂膜に代えて、双方向的な化学接着能を呈するようなトリアジンジチオール誘導体を接着層として採用することにより、上記の課題を一挙に解決するに至った。ここに、双方向的な化学接着性とは、接着層が絶縁樹脂層、弾性体層、および金属メッキ層のそれぞれに化学的に結合する性質を意味する。
The present inventor can solve the above-mentioned problems at once by adopting, as an adhesive layer, a triazine dithiol derivative exhibiting bidirectional chemical adhesive ability instead of the nylon adhesive resin film in the above proposal. It came. Here, the bidirectional chemical adhesiveness means a property that the adhesive layer is chemically bonded to each of the insulating resin layer , the elastic body layer, and the metal plating layer.

本発明によれば、導体を被覆する絶縁樹脂層の外周に弾性体層を設けさらに金属メッキ層をシールド層として配したシールド電線において、アルコキシ基とトリアジンジチオール基とを有する分子接着剤(以下、単に“分子接着剤”と略記する。)が、絶縁樹脂層と弾性体層との間で第1の化学結合をした接着層として、さらに弾性体層と無電解金属メッキ層との間で第2の化学結合した接着層として介在していることを特徴とするシールド電線が提供される。
According to the present invention, in a shielded electric wire in which an elastic body layer is provided on the outer periphery of an insulating resin layer covering a conductor, and a metal plating layer is disposed as a shield layer, a molecular adhesive having an alkoxy group and a triazine dithiol group (hereinafter referred to as “a”) , Simply abbreviated as “molecular adhesive”) as an adhesive layer having a first chemical bond between the insulating resin layer and the elastic layer, and further between the elastic layer and the electroless metal plating layer. A shielded electric wire is provided which is interposed as an adhesive layer having a second chemical bond.

本発明のシールド電線の接着層は、絶縁樹脂層と弾性体層の双方、および弾性体層と無電解金属メッキ層の双方をそれぞれ強固に化学接着した分子接着剤で構成されるので、繰り返し曲げ等に対する剥離の問題が解消される。
The adhesive layer of the shielded electric wire of the present invention is composed of a molecular adhesive in which both the insulating resin layer and the elastic body layer, and both the elastic body layer and the electroless metal plating layer are chemically bonded to each other. This eliminates the problem of peeling off.

以下、本発明を同軸ケーブルの場合について、添付図面を参照しながら説明する。 Hereinafter, the present invention will be described with reference to the accompanying drawings in the case of a coaxial cable.

図1は、本発明に係る同軸ケーブルの参考実施例を示す側面図である。該図において、(1)は内部導体、(2)は内部導体(1)の外周面に配された絶縁樹脂層(誘電体層)、(3)は絶縁樹脂層(2)の外周面に配された接着層、(4)は接着層(3)の外周面に形成された無電解金属メッキ層、そして、(5)は無電解金属メッキ層(4)の外周に配されたシース層である。
FIG. 1 is a side view showing a reference embodiment of a coaxial cable according to the present invention. In the figure, (1) is the inner conductor, (2) is the insulating resin layer (dielectric layer) disposed on the outer peripheral surface of the inner conductor (1), and (3) is the outer peripheral surface of the insulating resin layer (2). (4) is an electroless metal plating layer formed on the outer peripheral surface of the adhesive layer (3), and (5) is a sheath layer disposed on the outer periphery of the electroless metal plating layer (4). It is.

この同軸ケーブルに特徴的なことは、フッ素樹脂誘電体層(2)と無電解金属メッキ層(4)との間に、アルコキシ基とトリアジンジチオール基とを有する分子接着剤を適用し、両層に対して化学結合した接着層(3)を介在させたことにある。こうすることにより、絶縁樹脂層(2)と接着層(3)と無電解金属メッキ層(4)とが三位一体的に化学接着されるので、繰返し曲げに対する無電解金属メッキ層の剥離問題が解消される。 A characteristic of this coaxial cable is that a molecular adhesive having an alkoxy group and a triazinedithiol group is applied between the fluororesin dielectric layer (2) and the electroless metal plating layer (4), In other words, an adhesive layer (3) chemically bonded to is interposed. By doing so, the insulating resin layer (2), the adhesive layer (3), and the electroless metal plating layer (4) are three-united and chemically bonded, eliminating the problem of peeling of the electroless metal plating layer against repeated bending. Is done.

本発明で用いる分子接着剤は、好ましくは、下記の一般式(1): The molecular adhesive used in the present invention is preferably the following general formula (1):

(式中、RはH−またはCH−,C−,n−C−,CH=CHCH−,n−C−,C−,C11−、Rは−CHCH−,−CHCHCH−,−CHCHCHCHCHCH−,−CHCHCHCHCHCHCHCHCHCH−,−CHCHSCHCH−,−CHCHCHSCHCHCH−,−CHCHNHCHCHCH−,−(CHCHNCHCHCH−,−C−,−C−,−CHCH−,−CHCHCHCHCHCHCHCHCHCH−,−CHCHOCONHCHCHCH−,−CHCHNHCONHCHCHCH−,−(CHCHCHOCONHCHCHCH−、XはH−,CH−,C−,n−C−,i−C−,n−C−,i−C−,t−C−、YはCHO−,CO−,n−CO−,i−CO−,n−CO−,i−CO−,t−CO−、nは1〜3の整数、MはHまたはLi,Na,K,Ceである。)で表される。
(In the formula, R 1 represents H— or CH 3 —, C 2 H 5 —, nC 3 H 7 —, CH 2 ═CHCH 2 —, n—C 4 H 9 —, C 6 H 5 —, C 6 H 11 -, R 2 is -CH 2 CH 2 -, - CH 2 CH 2 CH 2 -, - CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 -, - CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 —, —CH 2 CH 2 SCH 2 CH 2 —, —CH 2 CH 2 CH 2 SCH 2 CH 2 CH 2 —, —CH 2 CH 2 NHCH 2 CH 2 CH 2 , - (CH 2 CH 2) 2 NCH 2 CH 2 CH 2 -, - C 6 H 4 -, - C 6 H 4 C 6 H 4 -, - CH 2 C 6 H 4 CH 2 -, - CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 -, - CH 2 CH 2 OCONHCH 2 CH 2 CH 2 -, - CH 2 CH 2 NHCONHCH 2 CH 2 CH 2 -, - (CH 2 CH 2) 2 CHOCONHCH 2 CH 2 CH 2 -, X is H-, CH 3 -, C 2 H 5 - , n-C 3 H 7 -, i-C 3 H 7 -, n-C 4 H 9 -, i-C 4 H 9 -, t-C 4 H 9 -, Y is CH 3 O-, C 2 H 5 O-, n-C 3 H 7 O-, i-C 3 H 7 O-, n-C 4 H 9 O-, i-C 4 H 9 O-, t -C 4 H 9 O-, n is an integer of 1 to 3, M is represented by H or Li, Na, K, it is Ce.).

