JP5278943B2 - Thermosetting silicone rubber composition, electronic component and electronic device - Google Patents

Thermosetting silicone rubber composition, electronic component and electronic device Download PDF

Info

Publication number
JP5278943B2
JP5278943B2 JP2007535556A JP2007535556A JP5278943B2 JP 5278943 B2 JP5278943 B2 JP 5278943B2 JP 2007535556 A JP2007535556 A JP 2007535556A JP 2007535556 A JP2007535556 A JP 2007535556A JP 5278943 B2 JP5278943 B2 JP 5278943B2
Authority
JP
Japan
Prior art keywords
group
silicone rubber
platinum
rubber composition
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007535556A
Other languages
Japanese (ja)
Other versions
JPWO2007032481A1 (en
Inventor
勝利 峯
君男 山川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Handa Co Ltd
DuPont Toray Specialty Materials KK
Original Assignee
Dow Corning Toray Co Ltd
Nihon Handa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Corning Toray Co Ltd, Nihon Handa Co Ltd filed Critical Dow Corning Toray Co Ltd
Priority to JP2007535556A priority Critical patent/JP5278943B2/en
Publication of JPWO2007032481A1 publication Critical patent/JPWO2007032481A1/en
Application granted granted Critical
Publication of JP5278943B2 publication Critical patent/JP5278943B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/10Encapsulated ingredients

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Conductive Materials (AREA)

Description

本発明は熱硬化性シリコーンゴム組成物に関し、詳しくは、室温下での粘度上昇が小さく取扱作業性が優れ、かつ、低温度での加熱により速やかに硬化する硬化性シリコーンゴム組成物、および、本熱硬化性シリコーンゴム組成物により被覆、接着した電子部品および電子機器に関する。 The present invention relates to a thermosetting silicone rubber composition, and more specifically, a curable silicone rubber composition that has a small increase in viscosity at room temperature and excellent handling workability, and that is quickly cured by heating at a low temperature, and The present invention relates to an electronic component and an electronic device coated and bonded with the thermosetting silicone rubber composition.

ケイ素原子結合アルケニル基を含有するオルガノポリシロキサンとケイ素原子結合水素原子を含有するオルガノハイドロジェンポリシロキサンを白金系触媒で硬化する付加反応型の熱硬化性シリコーンゴム組成物は、優れた塗布作業性、接着性、硬化性、耐熱安定性、電気特性、熱伝導特性等を有する信頼性の高い材料として、コンデンサ、抵抗、ダイオード、メモリ、演算素子(CPU)等の電子部品、電子機器の被覆剤、放熱剤、接着剤等として広範囲にわたり使用されている。 Addition reaction type thermosetting silicone rubber composition that cures organo-polysiloxane containing silicon-bonded alkenyl group and organohydrogenpolysiloxane containing silicon-bonded hydrogen atom with platinum-based catalyst has excellent coating workability. As a highly reliable material having adhesiveness, curability, heat stability, electrical characteristics, heat conduction characteristics, etc., capacitors, resistors, diodes, memories, arithmetic components (CPU) and other electronic components, and coatings for electronic devices It is widely used as a heat-dissipating agent and adhesive.

近年、液晶、プラズマ等のディスプレイ装置においてはその大型化により搭載される電子部品、電子機器、電子装置も高性能化が進んでおり、また、それらの搭載位置も高密度実装化によりディスプレイ装置のきわめて近傍になってきたため、これらに使用される部品、装置の耐熱性の制約が大きく影響し、その結果、使用される熱硬化性シリコーンゴム組成物の硬化温度もその上限温度が、例えば70〜100℃に制限されるという制約が強まってきている。また高密度実装の点からは熱硬化性シリコーンゴム組成物が使用される部品近傍に面積的な余裕がなくなってきており、塗布等した後には速やかに硬化して周辺に広がらないことも必要とされている。 In recent years, display devices such as liquid crystal and plasma have been improved in performance as electronic components, electronic equipment, and electronic devices mounted due to their upsizing, and their mounting positions have been increased by high-density mounting. Since it has become extremely close, the heat resistance restrictions of the parts and devices used in these devices have a great influence. As a result, the upper limit temperature of the thermosetting silicone rubber composition used is, for example, 70 to The restriction of being limited to 100 ° C. is becoming stronger. In addition, from the viewpoint of high-density mounting, there is no room for area in the vicinity of the parts where the thermosetting silicone rubber composition is used, and it is also necessary to cure quickly after application etc. and not spread around the periphery. Has been.

一方、作業性の点からは熱硬化性シリコーンゴム組成物には室温における反応を抑制して粘度上昇を抑え可使時間を長く保ち、かつ、使用前に混合作業が不要の1液性であることが引き続き求められている。
このように室温(作業雰囲気温度であり例えば25℃)においては硬化反応が極めて遅く、かつ、硬化温度(例えば70〜100℃)においては急速に硬化するという、相反する硬化特性を有する熱硬化性シリコーンゴム組成物の要求がますます増大している。
On the other hand, from the viewpoint of workability, the thermosetting silicone rubber composition is a one-component type that suppresses the reaction at room temperature, suppresses the increase in viscosity, keeps the pot life longer, and does not require any mixing work before use. There continues to be a need.
As described above, thermosetting having a contradictory curing characteristic is that the curing reaction is extremely slow at room temperature (working atmosphere temperature, for example, 25 ° C.) and that curing is rapid at the curing temperature (for example, 70 to 100 ° C.). There is an increasing demand for silicone rubber compositions.

熱硬化性シリコーンゴム組成物が低い加熱温度において早く硬化するためには室温で液状である白金系の触媒、具体的には塩化白金酸のアルコール溶液、白金と低粘度のジビニルテトラメチルジシロキサンの錯体等が好適に使用されており、その添加量を大きくすれば低い硬化温度でも速やかに硬化が可能な熱硬化性シリコーンゴム組成物とすることができる。しかしこの場合は同時に室温における可使時間が急速に低下し、塗布の作業効率を著しく低下させ、また、製品形態が1液性である熱硬化性シリコーンゴム組成物とすることが困難となる。 In order for the thermosetting silicone rubber composition to cure quickly at a low heating temperature, a platinum-based catalyst that is liquid at room temperature, specifically, an alcohol solution of chloroplatinic acid, platinum and low-viscosity divinyltetramethyldisiloxane Complexes and the like are suitably used, and if the addition amount is increased, a thermosetting silicone rubber composition that can be rapidly cured even at a low curing temperature can be obtained. However, in this case, at the same time, the pot life at room temperature rapidly decreases, the working efficiency of coating is remarkably reduced, and it becomes difficult to obtain a thermosetting silicone rubber composition having a one-part product form.

一方、室温での可使時間を長くし、かつ、含有物質や周辺物質による硬化阻害の影響を小さくする目的で、例えば白金系触媒を含有する軟化点が40〜200℃である熱可塑性樹脂からなる微粒子状触媒が提案されている(特開平8−319425)。軟化点を有する熱可塑性樹脂を用いて微粒子状とすることにより、1液性でかつ長い可使時間とすることは可能であるが、硬化温度では該熱可塑性樹脂は軟化するだけのため硬化に有効な白金系触媒成分の放出や拡散が遅く、特に硬化温度が低い場合(例えば70〜100℃)に硬化速度を速くすることができないという問題があった。 On the other hand, for the purpose of extending the pot life at room temperature and reducing the influence of curing inhibition by contained substances and surrounding substances, for example, from a thermoplastic resin containing a platinum-based catalyst having a softening point of 40 to 200 ° C. A particulate catalyst has been proposed (Japanese Patent Laid-Open No. 8-319425). By using a thermoplastic resin having a softening point to form fine particles, it is possible to have a one-component and long pot life. However, at the curing temperature, the thermoplastic resin is only softened so that it can be cured. There is a problem that the release rate and diffusion of effective platinum-based catalyst components are slow, and particularly when the curing temperature is low (for example, 70 to 100 ° C.), the curing rate cannot be increased.

特開平8−319425号公報JP-A-8-319425

このような問題を解決するため熱硬化性シリコーンゴム組成物に使用する白金系触媒の形態を鋭意検討した結果、白金系触媒と特定の範囲の融点を有するワックスからなる微粒子状とすることにより、室温では粘度上昇が小さいため可使時間が長く、かつ、低温度(例えば70〜100℃)での加熱によって短時間に硬化が可能である熱硬化性シリコーンゴム組成物を得ることができることを見出して本発明に達した。
本発明の目的は室温では可使時間が長く、しかも、低温度(例えば70〜100℃)での加熱によって短時間に硬化が可能である白金系触媒を使用した熱硬化性シリコーンゴム組成物、および、該熱硬化性シリコーンゴム組成物により被覆、接着された電子部品、電子機器を提供することにある。
As a result of earnestly examining the form of the platinum-based catalyst used in the thermosetting silicone rubber composition in order to solve such a problem, by forming a fine particle composed of a platinum-based catalyst and a wax having a melting point in a specific range, It has been found that a thermosetting silicone rubber composition that can be cured in a short time by heating at a low temperature (for example, 70 to 100 ° C.) can be obtained because the increase in viscosity is small at room temperature. The present invention has been reached.
An object of the present invention is a thermosetting silicone rubber composition using a platinum-based catalyst that has a long pot life at room temperature and can be cured in a short time by heating at a low temperature (for example, 70 to 100 ° C.), Another object of the present invention is to provide an electronic component and an electronic device that are coated and bonded with the thermosetting silicone rubber composition.

本発明は、
(A)一分子中に少なくとも2個のケイ素原子結合アルケニル基を含有するオルガノポリシロキサン100重量部、
(B)一分子中に少なくとも2個のケイ素原子結合水素原子を含有するオルガノハイドロジェンポリシロキサン0.1〜50重量部、
(C)熱伝導性粒子および/または電気伝導性粒子0〜3000重量部、
(D)白金系触媒を白金金属原子として0.001重量%以上含有する融点40〜230℃であるワックス粒子からなる平均粒子径が0.01〜500μmである微粒子触媒0.0001〜20重量部、
からなり、
前記ワックス粒子に使用するワックスの融点+20℃の温度における該ワックスの溶融粘度が10Pa・s以下である熱硬化性シリコーンゴム組成物、および、本熱硬化性シリコーンゴム組成物により被覆または接着してなる電子部品または電子機器に関する。
The present invention
(A) 100 parts by weight of an organopolysiloxane containing at least two silicon-bonded alkenyl groups in one molecule;
(B) 0.1 to 50 parts by weight of an organohydrogenpolysiloxane containing at least two silicon-bonded hydrogen atoms in one molecule;
(C) 0 to 3000 parts by weight of thermally conductive particles and / or electrically conductive particles,
(D) 0.0001 to 20 parts by weight of a fine particle catalyst having an average particle diameter of 0.01 to 500 μm composed of wax particles having a melting point of 40 to 230 ° C. containing 0.001% by weight or more of platinum-based catalyst as platinum metal atoms ,
Tona is,
The thermosetting silicone rubber composition having a melt viscosity of 10 Pa · s or less at a melting point of the wax used for the wax particles + 20 ° C. and the thermosetting silicone rubber composition is coated or adhered. Relates to an electronic component or an electronic device.

本発明の熱硬化性シリコーンゴム組成物は、室温では可使時間が長く保存安定性に優れ、微粒子状触媒中のワックスの融点以上に加熱すると短時間で硬化するので作業性に優れるという特徴がある。また本発明の電子部品または電子機器は前記硬化性シリコーンゴム組成物の硬化物により被覆、接着等がなされているので信頼性が優れるという特徴がある。 The thermosetting silicone rubber composition of the present invention has a long working life at room temperature and excellent storage stability, and is excellent in workability because it cures in a short time when heated above the melting point of the wax in the particulate catalyst. is there. In addition, the electronic component or electronic device of the present invention is characterized in that it is excellent in reliability because it is coated, adhered, etc. with the cured product of the curable silicone rubber composition.

以下、本発明の熱硬化性シリコーンゴム組成物を詳細に説明する。(A)成分のオルガノポリシロキサンは本組成物の主剤であり、一分子中に少なくとも2個のケイ素原子結合アルケニル基を含有する。(A)成分中のケイ素原子結合アルケニル基としては、例えば、ビニル基、アリル基、ブテニル基、ペンテニル基、ヘキセニル基、ヘプテニル基が挙げられ、特に、ビニル基であることが好ましい。(A)成分中のアルケニル基の結合位置としては、例えば、分子鎖末端および/または分子鎖側鎖が挙げられる。(A)成分中のアルケニル基以外のケイ素原子結合有機基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基等のアルキル基;フェニル基、トリル基、キシリル基、ナフチル基等のアリール基;ベンジル基、フェネチル基等のアラルキル基;クロロメチル基、3−クロロプロピル基、3、3、3−トリフロロプロピル基等のハロゲン化アルキル基が挙げられ、特に、メチル基、フェニル基であることが好ましい。このような(A)成分の分子構造としては、例えば、直鎖状、一部分岐を有する直鎖状、環状、分岐鎖状が挙げられ、特に直鎖状であることが好ましい。(A)成分の粘度は限定されないが、25℃における粘度が10〜500000センチポイズの範囲内であることが好ましく、特に、50〜100000センチポイズの範囲内であることが好ましい。これは、(A)成分の25℃における粘度が10センチポイズ未満であると、得られるシリコーンゴムの物理的特性が低下するためであり、また、これが500000センチポイズをこえると、得られる組成物の取扱作業性が低下するためである。 Hereinafter, the thermosetting silicone rubber composition of the present invention will be described in detail. The (A) component organopolysiloxane is the main component of the composition and contains at least two silicon-bonded alkenyl groups in one molecule. Examples of the silicon atom-bonded alkenyl group in component (A) include a vinyl group, an allyl group, a butenyl group, a pentenyl group, a hexenyl group, and a heptenyl group, and a vinyl group is particularly preferable. Examples of the bonding position of the alkenyl group in the component (A) include a molecular chain terminal and / or a molecular chain side chain. Examples of silicon-bonded organic groups other than alkenyl groups in component (A) include alkyl groups such as methyl, ethyl, propyl, butyl, pentyl, hexyl and heptyl groups; phenyl and tolyl groups Aryl groups such as xylyl group and naphthyl group; aralkyl groups such as benzyl group and phenethyl group; and halogenated alkyl groups such as chloromethyl group, 3-chloropropyl group, 3, 3, 3-trifluoropropyl group and the like. In particular, a methyl group and a phenyl group are preferable. Examples of the molecular structure of the component (A) include a straight chain, a partially branched straight chain, a ring, and a branched chain, and a straight chain is particularly preferable. (A) Although the viscosity of a component is not limited, It is preferable that the viscosity in 25 degreeC is in the range of 10-500000 centipoise, and it is especially preferable that it is in the range of 50-100000 centipoise. This is because if the viscosity of component (A) at 25 ° C. is less than 10 centipoise, the physical properties of the resulting silicone rubber will decrease, and if this exceeds 500,000 centipoise, the resulting composition will be handled. This is because workability is lowered.

このような(A)成分のオルガノポリシロキサンとしては、例えば、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合体、分子鎖両末端トリメチルシロキシ基封鎖メチルビニルポリシロキサン、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン・メチルフェニルシロキサン共重合体、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末端ジメチルビニルシロキシ基封鎖メチルビニルポリシロキサン、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合体、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン・メチルフェニルシロキサン共重合体、式:R1 3SiO1/2で示されるシロキサン単位と式:R1 22SiO1/2で示されるシロキサン単位と式:R1 2SiO2/2で示される単位と少量の式:SiO4/2で示されるシロキサン単位からなるオルガノポリシロキサン共重合体、式:R1 22SiO1/2で示されるシロキサン単位と式:R1 2SiO2/2で示されるシロキサン単位と少量の式:SiO4/2で示されるシロキサン単位からなるオルガノポリシロキサン共重合体、式:R12SiO2/2で示されるシロキサン単位と少量の式:R1SiO3/2で示されるシロキサン単位もしくは式:R2SiO3/2で示されるシロキサン単位からなるオルガノポリシロキサン共重合体、および、これらのオルガノポリシロキサンの二種以上の混合物が挙げられる。上式中、R1はアルケニル基以外の一価炭化水素基であり、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基等のアルキル基;フェニル基、トリル基、キシリル基、ナフチル基等のアリール基;ベンジル基、フェネチル基等のアラルキル基;クロロメチル基、3−クロロプロピル基、3、3、3−トリフロロプロピル基等のハロゲン化アルキル基が挙げられる。また、上式中、R2はアルケニル基であり、例えば、ビニル基、アリル基、ブテニル基、ペンテニル基、ヘキセニル基、ヘプテニル基が挙げられる。Examples of the organopolysiloxane of the component (A) include, for example, a trimethylsiloxy group-capped dimethylsiloxane / methylvinylsiloxane copolymer, a molecular chain both-ends trimethylsiloxy group-capped methylvinylpolysiloxane, and both molecular chains. Terminal trimethylsiloxy group-blocked dimethylsiloxane / methylvinylsiloxane / methylphenylsiloxane copolymer, molecular chain both ends dimethylvinylsiloxy group-blocked dimethylpolysiloxane, molecular chain both ends dimethylvinylsiloxy group-blocked methylvinylpolysiloxane, molecular chain both ends Dimethylvinylsiloxy-blocked dimethylsiloxane / methylvinylsiloxane copolymer, dimethylvinylsiloxy-blocked dimethylsiloxane / methylvinylsiloxane / methylphenylsiloxane copolymer , Wherein: the siloxane units of the formula R 1 3 SiO 1/2: siloxane units represented by the formula R 1 2 R 2 SiO 1/2: units represented by R 1 2 SiO 2/2 and a small amount of the formula : An organopolysiloxane copolymer comprising a siloxane unit represented by SiO 4/2 , a siloxane unit represented by the formula: R 1 2 R 2 SiO 1/2 and a siloxane unit represented by the formula: R 1 2 SiO 2/2 And a small amount of an organopolysiloxane copolymer composed of a siloxane unit represented by SiO 4/2 , a siloxane unit represented by a formula: R 1 R 2 SiO 2/2 and a small amount of formula: R 1 SiO 3/2 Examples thereof include an organopolysiloxane copolymer comprising a siloxane unit represented by the formula: R 2 SiO 3/2 and a mixture of two or more of these organopolysiloxanes. In the above formula, R 1 is a monovalent hydrocarbon group other than an alkenyl group, for example, an alkyl group such as a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group; a phenyl group, a tolyl group Aryl groups such as a group, xylyl group and naphthyl group; aralkyl groups such as benzyl group and phenethyl group; and halogenated alkyl groups such as chloromethyl group, 3-chloropropyl group, 3, 3, 3-trifluoropropyl group and the like. It is done. In the above formula, R 2 is an alkenyl group, and examples thereof include a vinyl group, an allyl group, a butenyl group, a pentenyl group, a hexenyl group, and a heptenyl group.

(B)成分のオルガノハイドロジェンポリシロキサンは本組成物の架橋剤であり、一分子中に少なくとも2個のケイ素原子結合水素原子を含有する。(B)成分中のケイ素原子結合水素原子の結合位置としては、例えば、分子鎖末端および/または分子鎖側鎖が挙げられる。(B)成分中のケイ素原子結合有機基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基等のアルキル基;フェニル基、トリル基、キシリル基、ナフチル基等のアリール基;ベンジル基、フェネチル基等のアラルキル基;クロロメチル基、3−クロロプロピル基、3、3、3−トリフロロプロピル基等のハロゲン化アルキル基が挙げられ、特に、メチル基、フェニル基であることが好ましい。このような(B)成分の分子構造としては、例えば、直鎖状、一部分岐を有する直鎖状、環状、分岐鎖状が挙げられ、特に、直鎖状であることが好ましい。(B)成分の粘度は限定されないが、25℃における粘度が1〜500000センチポイズの範囲内であることが好ましく、さらに5〜100000センチポイズの範囲内であることが好ましい。これは、(B)成分の25℃における粘度が1センチポイズ未満であると、得られるシリコーンゴムの物理的特性が低下するためであり、また、これが500000センチポイズをこえると、得られる組成物の取扱作業性が低下するためである。 The organohydrogenpolysiloxane of component (B) is a crosslinking agent of the present composition and contains at least two silicon-bonded hydrogen atoms in one molecule. Examples of the bonding position of silicon atom-bonded hydrogen atoms in component (B) include molecular chain terminals and / or molecular chain side chains. Examples of the silicon atom-bonded organic group in component (B) include alkyl groups such as methyl, ethyl, propyl, butyl, pentyl, hexyl, and heptyl groups; phenyl, tolyl, xylyl, Aryl groups such as naphthyl group; aralkyl groups such as benzyl group and phenethyl group; halogenated alkyl groups such as chloromethyl group, 3-chloropropyl group, 3,3,3-trifluoropropyl group, etc. And a phenyl group are preferred. Examples of the molecular structure of the component (B) include linear, partially branched linear, cyclic, and branched, with linear being particularly preferred. Although the viscosity of (B) component is not limited, It is preferable that the viscosity in 25 degreeC is in the range of 1-500000 centipoise, and it is further more preferable in the range of 5-100,000 centipoise. This is because if the viscosity of the component (B) at 25 ° C. is less than 1 centipoise, the physical properties of the resulting silicone rubber will deteriorate, and if this exceeds 500,000 centipoise, the resulting composition will be handled. This is because workability is lowered.

このような(B)成分のオルガノポリシロキサンとしては、例えば、分子鎖両末端トリメチルシロキシ基封鎖メチルハイドロジェンポリシロキサン、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン・メチルフェニルシロキサン共重合体、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルシロキサン・メチルフェニルシロキサン共重合体、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖メチルフェニルポリシロキサン、式:R1 3SiO1/2で示されるシロキサン単位と式:R1 2HSiO1/2で示されるシロキサン単位と式:SiO4/2で示されるシロキサン単位からなるオルガノポリシロキサン共重合体、式:R1 2HSiO1/2で示されるシロキサン単位と式:SiO4/2で示されるシロキサン単位からなるオルガノポリシロキサン共重合体、式:R1HSiO2/2で示されるシロキサン単位と式:R1SiO3/2で示されるシロキサン単位もしくは式:HSiO3/2で示されるシロキサン単位からなるオルガノポリシロキサン共重合体、および、これらのオルガノポリシロキサンの二種以上の混合物が挙げられる。上式中、R1はアルケニル基以外の一価炭化水素基であり、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基等のアルキル基;フェニル基、トリル基、キシリル基、ナフチル基等のアリール基;ベンジル基、フェネチル基等のアラルキル基;クロロメチル基、3−クロロプロピル基、3、3、3−トリフロロプロピル基等のハロゲン化アルキル基が挙げられる。Examples of such an organopolysiloxane of component (B) include, for example, molecular chain both ends trimethylsiloxy group-blocked methylhydrogen polysiloxane, molecular chain both ends trimethylsiloxy group-blocked dimethylsiloxane / methylhydrogensiloxane copolymer, molecule Trimethylsiloxy group-capped dimethylsiloxane / methylhydrogensiloxane / methylphenylsiloxane copolymer, both chain ends dimethylhydrogensiloxy group-capped dimethylpolysiloxane, molecular chain both ends dimethylhydrogensiloxy group-capped dimethylsiloxane / methyl Phenylsiloxane copolymer, dimethylhydrogensiloxy group-blocked methylphenylpolysiloxane with molecular chain at both ends, siloxane unit represented by formula: R 1 3 SiO 1/2 and formula: R 1 2 HSiO 1 An organopolysiloxane copolymer comprising a siloxane unit represented by / 2 and a siloxane unit represented by the formula: SiO 4/2 , a siloxane unit represented by the formula: R 1 2 HSiO 1/2 and a formula: SiO 4/2 An organopolysiloxane copolymer comprising the indicated siloxane units, a siloxane unit represented by the formula: R 1 HSiO 2/2 and a siloxane unit represented by the formula: R 1 SiO 3/2 or a formula: HSiO 3/2 Examples thereof include organopolysiloxane copolymers composed of siloxane units, and mixtures of two or more of these organopolysiloxanes. In the above formula, R 1 is a monovalent hydrocarbon group other than an alkenyl group, for example, an alkyl group such as a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group; a phenyl group, a tolyl group Aryl groups such as a group, xylyl group and naphthyl group; aralkyl groups such as benzyl group and phenethyl group; and halogenated alkyl groups such as chloromethyl group, 3-chloropropyl group, 3, 3, 3-trifluoropropyl group and the like. It is done.

(B)成分の配合量は(A)成分100重量部に対して0.1〜50重量部の範囲内である。これは、(A)成分100重量部に対して(B)成分が0.1重量部未満であると、得られる組成物が十分に硬化しないためであり、また、これが50重量部をこえると、得られる組成物が十分に硬化しないか、または、得られるシリコーンゴムの物理的特性が経時的に変化するためである。 (B) The compounding quantity of a component exists in the range of 0.1-50 weight part with respect to 100 weight part of (A) component. This is because when the component (B) is less than 0.1 part by weight relative to 100 parts by weight of the component (A), the resulting composition does not sufficiently cure, and when this exceeds 50 parts by weight. This is because the resulting composition does not cure sufficiently, or the physical properties of the resulting silicone rubber change over time.

(C)成分の熱伝導性粒子および/または電気伝導性粒子は本組成物を硬化して得られるシリコーンゴムに高熱伝導性を付与する場合に添加される成分である。これらの粒子としては公知の無機質系や金属系の粒子(粉末)が使用でき、具体的にはシリカ、アルミナ、窒化アルミニウム、窒化ケイ素、窒化ホウ素、炭化ケイ素、炭酸カルシウム、炭酸亜鉛、酸化亜鉛、酸化マグネシウム、酸化チタン、酸化鉄、水酸化アルミニウム、水酸化マグネシウム、カーボンブラック、ダイヤモンドなどの無機質系粉末、白金、金、銀、銅、パラジウム、インジウム、アルミニウム、ニッケル、スズ、鉛、亜鉛、ビスマス、鉄、コバルトなどの金属系粉末、それらの混合物および合金粉末が例示される。粒子の本体が有機質系であっても少なくともその表面の一部が無機質系や金属系の熱伝導物質又は導電性物質で被覆されていれば良い。 The thermally conductive particles and / or electrically conductive particles of component (C) are components added when high thermal conductivity is imparted to the silicone rubber obtained by curing the present composition. As these particles, known inorganic or metal particles (powder) can be used. Specifically, silica, alumina, aluminum nitride, silicon nitride, boron nitride, silicon carbide, calcium carbonate, zinc carbonate, zinc oxide, Inorganic powders such as magnesium oxide, titanium oxide, iron oxide, aluminum hydroxide, magnesium hydroxide, carbon black, diamond, platinum, gold, silver, copper, palladium, indium, aluminum, nickel, tin, lead, zinc, bismuth Examples thereof include metal powders such as iron and cobalt, mixtures thereof and alloy powders. Even if the main body of the particles is organic, at least a part of the surface may be coated with an inorganic or metallic heat conductive material or conductive material.

(C)成分の粒子径は限定されないが、この平均粒子径が50μm以下であることが好ましく、特には0.1μm〜30μmであることが好ましい。また2種類以上の粒子や異なる平均粒径を有する粒子を併用しても良い。(C)成分の形状としては、例えば、球状、真球状、フレーク状、針状、不定型状が挙げられる。また、本発明の硬化性シリコーンゴム組成物の貯蔵安定性が優れることから、(C)成分は有機ケイ素化合物または公知の表面処理剤により表面処理されていてもよい。有機ケイ素化合物としては、例えば、メチルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、N−(2−アミノエチル)−3−アミノプロピルトリメトキシシラン等のアルコキシシラン;メチルトリクロルシラン、ジメチルジクロルシラン、トリメチルモノクロルシラン等のクロロシラン;ヘキサメチルジシラザン、ヘキサメチルシクロトリシラザン等のシラザン;分子鎖両末端シラノール基封鎖ジメチルシロキサンオリゴマー、分子鎖両末端シラノール基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合体オリゴマー、分子鎖両末端シラノール基封鎖メチルビニルシロキサンオリゴマー、分子鎖両末端シラノール基封鎖メチルフェニルシロキサンオリゴマー等のシロキサンオリゴマーが挙げられる。その他の表面処理剤としては、有機金属化合物、有機金属錯体、フッ素系有機化合物、水酸基、カルボキシ基、アミノ基を有する有機化合物等、が例示される。表面処理方法としては、例えば、熱伝導性粒子および/または電気伝導性粒子とこれらの表面処理剤を直接混合して処理する方法(乾式処理方法)、これらの表面処理剤をトルエン、メタノール、ヘプタン等の有機溶剤と共に熱伝導性粒子および/または電気伝導性粒子と混合して処理する方法(湿式処理方法)、(A)成分とこれらの表面処理剤との混合物中に熱伝導性粒子および/または電気伝導性粒子を配合するか、または、(A)成分と熱伝導性粒子および/または電気伝導性粒子の混合物中にこれらの表面処理剤を配合して熱伝導性粒子および/または電気伝導性粒子の表面を処理する方法(in−situ処理方法)が挙げられる。また、これらの表面処理剤により熱伝導性粒子および/または電気伝導性粒子の表面処理を行う際に、その処理効率を向上させるために、例えば、有機チタン等の有機金属化合物、水等を添加することが好ましい。 The particle diameter of the component (C) is not limited, but the average particle diameter is preferably 50 μm or less, and particularly preferably 0.1 μm to 30 μm. Two or more kinds of particles or particles having different average particle diameters may be used in combination. Examples of the shape of the component (C) include a spherical shape, a true spherical shape, a flake shape, a needle shape, and an indeterminate shape. Moreover, since the storage stability of the curable silicone rubber composition of the present invention is excellent, the component (C) may be surface-treated with an organosilicon compound or a known surface treating agent. Examples of the organosilicon compound include methyltrimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, Alkoxysilanes such as 3-aminopropyltriethoxysilane and N- (2-aminoethyl) -3-aminopropyltrimethoxysilane; chlorosilanes such as methyltrichlorosilane, dimethyldichlorosilane and trimethylmonochlorosilane; hexamethyldisilazane; Silazanes such as hexamethylcyclotrisilazane; molecular chain both ends silanol-blocked dimethylsiloxane oligomer, molecular chain both ends silanol-blocked dimethylsiloxane / methylvinylsiloxane copolymer oligomer Both molecular chain terminals blocked with silanol groups methylvinylsiloxane oligomer and the siloxane oligomer such as both molecular chain terminals blocked with silanol groups methylphenylsiloxane oligomer. Examples of other surface treatment agents include organic metal compounds, organic metal complexes, fluorine-based organic compounds, organic compounds having a hydroxyl group, a carboxy group, and an amino group. As the surface treatment method, for example, a method of directly mixing heat conductive particles and / or electrically conductive particles and these surface treatment agents (dry treatment method), these surface treatment agents are treated with toluene, methanol, heptane. A method of treating by mixing with heat conductive particles and / or electrically conductive particles together with an organic solvent such as (wet treatment method), heat conductive particles in a mixture of component (A) and these surface treatment agents and / or Alternatively, the electrically conductive particles are blended, or these surface treatment agents are blended in the mixture of the component (A) with the thermally conductive particles and / or the electrically conductive particles, and the thermally conductive particles and / or the electrically conductive particles. And a method of treating the surface of the conductive particles (in-situ treatment method). In addition, when performing surface treatment of thermally conductive particles and / or electrically conductive particles with these surface treatment agents, for example, an organic metal compound such as organic titanium, water, or the like is added to improve the treatment efficiency. It is preferable to do.

(C)成分の配合量は(A)成分100重量部に対して0〜3000重量部の範囲内である。(C)成分は本発明の硬化性シリコーンゴム組成物に熱伝導性および/または電気伝導性を付与するための成分であり、熱伝導性および/または電気伝導性を得ることを必要としなければ用いる必要はないが、(A)成分100重量部に対して(C)成分が3000重量部をこえると、得られる組成物の粘度が著しく大きくなり、その取扱作業性が著しく低下して好ましくない。 (C) The compounding quantity of a component exists in the range of 0-3000 weight part with respect to 100 weight part of (A) component. Component (C) is a component for imparting thermal conductivity and / or electrical conductivity to the curable silicone rubber composition of the present invention, and unless it is necessary to obtain thermal conductivity and / or electrical conductivity. Although it is not necessary to use, if the amount of component (C) exceeds 3000 parts by weight with respect to 100 parts by weight of component (A), the viscosity of the resulting composition is remarkably increased, and the handling workability thereof is remarkably lowered. .

(D)成分の微粒子触媒は本組成物の硬化を促進するための触媒であり、白金系触媒を白金金属原子として0.001重量%以上含有する融点40〜230℃であるワックス粒子からなり、その平均粒子径は0.01〜500μmであり、好ましくは0.1〜50μmの範囲内である。これは平均粒子径が0.01μm未満である微粒子触媒を製造することが困難であり、また、これが500μmをこえる微粒子触媒は、(A)成分中に均一に分散しにくく、また得られる組成物の硬化性が不均一となるためである。ワックス粒子に使用するワックスは室温より高い融点、すなわち40℃以上230℃以下の融点、望ましくは40℃以上150℃以下、特には60〜100℃の融点を有し、融点以上の温度では液状に融解することが必須である。融点がなく軟化点を有するだけの単なる熱可塑性であると低温度における熱硬化での白金系触媒成分の溶出、拡散がスムースにいかず、短時間で充分な硬化性を得ることができない。融点以上の温度においては粘度計で粘度(溶融粘度)が測定できるまでに液状化することが望ましく、融点+20℃の温度における溶融粘度が10Pa・s以下であることが特に望ましい。 The fine particle catalyst of the component (D) is a catalyst for accelerating the curing of the composition, and is composed of wax particles having a melting point of 40 to 230 ° C. containing 0.001% by weight or more of a platinum-based catalyst as a platinum metal atom, The average particle diameter is 0.01-500 micrometers, Preferably it exists in the range of 0.1-50 micrometers. This is because it is difficult to produce a fine particle catalyst having an average particle diameter of less than 0.01 μm, and a fine particle catalyst having an average particle diameter exceeding 500 μm is difficult to uniformly disperse in component (A), and the resulting composition This is because the curability of the resin becomes uneven. The wax used for the wax particles has a melting point higher than room temperature, that is, a melting point of 40 ° C. or higher and 230 ° C. or lower, desirably 40 ° C. or higher and 150 ° C. or lower, particularly 60 to 100 ° C. It is essential to melt. Elution and diffusion of the platinum-based catalyst component in the thermal curing at a low temperature does not proceed smoothly and cannot be sufficiently cured in a short time if it is a simple thermoplastic having only a softening point and no melting point. At a temperature above the melting point, it is desirable to liquefy before the viscosity (melt viscosity) can be measured with a viscometer, and it is particularly desirable that the melt viscosity at a temperature of melting point + 20 ° C. is 10 Pa · s or less.

このワックスは25℃において液状エポキシ含有ポリマーおよび/またはエポキシ含有オリゴマーには溶解しないことが望ましいが、完全に不溶解性である必要はなく、実質的に不溶性であれば良い。熱硬化性シリコーンゴム組成物に優れた接着特性を付与するために、グリシドキシプロピル基などのいわゆるエポキシ基を有するポリマー成分および/またはエポキシ基を有するオリゴマー成分を添加することがなされているため、これらの液状エポキシ含有成分に白金系触媒含有ワックス粒子中のワックスが溶解する性質があると保存期間中に経時的に白金系触媒成分が熱硬化性シリコーンゴム組成物中に溶出し、保存安定性を著しく低下させる恐れがあるためである。これらのエポキシ含有ポリマー、エポキシ含有オリゴマーとしては室温で液状であれば特に限定されないが、エポキシ樹脂、エポキシ官能性オルガノアルコキシシランの部分加水分解物、共加水分解物、部分共加水分解物、エポキシ変成シリコーン、シリコーン変成エポキシ樹脂が例示される。 Although it is desirable that this wax does not dissolve in the liquid epoxy-containing polymer and / or epoxy-containing oligomer at 25 ° C., it does not have to be completely insoluble and may be substantially insoluble. In order to impart excellent adhesive properties to the thermosetting silicone rubber composition, a polymer component having a so-called epoxy group such as a glycidoxypropyl group and / or an oligomer component having an epoxy group are added. If the liquid epoxy-containing component has the property of dissolving the wax in the platinum-based catalyst-containing wax particles, the platinum-based catalyst component will elute into the thermosetting silicone rubber composition over the course of the storage period, resulting in stable storage. This is because there is a risk of remarkably reducing the performance. These epoxy-containing polymers and epoxy-containing oligomers are not particularly limited as long as they are liquid at room temperature. Epoxy resins, partial hydrolysates of epoxy-functional organoalkoxysilanes, cohydrolysates, partial cohydrolysates, epoxy modified Examples thereof include silicone and silicone-modified epoxy resin.

(D)成分に用いるワックスは前記の特性を有するワックスであれば限定されず植物系ワックス、動物系ワックス、石油系ワックス、合成ワックス等があるが、特にアルキルメチルポリシロキサンワックスであることが望ましい。このワックスが明確な融点を有するためにはアルキル基としては炭素数が3以上であることが望ましく、特には炭素数が6以上の長鎖アルキル基、例えばラウリル基、ステアリル基であるアルキルメチルポリシロキサンであることが望ましい。アルキルメチルポリシロキサンの末端封鎖基は限定されず、メチル基、アルキル基が例示される。
(D)成分の構造としては、例えば、ワックス粒子中に白金系触媒が溶解または分散している構造、ワックスの殻の中に白金系触媒が包含されたマイクロカプセル構造が挙げられる。この白金系触媒としては、例えば、白金微粉末、白金黒、白金坦持シリカ微粉末、白金坦持活性炭、塩化白金酸、四塩化白金、塩化白金酸のアルコール溶液、白金とオレフィンとの錯体、白金とジビニルテトラメチルジシロキサン等のアルケニルシロキサンとの錯体が挙げられ、特に白金のジビニルジシロキサン錯体であることが好ましい。(D)成分中に白金系触媒の含有量は、その白金金属原子が0.001重量%以上となる量である。これは、白金系触媒の含有量が、その白金金属原子として0.001重量%未満であるワックス粒子からなる微粒子触媒は、十分な硬化促進性を示さなくなるためである。
The wax used for component (D) is not limited as long as it has the above-mentioned properties, and includes plant waxes, animal waxes, petroleum waxes, synthetic waxes, etc., but alkylmethylpolysiloxane waxes are particularly desirable. . In order for this wax to have a clear melting point, it is desirable that the alkyl group has 3 or more carbon atoms, and in particular, long-chain alkyl groups having 6 or more carbon atoms, such as alkylmethyl polyalkyls such as lauryl groups and stearyl groups. Desirably, it is siloxane. The terminal blocking group of alkylmethyl polysiloxane is not limited, and examples thereof include a methyl group and an alkyl group.
Examples of the structure of component (D) include a structure in which a platinum-based catalyst is dissolved or dispersed in wax particles, and a microcapsule structure in which a platinum-based catalyst is included in a wax shell. Examples of this platinum-based catalyst include platinum fine powder, platinum black, platinum-supported silica fine powder, platinum-supported activated carbon, chloroplatinic acid, platinum tetrachloride, an alcohol solution of chloroplatinic acid, a complex of platinum and olefin, A complex of platinum and an alkenylsiloxane such as divinyltetramethyldisiloxane may be mentioned, and a divinyldisiloxane complex of platinum is particularly preferable. The content of the platinum-based catalyst in the component (D) is such an amount that the platinum metal atom is 0.001% by weight or more. This is because a fine particle catalyst composed of wax particles having a platinum-based catalyst content of less than 0.001% by weight as platinum metal atoms does not exhibit sufficient curing acceleration.

(D)成分の調製方法としては、例えば、白金系触媒成分と融点を有するワックスを混合しながら融点以上に加熱して溶解、混合し、室温に冷却した後、塊状の白金系触媒含有ワックスを粉砕機などにより機械的に粉砕することで容易に得ることができる。このようにして作った粉末状の白金系触媒含有ワックス粒子はその表面に付着した白金系触媒成分を充分に除去するために、ワックス成分を溶解しない範囲で、水、炭化水素、アルコール、ケトン、低分子量シロキサン等の揮発性溶剤で洗浄しても良い。 (D) As a method for preparing the component, for example, a platinum-based catalyst component and a wax having a melting point are mixed and heated to a melting point or higher while being dissolved, mixed, cooled to room temperature, and then a massive platinum-based catalyst-containing wax is added. It can be easily obtained by mechanically pulverizing with a pulverizer or the like. The powdery platinum-based catalyst-containing wax particles produced in this way are water, hydrocarbons, alcohols, ketones, in the range not dissolving the wax component in order to sufficiently remove the platinum-based catalyst component adhering to the surface. You may wash | clean with volatile solvents, such as low molecular weight siloxane.

(D)成分の配合量は(A)成分100重量部に対して0.0001〜20重量部の範囲内である。これは、(A)成分100重量部に対して(D)成分が0.0001重量部未満であると、得られる組成物の硬化性が著しく低下するためであり、また、これが20重量部をこえても、硬化性にさほど変化はなく、不経済となるからである。また、熱硬化性シリコーンゴム組成物中の白金系金属含有量としては0.1〜5000ppmであることが望ましく0.5〜100ppmであることが特に望ましい。熱硬化性シリコーンゴム組成物中の白金系金属原子含有量が0.1ppm未満であると充分な硬化性が得られず、5000ppmを越えると無駄になるからである。
なお本発明の熱硬化性シリコーンゴム組成物には低温における硬化性を補うため(D)成分以外の白金系触媒を併用することができる。このような白金系触媒としては、白金粉末、白金黒、白金担持シリカ微粉末等の固体状の白金系触媒、塩化白金酸や四塩化白金などのアルコール溶液、および、白金とオレフィンまたは低粘度アルケニルシロキサンとからなる錯体などの液状の白金系触媒が例示されるが、熱硬化性シリコーンゴム組成物に溶解して均一になる液状が望ましく、特には白金と低粘度アルケニルシロキサンとからなる錯体が望ましい。
(D) The compounding quantity of a component exists in the range of 0.0001-20 weight part with respect to 100 weight part of (A) component. This is because if the component (D) is less than 0.0001 parts by weight relative to 100 parts by weight of the component (A), the curability of the resulting composition is significantly reduced, and this is 20 parts by weight. Even if it exceeds, curability does not change so much and becomes uneconomical. The platinum-based metal content in the thermosetting silicone rubber composition is preferably 0.1 to 5000 ppm, and particularly preferably 0.5 to 100 ppm. This is because if the platinum-based metal atom content in the thermosetting silicone rubber composition is less than 0.1 ppm, sufficient curability cannot be obtained, and if it exceeds 5000 ppm, it is wasted.
The thermosetting silicone rubber composition of the present invention can be used in combination with a platinum-based catalyst other than the component (D) in order to supplement curability at low temperatures. Examples of such platinum catalysts include solid platinum catalysts such as platinum powder, platinum black, and platinum-supported silica fine powder, alcohol solutions such as chloroplatinic acid and platinum tetrachloride, and platinum and olefins or low-viscosity alkenyls. A liquid platinum-based catalyst such as a complex composed of siloxane is exemplified, but a liquid which dissolves in the thermosetting silicone rubber composition and becomes uniform is desirable, and in particular, a complex composed of platinum and a low-viscosity alkenylsiloxane is desirable. .

本発明の硬化性シリコーンゴム組成物は上記の(A)成分〜(D)成分を均一に混合することにより調製される。本組成物にはその他任意の成分として、例えば、ヒュームドシリカ、沈降性シリカ、カーボンブラック、石英粉末、ガラス繊維、および、これらの無機質充填剤をオルガノアルコキシシラン、オルガノクロロシラン、オルガノシラザン等の有機ケイ素化合物により表面処理してなる無機質充填剤が挙げられる。また、本組成物の室温下での取扱作業性をさらに向上させるために硬化抑制剤を配合することが好ましい。この硬化抑制剤としては、例えば、3−メチル−1−ブチン−3−オール、3、5−ジメチル−1−ヘキシン−3−オール、2−フェニル−3−ブチン−2−オール等のアルキンアルコール;3−メチル−3−ペンテン−1−イン、3、5−ジメチル−3−ヘキセン−1−イン等のエンイン化合物;1、3、5、7−テトラメチル−1、3、5、7−テトラビニルシクロテトラシロキサン、1、3、5、7−テトラメチル−1、3、5、7−テトラヘキセニルシクロテトラシロキサン、ベンゾトリアゾールが挙げられる。これらの硬化抑制剤は本発明中に重量単位で10〜50、000ppmの範囲内であることが好ましい。また、本組成物には、本発明の目的を損なわない範囲で、一分子中に1個のケイ素原子結合水素原子またはアルケニル基を含有するオルガノポリシロキサン、ケイ素原子結合水素原子またはアルケニル基を含有しないオルガノポリシロキサン、一分子中にケイ素原子結合水素原子またはアルケニル基とケイ素原子結合アルコキシ基を含有するオルガノポリシロキサン、一分子中にケイ素原子結合アルコキシ基とエポキシ基を含有する有機ケイ素化合物、一分子中にケイ素原子結合水素原子またはアルケニル基とケイ素原子結合アルコキシ基とエポキシ基を含有する有機ケイ素化合物、一分子中にケイ素原子結合アルコキシ基とメタクリロキシ基を含有する有機ケイ素化合物、接着性付与剤、クリープハードニング防止剤、貯蔵安定剤、耐熱添加剤、酸化防止剤、難燃性付与剤、着色剤が挙げられる。 The curable silicone rubber composition of the present invention is prepared by uniformly mixing the above components (A) to (D). As other optional components in this composition, for example, fumed silica, precipitated silica, carbon black, quartz powder, glass fiber, and inorganic fillers such as organoalkoxysilane, organochlorosilane, and organosilazane are used. An inorganic filler formed by surface treatment with a silicon compound is exemplified. Moreover, in order to further improve the handling workability of the present composition at room temperature, it is preferable to incorporate a curing inhibitor. Examples of the curing inhibitor include alkyne alcohols such as 3-methyl-1-butyn-3-ol, 3,5-dimethyl-1-hexyn-3-ol, and 2-phenyl-3-butyn-2-ol. Enyne compounds such as 3-methyl-3-penten-1-yne and 3,5-dimethyl-3-hexen-1-yne; 1,3,5,7-tetramethyl-1,3,5,7- Examples include tetravinylcyclotetrasiloxane, 1,3,5,7-tetramethyl-1,3,5,7-tetrahexenylcyclotetrasiloxane, and benzotriazole. These curing inhibitors are preferably in the range of 10 to 50,000 ppm by weight in the present invention. In addition, the composition contains an organopolysiloxane containing one silicon atom-bonded hydrogen atom or alkenyl group in one molecule and a silicon atom-bonded hydrogen atom or alkenyl group within a range not impairing the object of the present invention. Organopolysiloxanes that contain silicon-bonded hydrogen atoms or alkenyl groups and silicon-bonded alkoxy groups in one molecule, organosilicon compounds that contain silicon-bonded alkoxy groups and epoxy groups in one molecule, Organosilicon compounds containing silicon-bonded hydrogen atoms or alkenyl groups, silicon-bonded alkoxy groups and epoxy groups in the molecule, organosilicon compounds containing silicon-bonded alkoxy groups and methacryloxy groups in one molecule, and adhesion promoter , Creep hardening inhibitor, storage stabilizer, heat-resistant Agents, antioxidants, flame retardants, coloring agents.

本発明の熱伝導性シリコーンゴム組成物を調製する方法は特に限定されず、例えば、ロスミキサー、プラネタリーミキサー等の混合装置を用いて調製することができる。本発明の熱伝導性シリコーンゴム組成物を調製する際、特に、(D)成分を配合する場合には、(D)成分中のワックスの融点未満の温度で、これが破壊しない程度に混合する必要がある。このようにして調製された熱伝導性シリコーンゴム組成物は冷蔵(例えば10℃以下)もしくは室温(10〜30℃)で貯蔵することができるが、特に冷蔵することが好ましい。 The method for preparing the heat conductive silicone rubber composition of the present invention is not particularly limited, and for example, the heat conductive silicone rubber composition can be prepared using a mixing apparatus such as a loss mixer or a planetary mixer. When preparing the thermally conductive silicone rubber composition of the present invention, particularly when the component (D) is blended, it is necessary to mix at a temperature below the melting point of the wax in the component (D) so that it does not break. There is. The heat conductive silicone rubber composition thus prepared can be stored refrigerated (for example, 10 ° C. or lower) or at room temperature (10-30 ° C.), but is preferably refrigerated.

本発明の熱硬化性シリコーンゴム組成物の塗布方法は制限されず、ディスペンス塗布、印刷塗布、スプレー塗布、はけ塗り等によることができる。また本発明の熱硬化性シリコーンゴム組成物は室温で液状、ペースト状、粘土状など種々の状態をとることができる。(D)成分中のワックスの融点以上の温度に熱硬化性シリコーンゴム組成物を保持すると、ワックスが溶融して白金系触媒の作用により急速に硬化する。例えばワックスの融点が80℃であると、80℃以上、望ましくは100℃以上に加熱すると急速に硬化してシリコーンゴム化する。シリコーンゴムはゲル状から強固で変形しにくいゴムまで種々の硬度をとる。なお硬化後に熱伝導性が必要な場合は、硬化後の熱伝導率としては1W/m・K以上であることが望ましい。電気伝導性が必要な熱硬化性シリコーンゴム組成物である場合には、硬化後の体積抵抗率が1×10Ω・cm以下であることが望ましく、半導電性が必要な場合には1×10Ω・cm〜1×1010Ω・cmの範囲であることが望ましく、電気絶縁性が必要な場合は1×1010Ω・cm以上であることが望ましい。また本発明の熱硬化性シリコーンゴム組成物に含まれる揮発性低分子量シロキサン成分の含有率は限定されないが、揮発成分やブリード成分により電子部品や電子装置、およびその周辺を汚染しないよう、その含有率は低い方が望ましい。例えば、熱風循環式オーブン中で100℃、1時間加熱したときの揮発分が1重量%以下であることが望ましく、更には0.1重量%以下であることが望ましい。The application method of the thermosetting silicone rubber composition of the present invention is not limited, and may be dispense application, print application, spray application, brush application or the like. Further, the thermosetting silicone rubber composition of the present invention can take various states such as liquid, paste, and clay at room temperature. When the thermosetting silicone rubber composition is held at a temperature equal to or higher than the melting point of the wax in the component (D), the wax is melted and rapidly cured by the action of the platinum-based catalyst. For example, when the wax has a melting point of 80 ° C., when heated to 80 ° C. or higher, preferably 100 ° C. or higher, it rapidly cures to form silicone rubber. Silicone rubber has various hardness from gel to rubber that is strong and difficult to deform. When thermal conductivity is required after curing, the thermal conductivity after curing is desirably 1 W / m · K or more. In the case of a thermosetting silicone rubber composition that requires electrical conductivity, the volume resistivity after curing is desirably 1 × 10 0 Ω · cm or less, and 1 is required when semiconductivity is required. is preferably in the range of × 10 0 Ω · cm~1 × 10 10 Ω · cm, it is desirable if the electrical insulation is required is 1 × 10 10 Ω · cm or more. In addition, the content of the volatile low molecular weight siloxane component contained in the thermosetting silicone rubber composition of the present invention is not limited, but the content is included so as not to contaminate electronic components and electronic devices and their surroundings by volatile components and bleed components. A lower rate is desirable. For example, the volatile content when heated at 100 ° C. for 1 hour in a hot air circulating oven is preferably 1% by weight or less, and more preferably 0.1% by weight or less.

本発明の電子部品、電子機器はコンデンサ、抵抗、ダイオード、メモリ、演算素子(CPU)等が本発明の熱硬化性シリコーンゴム組成物、特には熱伝導性充填剤および/または電気伝導性充填剤を含有する熱硬化性シリコーンゴム組成物により被覆または接着されていることを特徴とする。 The electronic component and the electronic device of the present invention include a capacitor, a resistor, a diode, a memory, a computing element (CPU) and the like. The thermosetting silicone rubber composition of the present invention, particularly the thermally conductive filler and / or the electrically conductive filler. It is characterized by being coated or adhered with a thermosetting silicone rubber composition containing

[熱硬化性シリコーンゴム組成物の初期粘度および120時間後粘度の測定方法]
東機産業(株)製の回転式粘度計(TV−20)を用い、ロータの回転数4rpm、温度25℃で粘度(単位:Pa・s)を測定し初期粘度とした。その後25℃の温度で保存し、120時間後に同様の方法で粘度を測定した。
[Method of measuring initial viscosity and viscosity after 120 hours of thermosetting silicone rubber composition]
Using a rotary viscometer (TV-20) manufactured by Toki Sangyo Co., Ltd., the viscosity (unit: Pa · s) was measured at a rotor rotation speed of 4 rpm and a temperature of 25 ° C. to obtain an initial viscosity. Thereafter, it was stored at a temperature of 25 ° C., and the viscosity was measured by the same method after 120 hours.

[白金系触媒含有ワックス粒子の3−グリシドキシプロピルトリメトキシシランとメチルトリメトキシランの共加水分解物(粘度30mPa・s)への溶解性の測定方法]
白金系触媒含有ワックス粒子と3−グリシドキシプロピルトリメトキシシランとメチルトリメトキシランの共加水分解物(粘度30mPa・s)を重量比で1:100の割合で混合した後、透明容器に入れて白金系触媒含有ワックス粒子の分散状況を写真撮影した。この容器を25℃で20時間静置した後、同様に白金系触媒含有ワックス粒子の分散状況を写真撮影した。両者の写真を目視で比較し白金系触媒含有ワックス粒子が溶解してその量の減少が見られたときを白金系触媒含有ワックス粒子が溶解性を示すと判定した。
[Method for Measuring Solubility of Platinum-Based Catalyst-Containing Wax Particles in Co-hydrolyzate (Viscosity 30 mPa · s) of 3-Glycidoxypropyltrimethoxysilane and Methyltrimethoxylane]
After mixing platinum catalyst-containing wax particles, 3-glycidoxypropyltrimethoxysilane and methyltrimethoxylane co-hydrolyzate (viscosity 30 mPa · s) at a weight ratio of 1: 100, the mixture is put in a transparent container. The dispersion state of the platinum-based catalyst-containing wax particles was photographed. The container was allowed to stand at 25 ° C. for 20 hours, and then the state of dispersion of the platinum-based catalyst-containing wax particles was similarly photographed. The two photographs were compared visually, and when the platinum-based catalyst-containing wax particles were dissolved and the amount thereof was reduced, it was determined that the platinum-based catalyst-containing wax particles showed solubility.

[熱硬化性シリコーンゴム組成物の80℃における硬化性の測定方法]
10mm角のシリコンウエハに熱硬化性シリコーンゴム組成物を1mmの厚さで塗布し、80℃の熱風循環式オーブンに入れ、触指観察により液状の熱硬化性シリコーンゴム組成物が硬化するまでの時間を測定した。
[Method for Measuring Curability of Thermosetting Silicone Rubber Composition at 80 ° C.]
A thermosetting silicone rubber composition is applied to a 10 mm square silicon wafer in a thickness of 1 mm, placed in a hot air circulation oven at 80 ° C., and until the liquid thermosetting silicone rubber composition is cured by finger observation. Time was measured.

[熱硬化性シリコーンゴム組成物の熱伝導率の測定方法]
10mm角のシリコンウエハ間に40μm又は80μm厚となるよう熱硬化性シリコーンゴム組成物を塗布し、80℃の熱風循環式オーブンで1時間加熱して硬化し試験体とした。各々の厚さにおける熱抵抗(単位:℃/W)を測定し、各厚さ(単位:m)と熱抵抗の関係をグラフにプロットして直線を引き、その傾きを熱伝導率(単位:W/mK)として算出した。
[Method of measuring thermal conductivity of thermosetting silicone rubber composition]
A thermosetting silicone rubber composition was applied between 10 mm square silicon wafers to a thickness of 40 μm or 80 μm, and cured by heating for 1 hour in a hot air circulation oven at 80 ° C. to obtain a test specimen. The thermal resistance (unit: ° C / W) at each thickness is measured, the relationship between each thickness (unit: m) and thermal resistance is plotted on a graph, a straight line is drawn, and the slope is determined as thermal conductivity (unit: W / mK).

[熱硬化性シリコーンゴム組成物の体積抵抗率の測定方法]
幅10mm、長さ50mmの開口部を有する厚さ100μmの金属製のマスクを用い、熱硬化性シリコーンゴム組成物を電気絶縁性のFR−4ガラスエポキシ樹脂基板上に印刷塗布し、80℃の熱風循環式オーブンで1時間加熱して硬化し試験体とした。50mm長の測定端間で10ボルトの電圧を印加して抵抗を測定し、体積抵抗率(単位:Ω・cm)を算出した。
[Method of measuring volume resistivity of thermosetting silicone rubber composition]
Using a metal mask having a thickness of 10 mm and an opening having a length of 50 mm and a thickness of 100 μm, the thermosetting silicone rubber composition was printed and applied onto an electrically insulating FR-4 glass epoxy resin substrate, It was cured by heating for 1 hour in a hot air circulation oven to obtain a test specimen. Resistance was measured by applying a voltage of 10 volts between 50 mm long measurement ends, and volume resistivity (unit: Ω · cm) was calculated.

[参考例1][本発明の白金系触媒含有ワックス粒子の調製]
塩化白金酸六水和物1.3gをイソプロピルアルコール3gに溶解し、融点が70℃であるアルキルメチルシロキサンワックス粉末(ダウコーニング社製AMS−C30、90℃における溶融粘度0.1Pa・s)100gとともに、攪拌羽付の三口セパラブルフラスコ製に投入し、窒素ガスを少量流しながら攪拌し、90℃まで昇温して完全に溶解させた。フラスコ上部に取り付けた溶媒流出用コンデンサからイソプロピルアルコールの流出がなくなったことを確認して攪拌を止め、自然冷却により室温まで冷却した。つぎにフラスコ内の塩化白金酸含有ワックスを削りながら取り出し、乳鉢で粉砕してフルイがけした。フルイがけは、300メッシュパス、400メッシュオンとし、平均粒径が40μm、融点70℃で白金含有率0.5重量%の塩化白金酸含有ワックス粒子を得た。
この塩化白金酸含有ワックス粒子の3−グリシドキシプロピルトリメトキシシランとメチルトリメトキシランの共加水分解物(粘度30mPa・s)への溶解性を目視観察したところ、25℃において溶解はしなかった。
[Reference Example 1] [Preparation of platinum particles containing platinum catalyst of the present invention]
Dissolve 1.3 g of chloroplatinic acid hexahydrate in 3 g of isopropyl alcohol, 100 g of alkylmethylsiloxane wax powder having a melting point of 70 ° C. (AMS-C30 manufactured by Dow Corning, melt viscosity 0.1 Pa · s at 90 ° C.) At the same time, it was put into a three-necked separable flask equipped with stirring blades, stirred while flowing a small amount of nitrogen gas, heated to 90 ° C. and completely dissolved. After confirming that the isopropyl alcohol did not flow out from the solvent outlet condenser attached to the upper part of the flask, stirring was stopped and the mixture was cooled to room temperature by natural cooling. Next, the chloroplatinic acid-containing wax in the flask was taken out while scraping, and crushed in a mortar to be fluted. The frosting was carried out at 300 mesh pass and 400 mesh on to obtain chloroplatinic acid-containing wax particles having an average particle diameter of 40 μm, a melting point of 70 ° C. and a platinum content of 0.5% by weight.
Visual observation of the solubility of the chloroplatinic acid-containing wax particles in the co-hydrolyzate (viscosity 30 mPa · s) of 3-glycidoxypropyltrimethoxysilane and methyltrimethoxylane did not dissolve at 25 ° C. It was.

[参考例2][比較例の白金系触媒含有シリコーン樹脂粒子の調製]
塩化白金酸六水和物1.3gをイソプロピルアルコール3gに溶解し、軟化点が85℃である、式:CSiO3/2で示されるシロキサン単位を主成分とし、他に式:(CSiO2/2で示されるシロキサン単位、式:(CHSiO2/2で示されるシロキサン単位、式:CH(CH=CH)SiO2/2で示されるシロキサン単位および式:CH(C)SiO2/2で示されるシロキサン単位を含有する熱可塑性シリコーン樹脂(105℃における溶融粘度は10Pa・sを越え粘ちょうなグリース状)100gとともに攪拌羽付きの300ccのロスミキサーに投入し、窒素ガスを少量流しつつ攪拌しながら105℃まで昇温した。ミキサー上部の排気管からイソプロピルアルコールの流出がなくなったことを確認して攪拌を止め、自然冷却により室温まで冷却した。つぎにミキサー内の塩化白金酸含有シリコーン樹脂粒子を削りながら取り出し、乳鉢で粉砕してフルイがけした。フルイがけは、300メッシュパス、400メッシュオンとし、平均粒径が40μm、軟化点85℃で白金含有率0.5重量%の塩化白金酸含有シリコーン樹脂粒子を得た。
この塩化白金酸含有シリコーン樹脂粒子の3−グリシドキシプロピルトリメトキシシランとメチルトリメトキシランの共加水分解物(粘度30mPa・s)への溶解性を目視観察したところ、25℃において少量の溶解が確認された。
[Reference Example 2] [Preparation of Comparative Example of Platinum-Based Catalyst-Containing Silicone Resin Particles]
Dissolve 1.3 g of chloroplatinic acid hexahydrate in 3 g of isopropyl alcohol and have a softening point of 85 ° C. as a main component, a siloxane unit represented by the formula: C 6 H 5 SiO 3/2 , and other formulas: Siloxane unit represented by (C 6 H 5 ) 2 SiO 2/2 , siloxane unit represented by formula: (CH 3 ) 2 SiO 2/2 , represented by formula: CH 3 (CH 2 ═CH) SiO 2/2 Together with 100 g of a siloxane unit and a thermoplastic silicone resin containing a siloxane unit represented by the formula: CH 3 (C 6 H 5 ) SiO 2/2 (melt viscosity at 105 ° C. exceeds 10 Pa · s) The mixture was put into a 300 cc loss mixer equipped with stirring blades, and the temperature was raised to 105 ° C. with stirring while flowing a small amount of nitrogen gas. After confirming that the isopropyl alcohol did not flow out from the exhaust pipe at the top of the mixer, stirring was stopped and the mixture was cooled to room temperature by natural cooling. Next, the chloroplatinic acid-containing silicone resin particles in the mixer were taken out while being scraped, and pulverized by pulverization in a mortar. A chloroplatinic acid-containing silicone resin particle having a mesh size of 300 mesh pass and 400 mesh on, an average particle size of 40 μm, a softening point of 85 ° C. and a platinum content of 0.5% by weight was obtained.
The solubility of the chloroplatinic acid-containing silicone resin particles in the co-hydrolyzate (viscosity 30 mPa · s) of 3-glycidoxypropyltrimethoxysilane and methyltrimethoxylane was visually observed. Was confirmed.

[実施例1]
25℃の粘度が100mPa・sである分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン100重量部、25℃の粘度が5mPa・sである分子鎖側鎖に平均3個のケイ素原子結合水素原子を有する分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体5重量部、平均粒子径が9μmであり比重3.9である球状アルミナ微粉末400重量部、平均粒子径が20μmであり比重が3.9である球状アルミナ微粉末200重量部、参考例1で調製した白金系触媒含有ワックス粒子の調製1.0重量部、および、1、3、5、7−テトラメチル−1、3、5、7−テトラビニルシクロテトラシロキサン0.5重量部、3−グリシドキシプロピルトリメトキシシランとメチルトリメトキシランの共加水分解物(粘度30mPa・s)1.0重量部をロスミキサー中で均一に混合して熱硬化性シリコーンゴム組成物を調製した。
この組成物の初期粘度、120時間後粘度、80℃硬化性及び硬化後の熱伝導率、体積抵抗率を測定し、表1にまとめて示した。
[Example 1]
100 parts by weight of dimethylpolysiloxane blocked with a dimethylvinylsiloxy group at both ends of a molecular chain having a viscosity of 100 mPa · s at 25 ° C. and an average of 3 silicon-bonded hydrogen atoms in the side chain of the molecular chain having a viscosity of 5 mPa · s at 25 ° C. 5 parts by weight of a trimethylsiloxy group-blocked dimethylsiloxane / methylhydrogensiloxane copolymer having both ends of a molecular chain having a molecular weight of 400 parts by weight of spherical alumina fine powder having an average particle diameter of 9 μm and a specific gravity of 3.9, and an average particle diameter of 20 μm 200 parts by weight of spherical alumina fine powder having a specific gravity of 3.9, 1.0 part by weight of the platinum-based catalyst-containing wax particles prepared in Reference Example 1, and 1,3,5,7-tetramethyl- 1,3,5,7-tetravinylcyclotetrasiloxane 0.5 parts by weight, 3-glycidoxypropyltrimethoxysilane and methyltri A thermosetting silicone rubber composition was prepared by uniformly mixing 1.0 part by weight of a co-hydrolyzed product of methoxylane (viscosity 30 mPa · s) in a loss mixer.
The initial viscosity, the viscosity after 120 hours, the curability at 80 ° C., the thermal conductivity after curing, and the volume resistivity of this composition were measured and summarized in Table 1.

[比較例1]
実施例1で、参考例1で調製した白金系触媒含有ワックス粒子の調製の代りに、塩化白金酸六水和物1.3gをイソプロピルアルコール100gに溶解した白金含有触媒のイソプロピルアルコール溶液(白金含有率0.5重量%)を使用した以外は同様にして熱硬化性シリコーンゴム組成物を調製した。
この組成物の初期粘度、120時間後粘度、80℃硬化性及び硬化後の熱伝導率、体積抵抗率を測定し、表1にまとめて示した。
[Comparative Example 1]
In Example 1, instead of the preparation of the platinum-based catalyst-containing wax particles prepared in Reference Example 1, an isopropyl alcohol solution of platinum-containing catalyst (platinum containing 1.3 g of chloroplatinic acid hexahydrate dissolved in 100 g of isopropyl alcohol). A thermosetting silicone rubber composition was prepared in the same manner except that 0.5% by weight was used.
The initial viscosity, the viscosity after 120 hours, the curability at 80 ° C., the thermal conductivity after curing, and the volume resistivity of this composition were measured and summarized in Table 1.

[比較例2]
実施例1で、参考例1で調製した白金系触媒含有ワックス粒子の調製の代りに、参考例2で調製した塩化白金酸含有シリコーン樹脂粒子を使用した以外は同様にして熱硬化性シリコーンゴム組成物を調製した。
この組成物の初期粘度、120時間後粘度、80℃硬化性及び熱伝導率、体積抵抗率を測定し、表1にまとめて示した。
[Comparative Example 2]
A thermosetting silicone rubber composition was prepared in the same manner as in Example 1 except that the chloroplatinic acid-containing silicone resin particles prepared in Reference Example 2 were used instead of the platinum-based catalyst-containing wax particles prepared in Reference Example 1. A product was prepared.
The initial viscosity, the viscosity after 120 hours, the 80 ° C. curability and thermal conductivity, and the volume resistivity of this composition were measured and summarized in Table 1.

[実施例2]
25℃の粘度が100mPa・sである分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン200重量部、粘度が5mPa・sである25℃の分子鎖側鎖に平均3個のケイ素原子結合水素原子を有する分子鎖両末端トリメチルシロキシ基封鎖ジメチル・メチルハイドロジェンシロキサン共重合体5重量部、平均粒子径が3μmであり比重が10.5である球状のアトマイズ銀粉末400重量部、平均粒子径が8μmであり比重が10.5である鱗片上のフレーク銀粉末400重量部、参考例1で調製した白金系触媒含有ワックス粒子の調製0.8重量部、塩化白金酸六水和物1.3gをイソプロピルアルコール100gに溶解した白金含有触媒のイソプロピルアルコール溶液(白金含有率0.5重量%)0.2重量部、および、1、3、5、7−テトラメチル−1、3、5、7−テトラビニルシクロテトラシロキサン0.5重量部、3−グリシドキシプロピルトリメトキシシランとメチルトリメトキシランの共加水分解物(粘度30mPa・s)をロスミキサー中で均一に混合して熱硬化性シリコーンゴム組成物を調製した。
この組成物の初期粘度、120時間後粘度、80℃硬化性及び硬化後の熱伝導率、体積抵抗率を測定し、表1にまとめて示した。
[Example 2]
200 parts by weight of dimethylpolysiloxane blocked with a dimethylvinylsiloxy group at both ends of a molecular chain having a viscosity at 25 ° C. of 100 mPa · s, and an average of three silicon-bonded hydrogen atoms in the side chain of the molecular chain at 25 ° C. having a viscosity of 5 mPa · s 5 parts by weight of a trimethylsiloxy group-blocked dimethyl / methylhydrogensiloxane copolymer having both ends of a molecular chain having a molecular weight of 400 parts by weight of spherical atomized silver powder having an average particle diameter of 3 μm and a specific gravity of 10.5, and an average particle diameter of 400 parts by weight of flake silver powder on a scale having a specific gravity of 10.5, 8 μm, 0.8 parts by weight of the platinum-based catalyst-containing wax particles prepared in Reference Example 1, 1.3 g of chloroplatinic acid hexahydrate 0.2 parts by weight of an isopropyl alcohol solution of platinum-containing catalyst (platinum content: 0.5% by weight) dissolved in 100 g of isopropyl alcohol, and 1,3,5,7-tetramethyl-1,3,5,7-tetravinylcyclotetrasiloxane 0.5 part by weight, co-hydrolyzate of 3-glycidoxypropyltrimethoxysilane and methyltrimethoxylane (Viscosity 30 mPa · s) was uniformly mixed in a loss mixer to prepare a thermosetting silicone rubber composition.
The initial viscosity, the viscosity after 120 hours, the curability at 80 ° C., the thermal conductivity after curing, and the volume resistivity of this composition were measured and summarized in Table 1.

[比較例3]
実施例2で、参考例1で調製した白金系触媒含有ワックス粒子の代りに、参考例2で調製した塩化白金酸含有シリコーン樹脂粒子を使用した以外は同様にして熱硬化性シリコーンゴム組成物を調製した。
この組成物の初期粘度、120時間後粘度、80℃硬化性及び熱伝導率、体積抵抗率を測定し、表1にまとめて示した。
[Comparative Example 3]
In Example 2, a thermosetting silicone rubber composition was prepared in the same manner except that the chloroplatinic acid-containing silicone resin particles prepared in Reference Example 2 were used instead of the platinum-based catalyst-containing wax particles prepared in Reference Example 1. Prepared.
The initial viscosity, the viscosity after 120 hours, the 80 ° C. curability and thermal conductivity, and the volume resistivity of this composition were measured and summarized in Table 1.


Figure 0005278943
Figure 0005278943

本発明の熱硬化性シリコーンゴム組成物は、室温下では溶融せず低温度での加熱により容易に融解する白金系触媒含有微粒子状触媒を配合しているので、室温下で粘度上昇が小さく優れた作業性を有し、加熱しては低温、短時間で硬化する被覆剤、接着剤として有用である。また本発明の熱硬化性シリコーンゴム組成物により低温で被覆または接着された耐熱性の低いコンデンサ、抵抗、ダイオード、メモリ、演算素子(CPU)等の電子部品または電子機器は信頼性が高く有用である。 The thermosetting silicone rubber composition of the present invention is blended with a platinum-based catalyst-containing fine particle catalyst that does not melt at room temperature but easily melts by heating at a low temperature. It has excellent workability and is useful as a coating agent or adhesive that cures at a low temperature in a short time when heated. In addition, electronic components or electronic devices such as capacitors, resistors, diodes, memories, and arithmetic elements (CPUs) with low heat resistance coated or bonded at low temperature with the thermosetting silicone rubber composition of the present invention are highly reliable and useful. is there.

Claims (3)

(A)一分子中に少なくとも2個のケイ素原子結合アルケニル基を含有するオルガノポリシロキサン100重量部、(B)一分子中に少なくとも2個のケイ素原子結合水素原子を含有するオルガノハイドロジェンポリシロキサン0.1〜50重量部、(C)熱伝導性粒子および/または電気伝導性粒子0〜3000重量部、および、(D)白金系触媒を白金金属原子として0.001重量%以上含有する融点40〜230℃であるワックス粒子からなる平均粒子径0.01〜500μmの微粒子触媒0. 0001〜20重量部、からなり、
前記ワックス粒子に使用するワックスの融点+20℃の温度における該ワックスの溶融粘度が10Pa・s以下である熱硬化性シリコーンゴム組成物。
(A) 100 parts by weight of an organopolysiloxane containing at least two silicon atom-bonded alkenyl groups in one molecule, (B) an organohydrogenpolysiloxane containing at least two silicon atom-bonded hydrogen atoms in one molecule 0.1 to 50 parts by weight, (C) heat conductive particles and / or electrically conductive particles 0 to 3000 parts by weight, and (D) a platinum-based catalyst containing 0.001% by weight or more as a platinum metal atom particulate catalyst from 0.0001 to 20 parts by weight of the average particle diameter 0.01~500μm consisting wax particles is 40 to 230 ° C., Ri Tona,
A thermosetting silicone rubber composition, wherein the wax has a melt viscosity of 10 Pa · s or less at a melting point + 20 ° C. of the wax used for the wax particles .
ワックスがアルキルメチルポリシロキサンワックスであることを特徴とする請求項1記載の熱硬化性シリコーンゴム組成物。 2. The thermosetting silicone rubber composition according to claim 1, wherein the wax is an alkylmethylpolysiloxane wax. 請求項1または請求項2記載の熱硬化性シリコーンゴム組成物により被覆または接着した電子部品または電子機器。 An electronic component or electronic device coated or bonded with the thermosetting silicone rubber composition according to claim 1 or 2 .
JP2007535556A 2005-09-15 2006-09-15 Thermosetting silicone rubber composition, electronic component and electronic device Expired - Fee Related JP5278943B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007535556A JP5278943B2 (en) 2005-09-15 2006-09-15 Thermosetting silicone rubber composition, electronic component and electronic device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005302268 2005-09-15
JP2005302268 2005-09-15
PCT/JP2006/318382 WO2007032481A1 (en) 2005-09-15 2006-09-15 Thermosetting silicone rubber composition, electronic component and electronic device
JP2007535556A JP5278943B2 (en) 2005-09-15 2006-09-15 Thermosetting silicone rubber composition, electronic component and electronic device

Publications (2)

Publication Number Publication Date
JPWO2007032481A1 JPWO2007032481A1 (en) 2009-03-19
JP5278943B2 true JP5278943B2 (en) 2013-09-04

Family

ID=37865064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007535556A Expired - Fee Related JP5278943B2 (en) 2005-09-15 2006-09-15 Thermosetting silicone rubber composition, electronic component and electronic device

Country Status (3)

Country Link
JP (1) JP5278943B2 (en)
TW (1) TW200720360A (en)
WO (1) WO2007032481A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9582046B2 (en) 2011-12-28 2017-02-28 Intel Corporation Locking hinge assembly for electronic device

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7875347B2 (en) * 2003-12-29 2011-01-25 General Electric Company Composite coatings for groundwall insulation, method of manufacture thereof and articles derived therefrom
US9520314B2 (en) * 2008-12-19 2016-12-13 Applied Materials, Inc. High temperature electrostatic chuck bonding adhesive
JP5648290B2 (en) * 2010-01-28 2015-01-07 株式会社デンソー Electronic device and manufacturing method thereof
JP5534837B2 (en) * 2010-01-28 2014-07-02 東レ・ダウコーニング株式会社 Thermally conductive silicone rubber composition
JP5304812B2 (en) * 2011-02-16 2013-10-02 信越化学工業株式会社 Conductive pattern forming composition and conductive pattern forming method
JP6057589B2 (en) * 2012-07-27 2017-01-11 東レ・ダウコーニング株式会社 Fine particles and curable organopolysiloxane composition containing the same
JP5321723B1 (en) * 2012-10-29 2013-10-23 横浜ゴム株式会社 Conductive composition and solar battery cell
JP5895857B2 (en) * 2013-01-16 2016-03-30 信越化学工業株式会社 Method for producing liquid silicone rubber coating composition for curtain airbag
JP6224943B2 (en) * 2013-07-17 2017-11-01 イズミ物産株式会社 One-component solvent-free room temperature curable organosiloxane silicone resin adhesive and method for producing the same
JP6355108B2 (en) * 2015-12-17 2018-07-11 株式会社豊田中央研究所 Fuel cell restraint member
WO2018079215A1 (en) * 2016-10-31 2018-05-03 東レ・ダウコーニング株式会社 One-pack curable type thermally conductive silicone grease composition and electronic/electrical component
CN106590518A (en) * 2016-12-30 2017-04-26 江苏晶河电子科技有限公司 High-performance RTV-1 conducting glue water and preparation method thereof
CN112020541A (en) * 2018-05-15 2020-12-01 三键有限公司 Conductive silicone composition and cured product thereof
CN109694689A (en) * 2018-11-20 2019-04-30 国网江苏省电力有限公司电力科学研究院 One kind blocks water encapsulating glue material and preparation method
EP4069417A4 (en) * 2019-12-06 2024-01-03 Nusil Technology LLC Encapsulated catalyst for one-part organopolysiloxane systems and methods related thereto
JP7290118B2 (en) * 2020-01-21 2023-06-13 信越化学工業株式会社 Thermally conductive silicone adhesive composition
CN113416519B (en) * 2021-07-16 2023-05-02 广州回天新材料有限公司 Organic silicon gel for encapsulating IGBT module

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49134786A (en) * 1973-04-26 1974-12-25
JPS5837053A (en) * 1981-08-11 1983-03-04 バイエル・アクチエンゲゼルシヤフト Thermosetting organopolysiloxane mixture
JPS6445468A (en) * 1987-07-20 1989-02-17 Dow Corning Storage-stable and thermosettable organosiloxane composition
JPH0776655A (en) * 1993-09-07 1995-03-20 Shin Etsu Chem Co Ltd Catalyst for addition reaction
JPH07196921A (en) * 1993-12-29 1995-08-01 Toray Dow Corning Silicone Co Ltd Heat-curable silicone composition
JPH0889817A (en) * 1994-09-20 1996-04-09 Sumitomo Bakelite Co Ltd Preparation of carried catalyst
JPH08319425A (en) * 1995-05-25 1996-12-03 Toray Dow Corning Silicone Co Ltd Heat-conductive silicone rubber composition
JPH11222524A (en) * 1997-11-18 1999-08-17 Shin Etsu Chem Co Ltd Hydrosilylation catalyst and silicone composition using same
JPH11236508A (en) * 1997-11-19 1999-08-31 Shin Etsu Chem Co Ltd Organopolysiloxane composition
JP2000265067A (en) * 1998-11-30 2000-09-26 Shin Etsu Chem Co Ltd Addition-curable silicone rubber composition

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49134786A (en) * 1973-04-26 1974-12-25
JPS5837053A (en) * 1981-08-11 1983-03-04 バイエル・アクチエンゲゼルシヤフト Thermosetting organopolysiloxane mixture
JPS6445468A (en) * 1987-07-20 1989-02-17 Dow Corning Storage-stable and thermosettable organosiloxane composition
JPH0776655A (en) * 1993-09-07 1995-03-20 Shin Etsu Chem Co Ltd Catalyst for addition reaction
JPH07196921A (en) * 1993-12-29 1995-08-01 Toray Dow Corning Silicone Co Ltd Heat-curable silicone composition
JPH0889817A (en) * 1994-09-20 1996-04-09 Sumitomo Bakelite Co Ltd Preparation of carried catalyst
JPH08319425A (en) * 1995-05-25 1996-12-03 Toray Dow Corning Silicone Co Ltd Heat-conductive silicone rubber composition
JPH11222524A (en) * 1997-11-18 1999-08-17 Shin Etsu Chem Co Ltd Hydrosilylation catalyst and silicone composition using same
JPH11236508A (en) * 1997-11-19 1999-08-31 Shin Etsu Chem Co Ltd Organopolysiloxane composition
JP2000265067A (en) * 1998-11-30 2000-09-26 Shin Etsu Chem Co Ltd Addition-curable silicone rubber composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9582046B2 (en) 2011-12-28 2017-02-28 Intel Corporation Locking hinge assembly for electronic device

Also Published As

Publication number Publication date
TW200720360A (en) 2007-06-01
WO2007032481A1 (en) 2007-03-22
JPWO2007032481A1 (en) 2009-03-19

Similar Documents

Publication Publication Date Title
JP5278943B2 (en) Thermosetting silicone rubber composition, electronic component and electronic device
CN109890900B (en) One-component curable heat-conductive silicone grease composition and electronic/electrical component
JP5843368B2 (en) Thermally conductive silicone composition and cured product thereof
JP4015722B2 (en) Thermally conductive polymer composition
JP4551074B2 (en) Curable organopolysiloxane composition and semiconductor device
TWI743247B (en) Thermally conductive silicone composition and its hardened product, and manufacturing method
JP4634891B2 (en) Thermally conductive silicone grease composition and cured product thereof
JP4913874B2 (en) Curable organopolysiloxane composition and semiconductor device
JP6339761B2 (en) Thermally conductive silicone composition and thermally conductive member
JP2009209165A (en) Thermally-conductive cured product and method for producing same
JP2010070599A (en) Liquid die bonding agent
JP2008038137A (en) Heat conductive silicone grease composition and cured product thereof
JP2010511738A (en) Silicone adhesive composition and method for preparing the same
JP2013082816A (en) Curable organopolysiloxane composition and semiconductor device
JP2021514014A (en) Gel type thermal interface material
JP2014003152A (en) Method for forming thermal interface material and heat dissipation structure
JP2018193491A (en) Thermal conductive silicone rubber composite sheet
JP2009235279A (en) Heat-conductive molding and manufacturing method therefor
JP2868986B2 (en) Conductive silicone rubber composition
WO2022230600A1 (en) Curable organopolysiloxane composition and semiconductor device
JP3524634B2 (en) Thermally conductive silicone rubber composition
CN115667409B (en) Heat-conductive addition-curable organosilicon composition and preparation method thereof
JP2004083905A (en) Thermally conductive filler, thermally conductive silicone elastomer composition and semiconductor device
JP3758176B2 (en) Thermally conductive silicone rubber and composition thereof
CN118139930A (en) Curable thermally conductive composition containing diamond particles

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20090911

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20091001

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091001

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20091001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130515

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees