JP4137255B2 - coaxial cable - Google Patents
coaxial cable Download PDFInfo
- Publication number
- JP4137255B2 JP4137255B2 JP32597398A JP32597398A JP4137255B2 JP 4137255 B2 JP4137255 B2 JP 4137255B2 JP 32597398 A JP32597398 A JP 32597398A JP 32597398 A JP32597398 A JP 32597398A JP 4137255 B2 JP4137255 B2 JP 4137255B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- insulator
- thickness
- coating layer
- plating layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Communication Cables (AREA)
- Insulated Conductors (AREA)
- Organic Insulating Materials (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、特に優れた高周波特性が要求される計測機器、情報通信機器、情報処理機器等の高周波部品の信号伝達線路として用いられる同軸ケーブルに関するものである。
【0002】
【従来の技術】
近年、計測機器、情報通信機器は増々小型化され、それに伴い使用される同軸ケーブルも細径化が要求されている。
そこで、従来の金属編組層の代わりに、金属メッキが付着しやすいよう絶縁体表面を化学処理等の表面改質を施した上で、絶縁体表面に金属メッキ層または金属蒸着層を設け、細径化を実現した同軸ケーブルが知られている(例えば、実開昭62−33117)。
ところが、上記の例の様に、同軸ケーブルの絶縁体として高周波特性に優れた低誘電損失のフッ素樹脂を使った場合には、金属層が付着しにくく、金属層の膜厚が不均等になったり、絶縁体と金属層の密着力が弱く耐久性に劣るという品質上の問題があった。
さらに、絶縁体への密着性(付着性)を改善するとともに、端末むきを容易にするため、絶縁体とメッキ層の間に絶縁体よりも無電解メッキが容易な樹脂を押出被覆あるいはテープ巻した同軸ケーブルも知られている(例えば、特開平7−272553)。
しかし、この方法においても絶縁層が厚くなるため細径化が困難であり、しかも、絶縁体とは電気的特性の異なる無電解メッキが容易な樹脂を被覆しているので、高周波特性に影響が出るという問題がある。
【0003】
【発明が解決しようとする課題】
本発明は、上記従来技術の問題点を解消し、メッキの密着性に優れるとともに、コンパクトで高周波特性に優れた同軸ケーブルを提供することを課題とするものである。
【0004】
【課題を解決するための手段】
本発明者等は、上記課題を解決するために鋭意検討を重ねた結果、絶縁体の改質面とメッキ層のいずれにも密着が良く、高周波特性に影響を与えない薄い厚さのABS樹脂被膜層を絶縁体と無電解メッキ層との間に設けることを着想し、本発明を完成するに至った。
【0005】
即ち、本発明は、外径0.03mm以上の単線または撚り線導体上に押出し被覆した肉厚0.035mm以上のフッ素樹脂からなり且つ表面にエキシマレーザ処理あるいはケミカル処理により凹凸が形成された絶縁体、該絶縁体上に塗布した膜厚0.05μm〜3μmのABS樹脂被膜層、該ABS樹脂被膜層上に厚さ0.5μm〜5μmの無電解金属メッキ層、該無電解金属メッキ層上に厚さ5μm以上の電解金属メッキ層が設けられ、さらに、最外層が保護被覆層で構成されていることを特徴とする同軸ケーブルである。
【0006】
【発明の実施の形態】
以下、本発明を図面に基づいて詳細に説明する。
図1において、1は導体、2は絶縁体、3はABS樹脂被膜層、4は無電解メッキ層、5は電解メッキ層、6は保護被覆層である。
導体1は、外径が0.03mm以上の銀メッキスズ入り銅合金線、銅被鋼線等の単線または撚り線の導体を用いる。
絶縁体2としては、四弗化エチレン樹脂(PTFE)、四弗化エチレン−パーフロオロアルキルビニルエーテル共重合体樹脂(PFA)、四弗化エチレン−六弗化プロピレン共重合体樹脂(FEP)、四弗化エチレン−エチレン共重合体樹脂(ETFE)等のフッ素樹脂から構成するが、フッ素樹脂の中でも誘電損失が特に少ない四弗化エチレン−六弗化プロピレン共重合体樹脂(FEP)が特に好ましい。絶縁体2の肉厚は、0.035mm以上とする。
次に、絶縁体2の外周を金属ナトリウム−ナフタレン系、あるいは金属ナトリウム−アンモニア系の化学的処理、あるいはエキシマレーザ等による表面改質処理を施す。
さらに次に、上記の表面改質処理が施された絶縁体2の外周に膜厚1μm〜3μmのABS樹脂被膜層3を施す。被膜層3は、溶剤に溶解させたABS樹脂槽にディッピングするか、あるいは塗布する等の方法により形成させる。
【0007】
ここで、ABS樹脂被覆層3は、膜厚が0.05μm〜3μmと極く薄い被膜であり、表面改質され、凹凸が形成された絶縁体表面に食い込み、このアンカー効果により絶縁体表面との強い密着が得られる。
さらに、ABS樹脂は次工程のメッキとも密着性が良いので、表面改質した絶縁体とメッキ層との間にこのABS樹脂被膜層を設けることにより、従来方法と比較し、メッキの耐久性が格段に向上する。
ここで、ABS樹脂の被覆層3の膜厚が3μm以下と極く薄いので、高周波特性には何ら影響を与えなく、優れた高周波特性が期待できる。
次に、ABS樹脂被膜層3の表面に無電解メッキを施す。無電解メッキ層4としては、厚さ0.5μm〜5μmの銅メッキ層を設ける。さらに、無電解メッキ層4の外周に電解メッキ層5を設ける。電解メッキ層5としては、厚さ5μm〜30μmの銅メッキ層を設ける。銅メッキの種類としては、シアン化銅メッキ、硫酸銅メッキ等が有るが、本願発明では、延展性が良く曲げにも強い硫酸銅を選択した。
最後に、電解メッキ層5の外周に、厚さ0.02mm以上の保護被覆層6を設ける。保護被覆層6としては、PVC、ポリエチレン、ポリウレタン等各種の被覆材が選択できる。
【0008】
【実施例】
導体1として、外径0.05mmの0.3%スズ入り銅合金の銀メッキ単線を使用した。絶縁体2としては、四弗化エチレン−六弗化プロピレン共重合体樹脂(FEP)を押出被覆し、厚さ0.05mmとした。
次に、メッキ工程に入る前に、絶縁体2の表面、外周を波長248nm、KrFエキシマレーザにて表面改質した。
次に、表面改質を施した絶縁体2の外周に、ABS樹脂を厚さ1μmで塗布した。さらに、このABS樹脂被覆上への無電解メッキの厚さは3μmとし、電解メッキは厚さ27μmとした。
最後に、保護被覆層としてはポリエチレンを被覆及びコーティング被覆し、厚さは0.035mmとした。
以上により、金属編組では難しい外径0.28mmの細径同軸ケーブルが容易に作成できた。
また、高周波特性も従来の同軸ケーブルと同等であった。
【0009】
【発明の効果】
本願発明の同軸ケーブルは、表面改質した絶縁体とメッキ層との間にABS樹脂被膜層を介在させることによりメッキの密着力を高め、メッキの耐久性が向上できる。
また、ABS樹脂被覆層は極く薄い層であり、高周波特性に影響を及ぼすことがなく、優れた高周波特性が得られる。
さらに、金属編組を使用せず、金属メッキ層から構成されているため、同軸ケーブルの細径化ができる。
【図面の簡単な説明】
【図1】本発明の同軸ケーブルの横断面図である。
【符号の説明】
1 導体
2 絶縁体(フッ素樹脂)
3 ABS樹脂被膜層
4 無電解メッキ層
5 電解メッキ層
6 保護被覆層[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a coaxial cable used as a signal transmission line of a high-frequency component such as a measuring device, an information communication device, or an information processing device that requires particularly excellent high-frequency characteristics.
[0002]
[Prior art]
In recent years, measuring devices and information communication devices have been further reduced in size, and accordingly, coaxial cables used have been required to have a smaller diameter.
Therefore, instead of the conventional metal braided layer, the surface of the insulator is subjected to surface modification such as chemical treatment so that the metal plating is likely to adhere, and then a metal plating layer or a metal vapor deposition layer is provided on the surface of the insulator. A coaxial cable realizing a diameter has been known (for example, Japanese Utility Model Laid-Open No. 62-33117).
However, as in the above example, when a fluororesin with low dielectric loss and excellent high-frequency characteristics is used as the insulator of the coaxial cable, the metal layer is difficult to adhere and the metal layer thickness becomes uneven. In addition, there is a problem in quality that the adhesion between the insulator and the metal layer is weak and inferior in durability.
Furthermore, in order to improve adhesion (adhesiveness) to the insulator and facilitate terminal peeling, a resin that is more easily electrolessly plated than the insulator is extruded or tape-wrapped between the insulator and the plating layer. A coaxial cable is also known (for example, JP-A-7-272553).
However, even in this method, it is difficult to reduce the diameter because the insulating layer is thick, and because it is coated with a resin that is easily electroless-plated, which has an electrical characteristic different from that of the insulator, the high-frequency characteristics are affected. There is a problem of getting out.
[0003]
[Problems to be solved by the invention]
An object of the present invention is to solve the above-described problems of the prior art, to provide a coaxial cable that is excellent in plating adhesion, compact, and excellent in high-frequency characteristics.
[0004]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have a thin ABS resin that has good adhesion to both the modified surface of the insulator and the plating layer and does not affect the high frequency characteristics. The present invention has been completed with the idea of providing a coating layer between the insulator and the electroless plating layer.
[0005]
That is, the present invention is an insulating material comprising a fluororesin having a wall thickness of 0.035 mm or more extruded and coated on a single wire or stranded wire conductor having an outer diameter of 0.03 mm or more and having an uneven surface formed by excimer laser treatment or chemical treatment. Body, an ABS resin coating layer having a thickness of 0.05 μm to 3 μm applied on the insulator, an electroless metal plating layer having a thickness of 0.5 μm to 5 μm on the ABS resin coating layer, and the electroless metal plating layer The coaxial cable is characterized in that an electrolytic metal plating layer having a thickness of 5 μm or more is provided, and the outermost layer is formed of a protective coating layer.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the drawings.
In FIG. 1, 1 is a conductor, 2 is an insulator, 3 is an ABS resin coating layer, 4 is an electroless plating layer, 5 is an electrolytic plating layer, and 6 is a protective coating layer.
As the conductor 1, a single wire or stranded wire conductor such as a silver-plated tin-containing copper alloy wire or a copper-coated steel wire having an outer diameter of 0.03 mm or more is used.
Examples of the insulator 2 include ethylene tetrafluoride resin (PTFE), ethylene tetrafluoride-perfluoroalkyl vinyl ether copolymer resin (PFA), tetrafluoroethylene-hexafluoropropylene copolymer resin (FEP), four A fluororesin such as fluorinated ethylene-ethylene copolymer resin (ETFE) is used, but among the fluororesins, tetrafluoroethylene-hexafluoropropylene copolymer resin (FEP) having particularly low dielectric loss is particularly preferable. The wall thickness of the insulator 2 is 0.035 mm or more.
Next, the outer periphery of the insulator 2 is subjected to a metal sodium-naphthalene-based or metal sodium-ammonia-based chemical treatment, or surface modification treatment using an excimer laser or the like.
Next, an ABS resin coating layer 3 having a film thickness of 1 μm to 3 μm is applied to the outer periphery of the insulator 2 that has been subjected to the surface modification treatment. The coating layer 3 is formed by dipping or applying to an ABS resin tank dissolved in a solvent.
[0007]
Here, the ABS resin coating layer 3 is a very thin film having a film thickness of 0.05 μm to 3 μm, and has been surface-modified and bites into the surface of the insulator on which the irregularities are formed. Strong adhesion is obtained.
Furthermore, since the ABS resin has good adhesion to the plating in the next process, providing this ABS resin coating layer between the surface-modified insulator and the plating layer makes the plating more durable than the conventional method. Greatly improved.
Here, since the film thickness of the coating layer 3 of the ABS resin is as thin as 3 μm or less, excellent high frequency characteristics can be expected without affecting the high frequency characteristics.
Next, electroless plating is performed on the surface of the ABS resin coating layer 3. As the electroless plating layer 4, a copper plating layer having a thickness of 0.5 μm to 5 μm is provided. Furthermore, an electrolytic plating layer 5 is provided on the outer periphery of the electroless plating layer 4. As the electrolytic plating layer 5, a copper plating layer having a thickness of 5 μm to 30 μm is provided. Examples of the copper plating include copper cyanide plating and copper sulfate plating. In the present invention, copper sulfate having good spreadability and strong bending is selected.
Finally, a protective coating layer 6 having a thickness of 0.02 mm or more is provided on the outer periphery of the electrolytic plating layer 5. As the protective coating layer 6, various coating materials such as PVC, polyethylene, and polyurethane can be selected.
[0008]
【Example】
As the conductor 1, a silver-plated single wire of 0.3% tin-containing copper alloy having an outer diameter of 0.05 mm was used. The insulator 2 was extrusion coated with tetrafluoroethylene-hexafluoropropylene copolymer resin (FEP) to a thickness of 0.05 mm.
Next, before the plating process, the surface and outer periphery of the insulator 2 were surface-modified with a KrF excimer laser having a wavelength of 248 nm.
Next, ABS resin was applied in a thickness of 1 μm to the outer periphery of the insulator 2 subjected to surface modification. Furthermore, the thickness of the electroless plating on the ABS resin coating was 3 μm, and the thickness of the electrolytic plating was 27 μm.
Finally, polyethylene was coated and coated as a protective coating layer, and the thickness was 0.035 mm.
As described above, a thin coaxial cable having an outer diameter of 0.28 mm, which is difficult with metal braiding, can be easily produced.
Moreover, the high frequency characteristics were equivalent to those of the conventional coaxial cable.
[0009]
【The invention's effect】
In the coaxial cable of the present invention, the adhesion of plating can be increased by interposing an ABS resin coating layer between the surface-modified insulator and the plating layer, and the durability of plating can be improved.
Further, the ABS resin coating layer is a very thin layer, and does not affect the high frequency characteristics, so that excellent high frequency characteristics can be obtained.
Furthermore, since the metal braid is not used and the metal plating layer is used, the diameter of the coaxial cable can be reduced.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a coaxial cable of the present invention.
[Explanation of symbols]
1 Conductor 2 Insulator (Fluororesin)
3 ABS resin coating layer 4 Electroless plating layer 5 Electrolytic plating layer 6 Protective coating layer
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32597398A JP4137255B2 (en) | 1998-10-30 | 1998-10-30 | coaxial cable |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32597398A JP4137255B2 (en) | 1998-10-30 | 1998-10-30 | coaxial cable |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000138014A JP2000138014A (en) | 2000-05-16 |
JP4137255B2 true JP4137255B2 (en) | 2008-08-20 |
Family
ID=18182669
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP32597398A Expired - Fee Related JP4137255B2 (en) | 1998-10-30 | 1998-10-30 | coaxial cable |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4137255B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6953888B2 (en) | 2003-02-25 | 2005-10-11 | Daniel Livshitz | Thin coaxial cable and method for its manufacture |
JP4942539B2 (en) * | 2006-08-02 | 2012-05-30 | 日星電気株式会社 | coaxial cable |
JP2008084810A (en) * | 2006-08-30 | 2008-04-10 | Nissei Electric Co Ltd | Coaxial cable |
CN102239527A (en) * | 2008-12-02 | 2011-11-09 | 株式会社藤仓 | Transmitting cable and signal transmitting cable using same |
JP7010018B2 (en) * | 2018-01-19 | 2022-01-26 | 日立金属株式会社 | Signal transmission cable |
JP7114945B2 (en) * | 2018-03-07 | 2022-08-09 | 日立金属株式会社 | Differential signal transmission cable, multicore cable, and method for manufacturing differential signal transmission cable |
-
1998
- 1998-10-30 JP JP32597398A patent/JP4137255B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2000138014A (en) | 2000-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3671919B2 (en) | Coaxial cable and coaxial multi-core cable | |
US4467002A (en) | Dimensionally-recoverable article | |
US6218624B1 (en) | Coaxial cable | |
US6953888B2 (en) | Thin coaxial cable and method for its manufacture | |
JP2022103384A (en) | Coaxial cable and cable assembly | |
JP2006294551A (en) | Coaxial cable | |
JP4942539B2 (en) | coaxial cable | |
JP4137255B2 (en) | coaxial cable | |
JP2929161B2 (en) | Semi-rigid coaxial cable with easy termination and method of manufacturing the same | |
JP3010336B2 (en) | Coaxial cable and method of manufacturing the same | |
CN110060814A (en) | Cable is used in signal transmission | |
JP2008004275A (en) | Two-core parallel coaxial cable | |
WO2017168481A1 (en) | Coaxial cable | |
JP3443784B2 (en) | Manufacturing method of coaxial cable for high frequency | |
JP3537288B2 (en) | Semi-rigid coaxial cable and method of manufacturing the same | |
JP2003187649A (en) | Semi-flexible coaxial cable | |
JP2003051219A (en) | Ultra superfine coaxial cable | |
JP2003223816A (en) | Flat shield cable | |
JP2006294552A (en) | Coaxial cable and probe cable using it | |
JPH08241633A (en) | Coaxial cable and manufacture thereof | |
JP2000138013A (en) | Coaxial cable | |
JP3625369B2 (en) | Semi-rigid coaxial cable and manufacturing method thereof | |
JP3592083B2 (en) | Fine coaxial cable with good terminal workability and method of manufacturing the same | |
JP5239304B2 (en) | Coaxial cable and manufacturing method thereof | |
WO2013099783A1 (en) | Cable |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051028 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080221 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080226 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080410 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080509 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080604 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110613 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120613 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120613 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140613 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |