JP4942539B2 - coaxial cable - Google Patents

coaxial cable Download PDF

Info

Publication number
JP4942539B2
JP4942539B2 JP2007108798A JP2007108798A JP4942539B2 JP 4942539 B2 JP4942539 B2 JP 4942539B2 JP 2007108798 A JP2007108798 A JP 2007108798A JP 2007108798 A JP2007108798 A JP 2007108798A JP 4942539 B2 JP4942539 B2 JP 4942539B2
Authority
JP
Japan
Prior art keywords
layer
metal plating
plating layer
coaxial cable
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007108798A
Other languages
Japanese (ja)
Other versions
JP2008060062A (en
Inventor
隆宏 小松
岳志 芹澤
宏保 寺尾
裕一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissei Electric Co Ltd
Original Assignee
Nissei Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissei Electric Co Ltd filed Critical Nissei Electric Co Ltd
Priority to JP2007108798A priority Critical patent/JP4942539B2/en
Publication of JP2008060062A publication Critical patent/JP2008060062A/en
Application granted granted Critical
Publication of JP4942539B2 publication Critical patent/JP4942539B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、情報通信機器、通信端末機器、さらには計測機器等の高周波部品の信号伝達線路、および内視鏡、超音波診断装置等の医療用器具の機器配線路として用いられる同軸ケーブルに関する。就中、本発明は、端末加工性とシールド特性の両特性が同時に改善された同軸ケーブルに関する。   The present invention relates to information transmission equipment, communication terminal equipment, signal transmission lines for high-frequency components such as measuring equipment, and coaxial cables used as equipment wiring paths for medical instruments such as endoscopes and ultrasonic diagnostic apparatuses. In particular, the present invention relates to a coaxial cable in which both terminal processability and shield characteristics are improved at the same time.

近年、情報通信機器や通信端末機器はますます小型化され、それに伴い使用される同軸ケーブルにも細径化が要求されている。そこで、該ケーブルのシールド層として常用されてきた金属編組層や横巻層に代えて、より薄膜化できる金属メッキ層を採用することが提案されている(例えば、特許文献1参照。)。さらに、この提案では、金属メッキ層を保護するという一元的目的で、金属メッキ層上に非導電性の被覆層が設けられている。 In recent years, information communication equipment and communication terminal equipment have been increasingly miniaturized, and the coaxial cables used therewith are also required to have a smaller diameter. Therefore, it has been proposed to employ a metal plating layer that can be made thinner, instead of the metal braiding layer or the horizontal winding layer that has been commonly used as the shield layer of the cable (see, for example, Patent Document 1). Further, in this proposal, a non-conductive coating layer is provided on the metal plating layer for the central purpose of protecting the metal plating layer.

ところで、この種の同軸ケーブルを端末加工に供するために、該被覆層を除去して金属メッキ層を露出させる際、その剥離作業は極めて頻雑になる。と言うのも、該薄膜金属メッキ層は脆弱で損傷し易いので、該被覆層の剥離作業には細心の注意を強いられるからである。 By the way, in order to use this type of coaxial cable for terminal processing, when the coating layer is removed and the metal plating layer is exposed, the peeling operation becomes extremely complicated. This is because the thin-film metal plating layer is fragile and easily damaged, so that careful attention must be paid to the stripping operation of the coating layer.

また、この剥離作業においては、先ずレーザ光により被覆層の円周方向に切れ目が入れられることが多い。この場合、レーザ光のビーム強度や照射時間の調整は極めて微妙で、ときとしてレーザ光は該被覆層内に留まることなく、金属メッキ層表面に到達し、さらには、誘電体層にまで達してしまうことがある。この結果、金属メッキ層表面の損傷および誘電体層の物性劣化が生じ、同軸ケーブルのシールド特性が不可避的に低下する。 In this peeling operation, first, a cut is often made in the circumferential direction of the coating layer by laser light. In this case, the adjustment of the laser beam intensity and irradiation time is extremely delicate, and sometimes the laser beam does not stay in the coating layer but reaches the surface of the metal plating layer and further reaches the dielectric layer. May end up. As a result, the surface of the metal plating layer is damaged and the physical properties of the dielectric layer are deteriorated, so that the shield characteristics of the coaxial cable are inevitably lowered.

特開2002−203437号公報JP 2002-203437 A

したがって、本発明の課題は、細径化を図ると同時に、優れた端末加工性とシールド特性とを兼備する同軸ケーブルを提供することにある。
さらに、本発明の他の課題は、金属メッキ固有の脆弱性の問題を克服して、耐屈曲性が付与された同軸ケーブルを提供することにある。
Accordingly, an object of the present invention is to provide a coaxial cable that has both excellent terminal processability and shielding characteristics while achieving a reduction in diameter .
Furthermore, another object of the present invention is to provide a coaxial cable which is provided with bending resistance by overcoming the problem of vulnerability inherent in metal plating.

本発明者は、従来の金属メッキ層上に、少なくとも内表面が導電樹脂ないしゴムまたは導電性塗料からなる導電性を有する被覆層、あるいは金属薄膜が付与された樹脂テープの横巻き層や縦添え層を非密着状態で配することにより、該被覆層に端末加工性とシールド特性の向上に繋がる多元的な機能を付与することに成功した。ここで、上記の非密着状態とは、金属メッキ層表面と、これに接する被覆層内表面とが接着されていない状態、すなわち接着界面が存在しない状態を言う。このような状態においては、該金属メッキ層表面と被覆層内表面との間には、数μm〜数百μmの間隙があるのが好ましい。
The inventor of the present invention has a conductive coating layer made of a conductive resin or rubber or a conductive paint on at least an inner surface on a conventional metal plating layer , or a horizontal winding layer or vertical attachment of a resin tape provided with a metal thin film. By arranging the layers in a non-adhered state, the coating layer was successfully provided with multiple functions that lead to improvements in terminal processability and shielding properties. Here, the non-contact state means a state where the surface of the metal plating layer and the inner surface of the coating layer in contact with the surface are not bonded, that is, a state where there is no adhesion interface. In such a state, it is preferable that a gap of several μm to several hundred μm exists between the surface of the metal plating layer and the inner surface of the coating layer.

本発明の同軸ケーブルにあっては、以下のような顕著な効果が奏される。
a.レーザ光で被覆層に切れ目を入れる際、該被覆層の導電性部分(特に、後述する金属蒸着やメッキ部分)がバリアー層として機能するので、金属メッキ層はもちろん誘電体層の損傷までも防止される。
b.金属メッキ層と被覆層の導電性部分とで外部導体層が形成されるので、金属メッキ層一層だけの場合に比べてシールド性が一層向上する。
c.仮に該金属メッキ層に亀裂が生じても、該被覆層の導電性部分が導通状態を維持するので、シールド性の低下が抑止される。
d.被覆層内表面は、金属メッキ層表面に接着していないので、レーザ光で切れ目を入れた後の被覆層は容易に抜き取られる。この結果、金属メッキ層は安定して露出され、端末加工の作業性が大幅に向上する。
The coaxial cable of the present invention has the following remarkable effects.
a. When cutting the coating layer with laser light, the conductive part of the coating layer (especially metal deposition and plating part described later) functions as a barrier layer, preventing damage to the dielectric layer as well as the metal plating layer. Is done.
b. Since the outer conductor layer is formed by the metal plating layer and the conductive portion of the coating layer, the shielding performance is further improved as compared with the case of only one metal plating layer.
c. Even if a crack occurs in the metal plating layer, the conductive portion of the coating layer maintains a conductive state, so that a reduction in shielding properties is suppressed.
d. Since the inner surface of the coating layer is not adhered to the surface of the metal plating layer, the coating layer after being cut with a laser beam is easily extracted. As a result, the metal plating layer is stably exposed, and the workability of terminal processing is greatly improved.

以下、本発明の同軸ケーブルについて、図面を参照しながら説明する。 The coaxial cable of the present invention will be described below with reference to the drawings.

図1は、本発明に係る同軸ケーブルの一例を示す側面図である。
図2は、本発明の同軸ケーブルの好ましい態様を示す側面図である。
FIG. 1 is a side view showing an example of a coaxial cable according to the present invention.
FIG. 2 is a side view showing a preferred embodiment of the coaxial cable of the present invention.

図1において、(1)は内部導体、(2)は内部導体(1)上に形成された誘電体層、(3)は誘電体層(2)上に形成された金属メッキ層、そして(4)は、少なくとも内表面が導電樹脂ないしゴムまたは導電性塗料からなる導電性を有する被覆層、あるいは金属薄膜が付与された樹脂テープの横巻き層や縦添え層で、金属メッキ層(3)の外周に非密着状態で設けられている。
In FIG. 1, (1) is an inner conductor, (2) is a dielectric layer formed on the inner conductor (1), (3) is a metal plating layer formed on the dielectric layer (2), and ( 4) is an electrically conductive coating layer comprising at least an inner surface made of a conductive resin, rubber or conductive paint, or a laterally wound layer or longitudinally attached layer of a resin tape provided with a metal thin film. Is provided in a non-contact state on the outer periphery of the.

図1に示す同軸ケーブルに特徴的なことは、金属メッキ層(3)の外周に、少なくとも内表面が導電樹脂ないしゴムまたは導電性塗料からなる導電性を有する被覆層、あるいは金属薄膜が付与された樹脂テープの横巻き層や縦添え層(4)が非密着状態で設けられていることである。これにより、被覆層(4)は金属メッキ層(3)から容易に分離できるので、端末加工の作業性が大幅に向上する。さらに、被覆層(4)の導電性部分は、金属メッキ層(3)と協同して外部導体層を形成し、シールド層としても機能するので、金属メッキ層(3)一層だけの場合よりシールド性が向上する。仮に屈曲が原因で脆弱な金属メッキ層(3)に亀裂を生じても、該導電性部分により、導通状態が維持される。
What is characteristic of the coaxial cable shown in FIG. 1 is that a metal-coated layer (3) is provided with a conductive coating layer or metal thin film having at least an inner surface made of a conductive resin, rubber or conductive paint on the outer periphery. In other words, the horizontal winding layer and the vertical accessory layer (4) of the resin tape are provided in a non-contact state. Thereby, since the coating layer (4) can be easily separated from the metal plating layer (3), the workability of terminal processing is greatly improved. Furthermore, since the conductive portion of the coating layer (4) forms an outer conductor layer in cooperation with the metal plating layer (3) and functions as a shield layer, it is shielded from the case of only one metal plating layer (3). Improves. Even if a crack occurs in the fragile metal plating layer (3) due to bending, the conductive state is maintained by the conductive portion.

本発明において、内表面が導電性の被覆層(4)は、例えば、内表面が導電樹脂ないしゴムまたは導電性塗料からなる導電性を有する被覆層、あるいは金属薄膜が付与された樹脂テープの横巻きや縦添えの形で形成される。この場合は、該テープの導電性内表面と金属メッキ層(3)の表面との間には界面接着は生じないので、そのままに非密着状態が得られる。このときのテープ基材としては、ポリエステル、ポリイミド、ポリエチレンテレフタレート、フッ素樹脂等の各種素材が、また、金属薄膜としては、Cu、Al、Fe 等の金属蒸着薄膜またはメッキ薄膜が採用される。この金属薄膜の膜厚は、シールド性、可撓性、およびレーザ光に対するバリアー(遮蔽)効果等を考慮すると、0.05μm〜3.0μmの範囲にあるのが好ましい。 In the present invention, the coating layer (4) whose inner surface is conductive is, for example, a conductive coating layer whose inner surface is made of a conductive resin, rubber or conductive paint, or a resin tape provided with a metal thin film. Formed in the form of a roll or vertical attachment . In this case, no interfacial adhesion occurs between the conductive inner surface of the tape and the surface of the metal plating layer (3), so that a non-adhered state can be obtained as it is. At this time, various materials such as polyester, polyimide, polyethylene terephthalate, and fluororesin are used as the tape substrate, and metal vapor-deposited thin films or plated thin films such as Cu, Al, and Fe 2 O 3 are employed as the metal thin films. The The thickness of the metal thin film is preferably in the range of 0.05 μm to 3.0 μm in consideration of shielding properties, flexibility, a barrier effect against laser light, and the like.

このような非密着状態を形成する他の態様としては、金属メッキ層(3)の外周に、まず導電性樹脂ないしゴム層を、両者が界面接着しない状態(非密着状態)で押出し成型した後、さらにこの導電性樹脂ないしゴム層上に非導電性の樹脂を界面接着状態に押出し成型する、いわゆる2重押出し成型手段も挙げられる。さらに、上記の導電性樹脂ないしゴムに代えて、金属メッキ層(3)と相溶性のない導電性塗料を採用してもよい。この場合、該塗料は、金属メッキ層(3)に接着せず、剥離した状態で固化するようなものが好ましい。 As another mode for forming such a non-contact state, first, after extruding a conductive resin or rubber layer on the outer periphery of the metal plating layer (3) in a state where the two are not interface-bonded (non-contact state). Furthermore, a so-called double-extrusion molding means for extruding a non-conductive resin onto the conductive resin or rubber layer in an interfacial adhesive state can also be mentioned. Furthermore, instead of the conductive resin or rubber, a conductive paint that is not compatible with the metal plating layer (3) may be used. In this case, it is preferable that the paint does not adhere to the metal plating layer (3) and solidifies in a peeled state.

本発明に言う非密着状態に対峙する状態は、当然のことながら密着状態である。この密着状態は、金属メッキ層(3)上に導電性被覆材をコーティングしてから固化させた場合、あるいは、該被覆材を金属メッキ層(3)上に界面接着状態で押し出し成形した場合に形成される。このような密着状態においては、被覆層に切れ目を入れるだけでは、これを抜き取るとことも剥離することも不可能である。仮に、剥離する部分の全面にレーザ光を照射しても、接着界面でのきれいな剥離は望むべくもない。 The state opposite to the non-contact state according to the present invention is naturally a close-contact state. This adhesion state is when the conductive coating material is coated on the metal plating layer (3) and then solidified, or when the coating material is extruded on the metal plating layer (3) in an interfacial adhesion state. It is formed. In such a close contact state, it is impossible to remove or peel off the coating layer simply by making a cut. Even if the entire surface of the part to be peeled is irradiated with laser light, clean peeling at the bonding interface is not desired.

本発明で採用する金属メッキ層(3)には、十分なシールド特性を確保するために0.5μm以上の膜厚が必要であり他方、その上限については、同軸ケーブルの外径や可撓性を考慮して、25μm以下とするのが好ましい。金属メッキ層(3)の種類としては種々挙げられるが、例えば、無電解金属メッキ層、該無電解金属メッキ層にさらに電解金属メッキ層を上乗せした金属メッキ複合層、あるいは導電樹脂膜上に電解金属メッキ層を上乗せした樹脂―金属メッキ複合層が挙げられる。 The metal plating layer (3) employed in the present invention needs to have a film thickness of 0.5 μm or more in order to ensure sufficient shielding properties. On the other hand, the upper limit of the outer diameter or flexibility of the coaxial cable is required. In consideration of the above, the thickness is preferably 25 μm or less. There are various types of the metal plating layer (3). For example, an electroless metal plating layer, a metal plating composite layer obtained by further adding an electrolytic metal plating layer to the electroless metal plating layer, or electrolysis on a conductive resin film. An example is a resin-metal plating composite layer on which a metal plating layer is added.

上記の無電解金属メッキ層としては、その膜厚が0.05μm〜5μmの銅メッキ層が好ましい。無電解金属メッキ層の形成に際しては、通常の処方に従って、金属、キレート剤および還元剤を含むメッキ液を採用すればよい。この場合、キレート剤として、酒石酸の錯体を用いると、還元剤の使用量が極減するので、急激な還元反応を抑えられ、且つメッキ液のpHが正確にコントロールされる。また、メッキ金属が銅イオンの場合、微量のNiイオンを共存させて共析現象を利用すると、メッキ膜の応力追従性が向上する。さらに、酒石酸を含むメッキ液自体、従来の難分解性有機金属錯体であるEDTA錯体を用いる場合と比較して廃液処理が格段に容易になる。 As said electroless metal plating layer, the copper plating layer whose film thickness is 0.05 micrometer-5 micrometers is preferable. In forming the electroless metal plating layer, a plating solution containing a metal, a chelating agent and a reducing agent may be employed in accordance with a normal formulation. In this case, when a tartaric acid complex is used as the chelating agent, the amount of the reducing agent used is extremely reduced, so that a rapid reduction reaction can be suppressed and the pH of the plating solution can be accurately controlled. Further, when the plating metal is copper ion, if the eutectoid phenomenon is utilized in the presence of a small amount of Ni ion, the stress followability of the plating film is improved. Furthermore, compared with the case where a plating solution itself containing tartaric acid or an EDTA complex, which is a conventional hardly decomposable organometallic complex, is used, waste liquid treatment becomes much easier.

このような無電解金属メッキ層上に、さらに電解金属メッキ層を上乗せして金属メッキ複合層を得る際には、硫酸銅電気メッキやシアン化銅メッキ等の通常のメッキ処方を採用すればよい。この場合、延展性が良く且つ曲げにも強く、しかも環境に対する影響の少ないメッキ層という観点からは、硫酸銅メッキ処方が望ましい。 When an electroless metal plating layer is further added onto such an electroless metal plating layer to obtain a metal plating composite layer, a normal plating prescription such as copper sulfate electroplating or copper cyanide plating may be employed. . In this case, a copper sulfate plating prescription is desirable from the viewpoint of a plating layer having good spreadability and resistance to bending and having little influence on the environment.

また、上記の金属メッキ複合層における無電解メッキ層に代えて、導電樹脂膜を採用してもよい。導電樹脂膜を形成する処理剤としては、導電樹脂の有機溶剤溶液に導電化促進剤、および金属触媒核を混在したものが好ましく用いられる。具体的には、導電樹脂としてピロール系、アニリン系、チオフェン系等が、導電化促進剤としてチオジグリコール酸等の硫化物が、触媒核としてパラジウム金属イオン錯体や塩化物、硫酸塩、酢酸塩などのパラジウム化合物が挙げられる。導電樹脂膜の形成は簡単であり、上述した混合溶液を、例えばディッピング処理すればよい。導電樹脂膜の膜厚としては、電解金属メッキ層との十分な結合力を確保しながらも電気特性に配慮して、0.001μm〜3μmとするのが好ましい。そして、上述した金属メッキ層(3)と被膜層(4)の導電性部分とからなる外部導体層の厚さ(=導電部の厚さ)は、0.5μm以上30μm以下の範囲で、使用する周波数におけるシールド性、可撓性等を考慮して適宜選択すればよい。 Moreover, it may replace with the electroless plating layer in said metal plating composite layer, and may employ | adopt a conductive resin film. As the treating agent for forming the conductive resin film, a mixture of a conductive accelerator and a metal catalyst nucleus in a conductive resin organic solvent solution is preferably used. Specifically, pyrrole, aniline, thiophene, etc. as conductive resins, sulfides such as thiodiglycolic acid as conductivity promoters, palladium metal ion complexes, chlorides, sulfates, acetates as catalyst nuclei And palladium compounds. The formation of the conductive resin film is simple, and the above mixed solution may be dipped, for example. The film thickness of the conductive resin film is preferably 0.001 μm to 3 μm in consideration of electrical characteristics while ensuring a sufficient bonding force with the electrolytic metal plating layer. The thickness of the external conductor layer (= thickness of the conductive portion) composed of the conductive portion of the metal plating layer (3) and the coating layer (4) described above is used in the range of 0.5 μm to 30 μm. An appropriate selection may be made in consideration of shielding properties, flexibility, etc. at the frequency to be used.

図2には、耐屈曲性がさらに改善された同軸ケーブルが示されている。この態様においては、図1の誘電体層(2)と金属メッキ層(3)との間に、双方に親和性を呈し、もって双方向的接着能を発揮する接着性樹脂膜(5)が介在している。この接着性樹脂膜(5)は、金属メッキ層(3)が無電解金属メッキ層の場合は、誘電体層(2)と無電解金属メッキ層との間に介在し他方、金属メッキ層(3)が導電樹脂膜―金属メッキ複合層の場合は、誘電体層(2)と該導電樹脂膜との間に介在する。これにより、誘電体層(2)と接着性樹脂膜(5)と金属メッキ層(3)とが三位一体的に接着・結合され、しかも均一な膜厚の金属メッキ層(3)が得られる。 FIG. 2 shows a coaxial cable with further improved bending resistance. In this embodiment, there is an adhesive resin film (5) between the dielectric layer (2) and the metal plating layer (3) in FIG. Intervene. When the metal plating layer (3) is an electroless metal plating layer, the adhesive resin film (5) is interposed between the dielectric layer (2) and the electroless metal plating layer, while the metal plating layer ( When 3) is a conductive resin film-metal plating composite layer, it is interposed between the dielectric layer (2) and the conductive resin film. As a result, the dielectric layer (2), the adhesive resin film (5), and the metal plating layer (3) are integrally bonded and bonded in a three-way manner, and the metal plating layer (3) having a uniform film thickness is obtained.

接着性樹脂膜(5)は、誘電体層(2)および金属メッキ層(3)の両方に対して化学的親和性と物理的(変形ないし応力)追従性を有する接着性樹脂で構成される。このような接着性樹脂としては、接着剤用に開発された低融点の共重合(ないし変性)ナイロンあるいはポリアミドイミドが好ましい。具体的には、ナイロン6、ナイロン66、ナイロン11、ナイロン12、更にはナイロン610に第三成分を共重合することにより得られた、融点が150℃以下の共重合体が挙げられる。このような共重合体の例としては、メトキシメチル基を導入してアルコール可溶としたものがあり、例えば、「AQナイロン」(東レ株式会社製)が挙げられる。 The adhesive resin film (5) is composed of an adhesive resin having chemical affinity and physical (deformation or stress) followability to both the dielectric layer (2) and the metal plating layer (3). . As such an adhesive resin, low melting point copolymerized (or modified) nylon or polyamideimide developed for adhesives is preferable. Specifically, a copolymer having a melting point of 150 ° C. or less obtained by copolymerizing nylon 6, nylon 66, nylon 11, nylon 12, and nylon 610 with a third component can be mentioned. An example of such a copolymer is one in which a methoxymethyl group is introduced to make it alcohol-soluble, and examples thereof include “AQ nylon” (manufactured by Toray Industries, Inc.).

これら接着性樹脂にあって、フィブリル状に延展された膜を形成するものが特に好ましい。この理由については、後記の項で述べる。さらに、上記の接着性樹脂のうち、メトキシメチル基が導入されたナイロン系共重合体は、伸び率が200%を越え、フッ素樹脂の伸び率(300%前後)に接近している。したがって、同軸ケーブルが屈曲されても、誘電体層(2)との界面、および金属メッキ層(3)との界面での応力集中を吸収する機能を呈する。このような接着性樹脂膜(5)の膜厚の下限値は、誘電体層(2)との十分な接着力を得るため0.01μm以上であるのが好ましく他方、その上限値は誘電率の上昇防止に配慮して3μm以下とするのが好ましい。接着性樹脂膜(5)を誘電体層(2)上に形成する手段としては、押出被覆、コーティング、さらにはディッピング等があるが、工程の簡便さからコーティングが好ましく採用される。 Among these adhesive resins, those that form a fibril-like film are particularly preferred. The reason for this will be described in a later section. Further, among the adhesive resins described above, the nylon copolymer having a methoxymethyl group introduced has an elongation rate exceeding 200%, which is close to the elongation rate (around 300%) of the fluororesin. Therefore, even if the coaxial cable is bent, it exhibits a function of absorbing stress concentration at the interface with the dielectric layer (2) and the interface with the metal plating layer (3). The lower limit value of the film thickness of the adhesive resin film (5) is preferably 0.01 μm or more in order to obtain a sufficient adhesive force with the dielectric layer (2), while the upper limit value is the dielectric constant. In consideration of preventing the increase of the thickness, it is preferably 3 μm or less. As means for forming the adhesive resin film (5) on the dielectric layer (2), there are extrusion coating, coating, dipping, and the like, but coating is preferably employed because of the simplicity of the process.

ここで、接着性樹脂膜(5)と、無電解メッキ層または導電樹脂膜との界面接着状態は、前者の表面状態によって変わってくる。例えば、この表面が緻密で平坦な場合は、その表面上に無電解金属メッキ層または導電樹脂膜が接着される。他方、上述したように、接着性樹脂膜(5)がフィブリル状にある場合は、フィブリル間にも、メッキ液または樹脂液が入りこむので、その界面接着力は格段に向上する。 Here, the interface adhesion state between the adhesive resin film (5) and the electroless plating layer or the conductive resin film varies depending on the former surface state. For example, when the surface is dense and flat, an electroless metal plating layer or a conductive resin film is bonded onto the surface. On the other hand, as described above, when the adhesive resin film (5) is in the form of fibrils, the plating solution or the resin solution enters between the fibrils, so that the interfacial adhesive force is remarkably improved.

このような同軸ケーブルは、種々の用途を有するが、典型的な用途としては、情報通信機器、通信端末機器、さらには計測機器等の高周波部品に組み込まれる信号伝達線路、および内視鏡、超音波診断装置等の医療器具に組み込まれる機器配線路(医療用ケーブル)がある。 Such coaxial cables have various uses, but typical examples include information transmission equipment, communication terminal equipment, signal transmission lines incorporated in high-frequency components such as measuring equipment, endoscopes, There is a device wiring path (medical cable) incorporated in a medical instrument such as a sonic diagnostic apparatus.

前者の信号伝達路は、GHz帯域で多用されることから、外部導体層の厚さ(=導電部の厚さ)を0.5μm以上5μm未満に調整するのが好ましい。これに対して、後者の機器配線路は、MHz帯域で多用されることから、該外部導体層の厚さを5μm〜15μmの範囲で調整するのが好ましい。この場合の金属メッキ層(3)の膜厚は、同軸ケーブルの屈曲性を考慮して0.5μm〜10μmの範囲内とすればよく、その際、被覆層(4)の導電性部分の厚さは、使用する周波数におけるシールド特性と金属メッキ層(3)の膜厚とを考慮して適宜決定すればよい。 Since the former signal transmission path is frequently used in the GHz band, it is preferable to adjust the thickness of the outer conductor layer (= thickness of the conductive portion) to 0.5 μm or more and less than 5 μm. On the other hand, since the latter equipment wiring path is frequently used in the MHz band, it is preferable to adjust the thickness of the outer conductor layer in the range of 5 μm to 15 μm. In this case, the thickness of the metal plating layer (3) may be in the range of 0.5 μm to 10 μm in consideration of the flexibility of the coaxial cable. In this case, the thickness of the conductive portion of the coating layer (4) The thickness may be appropriately determined in consideration of the shielding characteristics at the frequency used and the film thickness of the metal plating layer (3).

本発明のその余の構成について触れると、内部導体(1)としては、直径がφ0.01〜0.2mm程度の単線あるいは撚り線の軟銅線や銅被鋼線等にスズや銀のメッキを施したものが使用される。この内部導体(1)に被覆される誘電体層(2)を構成するフッ素樹脂としては、テトラフルオロエチレン/ヘキサフルオロプロピレン(FEP)やテトラフルオロエチレン/パーフルオロアルコキシエチレン共重合体(PFA)等が挙げられる。 As for the remaining structure of the present invention, as the internal conductor (1), tin or silver plating is applied to a single wire or stranded annealed copper wire or copper-coated steel wire having a diameter of about 0.01 to 0.2 mm. The one given is used. Examples of the fluororesin constituting the dielectric layer (2) covered with the inner conductor (1) include tetrafluoroethylene / hexafluoropropylene (FEP) and tetrafluoroethylene / perfluoroalkoxyethylene copolymer (PFA). Is mentioned.

図2に示した同軸ケーブルの製造方法の一例を、前記した金属メッキ複合層を採用した場合について述べる。先ず、内部導体(1)上にフッ素樹脂からなる誘電体層(2)を押出被覆する。次に、上記の押出被覆された誘電体層(2)上に接着性樹脂膜(5)を形成する。このときの接着性樹脂は、濃度が10%〜20%(重量)の有機溶剤溶液として、これをスプレーコーティング等の手段にて誘電体層(2)上にコーティングしてから乾燥・固化すればよい。有機溶剤としては、例えば、メタノール等が用いられる。 An example of a method for manufacturing the coaxial cable shown in FIG. 2 will be described in the case where the above-described metal plating composite layer is employed. First, a dielectric layer (2) made of a fluororesin is extrusion coated on the inner conductor (1). Next, an adhesive resin film (5) is formed on the extrusion-coated dielectric layer (2). The adhesive resin at this time is an organic solvent solution having a concentration of 10% to 20% (weight), which is coated on the dielectric layer (2) by means such as spray coating, and then dried and solidified. Good. For example, methanol or the like is used as the organic solvent.

さらに、接着性樹脂膜(5)上に、無電解金属メッキ層を形成する。この場合、接着性樹脂膜(5)を設けたケーブルを、好ましくは酒石酸を添加した無電解メッキ槽に浸漬して、該メッキ液を接着性樹脂膜(5)上にディッピングしてから、乾燥・固化すればよい。このときの液温は15℃〜35℃、浸漬時間は1分〜10分程度であればよい。 Further, an electroless metal plating layer is formed on the adhesive resin film (5). In this case, the cable provided with the adhesive resin film (5) is preferably immersed in an electroless plating tank to which tartaric acid is added, and the plating solution is dipped on the adhesive resin film (5) and then dried.・ Solidify. The liquid temperature at this time should just be 15 to 35 degreeC, and immersion time should be about 1 minute-10 minutes.

得られた無電解金属メッキ層上に、さらに電解金属メッキ層を上乗せする。ここで、電解金属メッキは、硫酸銅の電解メッキ処方の場合、メッキ液温度20℃〜35℃、電流密度0.1A/dm〜10A/dm、通電時間1分〜20分の範囲にあればよい。 An electrolytic metal plating layer is further placed on the obtained electroless metal plating layer. Here, in the case of the electrolytic plating prescription of copper sulfate, the electrolytic metal plating is performed in a range of a plating solution temperature of 20 ° C. to 35 ° C., a current density of 0.1 A / dm 2 to 10 A / dm 2 , and an energization time of 1 minute to 20 minutes. I just need it.

上記の態様において、電解金属メッキ層を上乗せした後で、アニール処理することにより、メッキの固着性がさらに改善される。アニール処理の条件としては加熱温度50℃〜250℃、加熱時間が10分〜24時間程度であればよい。 In the above aspect, the adhesion of the plating is further improved by annealing after the electrolytic metal plating layer is added. The annealing conditions may be a heating temperature of 50 ° C. to 250 ° C. and a heating time of about 10 minutes to 24 hours.

最後に、電解金属メッキ層の外周に、少なくとも片面に金属薄膜が付与された樹脂テープを、その金属薄膜面を該メッキ層に対向させながら横巻きで被覆して被覆層(4)を形成する。このとき、該金属メッキ層の外周に樹脂テープを非密着状態で被覆するには、該テープの金属薄膜面をメッキ層に軽く接触させながら、1/2ラップ〜1ラップ巻きすればよい。また、必要に応じて、被覆層(4)の外周には、フッ素樹脂などの押出し被覆や熱融着性テープの横巻きによるシースを追加してもよい。熱融着性テープとしては、ポリエステル樹脂などのテープの片面に接着層を設けたものを用いればよく、その際、該接着層を被覆層(4)に接触させながらラップ巻きすることになる。 Finally, on the outer periphery of the electrolytic metal plating layer, a resin tape provided with a metal thin film on at least one surface is covered with a horizontal winding while the metal thin film surface is opposed to the plating layer to form a coating layer (4). . At this time, in order to cover the outer periphery of the metal plating layer with the resin tape in a non-adherent state, the metal thin film surface of the tape may be wound in half to one lap while lightly contacting the plating layer. Moreover, you may add the sheath by the side winding of extrusion coating, such as a fluororesin, and a heat-fusible tape to the outer periphery of a coating layer (4) as needed. What is necessary is just to use what provided the adhesive layer on the single side | surface of tapes, such as a polyester resin, as a heat-fusible tape, In that case, it wraps by winding this adhesive layer in contact with a coating layer (4).

以上に述べた同軸ケーブルの製造方法に特徴的なことは、フッ素樹脂誘電体層(2)と金属メッキ層(3)とが媒体的接着能を有する接着性樹脂膜(5)を介して三位一体的に結合されていること、金属メッキ層(3)を構成している無電解金属メッキ層と電解金属メッキ層も互いに堅固に付着していることである。こうすることにより、接着性樹脂膜(5)や金属メッキ層(3)の膜厚を可及的に低減できる。併せて、金属メッキ層(3)全体の膜厚も安定化するので、高品質で耐久性に優れた極薄メッキ層が得られる。その結果、誘電体層(2)の誘電率が低下することがないので、高周波特性およびシールド特性に優れた極細同軸ケーブルが実現される。 What is characteristic of the coaxial cable manufacturing method described above is that the fluororesin dielectric layer (2) and the metal plating layer (3) are three-piece integrated through an adhesive resin film (5) having a medium adhesive ability. The electroless metal plating layer and the electrolytic metal plating layer constituting the metal plating layer (3) are firmly attached to each other. By carrying out like this, the film thickness of an adhesive resin film (5) and a metal plating layer (3) can be reduced as much as possible. In addition, since the film thickness of the entire metal plating layer (3) is also stabilized, an ultrathin plating layer having high quality and excellent durability can be obtained. As a result, since the dielectric constant of the dielectric layer (2) does not decrease, an ultrafine coaxial cable excellent in high frequency characteristics and shielding characteristics is realized.

以上、本発明を単芯の同軸ケーブルを例にとって述べてきたが、本発明は、2芯並行同軸や多芯同軸ケーブルにも展開できることは言うまでもない。 The present invention has been described above by taking a single-core coaxial cable as an example, but it goes without saying that the present invention can also be applied to a two-core parallel coaxial cable and a multi-core coaxial cable.

[実施例1]
ここでは、外部導体層の厚さが3.4μmで、GHz帯域での使用に適した極細同軸ケーブル(AWG42)の製造例を示す。先ず、素線径0.025mmの錫メッキ銅合金線を7本撚って得た、撚り外径が0.075mmの錫メッキ銅合金線からなる内部導体(1)上に、誘電体層(2)としてPFAを被覆厚さ57.5μmにて押出し被覆した。次に、誘電体層(2)上に接着性樹脂液をスプレーコーティングして、膜厚が0.1μmの接着性樹脂膜(5)を形成した。該接着性樹脂液としては、「AQナイロン」(東レ株式会社製)を用い、このときの液温は20℃とし、コーティング後の乾燥条件は乾燥温度50℃、乾燥時間5分とした。
[Example 1]
Here, an example of manufacturing an ultrafine coaxial cable (AWG42) suitable for use in the GHz band with an outer conductor layer thickness of 3.4 μm is shown. First, on the inner conductor (1) made of a tin-plated copper alloy wire having a twisted outer diameter of 0.075 mm obtained by twisting seven tin-plated copper alloy wires having a strand diameter of 0.025 mm, a dielectric layer ( As 2), PFA was extrusion coated at a coating thickness of 57.5 μm. Next, the adhesive resin liquid was spray-coated on the dielectric layer (2) to form an adhesive resin film (5) having a thickness of 0.1 μm. As the adhesive resin liquid, “AQ nylon” (manufactured by Toray Industries, Inc.) was used. The liquid temperature at this time was 20 ° C., and the drying conditions after coating were a drying temperature of 50 ° C. and a drying time of 5 minutes.

ついで、上記接着性樹脂膜(5)が形成されたケーブルを、無電解メッキ槽(槽温度32℃)で5分間ディッピング処理してから乾燥・固化して、膜厚が0.1μmの無電解金属メッキ層を形成した。このとき、無電解メッキ液としては、還元剤を添加した硫酸銅水溶液に、予めアルカリ性にした酒石酸カリウムナトリウム水溶液を加えて調製した。この際の銅イオン濃度は2g/L、還元剤量2g/L、水酸化ナトリウム濃度2g/Lとし、水溶液のpHを12.4とした。また、メッキ条件は液温32℃、浸漬時間10分とした。この無電解金属メッキ層が形成されたケーブルに、さらに膜厚3μmの電解金属メッキ層を上乗せして、複合金属メッキ層(3)を得た。このときの電解メッキ液は、4%の硫酸銅液で、電流密度は1.5A/dm、通電時間は10分とした。 Next, the cable on which the adhesive resin film (5) is formed is dipped in an electroless plating bath (vessel temperature 32 ° C.) for 5 minutes, then dried and solidified, and the electroless film having a thickness of 0.1 μm is obtained. A metal plating layer was formed. At this time, an electroless plating solution was prepared by adding a potassium sodium tartrate aqueous solution previously made alkaline to a copper sulfate aqueous solution to which a reducing agent was added. At this time, the copper ion concentration was 2 g / L, the reducing agent amount was 2 g / L, the sodium hydroxide concentration was 2 g / L, and the pH of the aqueous solution was 12.4. The plating conditions were a liquid temperature of 32 ° C. and an immersion time of 10 minutes. On the cable on which the electroless metal plating layer was formed, an electrolytic metal plating layer having a thickness of 3 μm was further added to obtain a composite metal plating layer (3). The electrolytic plating solution at this time was a 4% copper sulfate solution, the current density was 1.5 A / dm 2 , and the energization time was 10 minutes.

さらに、金属メッキ層(3)の外周に銅蒸着ポリエステルテープを非密着状態で横巻きして、被覆層(4)を形成した。銅蒸着ポリエステルテープとしては、厚さ4.0μm、幅1.5mmのポリエステルテープ基材の片面に、膜厚0.1μmの銅蒸着膜が付与されたテープを用いた。被覆層(4)を形成にあたっては、該テープの銅蒸着膜面を金属メッキ層(3)の外表面に対向させながら3/4ラップで横巻きした。このとき、テープの銅蒸着膜面と金属メッキ層間には5μm程度の隙間が生じていた。最後に、被覆層(4)の外周にPFAを被覆厚さ40.0μmにて押出し被覆し、外径が0.30mmの極細同軸ケーブルを得た。
[実施例2]
Further, a copper-deposited polyester tape was laterally wound around the outer periphery of the metal plating layer (3) in a non-adhering state to form a coating layer (4). As a copper vapor deposition polyester tape, the tape by which the copper vapor deposition film | membrane with a film thickness of 0.1 micrometer was provided to the single side | surface of the polyester tape base material of thickness 4.0micrometer and width 1.5mm was used. In forming the coating layer (4), the tape was horizontally wound with 3/4 wrap while the copper vapor deposition film surface of the tape was opposed to the outer surface of the metal plating layer (3). At this time, a gap of about 5 μm was generated between the copper vapor deposition film surface of the tape and the metal plating layer. Finally, PFA was extruded and coated on the outer periphery of the coating layer (4) at a coating thickness of 40.0 μm to obtain a micro coaxial cable having an outer diameter of 0.30 mm.
[Example 2]

実施例1の無電解金属メッキ層に代えて導電樹脂膜を採用する以外は、実施例1と同様に操作を繰り返した。この場合、接着性樹脂膜(5)が形成されたケーブルを導電処理剤槽(槽温度30℃)で5分間ディッピング処理してから乾燥・固化して、膜厚が0.5μmの導電樹脂膜を形成した。このとき、導電処理剤としては、ポリチオフェン(導電樹脂)の2%重量部、水96.5%重量部、チオジグリコールの硫化物(導電化促進剤)0.5%重量部、および、塩化パラジウム1%重量部との混合液を用いた。この結果、外部導体層の厚さが3.0μmで、外径が0.30mmの極細同軸ケーブル(AWG42)が得られた。
[実施例3]
The operation was repeated in the same manner as in Example 1 except that a conductive resin film was used instead of the electroless metal plating layer in Example 1. In this case, the cable on which the adhesive resin film (5) is formed is dipped in a conductive treatment agent tank (bath temperature of 30 ° C.) for 5 minutes, dried and solidified, and a conductive resin film having a thickness of 0.5 μm. Formed. At this time, as the conductive treatment agent, 2% by weight of polythiophene (conductive resin), 96.5% by weight of water, 0.5% by weight of sulfide of thiodiglycol (conductive accelerator), and chloride A mixed solution with 1% by weight of palladium was used. As a result, an ultrafine coaxial cable (AWG42) having an outer conductor layer thickness of 3.0 μm and an outer diameter of 0.30 mm was obtained.
[Example 3]

ここでは、MHz帯域での使用に適した例を示す。この場合、実施例1の電解メッキ層の膜厚を7.9μmに変更して複合金属メッキ層全体の膜厚を8.0μmとし、また銅蒸着ポリエステルテープに代えて、片面に膜厚2.0μmの銅メッキ膜が付与されたポリエステルテープ(基材厚み4μm、幅0.75mm)を1/2ラップで横巻して被覆層(4)を形成した。このときの外部導体層の厚さは約12μmであった。さらに、被覆層(4)の外周に、厚さが2.5μmの熱融着性ポリエステルテープを1/2ラップにて横巻してから、150℃で10分間の熱融着処理を施した。このとき用いた熱融着ポリエステルテープは片面に接着層を設けたテープであり、該接着層を被覆層(4)に接触させながらラップ巻きを遂行した。以上のようにして、外径が0.24mmの極細同軸ケーブルが得られた。 Here, an example suitable for use in the MHz band is shown. In this case, the thickness of the electrolytic plating layer of Example 1 was changed to 7.9 μm so that the total thickness of the composite metal plating layer was 8.0 μm. A covering layer (4) was formed by horizontally winding a polyester tape (base material thickness: 4 μm, width: 0.75 mm) provided with a 0 μm copper plating film with a ½ wrap. At this time, the thickness of the outer conductor layer was about 12 μm. Further, a heat-sealable polyester tape having a thickness of 2.5 μm was horizontally wound on the outer periphery of the coating layer (4) with a 1/2 wrap, and then subjected to a heat-seal treatment at 150 ° C. for 10 minutes. . The heat-fused polyester tape used at this time was a tape provided with an adhesive layer on one side, and lap winding was performed while the adhesive layer was in contact with the coating layer (4). As described above, an ultrafine coaxial cable having an outer diameter of 0.24 mm was obtained.

これらの極細同軸ケーブルにつき、メッキの剥離試験を行なった所、十分な密着力を有していた。また、シールド特性試験器により、CISPR22(吸収クランプ法)にしたがって、シールド特性を測定した所、十分なシールド特性が得られていることも確認された。さらに、実施例3の極細同軸ケーブルを、手を使って曲げR2.0mmで左右90度、速さ30回/minにて100回曲げた後、同様の方法にてシールド特性を測定した所、十分なシールド特性が得られていることが確認された。これにより、本発明の同軸ケーブルは、優れた屈曲性とシールド性とを兼備していることが確認された。 When these fine coaxial cables were subjected to a plating peeling test, they had sufficient adhesion. Moreover, when the shield characteristic was measured with a shield characteristic tester according to CISPR22 (absorption clamp method), it was confirmed that sufficient shield characteristic was obtained. Furthermore, after bending the ultra-fine coaxial cable of Example 3 using a hand at a bending R of 2.0 mm at 90 degrees left and right and 100 times at a speed of 30 times / min, the shield characteristics were measured by the same method. It was confirmed that sufficient shielding characteristics were obtained. Thereby, it was confirmed that the coaxial cable of the present invention has both excellent flexibility and shielding properties.

本発明の同軸ケーブルは、容易に細径化されながらも優れたシールド性と耐屈曲性とを呈するので、情報通信機器、通信端末機器、計測機器等の高周波部品の信号伝達線路、および内視鏡、超音波診断装置等の医療用器具の機器配線路のみならず、小型電子機器用の信号伝達線路としても有用である。 The coaxial cable of the present invention exhibits excellent shielding properties and bending resistance while being easily reduced in diameter, so that signal transmission lines of high-frequency components such as information communication equipment, communication terminal equipment, measuring equipment, and the like It is useful not only as a device wiring path for medical instruments such as mirrors and ultrasonic diagnostic apparatuses, but also as a signal transmission line for small electronic devices.

本発明に係る同軸ケーブルの一例を示す側面図である。It is a side view which shows an example of the coaxial cable which concerns on this invention. 本発明に係る同軸ケーブルの好ましい態様を示す側面図である。It is a side view which shows the preferable aspect of the coaxial cable which concerns on this invention.

符号の説明Explanation of symbols

1 内部導体
2 誘電体層
3 金属メッキ層
4 被覆層
5 接着性樹脂膜
DESCRIPTION OF SYMBOLS 1 Inner conductor 2 Dielectric layer 3 Metal plating layer 4 Coating layer 5 Adhesive resin film

Claims (3)

内部導体を被覆するフッ素樹脂誘電体層の外周に金属メッキ層をシールド層として配した同軸ケーブルにおいて、該金属メッキ層の外周に、少なくとも内表面が導電樹脂ないしゴムまたは導電性塗料からなる導電性の被覆層が非密着状態で配されていることを特徴とする同軸ケーブル。 In a coaxial cable in which a metal plating layer is arranged as a shield layer on the outer periphery of a fluororesin dielectric layer covering the inner conductor, at least an inner surface of the metal plating layer is made of a conductive resin, rubber or conductive paint . A coaxial cable, characterized in that the coating layer is arranged in a non-contact state. 内部導体を被覆するフッ素樹脂誘電体層の外周に金属メッキ層をシールド層として配した同軸ケーブルにおいて、該金属メッキ層の外周に、少なくとも内表面に金属薄膜が付与された樹脂テープの横巻き層が非密着状態で配されていることを特徴とする同軸ケーブル。 In a coaxial cable in which a metal plating layer is arranged as a shield layer on the outer periphery of a fluororesin dielectric layer covering an inner conductor, a horizontal winding layer of a resin tape in which a metal thin film is provided on at least the inner surface of the outer periphery of the metal plating layer Is a coaxial cable characterized by being arranged in a non-contact state. 内部導体を被覆するフッ素樹脂誘電体層の外周に金属メッキ層をシールド層として配した同軸ケーブルにおいて、該金属メッキ層の外周に、少なくとも内表面に金属薄膜が付与された樹脂テープの縦添え層が非密着状態で配されていることを特徴とする同軸ケーブル。In a coaxial cable in which a metal plating layer is arranged as a shield layer on the outer periphery of a fluororesin dielectric layer covering an inner conductor, a resin tape longitudinally attached layer having a metal thin film provided at least on the inner surface on the outer periphery of the metal plating layer Is a coaxial cable characterized by being arranged in a non-contact state.
JP2007108798A 2006-08-02 2007-04-18 coaxial cable Active JP4942539B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007108798A JP4942539B2 (en) 2006-08-02 2007-04-18 coaxial cable

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006211338 2006-08-02
JP2006211338 2006-08-02
JP2007108798A JP4942539B2 (en) 2006-08-02 2007-04-18 coaxial cable

Publications (2)

Publication Number Publication Date
JP2008060062A JP2008060062A (en) 2008-03-13
JP4942539B2 true JP4942539B2 (en) 2012-05-30

Family

ID=39242523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007108798A Active JP4942539B2 (en) 2006-08-02 2007-04-18 coaxial cable

Country Status (1)

Country Link
JP (1) JP4942539B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5802010B2 (en) * 2010-12-27 2015-10-28 矢崎総業株式会社 Wire harness shield structure
EP2666673B1 (en) * 2010-12-27 2015-03-04 Yazaki Corporation Wire harness shield structure
CN104981881A (en) * 2012-12-13 2015-10-14 费德罗-莫格尔动力系公司 Coaxial cable and method of construction thereof
JP7353039B2 (en) * 2019-01-08 2023-09-29 株式会社Totoku Coaxial cable with excellent bending phase stability
JP7115333B2 (en) * 2019-01-22 2022-08-09 日立金属株式会社 Cable and its manufacturing method
JP7211319B2 (en) * 2019-09-30 2023-01-24 日立金属株式会社 Cable and its manufacturing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4212031Y1 (en) * 1965-03-23 1967-07-06
JP4137255B2 (en) * 1998-10-30 2008-08-20 日星電気株式会社 coaxial cable

Also Published As

Publication number Publication date
JP2008060062A (en) 2008-03-13

Similar Documents

Publication Publication Date Title
JP4942539B2 (en) coaxial cable
US6953888B2 (en) Thin coaxial cable and method for its manufacture
US11437692B2 (en) Coaxial cable and cable assembly
FR2722330A1 (en) COAXIAL CABLE
JP2008084810A (en) Coaxial cable
JP2006294551A (en) Coaxial cable
JP5280055B2 (en) Shielded wire
KR20090105922A (en) Coaxial cable
JP2929161B2 (en) Semi-rigid coaxial cable with easy termination and method of manufacturing the same
JP2008124590A (en) Coaxial cable terminal processed article
JP2006210203A (en) Coaxial cable and its manufacturing method
JP2008004275A (en) Two-core parallel coaxial cable
JP3010336B2 (en) Coaxial cable and method of manufacturing the same
JP2007335124A (en) Coaxial cable and its manufacturing method
JP4137255B2 (en) coaxial cable
CN112313759B (en) Coaxial cable
JP2006294312A (en) Coaxial cable and manufacturing method thereof
JP2003051219A (en) Ultra superfine coaxial cable
JP2007048719A (en) Coaxial cable
JP5239304B2 (en) Coaxial cable and manufacturing method thereof
US11201001B2 (en) Isolated electrically conductive element and method for manufacturing the same
WO2013099783A1 (en) Cable
JP2010251567A (en) Electromagnetic shielded tube
JP6746445B2 (en) coaxial cable
JP3534744B1 (en) Conductor for electric cable, electric cable, and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120228

R150 Certificate of patent or registration of utility model

Ref document number: 4942539

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250