上記の一般式において、n=1〜3の場合のそれぞれの化合物の例としては、以下のようなものが挙げられる。 In the above general formula, examples of each compound in the case of n = 1 to 3 include the following.

n=3の場合:
N−トリメトキシシリルエチルアミノ−1,3,5−トリアジン−2,4−ジチオール、N−トリエトキシシリルプロピルアミノ−1,3,5−トリアジン−2,4−ジチオール、N−トリプロピオキシシリルプロピルアミノ−1,3,5−トリアジン−2,4−ジチオール、さらには、N−トリブトオキシシリルプロピルアミノ−1,3,5−トリアジン−2,4−ジチオールなど。
For n = 3:
N-trimethoxysilylethylamino-1,3,5-triazine-2,4-dithiol, N-triethoxysilylpropylamino-1,3,5-triazine-2,4-dithiol, N-tripropoxyoxysilyl Propylamino-1,3,5-triazine-2,4-dithiol, and N-tributoxysilylpropylamino-1,3,5-triazine-2,4-dithiol.

n=2の場合:
N−ジメトキシメチルシリルエチルアミノ−1,3,5−トリアジン−2,4−ジチオール、N−ジエトキシエチルシリルプロピルアミノ−1,3,5−トリアジン−2,4−ジチオール、N−ジプロピオキシプロピルシリルプロピルアミノ−1,3,5−トリアジン−2,4−ジチオール、さらには、N−ジブトオキシブチルシリルプロピルアミノ−1,3,5−トリアジン−2,4−ジチオールなど。
For n = 2:
N-dimethoxymethylsilylethylamino-1,3,5-triazine-2,4-dithiol, N-diethoxyethylsilylpropylamino-1,3,5-triazine-2,4-dithiol, N-dipropioxy Propylsilylpropylamino-1,3,5-triazine-2,4-dithiol, and N-dibutoxybutylsilylpropylamino-1,3,5-triazine-2,4-dithiol.

n=1の場合:
N−メトキシジメチルシリルエチルアミノ−1,3,5−トリアジン−2,4−ジチオール、N−エトキシジエチルシリルプロピルアミノ−1,3,5−トリアジン−2,4−ジチオール、N−プロピオキシジプロピルシリルプロピルアミノ−1,3,5−トリアジン−2,4−ジチオール、さらには、N−ブトオキシジブチルシリルプロピルアミノ−1,3,5−トリアジン−2,4−ジチオールなど。
When n = 1:
N-methoxydimethylsilylethylamino-1,3,5-triazine-2,4-dithiol, N-ethoxydiethylsilylpropylamino-1,3,5-triazine-2,4-dithiol, N-propoxydipropyl Silylpropylamino-1,3,5-triazine-2,4-dithiol, and N-butoxydibutylsilylpropylamino-1,3,5-triazine-2,4-dithiol.

図2には、n=3(図2−a)、n=2(図2−b)、n=1(図2−c)の場合の接着モデルを示す。n=3(図2−a)の場合は、分子接着剤は、被覆電線の絶縁樹脂層とエーテル結合しながら三次元構造をとる。n=2(図2−b)の場合、分子接着剤は、被覆電線の絶縁樹脂層とエーテル結合しながら、ダイマー構造をとる。n=1(図2−c)の場合、分子接着剤は、被覆電線の絶縁樹脂層とエーテル結合している。そして、これらの図に共通することは、分子接着剤のSH基は無電解金属メッキ層のメッキ触媒とイオン結合していることである。 FIG. 2 shows an adhesion model in the case of n = 3 (FIG. 2-a), n = 2 (FIG. 2-b), and n = 1 (FIG. 2-c). In the case of n = 3 (FIG. 2-a), the molecular adhesive has a three-dimensional structure while being ether-bonded to the insulating resin layer of the covered electric wire. In the case of n = 2 (FIG. 2-b), the molecular adhesive takes a dimer structure while being ether-bonded to the insulating resin layer of the covered electric wire. In the case of n = 1 (FIG. 2-c), the molecular adhesive is ether-bonded to the insulating resin layer of the covered electric wire. What is common to these drawings is that the SH group of the molecular adhesive is ionically bonded to the plating catalyst of the electroless metal plating layer.

これらの化合物の一部は、日本接着学会誌 Vol.43 No.6に、金属、プラスチック、セラミック材料を接着する分子接着剤(ナノ薄膜オーダー)として記載されている。しかし、この文献には、それら化合物の多官能性と選択的反応性をシールド電線に応用して、絶縁樹脂層と無電解金属メッキ層とを化学接着させる概念は示されていない。 Some of these compounds are described in Journal of the Adhesion Society of Japan, Vol. 43 No. 6 describes a molecular adhesive (nano thin film order) for bonding metal, plastic, and ceramic materials. However, this document does not show the concept of chemically bonding the insulating resin layer and the electroless metal plating layer by applying the polyfunctionality and selective reactivity of these compounds to a shielded wire.

本発明のシールド電線の基本構造は、以下のA〜Eの工程を経て形成される。
A.導体の外周に絶縁樹脂層を形成する工程
B.該絶縁樹脂層の表面を前処理としてOH基を生起させる工程、
C.該生起したOH基と、分子接着剤のアルコキシ基とを反応させる工程、
D.該反応後の分子接着剤の表面に無電解金属メッキ触媒を担持させる工程、
および
E.該担持された触媒に無電解メッキ層を析出させる工程。
Basic structure of the shielded wire of the present invention is formed through the following A~E steps.
A. Forming an insulating resin layer on the outer periphery of the conductor; A step of generating OH groups as a pretreatment on the surface of the insulating resin layer;
C. Reacting the generated OH group with the alkoxy group of the molecular adhesive;
D. A step of supporting an electroless metal plating catalyst on the surface of the molecular adhesive after the reaction;
And E.E. Depositing an electroless plating layer on the supported catalyst;

工程Aでは、導体(1)となる金属細線の外周に絶縁樹脂層(2)を押出被覆して電線(a)を得る。このときの金属細線としては、直径がφ0.01〜0.2mm程度の単線あるいは撚り線の軟銅線や銅被鋼線などに錫や銀のメッキを施したものが使用される。また、絶縁樹脂層(2)を構成する樹脂としては、フッ素樹脂やシリコーンゴムが好適である。前者の例としては、テトラフルオロエチレン/ヘキサフルオロプロピレン(FEP)やテトラフルオロエチレン/パーフルオロアルコキシエチレン共重合体(PFA)などが挙げられる。また、後者の例としては、ミラブル型シリコーンゴムや液状シリコーンゴムが挙げられる。 In Step A, the insulating resin layer (2) is extrusion coated on the outer periphery of the fine metal wire to be the conductor (1) to obtain the electric wire (a). As the metal thin wire at this time, a single wire or a stranded annealed copper wire or a copper-coated steel wire having a diameter of about 0.01 to 0.2 mm is used. Moreover, as resin which comprises an insulating resin layer (2), a fluororesin and silicone rubber are suitable. Examples of the former include tetrafluoroethylene / hexafluoropropylene (FEP) and tetrafluoroethylene / perfluoroalkoxyethylene copolymer (PFA). Examples of the latter include millable silicone rubber and liquid silicone rubber.

工程Bでは、絶縁樹脂層(2)の外表面に周知のコロナ放電、テトラエッチ処理やSA処理を施して、表面OH基が生起した電線(b)を得る。さらに、工程Cでは、前記表面OH基と分子接着剤のアルコキシ基とを反応させる。このとき、まずアルコキシ基が加水分解され、ついで該表面OH基との脱水縮合反応でエーテル結合が生じる。このためには、電線(b)を分子接着剤の溶液に15℃〜90℃で1秒〜15分程度条件下で浸漬処理すればよい。脱水縮合処理を終えた電線(c)は浸漬液から取り出され、さらに40℃〜250℃にて1分〜20分程度の条件下で処理を行う。その後未反応の分子接着剤は洗浄・除去される。 In step B, the outer surface of the insulating resin layer (2) is subjected to known corona discharge, tetraetch treatment or SA treatment to obtain an electric wire (b) having surface OH groups. Further, in step C, the surface OH group and the alkoxy group of the molecular adhesive are reacted. At this time, the alkoxy group is first hydrolyzed, and then an ether bond is formed by a dehydration condensation reaction with the surface OH group. For this purpose, the wire (b) may be immersed in a solution of molecular adhesive at 15 ° C. to 90 ° C. for about 1 second to 15 minutes. The electric wire (c) that has been subjected to the dehydration condensation treatment is taken out of the immersion liquid and further subjected to treatment at 40 ° C. to 250 ° C. for about 1 minute to 20 minutes. Thereafter, the unreacted molecular adhesive is washed and removed.

ここで、分子接着剤の溶液は、水、メタノールやエタノールなどのアルコール類、アセトンやメチルエチルケトンなどのケトン類、酢酸エチルや安息香酸エチルなどのエステル類、ジブチルエーテルやアニソールなどのエーテル類、あるいはベンゼンやトルエンなどの芳香族炭化水素類の単独または混合溶剤を用いて得られる。このときの分子接着剤の濃度は0.01wt%〜1wt%の範囲で調整すればよい。 Here, the molecular adhesive solution is water, alcohols such as methanol and ethanol, ketones such as acetone and methyl ethyl ketone, esters such as ethyl acetate and ethyl benzoate, ethers such as dibutyl ether and anisole, or benzene. Or a mixture of aromatic hydrocarbons such as toluene or a single solvent. The concentration of the molecular adhesive at this time may be adjusted in the range of 0.01 wt% to 1 wt%.

工程Dでは、絶縁樹脂層(2)に化学結合した分子接着剤表面に無電解金属メッキ触媒を担持する。このためには、電線(c)をパラジウム塩、白金塩、銀塩、塩化スズ、あるいはアミン錯体などのメッキ触媒の水溶液に浸漬すればよい。これら触媒は単独であるいは併用して用いられる。触媒濃度は、触媒の種類によって多少変わるが、一般には、0.5wt%〜5wt%の範囲にあればよい。浸漬条件は15℃〜70℃、30秒〜60分程度でよい。この浸漬処理中に、上記のメッキ触媒は分子接着剤のSH基にイオン結合する。その後、該触媒が担持された電線(d)を浸漬液から取り出して洗浄する。 In step D, an electroless metal plating catalyst is supported on the surface of the molecular adhesive chemically bonded to the insulating resin layer (2). For this purpose, the electric wire (c) may be immersed in an aqueous solution of a plating catalyst such as a palladium salt, a platinum salt, a silver salt, tin chloride, or an amine complex. These catalysts are used alone or in combination. The catalyst concentration varies somewhat depending on the type of the catalyst, but generally it may be in the range of 0.5 wt% to 5 wt%. The immersion conditions may be 15 ° C to 70 ° C for about 30 seconds to 60 minutes. During the dipping process, the plating catalyst is ionically bonded to the SH group of the molecular adhesive. Thereafter, the electric wire (d) carrying the catalyst is taken out of the immersion liquid and washed.

最終工程となる工程Eでは、無電解金属メッキ層を配したシールド電線が完成する。すなわち、電線(d)を無電解メッキ浴に浸漬して、SH基にイオン結合した触媒上に金属を析出させることにより、シールド層としての無電解金属メッキ層(4)が形成される。この時点で、分子接着剤は絶縁樹脂層(2)と無電解金属メッキ層(4)とを化学結合した接着層(3)に転化されている。該無電解メッキ浴は斯界で常用されている浴であればよい。すなわち、金属塩および還元剤を主成分とし、必要に応じて、無電解メッキ浴の寿命を延ばしあるいは還元効率を高めるような助剤が添加された浴である。該金属塩としては、金、銀、銅、ニッケル、コバルトなどの塩が用いられる。また、該還元剤としてはリン酸2水素ナトリウム、ヒドロキシルアミンあるいはN,Nエチルグリシンなどが、該助剤としてはクエン酸塩、酒石酸塩あるいはEDTAなどが用いられる。これら金属塩、還元剤および助剤はそれぞれに、0.01wt%〜2wt%の濃度範囲で供される。 In step E, which is the final step, a shielded electric wire with an electroless metal plating layer is completed. That is, the electroless metal plating layer (4) as a shield layer is formed by immersing the electric wire (d) in an electroless plating bath and depositing a metal on the catalyst ionically bonded to the SH group. At this point, the molecular adhesive has been converted into an adhesive layer (3) in which the insulating resin layer (2) and the electroless metal plating layer (4) are chemically bonded. The electroless plating bath may be any bath commonly used in this field. In other words, the bath contains a metal salt and a reducing agent as main components and, as necessary, an auxiliary agent that extends the life of the electroless plating bath or increases the reduction efficiency. As the metal salt, a salt of gold, silver, copper, nickel, cobalt or the like is used. As the reducing agent, sodium dihydrogen phosphate, hydroxylamine, N, N ethylglycine or the like is used, and as the auxiliary agent, citrate, tartrate or EDTA is used. Each of these metal salts, reducing agents and auxiliaries is provided in a concentration range of 0.01 wt% to 2 wt%.

無電解金属メッキ層(4)がシールド機能を奏するには、メッキ膜厚を0.01μm〜30μmの範囲で調整するのが有利である。無電解金属メッキ層(4)としては、特に膜厚が0.05μm〜5μmの銅メッキ層が好ましい。この際、無電解金属メッキ浴に、微量のNiイオンを共存させて共析現象を利用すると、応力追従性の向上したメッキ膜が得られる。 In order for the electroless metal plating layer (4) to have a shielding function, it is advantageous to adjust the plating film thickness within a range of 0.01 μm to 30 μm. As the electroless metal plating layer (4), a copper plating layer having a film thickness of 0.05 μm to 5 μm is particularly preferable. At this time, if a co-deposition phenomenon is utilized in the presence of a small amount of Ni ions in the electroless metal plating bath, a plating film with improved stress followability can be obtained.

この無電解金属メッキ層(4)の外周には、必要に応じて、シース層ないし保護層(5)が被覆される。このシース層(5)は、熱可塑性樹脂、好ましくはテトラフルオロエチレン/パーフルオロアルコキシエチレン共重合体(PFA)のようなフッ素樹脂を溶融押出し成型して被覆することが好ましい。 The outer periphery of the electroless metal plating layer (4) is covered with a sheath layer or a protective layer (5) as necessary. The sheath layer (5) is preferably coated by melt extrusion molding of a thermoplastic resin, preferably a fluororesin such as tetrafluoroethylene / perfluoroalkoxyethylene copolymer (PFA).

さらに、本発明の他の態様においては、上記のシース層(5)を適用する前に、無電解金属メッキ層(4)の外周面に電解金属メッキ層を上乗せしてもよい。この電解金属メッキ層を形成する際には、硫酸銅電気メッキやシアン化銅電気メッキ等の通常のメッキ処方を採用すればよい。このときの電解金属メッキ層の膜厚は、シールド特性と同軸ケーブルの可撓性を考慮して決められる。一般には、内層の無電解金属メッキ層は0.01μm〜5μm、外層の電解金属メッキ層は0.01μm〜30μmの範囲で調整すればよい。この場合、硫酸銅電気メッキ処方では、延展性と耐屈曲特性に優れたメッキ膜が得られる。 Furthermore, in another aspect of the present invention, an electrolytic metal plating layer may be placed on the outer peripheral surface of the electroless metal plating layer (4) before the sheath layer (5) is applied. When this electrolytic metal plating layer is formed, a normal plating prescription such as copper sulfate electroplating or copper cyanide electroplating may be employed. The film thickness of the electrolytic metal plating layer at this time is determined in consideration of the shielding characteristics and the flexibility of the coaxial cable. In general, the inner electroless metal plating layer may be adjusted in a range of 0.01 to 5 μm, and the outer electroless metal plating layer may be adjusted in a range of 0.01 to 30 μm. In this case, with the copper sulfate electroplating formulation, a plated film having excellent spreadability and bending resistance can be obtained.

本発明においては、シールド電線の耐屈曲性のさらなる向上を意図して、被覆電線の絶縁樹脂層(2)と無電解金属メッキ層(4)との間に弾性体層を設け。このような弾性層としては、そのガラス転移点が室温以下の三次元弾性体、例えば、シリコーンゴムやフッ素ゴムが用いられる。
In the present invention, intended to further improve flexibility of the shielded wire, an elastic layer Ru provided between the insulating resin layer of the coated electric wire and (2) an electroless metal plating layer (4). As such an elastic layer, a three-dimensional elastic body having a glass transition point of room temperature or less, for example, silicone rubber or fluororubber is used.

図3には、この態様における接着モデルが示されている。ここでは、被覆電線の絶縁樹脂層(2)と接着層(3)の界面は、図2の場合と同様に、エーテル結合で化学接着され、接着層(3)と弾性層の内側との界面は接着層(3)のチオール基と弾性体層の架橋中に生成した炭素ラジカルと反応して、接着層(3)と弾性体層との間に化学結合が形成される。弾性層の外周には追加的接着層(3)が配される。まず、弾性体層の外表面に周知のコロナ放電、テトラエッチ処理やSA処理を施して、表面OH基を生起させる。さらに、前記表面OH基と分子接着剤のアルコキシ基とを反応させる。このとき、まずアルコキシ基が加水分解され、ついで該表面OH基との脱水縮合反応でエーテル結合が生じる。この追加的接着層(3)と無電解金属メッキ層(4)の界面は、図2の場合と同様に、イオン結合で化学接着される。 FIG. 3 shows an adhesion model in this embodiment. Here, the interface between the insulating resin layer (2) and the adhesive layer (3) of the covered electric wire is chemically bonded by an ether bond as in the case of FIG. 2, and the interface between the adhesive layer (3) and the inside of the elastic layer. Reacts with the thiol group of the adhesive layer (3) and the carbon radicals generated during the crosslinking of the elastic layer, and a chemical bond is formed between the adhesive layer (3) and the elastic layer. An additional adhesive layer (3) is disposed on the outer periphery of the elastic layer. First, the outer surface of the elastic layer is subjected to well-known corona discharge, tetraetch treatment or SA treatment to generate surface OH groups. Further, the surface OH group is reacted with the alkoxy group of the molecular adhesive. At this time, the alkoxy group is first hydrolyzed, and then an ether bond is formed by a dehydration condensation reaction with the surface OH group. The interface between the additional adhesion layer (3) and the electroless metal plating layer (4) is chemically bonded by ionic bonding as in the case of FIG.

参考実施例1]
まず、導体(1)と絶縁樹脂層(2)とからなる電線(a)を用意した。ことき、素線径
が0.025mmの錫メッキ銅合金線を7本撚って得た、撚り外径が0.075mmの金
属細線を内部導体(1)とし、この外周面にPFAを被覆厚さ62.5μmにて押出し被
覆して、絶縁樹脂層(2)となるフッ素樹脂誘電体層を得た(工程A)。
[ Reference Example 1]
First, an electric wire (a) composed of a conductor (1) and an insulating resin layer (2) was prepared. In this case, a thin metal wire having a twisted outer diameter of 0.075 mm obtained by twisting seven tin-plated copper alloy wires having a strand diameter of 0.025 mm is used as the inner conductor (1), and this outer peripheral surface is covered with PFA. Extrusion coating was performed at a thickness of 62.5 μm to obtain a fluororesin dielectric layer to be an insulating resin layer (2) (step A).

ついで、上記の電線(a)の3本にそれぞれSA処理を施して、表面OH基が生起した電線(b)を得た(工程B)。 Subsequently, SA treatment was applied to each of the three electric wires (a) to obtain an electric wire (b) in which surface OH groups were generated (step B).

さらに、電線(b)を、分子接着剤の0.1g/Lのエタノール溶液を作り、各溶液に電線(b)を浸漬した。浸漬条件は25℃で10分とした。その後、200℃で10分間熱処理を加え、熱処理後の電線(c)から未反応の分子接着剤を洗浄・除去した。このとき用いた分子接着剤の構造は、一般式(1)においてR=−H、R=−CHCHCH−、Y=CO−、M=−H、およびn=3である。 Furthermore, 0.1 g / L ethanol solution of molecular adhesive was made for the electric wire (b), and the electric wire (b) was immersed in each solution. The immersion conditions were 10 minutes at 25 ° C. Thereafter, heat treatment was applied at 200 ° C. for 10 minutes, and unreacted molecular adhesive was washed and removed from the heat-treated electric wire (c). The structure of the molecular adhesive used at this time is as follows: R 1 = —H, R 2 = —CH 2 CH 2 CH 2 —, Y = C 2 H 5 O—, M = —H, and n = 3.

つぎに、電線(c)に無電解金属メッキ触媒を担持した(工程D)。触媒処理液としては、塩化パラジウム(PdCl)を0.5wt%〜5wt%の濃度で含有する触媒処理液に70℃で15分浸漬して触媒が担持された電線(d)を得た。浸漬液から取り出した電線(d)は1wt%硫酸水溶液で洗浄した。 Next, an electroless metal plating catalyst was supported on the electric wire (c) (step D). As the catalyst treatment liquid, an electric wire (d) carrying the catalyst was obtained by immersing in a catalyst treatment liquid containing palladium chloride (PdCl 2 ) at a concentration of 0.5 wt% to 5 wt% at 70 ° C. for 15 minutes. The electric wire (d) taken out from the immersion liquid was washed with a 1 wt% sulfuric acid aqueous solution.

さらに、電線(d)を無電解メッキ槽(槽温度32℃)で5分間浸漬してから乾燥・固化して、膜厚が0.1μmの無電解金属メッキ層(4)を形成し、同軸ケーブル(e)を得た(工程E)。この時点で、分子接着剤はフッ素樹脂誘電体層である絶縁樹脂層(2)と無電解金属メッキ層(4)とを化学接着した接着層(3)に転化されている。無電解メッキ液としては、還元剤を添加した硫酸銅水溶液に、予めアルカリ性にした酒石酸カリウムナトリウム水溶液を加えて調製した。このときの銅イオン濃度は2g/L、還元剤量2g/L、水酸化ナトリウム濃度2g/Lとし、水溶液のpHを12.4とした。メッキ条件は液温32℃、浸漬時間5分とした。 Further, the wire (d) is immersed in an electroless plating bath (vessel temperature 32 ° C.) for 5 minutes, and then dried and solidified to form an electroless metal plating layer (4) having a film thickness of 0.1 μm. A cable (e) was obtained (Step E). At this point, the molecular adhesive has been converted into an adhesive layer (3) in which the insulating resin layer (2), which is a fluororesin dielectric layer, and the electroless metal plating layer (4) are chemically bonded. The electroless plating solution was prepared by adding a potassium sodium tartrate aqueous solution previously made alkaline to a copper sulfate aqueous solution to which a reducing agent was added. At this time, the copper ion concentration was 2 g / L, the reducing agent amount was 2 g / L, the sodium hydroxide concentration was 2 g / L, and the pH of the aqueous solution was 12.4. The plating conditions were a liquid temperature of 32 ° C. and an immersion time of 5 minutes.

参考実施例2]
参考実施例1において作成した無電解金属メッキ層(4)の上に、さらに、厚さが3μmの金属メッキ層を上乗せして、同軸ケーブル(f)を得た。このときの電解液は、4wt%の硫酸銅液で、電流密度は1.5A/dm、通電時間は20分とした。
[ Reference Example 2]
On the electroless metal plating layer (4) prepared in Reference Example 1, a metal plating layer having a thickness of 3 μm was further added to obtain a coaxial cable (f). The electrolytic solution at this time was a 4 wt% copper sulfate solution, the current density was 1.5 A / dm 2 , and the energization time was 20 minutes.

[比較例1]
特許文献1の実施例を再現した。すなわち、参考実施例で用いた電線(a)のフッ素樹脂誘電体層(2)の外周面に、媒体的接着能を有する接着性樹脂として「AQナイロン」(東レ株式会社製)をスプレーして、膜厚が0.1μmの接着性樹脂膜を形成した。このときの液温は20℃とし、コーティング後の乾燥条件は乾燥温度50℃、乾燥時間5分とした。ついで、上記接着性樹脂膜を設けた電線を無電解メッキ槽(槽温度32℃)で5分間ディッピング処理してから乾燥・固化して、膜厚が0.1μmの無電解メッキ層(4)を形成した。このとき、無電解メッキ液としては、還元剤を添加した硫酸銅水溶液に、予めアルカリ性にした酒石酸カリウムナトリウム水溶液を加えて調製した。このときの銅イオン濃度は2g/L、還元剤量2g/L、水酸化ナトリウム濃度2g/Lとし、水溶液のpHを12.4とした。メッキ条件は液温32℃、浸漬時間5分とした。さらに、上記無電解メッキ層を設けた電線に厚さ3μmの電解金属メッキ層を付与した。このときの電解液は、4wt%の硫酸銅液で、電流密度は1.5A/dm、通電時間は20分とした。
[Comparative Example 1]
The Example of patent document 1 was reproduced. That is, “AQ nylon” (manufactured by Toray Industries, Inc.) is sprayed on the outer peripheral surface of the fluororesin dielectric layer (2) of the electric wire (a) used in the reference example as an adhesive resin having medium adhesive ability. An adhesive resin film having a film thickness of 0.1 μm was formed. The liquid temperature at this time was 20 ° C., and the drying conditions after coating were a drying temperature of 50 ° C. and a drying time of 5 minutes. Next, the electric wire provided with the adhesive resin film was dipped in an electroless plating tank (tank temperature 32 ° C.) for 5 minutes, dried and solidified, and an electroless plating layer (4) having a thickness of 0.1 μm. Formed. At this time, an electroless plating solution was prepared by adding a potassium sodium tartrate aqueous solution previously made alkaline to a copper sulfate aqueous solution to which a reducing agent was added. At this time, the copper ion concentration was 2 g / L, the reducing agent amount was 2 g / L, the sodium hydroxide concentration was 2 g / L, and the pH of the aqueous solution was 12.4. The plating conditions were a liquid temperature of 32 ° C. and an immersion time of 5 minutes. Further, an electrolytic metal plating layer having a thickness of 3 μm was applied to the electric wire provided with the electroless plating layer. The electrolytic solution at this time was a 4 wt% copper sulfate solution, the current density was 1.5 A / dm 2 , and the energization time was 20 minutes.

このようにして得られた各同軸ケーブルを自己径および直径6mmで曲げて、メッキの密着性を確認した。参考実施例1の曲げ加工後の表面写真を図4−a(自己径)、図4−b(直径6mm)に、比較例1の曲げ加工後の表面写真を図5−a(自己径)、図5−b(直径6mm)に示す。
Each coaxial cable thus obtained was bent at a self-diameter and a diameter of 6 mm to confirm the adhesion of the plating. 4-a (self diameter) and 4-b (diameter 6 mm) of the surface photograph after bending of Reference Example 1 and FIG. 5-a (self-diameter) of the surface photograph after bending of Comparative Example 1 are shown. FIG. 5-b (diameter 6 mm).

図4から分かるように、参考実施例1ではメッキ層の剥離は認められないのに対し、図5から分かるように、比較例1はメッキ層が剥離してしまっている。
As can be seen from FIG. 4, in the reference example 1, peeling of the plating layer is not recognized, but, as can be seen from FIG. 5, in the comparative example 1, the plating layer is peeled off.

つぎに、メッキの密着度を測定するため、以下のシートサンプルを作成した。 Next, in order to measure the adhesion of plating, the following sheet samples were prepared.

まず、縦100mm、横50mm、厚み10mmのPFA樹脂シートを用意し、各シート上に、参考実施例1の分子接着剤および比較例1の接着剤並びに比較例3のナイロン接着剤のそれぞれを適用し、その上に厚さ0.1μmの無電解メッキ層、更にその上に厚さ40μmの電解メッキ層を形成して、2種類の4層シートを作成した。このときの処方は、それぞれに、参考実施例2および比較例1にしたがった。
First, a PFA resin sheet having a length of 100 mm, a width of 50 mm, and a thickness of 10 mm was prepared, and each of the molecular adhesive of Reference Example 1, the adhesive of Comparative Example 1, and the nylon adhesive of Comparative Example 3 was applied on each sheet. Then, an electroless plating layer having a thickness of 0.1 μm was formed thereon, and an electrolytic plating layer having a thickness of 40 μm was further formed thereon, thereby preparing two types of four-layer sheets. The formulations at this time were in accordance with Reference Example 2 and Comparative Example 1, respectively.

このようにして得られた各シートを、JISZ0237(180度引き剥がし粘着測定)に基づいて引き剥がし試験を行い、密着度を確認した。その結果を表1に示す。 Each sheet thus obtained was subjected to a peeling test based on JISZ0237 (180 degree peeling adhesion measurement) to confirm the degree of adhesion. The results are shown in Table 1.

表1から分かるように、参考例1では、参考例2に比べ、その密着度が10倍に向上している結果となった。これは、アルコキシ基とトリアジンジチオール基とを有する分子接着剤が、該無電解金属メッキ層と該絶縁樹脂層との間で両者に化学結合した接着層として介在するためである。 As can be seen from Table 1, in Reference Example 1, compared to Reference Example 2, the adhesion was improved 10 times. This is because the molecular adhesive having an alkoxy group and a triazine dithiol group is interposed as an adhesive layer chemically bonded to the electroless metal plating layer and the insulating resin layer.

参考実施例3]
表2に示す分子接着剤を用い、参考実施例1と同様の操作により、同軸ケーブルを得た。各同軸ケーブルについて、メッキの表面状態および密着度を確認した所、いずれも、参考実施例1に比べて遜色がなかった。
[ Reference Example 3]
A coaxial cable was obtained in the same manner as in Reference Example 1 using the molecular adhesive shown in Table 2. For each coaxial cable, the surface condition and adhesion of the plating were confirmed, and none of them was inferior to that of Reference Example 1.

本発明のシールド電線は、容易に細径化されながらも優れた高周波特性およびシールド特性を呈するので、情報通信機器、通信端末機器、計測機器のみならず、小型電子機器用にも有用である。 Since the shielded electric wire of the present invention exhibits excellent high frequency characteristics and shield characteristics while being easily reduced in diameter, it is useful not only for information communication equipment, communication terminal equipment, and measuring equipment, but also for small electronic equipment.

本発明に係るシールド電線の参考実施例を示す側面図。The side view which shows the reference Example of the shielded electric wire which concerns on this invention. 図1のシールド電線における接着モデル図。The adhesion model figure in the shield electric wire of FIG. 本発明における接着モデル図。Adhesive model diagram definitive in this onset Akira. 本発明の参考実施例に係るシールド電線の曲げ加工後のSEM写真。The SEM photograph after the bending process of the shielded electric wire which concerns on the reference Example of this invention. 従来のシールド電線の曲げ加工後のSEM写真。SEM photograph after bending of conventional shielded wire.

符号の説明Explanation of symbols

1 導体
2 絶縁樹脂層
3 絶縁樹脂層および無電解金属メッキ層の双方に化学結合した接着層
4 無電解金属メッキ層
5 シース層

1 Conductor 2 Insulating resin layer 3 Adhesive layer chemically bonded to both insulating resin layer and electroless metal plating layer 4 Electroless metal plating layer 5 Sheath layer

Claims (9)

導体を被覆する絶縁樹脂層の外周に弾性体層を設けさらに無電解金属メッキ層をシールド層として配したシールド電線において、アルコキシ基とトリアジンジチオール基とを有する分子接着剤が、該絶縁樹脂層と該弾性体層との間で第1の化学結合をした接着層として、さらに該弾性体層と該無電解金属メッキ層との間で第2の化学結合した接着層として、それぞれ介在していることを特徴とするシールド電線。 An elastic layer provided on the outer periphery of the insulating resin layer to cover the conductive, yet shielded cable arranged an electroless metal plating layer as a shielding layer, the molecular adhesive having a alkoxy group and a triazine thiol group, insulating resin layer and as an adhesive layer in which the first chemical bond between the elastic body layer, further as an adhesive layer in which the second chemical bond between the elastic body layer and the electroless metal plating layer, interposed respectively Shielded electric wire characterized by 該分子接着剤が一般式(1):
(式中、RはH−またはCH−,C−,n−C−,CH=CHCH−,n−C−,C−,C11−、Rは−CHCH−,−CHCHCH−,−CHCHCHCHCHCH−,−CHCHCHCHCHCHCHCHCHCH−,−CHCHSCHCH−,−CHCHCHSCHCHCH−,−CHCHNHCHCHCH−,−(CHCHNCHCHCH−,−C−,−C−,−CHCH−,−CHCHCHCHCHCHCHCHCHCH−,−CHCHOCONHCHCHCH−,−CHCHNHCONHCHCHCH−,−(CHCHCHOCONHCHCHCH−、XはH−,CH−,C−,n−C−,i−C−,n−C−,i−C−,t−C−、YはCHO−,CO−,n−CO−,i−CO−,n−CO−,i−CO−,t−CO−、nは1〜3の整数、MはHまたはLi,Na,K,Ceである。)で表される請求項1に記載のシールド電線。
The molecular adhesive is represented by the general formula (1):
(In the formula, R 1 represents H— or CH 3 —, C 2 H 5 —, nC 3 H 7 —, CH 2 ═CHCH 2 —, n—C 4 H 9 —, C 6 H 5 —, C 6 H 11 -, R 2 is -CH 2 CH 2 -, - CH 2 CH 2 CH 2 -, - CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 -, - CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 —, —CH 2 CH 2 SCH 2 CH 2 —, —CH 2 CH 2 CH 2 SCH 2 CH 2 CH 2 —, —CH 2 CH 2 NHCH 2 CH 2 CH 2 , - (CH 2 CH 2) 2 NCH 2 CH 2 CH 2 -, - C 6 H 4 -, - C 6 H 4 C 6 H 4 -, - CH 2 C 6 H 4 CH 2 -, - CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 -, - CH 2 CH 2 OCONHCH 2 CH 2 CH 2 -, - CH 2 CH 2 NHCONHCH 2 CH 2 CH 2 -, - (CH 2 CH 2) 2 CHOCONHCH 2 CH 2 CH 2 -, X is H-, CH 3 -, C 2 H 5 - , n-C 3 H 7 -, i-C 3 H 7 -, n-C 4 H 9 -, i-C 4 H 9 -, t-C 4 H 9 -, Y is CH 3 O-, C 2 H 5 O-, n-C 3 H 7 O-, i-C 3 H 7 O-, n-C 4 H 9 O-, i-C 4 H 9 O-, t -C 4 H 9 O-, shielded wire according to claim 1 n is an integer of 1 to 3, M is the H or Li, Na, K, represented by a Ce.).
第1の化学結合が、該弾性体層の炭素ラジカルと一般式(1)のSH基との反応による結合、および該絶縁樹脂層の表面OH基と一般式(1)のアルコキシ基間のエーテル結合である請求項2に記載のシールド電線。 The first is a chemical bond, bond by reaction with the SH group of a carbon radical and Formula (1) of the elastic layer, and the surface OH groups of the general formula of the insulating resin layer between the alkoxy groups of (1) The shielded electric wire according to claim 2, which is an ether bond. 該第2の化学結合が、該無電解金属メッキのメッキ触媒と一般式(1)のSH基とのイオン結合、および該弾性体層の表面OH基と一般式(1)のアルコキシ基間のエーテル結合である請求項2または3に記載のシールド電線。The second chemical bond is an ionic bond between the electroless metal plating catalyst and the SH group of the general formula (1), and between the surface OH group of the elastic layer and the alkoxy group of the general formula (1). The shielded electric wire according to claim 2 or 3, which is an ether bond. 該絶縁樹脂層がフッ素樹脂層である請求項1〜4のいずれかに記載のシールド電線。The shielded electric wire according to any one of claims 1 to 4, wherein the insulating resin layer is a fluororesin layer. 該絶縁樹脂層がシリコーンゴム層である請求項1〜4のいずれかに記載のシールド電線。The shielded electric wire according to any one of claims 1 to 4, wherein the insulating resin layer is a silicone rubber layer. 該無電解金属メッキ層に電解金属メッキ層が上乗せされている請求項1〜6のいずれかに記載のシールド電線。The shielded electric wire according to any one of claims 1 to 6, wherein an electrolytic metal plating layer is placed on the electroless metal plating layer. 該弾性体層が、そのガラス転移点が室温以下の三次元弾性体からなる請求項1〜7のいずれかに記載のシールド電線。 The shielded electric wire according to any one of claims 1 to 7, wherein the elastic layer is made of a three-dimensional elastic body having a glass transition point of room temperature or lower. 該三次元弾性体がシリコーンゴムである請求項8に記載のシールド電線。
The shielded electric wire according to claim 8, wherein the three-dimensional elastic body is silicone rubber.
JP2008003664A 2008-01-10 2008-01-10 Shielded wire Active JP5280055B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008003664A JP5280055B2 (en) 2008-01-10 2008-01-10 Shielded wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008003664A JP5280055B2 (en) 2008-01-10 2008-01-10 Shielded wire

Publications (2)

Publication Number Publication Date
JP2009170113A JP2009170113A (en) 2009-07-30
JP5280055B2 true JP5280055B2 (en) 2013-09-04

Family

ID=40971089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008003664A Active JP5280055B2 (en) 2008-01-10 2008-01-10 Shielded wire

Country Status (1)

Country Link
JP (1) JP5280055B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110892488A (en) * 2017-05-30 2020-03-17 索尔维特殊聚合物意大利有限公司 Shielded cable

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4618451B2 (en) * 2008-02-19 2011-01-26 信越化学工業株式会社 Organopolysiloxane having triazine thiol group and alkenyl group, method for producing the same, and primer composition for adhesion containing the organopolysiloxane
WO2018219790A1 (en) * 2017-05-30 2018-12-06 Solvay Specialty Polymers Italy S.P.A. Shielded cables
JP7259618B2 (en) * 2019-07-26 2023-04-18 株式会社オートネットワーク技術研究所 Wiring material
JP2022048068A (en) 2020-09-13 2022-03-25 豊光社テクノロジーズ株式会社 Surface treatment method, surface treatment agent, production method of conjugate, production method of substance with conductor coating, production method of substance with coating film, and compound

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04355008A (en) * 1991-05-31 1992-12-09 Furukawa Electric Co Ltd:The Shielded cable and manufacture thereof
JPH05325660A (en) * 1992-05-19 1993-12-10 Furukawa Electric Co Ltd:The Shield cable and manufacture thereof
JPH11167825A (en) * 1997-12-02 1999-06-22 Tsuchiya Rubber Kk Electric wire/cable and cable cover
JP5076139B2 (en) * 2005-09-28 2012-11-21 国立大学法人岩手大学 Molecular adhesive for bonding resin and rubber, bonding method between resin and rubber, and bonded composite product of resin and rubber
JP4202368B2 (en) * 2006-03-29 2008-12-24 吉野川電線株式会社 Ultra-fine coaxial cable and manufacturing method thereof
JP4719886B2 (en) * 2006-06-08 2011-07-06 国立大学法人岩手大学 Method for manufacturing electromagnetic shielding substrate
JP2007335124A (en) * 2006-06-12 2007-12-27 Nissei Electric Co Ltd Coaxial cable and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110892488A (en) * 2017-05-30 2020-03-17 索尔维特殊聚合物意大利有限公司 Shielded cable

Also Published As

Publication number Publication date
JP2009170113A (en) 2009-07-30

Similar Documents

Publication Publication Date Title
CA1338186C (en) Circuit board material and electroplating bath for the production thereof
JP5280055B2 (en) Shielded wire
EP2823084B1 (en) Method for promoting adhesion between dielectric substrates and metal layers
US20050121330A1 (en) Chromium-free antitarnish adhesion promoting treatment composition
JP4748550B2 (en) Composite material for electric and electronic parts and electric and electronic parts using the same
JP2005109306A (en) Electronic component package and its manufacturing method
JP5255015B2 (en) Electroless copper plating method for polymer fiber
US6953888B2 (en) Thin coaxial cable and method for its manufacture
JPH08250865A (en) Method for improving further reliability of electronic housing by preventing formation of metallic whisker on sheetutilized for manufacture of the electronic housing
JP4101705B2 (en) Metal layer forming method
JP4942539B2 (en) coaxial cable
JP3615033B2 (en) Manufacturing method of two-layer flexible substrate
JP2008084810A (en) Coaxial cable
JPH07272553A (en) Semi-rigid coaxial cable and its manufacture
JPS60258492A (en) Manufacture of tin plated wire
JP4137255B2 (en) coaxial cable
JP2006210203A (en) Coaxial cable and its manufacturing method
JP2007335124A (en) Coaxial cable and its manufacturing method
JP2987556B2 (en) Method for forming metal conductive layer on fluororesin body surface
JPS61166986A (en) Metal plated amorphous alloy
JPS59176907A (en) Dielectric resonator ceramics for microwave
JP3534744B1 (en) Conductor for electric cable, electric cable, and method of manufacturing the same
JP2004107734A (en) Electronic component and its plating process
JP2019090089A (en) Plating material
JP2004149824A (en) Gold plating liquid, plating method using the gold plating liquid, method of producing electronic component, and electronic component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130522

R150 Certificate of patent or registration of utility model

Ref document number: 5280055

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250