JP5278639B2 - Plasma assisted deposition system - Google Patents

Plasma assisted deposition system Download PDF

Info

Publication number
JP5278639B2
JP5278639B2 JP2006336761A JP2006336761A JP5278639B2 JP 5278639 B2 JP5278639 B2 JP 5278639B2 JP 2006336761 A JP2006336761 A JP 2006336761A JP 2006336761 A JP2006336761 A JP 2006336761A JP 5278639 B2 JP5278639 B2 JP 5278639B2
Authority
JP
Japan
Prior art keywords
plasma
microwave
vapor deposition
dielectric
vacuum vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006336761A
Other languages
Japanese (ja)
Other versions
JP2008152940A (en
Inventor
良治 石井
隆幸 中嶋
英実 中島
匠 末本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2006336761A priority Critical patent/JP5278639B2/en
Publication of JP2008152940A publication Critical patent/JP2008152940A/en
Application granted granted Critical
Publication of JP5278639B2 publication Critical patent/JP5278639B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Plasma Technology (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device in which even if the interior of a vacuum container has sufficiently wide space in comparison with a wavelength of a microwave, plasma can be generated efficiently and easily inside the vacuum container by using the microwave, or a device capable of forming a thin membrane of high quality by generating plasma in the interior of the vacuum container efficiently and easily. <P>SOLUTION: This is a microwave plasma generating device equipped with an oscillator (6) to generate the microwave, a wave guide tube (1) to propagate the micro wave, a matching box (7) to adjust impedance of the micro wave, the vacuum container (8), a dielectric (2) to separate the wave guide tube (1) and the vacuum container (8), an earth electrode (3) contacting the dielectric (2), and a gas pipe (4) which is installed perpendicularly to the earth electrode (3) and which introduces gas to the vacuum container (8). <P>COPYRIGHT: (C)2008,JPO&amp;INPIT

Description

本発明は、プラズマを安定的に真空容器内で発生させる技術に関する。また、本発明は、真空で薄膜を形成する技術にも関する。   The present invention relates to a technique for stably generating plasma in a vacuum vessel. The present invention also relates to a technique for forming a thin film in a vacuum.

蒸着やCVD(化学的気相堆積法)による真空薄膜形成で、膜の硬度を向上させることや密着性を向上させるためにプラズマアシスト、プラズマ処理、もしくはプラズマCVDプロセスなどが有効とされている。プラズマを発生させるためには、放電や熱、光などを電離エネルギーとして利用しイオンや電子を生成し維持することで得られる。放電によるプラズマは、電界によるイオン・電子の加速、衝突、電離を減圧化において容易に行えるため、利便性の高い方法として知られている。電界の発生には、直流(Direct Current,DC)方式、交流(Alternating Current,AC)方式、高周波(Radio Frequency,RF)方式、マイクロ波(Micro Wave,MW)方式などが代表例として挙げられる。電界の中でプラズマを維持することから、陽極と陰極の間にプラズマが発生できるが、MW方式では電極を必要としない無極放電が可能となる。具体的には導波管または空洞共振器内の強い電界を使うことでプラズマ密度の高い放電が得られる。   Plasma assist, plasma treatment, plasma CVD process, or the like is effective for improving the hardness and adhesion of a vacuum thin film by vapor deposition or CVD (Chemical Vapor Deposition). In order to generate plasma, it can be obtained by generating and maintaining ions and electrons using discharge, heat, light or the like as ionization energy. Plasma by discharge is known as a highly convenient method because it can easily accelerate, collide, and ionize ions and electrons by an electric field in a reduced pressure. Typical examples of the generation of the electric field include a direct current (DC) system, an alternating current (AC) system, a radio frequency (RF) system, and a microwave (Micro Wave, MW) system. Since plasma is maintained in an electric field, plasma can be generated between the anode and the cathode, but the MW method enables non-polar discharge that does not require an electrode. Specifically, a discharge having a high plasma density can be obtained by using a strong electric field in a waveguide or a cavity resonator.

特許文献1によると、マイクロ波プラズマ方式を利用したものとして、蒸着材料を収容する容器と、該容器に配置された蒸発材料を蒸発させるための蒸発機構と、蒸発材料から離れた位置に配置された被蒸着物質と、蒸発材料と被蒸着物質との間の空間にマイクロ波を伝達するためのマイクロ波発生器とを具備する真空塗布装置がある。この真空塗布装置は、蒸発された原子または分子がマイクロ波でイオン化され、あるいは励起され、そのため合成樹脂フィルムに向上した特性を有するコーティング層を形成する。しかし、マイクロ波をプラズマ化するためには、真空容器内に対して同等に近い幅のホーンアンテナが必要であることと、ホーンアンテナに無数の孔を形成しおき、その孔と空間の数を調整し整合範囲を狭めているため、大きな圧力変動に対して効率よくマイクロ波がプラズマにエネルギーが伝達しないという問題点があった。   According to Patent Document 1, a microwave plasma system is used as a container for storing a deposition material, an evaporation mechanism for evaporating the evaporation material disposed in the container, and a position away from the evaporation material. There is a vacuum coating apparatus including a deposition material and a microwave generator for transmitting microwaves to a space between the evaporation material and the deposition material. In this vacuum coating apparatus, evaporated atoms or molecules are ionized or excited by microwaves, and thus form a coating layer having improved properties on a synthetic resin film. However, in order to turn microwaves into plasma, it is necessary to have a horn antenna with a width close to that of the inside of the vacuum vessel, and countless holes are formed in the horn antenna, and the number of holes and spaces is set. Since the adjustment and the matching range are narrowed, there is a problem that energy is not efficiently transmitted to the plasma due to a large pressure fluctuation.

また、特許文献2に代表されるようにECRプラズマは、マイクロ波の2.45GHzと磁場による共鳴作用によって低圧力での高密度プラズマが比較的簡単に得られることは良く知られているが、磁石が必要であるのと電子ビームの軌道に対して干渉してしまう問題点があった。   In addition, as represented by Patent Document 2, it is well known that ECR plasma is relatively easy to obtain high-density plasma at low pressure by the resonance effect of microwave 2.45 GHz and magnetic field. There was a problem that the magnet was necessary and interfered with the trajectory of the electron beam.

ところで、電磁波の波長に比べて十分に広い空間では、電界強度の分布が一定とならずに放電プラズマが発生しないという問題がある。特にマイクロ波のような波長の短い電磁波を用いたときにプラズマが発生しないときは、電磁波のエネルギーが金属メッシュ(電磁波漏洩防止シールド)などを加熱することでエネルギーを消費したりする。また、プラズマが発生してもプロセスに必要な部分ではなく例えば配管の裏側や覗き窓近傍など目的の場所以外でプラズマが発生することがあり、熱に弱い場所を破損する問題があった。
特許第3360848号公報 特開平8−60373号公報
By the way, in a sufficiently wide space compared to the wavelength of electromagnetic waves, there is a problem that the electric field intensity distribution is not constant and discharge plasma is not generated. In particular, when plasma is not generated when an electromagnetic wave with a short wavelength such as a microwave is used, the energy of the electromagnetic wave consumes energy by heating a metal mesh (electromagnetic wave leakage prevention shield) or the like. Further, even if plasma is generated, plasma may be generated not at a part necessary for the process but at a place other than the target place such as the back side of the pipe or in the vicinity of the observation window.
Japanese Patent No. 3360848 JP-A-8-60373

本発明は斯かる背景技術に鑑みてなされたもので、真空容器内部がマイクロ波の波長に比べて十分に広い空間になっていたとしても、そのマイクロ波を用いて、その真空容器内部でプラズマを効率良くかつ容易に発生できる装置、或いは、その真空容器内部で効率良くかつ容易にプラズマを発生させて高品質な薄膜の形成ができる装置を提供することを課題とする。   The present invention has been made in view of such background art, and even if the inside of the vacuum vessel is sufficiently wide compared to the wavelength of the microwave, the microwave is used to generate plasma inside the vacuum vessel. It is an object of the present invention to provide an apparatus capable of efficiently and easily generating a gas, or an apparatus capable of forming a high-quality thin film by generating plasma efficiently and easily inside the vacuum vessel.

本発明において上記課題を達成するために、まず請求項1の発明では、マイクロ波を発生する発振器と、マイクロ波を伝播させる導波管と、マイクロ波のインピーダンスを調整する整合器と、真空容器と、前記導波管と前記真空容器とを分離する誘電体と、前記誘電体に接しているアース電極と、前記アース電極と垂直に設置され前記真空容器にガスを導入し、かつアンテナとして用いるガスパイプとによりマイクロ波プラズマを発生させるマイクロ波プラズマ発生手段と、蒸着材料から蒸気を発生させる蒸着材料加熱手段とを備え、前記マイクロ波プラズマと前記蒸気を同時に発生させ、前記マイクロ波の波長をλとしたとき、前記ガスパイプのガス導入口が、前記誘電体からλ/2、前記アース電極からλ/4離れた位置に配置されていることを特徴とするプラズマアシスト蒸着装置としたものである。 In order to achieve the above object in the present invention, first, in the invention of claim 1, an oscillator for generating a microwave, a waveguide for propagating the microwave, a matching unit for adjusting the impedance of the microwave, and a vacuum vessel And a dielectric that separates the waveguide and the vacuum vessel; a ground electrode that is in contact with the dielectric; and a gas that is installed perpendicular to the ground electrode and that introduces gas into the vacuum vessel and is used as an antenna A microwave plasma generating means for generating microwave plasma by a gas pipe; and a vapor deposition material heating means for generating vapor from the vapor deposition material, the microwave plasma and the vapor are simultaneously generated, and the wavelength of the microwave is λ when the gas inlet of the gas pipe, the dielectric lambda / 2, is disposed at a position where lambda / 4 away from the ground electrode Is obtained by a plasma-assisted vapor deposition apparatus characterized and.

また請求項の発明では、前記マイクロ波の波長をλとしたとき、前記アース電極が、少なくともλ以上の長さの辺を持つ長方形もしくは正方形、またはλ以上の半径を持つ円形であることを特徴とする請求項1に記載のプラズマアシスト蒸着装置とした
ものである。
In the invention of claim 2 , when the wavelength of the microwave is λ, the ground electrode is a rectangle or a square having a side having a length of at least λ or more, or a circle having a radius of λ or more. The plasma-assisted vapor deposition apparatus according to claim 1, which is characterized by the above.

また請求項の発明では、前記蒸着材料加熱手段が電子ビーム加熱手段であることを特徴とする請求項1または2に記載のプラズマアシスト蒸着装置としたものである。 According to a third aspect of the present invention, there is provided the plasma-assisted vapor deposition apparatus according to the first or second aspect, wherein the vapor deposition material heating means is an electron beam heating means.

また請求項の発明では、前記蒸着材料にAl金属を用いることを特徴とする請求項1からのいずれか一項に記載のプラズマアシスト蒸着装置としたものである。 According to a fourth aspect of the invention, there is provided the plasma-assisted vapor deposition apparatus according to any one of the first to third aspects, wherein Al metal is used as the vapor deposition material.

請求項1に係る発明の装置は、真空容器内部がマイクロ波の波長に比べて十分に広い空間になっていたとしても、ガスパイプがアンテナとなり、そのマイクロ波を用いて、ガス導入口のみに集中してプラズマを発生させることができる。よって、大掛かりな装備なしに、蒸着やCVD等の成膜プロセスに利用するプラズマを効率良くかつ容易に発生することができる。   In the apparatus according to the first aspect of the present invention, even if the inside of the vacuum vessel is sufficiently wide as compared with the wavelength of the microwave, the gas pipe serves as an antenna, and the microwave is used to concentrate only on the gas inlet. Thus, plasma can be generated. Therefore, plasma used for film forming processes such as vapor deposition and CVD can be generated efficiently and easily without extensive equipment.

請求項2に係る発明の装置は、圧力の変化があっても圧力が低い領域でも十分に安定してプラズマを発生させることができる。特にアシスト蒸着では、低圧で行うことで蒸発レートが高いまま反応性アシスト蒸着が可能となるので、生産性が高く高品質な蒸着膜を提供することができる。   The apparatus according to the second aspect of the invention can generate the plasma sufficiently stably even in a region where the pressure is low or low. In particular, in assist vapor deposition, reactive assist vapor deposition can be performed with a high evaporation rate by performing it at a low pressure, so that a high-quality vapor deposition film with high productivity can be provided.

請求項3に係る発明の装置は、アース電極が確実に基準電位0となり、マイクロ波の電界エネルギーが効率良くプラズマに伝達できる。   In the device according to the third aspect of the invention, the ground electrode is reliably at the reference potential 0, and the electric field energy of the microwave can be efficiently transmitted to the plasma.

請求項4に係る発明の装置は、真空容器内部で効率良くかつ容易にプラズマを発生させて高品質な薄膜の形成ができる。   The apparatus of the invention according to claim 4 can form a high-quality thin film by generating plasma efficiently and easily inside the vacuum vessel.

請求項5に係る発明の装置は、ガスバリア性の高い高品質なAlOx膜を形成できる。   The apparatus of the invention according to claim 5 can form a high-quality AlOx film having a high gas barrier property.

以上、本発明は、真空容器内部がマイクロ波の波長に比べて十分に広い空間になってい
たとしても、そのマイクロ波を用いて、その真空容器内部でプラズマを効率良くかつ容易に発生できる装置、或いは、その真空容器内部で効率良くかつ容易にプラズマを発生させて高品質な薄膜の形成ができる装置を提供するという効果がある。
As described above, the present invention is an apparatus capable of efficiently and easily generating plasma inside a vacuum vessel using the microwave even if the inside of the vacuum vessel is sufficiently wide compared to the wavelength of the microwave. Alternatively, there is an effect of providing an apparatus capable of forming a high-quality thin film by generating plasma efficiently and easily inside the vacuum vessel.

以下に、本発明の一実施形態を説明する。   Hereinafter, an embodiment of the present invention will be described.

図1に、本発明のマイクロ波プラズマ発生装置の全体を表す側面図を示す。図2に、本発明のマイクロ波プラズマ発生装置の一部を拡大して表す側面図を示す。図3に、本発明のマイクロ波プラズマ発生装置の一部を拡大して表す正面図を示す。   In FIG. 1, the side view showing the whole microwave plasma generator of this invention is shown. In FIG. 2, the side view which expands and represents a part of microwave plasma generator of this invention is shown. FIG. 3 is an enlarged front view showing a part of the microwave plasma generator of the present invention.

本発明のマイクロ波プラズマ発生装置は、マイクロ波を発生する発振器6と、マイクロ波を伝播させる導波管1と、マイクロ波のインピーダンスを調整する整合器7と、真空容器8と、真空容器8と導波管1内を分離させる誘電体2と、誘電体2の長辺側に接するアース電極3と、アース電極3と垂直に設置され、ガス導入口5から真空容器8内にガスを導入するガスパイプ4とを備える。   The microwave plasma generator of the present invention includes an oscillator 6 that generates a microwave, a waveguide 1 that propagates the microwave, a matching unit 7 that adjusts the impedance of the microwave, a vacuum vessel 8, and a vacuum vessel 8. And a dielectric 2 that separates the inside of the waveguide 1, a ground electrode 3 that is in contact with the long side of the dielectric 2, and a gas that is installed perpendicularly to the ground electrode 3 and that introduces gas into the vacuum vessel 8 from the gas inlet 5 The gas pipe 4 is provided.

本発明のマイクロ波プラズマ発生装置は、マイクロ波を発生する発振器6、マイクロ波を伝播させる導波管1、マイクロ波のインピーダンスを調整する整合器7、真空容器8と導波管1内を分離させる誘電体2によって、マイクロ波を真空容器8に導入する。   The microwave plasma generator according to the present invention includes an oscillator 6 for generating a microwave, a waveguide 1 for propagating the microwave, a matching unit 7 for adjusting the impedance of the microwave, a vacuum vessel 8 and the inside of the waveguide 1. The microwave is introduced into the vacuum vessel 8 by the dielectric 2 to be caused.

発振器6は、マグネトロンを代表とする一般的なマイクロ波管を使用することができ、発振させるマイクロ波の周波数としては、工業用割り当て周波数の2.45GHzが最もよく使われている。   As the oscillator 6, a general microwave tube represented by a magnetron can be used, and the industrially assigned frequency of 2.45 GHz is most frequently used as the frequency of the oscillating microwave.

導波管1は、発振周波数によって形状が決まり、電磁界の進行方向によって各種モードが選べるがTE波の基本モードの利用を考慮し、EIAJ形名WRJ−2(内径寸法109.22×54.61mm)が多く使われている。   The shape of the waveguide 1 is determined by the oscillation frequency, and various modes can be selected depending on the traveling direction of the electromagnetic field, but considering the use of the TE wave fundamental mode, the EIAJ model WRJ-2 (inner diameter size 109.22 × 54. 61 mm) is often used.

マイクロ波のインピーダンスを調整する整合器7は、E−Hチューナー、スタブチューナー、4Eチューナーなどが挙げられるがどれを用いても構わない。   Examples of the matching unit 7 that adjusts the impedance of the microwave include an E-H tuner, a stub tuner, and a 4E tuner.

誘電体2は、導波管1と真空容器8との圧力差をつけるために必要である。プラズマを発生しやすい圧力は、0.1[Pa]〜10[Pa]程度であるので、それよりおおよそ2桁圧力を高くするか低くするかすることで、導波管1ではなく真空容器8側でプラズマが発生することができる。もし、導波管1内が0.1[Pa]〜10[Pa]の圧力範囲であるならば、導波管1内でもプラズマが発生してしまい余分なエネルギーを消費するばかりか、希望する場所にプラズマが発生しないなどが考えられ、不都合である。誘電体2はマイクロ波の誘電損失が低くかつ圧力差があっても変形しないものが好ましく、単結晶の誘電体材料は誘電損失が低くなるためより好ましい。   The dielectric 2 is necessary for creating a pressure difference between the waveguide 1 and the vacuum vessel 8. Since the pressure at which plasma is likely to be generated is about 0.1 [Pa] to 10 [Pa], the vacuum vessel 8 can be used instead of the waveguide 1 by increasing or decreasing the pressure by about two digits. Plasma can be generated on the side. If the inside of the waveguide 1 is in a pressure range of 0.1 [Pa] to 10 [Pa], plasma is generated in the waveguide 1 as well as consuming excess energy. It is inconvenient because no plasma is generated in the place. The dielectric 2 preferably has a low microwave dielectric loss and does not deform even when there is a pressure difference, and a single crystal dielectric material is more preferable because the dielectric loss is low.

アース電極3とガスパイプ4との組み合わせは、マイクロ波によって生ずる電界エネルギーを受けるアンテナ系として重要な役割を果たす。アース電極3とガスパイプ4とがあることで、ガスパイプ4のガス導入口5からガスを導入したときに、電界エネルギーを受けて、ガス導入口5よりプラズマを発生する。特に誘電体2とガス導入口5との間の距離10をマイクロ波の波長λの1/2の長さとし、アース電極3とガス導入口5との間の距離11をマイクロ波の波長λの1/4の長さにすると、インピーダンスが大きくなることで電界強度が最大となるためより好ましい。   The combination of the ground electrode 3 and the gas pipe 4 plays an important role as an antenna system that receives electric field energy generated by microwaves. Due to the presence of the ground electrode 3 and the gas pipe 4, when gas is introduced from the gas inlet 5 of the gas pipe 4, electric field energy is received and plasma is generated from the gas inlet 5. In particular, the distance 10 between the dielectric 2 and the gas inlet 5 is ½ the wavelength λ of the microwave, and the distance 11 between the ground electrode 3 and the gas inlet 5 is the wavelength λ of the microwave. A length of ¼ is more preferable because the electric field strength is maximized by increasing the impedance.

アース電極3は接地されており、基準電位0としてガスパイプ4への最大電界を決める
上で必要であるため最低でもマイクロ波の波長λの以上の辺を持つ長方形もしくは正方形もしくは波長λの以上の半径をもつ円形となる大きさが好ましい。また、基準となる電極であるため大きい形状がより好ましい。
Since the ground electrode 3 is grounded and is necessary to determine the maximum electric field to the gas pipe 4 as the reference potential 0, it is at least a rectangle or square having a side longer than the microwave wavelength λ or a radius larger than the wavelength λ. The size of a circle with a is preferred. Moreover, since it is a reference electrode, a large shape is more preferable.

本発明のマイクロ波プラズマ発生装置は、真空蒸着による成膜中の真空容器内でプラズマを発生させ、プラズマアシスト蒸着法として用いることができる。その場合の基材は、金属、ガラス、プラスチックなど選ばず、基材の厚さはフィルム、シート、パネルなど特に制限はない。蒸着では10-3[Pa]から10-2[Pa]の圧力帯で行うことが多いが、ガスパイプをアンテナとして用いたプラズマ発生装置はそれらの圧力帯でもプラズマを発生することが可能である。よって、蒸着材料がプラズマにより活性化され基材への着力向上や膜の緻密化が実現できる。また、酸素やアンモニアなどの反応性ガスをプラズマ化して金属蒸気から酸化物や窒化物の膜を作成することができる。具体的な例を挙げれば、金属Alを電子ビーム加熱法によってAl蒸気を発生させ酸素プラズマを同時に発生させることで、アシストによって高品質なAlOx膜を作成することができる。ここで言う高品質は、ガスバリア性の高いということである。 The microwave plasma generator of the present invention generates plasma in a vacuum vessel during film formation by vacuum vapor deposition, and can be used as a plasma assisted vapor deposition method. The base material in that case is not limited to metal, glass, plastic, and the thickness of the base material is not particularly limited, such as a film, a sheet, or a panel. Vapor deposition is often performed in a pressure band of 10 −3 [Pa] to 10 −2 [Pa], but a plasma generator using a gas pipe as an antenna can generate plasma even in those pressure bands. Therefore, the vapor deposition material is activated by the plasma, and the adhesion to the base material can be improved and the film can be densified. In addition, a reactive gas such as oxygen or ammonia can be converted into plasma to form an oxide or nitride film from metal vapor. As a specific example, a high-quality AlOx film can be formed with assist by generating Al vapor from metal Al by an electron beam heating method and simultaneously generating oxygen plasma. The high quality mentioned here means that the gas barrier property is high.

また本発明のマイクロ波プラズマ発生装置は、巻取り蒸着装置のアシスト源として利用することができる。巻取をおこなうためフレキシブルな基材が用いられ、ロール・トゥ・ロールによって大量生産に適するため、好ましい。その場合、公知の数あるフレキシブル基材として特に制限はない。基材の透明性を重視する場合でも、高分子透明プラスチック基材は、特に限定されるものではなく公知のものを使用することができる。例えばポリオレフィン系(ポリエチレン、ポリプロピレン等)、ポリエステル系(ポリエチレンテレフタレート、ポリエチレンナフタレート等)、ポリアミド系(ナイロン−6、ナイロン−66等)、ポリスチレン、エチレンビニルアルコール、ポリ塩化ビニル、ポリイミド、ポリビニルアルコール、ポリカーボネイト、ポリエーテルスルホン、アクリル、セルロース系(トリアセチルセルロース、ジアセチルセルロース等)などが挙げられるが特に限定されない。また、基材フィルム厚みは限定するものではないが、用途に応じて、6μmから200μm程度が使用しやすい。   Moreover, the microwave plasma generator of this invention can be utilized as an assist source of a winding vapor deposition apparatus. Since a flexible base material is used for winding, and it is suitable for mass production by roll-to-roll, it is preferable. In that case, there are no particular limitations on the number of known flexible substrates. Even when importance is attached to the transparency of the base material, the polymer transparent plastic base material is not particularly limited, and known materials can be used. For example, polyolefin (polyethylene, polypropylene, etc.), polyester (polyethylene terephthalate, polyethylene naphthalate, etc.), polyamide (nylon-6, nylon-66, etc.), polystyrene, ethylene vinyl alcohol, polyvinyl chloride, polyimide, polyvinyl alcohol, Polycarbonate, polyethersulfone, acrylic, cellulose-based (triacetyl cellulose, diacetyl cellulose, etc.) and the like are exemplified, but not particularly limited. Moreover, although the base film thickness is not limited, about 6 to 200 μm is easy to use depending on the application.

以下に、本発明の実施例を具体的に説明する。   Examples of the present invention will be specifically described below.

<実施例1>
マイクロ波は2.45GHzの周波数を用い、導波管1はEIAJ形名WRJ−2(内径寸法109.22×54.61mm)、整合器7は4Eチューナーを使用した。誘電体2は石英ガラス(120mm×95mm厚さ3mm)を使用して、導波管1内の圧力を真空容器8よりも低くするためにターボポンプ(図示せず)によって導波管1内の圧力を10-4[Pa]付近とした。図3に示すように、アース電極3として大きさ500mm×200mmの厚さ1.5mmの銅板を誘電体2の長辺側と接するように取り付け、ガスパイプ4はSUS316製の3/8インチのパイプを用いて先端部分はL字となるように90度曲げ加工をした。2.45GHzの波長λは122mmであるので、誘電体2の石英ガラスからガス導入口5が61mm離れるよう、アース電極3の銅板に穴を開け、アース電極3とガス導入口5との間の距離が31mmとなるようにガスパイプ4を固定した。ガスパイプ4からArガスを導入し流量を変化させ、圧力を1.8×10-2[Pa]、5.6×10-2[Pa]、1.2×10-1[Pa]としマイクロ波の電力を1.0[kW]としてプラズマが発生するか調べた。
<実施例2>
誘電体2の石英ガラスとガス導入口5との間の距離3/4λ、すなわち91.5mmの、アース電極3とガス導入口5との間の距離も3/4λ、91.5mmとなるようにガスパイプ4を配置したこと以外、実施例1と同様の条件で、圧力を3水準変化させて、プラズマが発生するか調べた。
<Example 1>
The microwave uses a frequency of 2.45 GHz, the waveguide 1 uses an EIAJ model name WRJ-2 (inner diameter size 109.22 × 54.61 mm), and the matching unit 7 uses a 4E tuner. The dielectric 2 is made of quartz glass (120 mm × 95 mm and 3 mm in thickness), and a turbo pump (not shown) is used in the waveguide 1 to make the pressure in the waveguide 1 lower than that in the vacuum vessel 8. The pressure was around 10 −4 [Pa]. As shown in FIG. 3, a copper plate having a size of 500 mm × 200 mm and a thickness of 1.5 mm is attached as the ground electrode 3 so as to contact the long side of the dielectric 2, and the gas pipe 4 is a 3/8 inch pipe made of SUS316. The tip was bent 90 degrees so that the tip was L-shaped. Since the wavelength λ of 2.45 GHz is 122 mm, a hole is formed in the copper plate of the ground electrode 3 so that the gas inlet 5 is 61 mm away from the quartz glass of the dielectric 2 and the gap between the ground electrode 3 and the gas inlet 5 is increased. The gas pipe 4 was fixed so that the distance was 31 mm. Ar gas is introduced from the gas pipe 4 to change the flow rate, and the pressure is set to 1.8 × 10 −2 [Pa], 5.6 × 10 −2 [Pa], and 1.2 × 10 −1 [Pa]. It was investigated whether plasma was generated with a power of 1.0 [kW].
<Example 2>
The distance between the quartz glass of the dielectric 2 and the gas inlet 5 is 3 / 4λ, that is, 91.5 mm, and the distance between the ground electrode 3 and the gas inlet 5 is also 3 / 4λ, 91.5 mm. Except that the gas pipe 4 was arranged in the above, it was examined whether plasma was generated by changing the pressure by three levels under the same conditions as in Example 1.

<比較例1>
アース電極3、ガスパイプ4をともに無くしたこと以外、実施例1と同様の条件で、圧力を3水準変化させ、マイクロ波を入れただけでプラズマが発生するかどうかを調べた。
<Comparative Example 1>
Except that both the ground electrode 3 and the gas pipe 4 were eliminated, it was investigated whether plasma was generated by changing the pressure at three levels under the same conditions as in Example 1 and turning on the microwave.

<比較例2>
比較例1で、ガス導入口5と誘電体2の石英ガラスとの間の距離が1/4λ(31mm)となるようにガスパイプ4を固定したこと以外、比較例1と同様の条件で、圧力を3水準変化させ、マイクロ波を入れただけでプラズマが発生するかどうかを調べた。
<Comparative example 2>
In Comparative Example 1, under the same conditions as in Comparative Example 1, except that the gas pipe 4 was fixed so that the distance between the gas inlet 5 and the quartz glass of the dielectric 2 was ¼λ (31 mm). It was investigated whether or not plasma was generated just by turning on microwaves.

以上実施例1、2、及び比較例1、2の結果を表1に示す。   The results of Examples 1 and 2 and Comparative Examples 1 and 2 are shown in Table 1.

○…プラズマが発生し維持する。
×…プラズマは発生しない。
○: Plasma is generated and maintained.
X: Plasma is not generated.

これらの結果から、実施例1、2はプラズマが発生したが、比較例1、2は、整合器を調整してもプラズマは発生しなかった。実施例1は圧力の変化に対してプラズマを安定して維持することができたが、実施例2では低い圧力ではプラズマが発生しなかった。実施例1は、実施例2に比べ圧力変化によるインピーダンスの変化が少ないため安定してプラズマが維持できると考えられる。   From these results, plasma was generated in Examples 1 and 2, but no plasma was generated in Comparative Examples 1 and 2 even when the matching unit was adjusted. In Example 1, plasma could be stably maintained against changes in pressure, but in Example 2, plasma was not generated at low pressure. Since Example 1 has less change in impedance due to pressure change than Example 2, it can be considered that plasma can be stably maintained.

<実施例3>
電子ビーム加熱式巻取り式蒸着装置に実施例1と同様なマイクロ波発生装置を設置し、Al蒸発に対して酸素プラスマによる反応性アシスト蒸着を行った。基材はPETフィルム(東レ社製T60、25μ厚)を用いた。電子ビームの条件は、ビーム加速電圧40kV、ビーム電流0.3Aとした。Alインゴット(純度99.9%)に電子ビームを照射ぢ、Al蒸気を発生させた。このときにAl蒸着を行い、PETフィルムと膜の光線透過率が波長366nmで40%となる様にして、ガスパイプより酸素ガスを300[sccm]導入し、圧力は4.6×10-2[Pa]であった。マイクロ波電力を1.0[kW]にすることでAlOx成膜を行った。PETフィルムと膜の光線透過率が波長366nmで80%となり、AlOx膜厚が20nmとなるように巻取り速度を変化させた。作成したAlOx付きフィルムは酸素透過率(MOCON製、OX−TRAN2/20による酸素透過率測定。測定条件30℃70%RH)、光線透過率(分光器使用、島津製作所製UV−3100)、AlOx膜厚(X線反射率法、リガク製ATX−G)を測定した。
<比較例3>
マイクロ波の電力を0[kW]に変更しプラズマを消滅させたこと以外、実施例3と同様に電子ビーム加熱式蒸着を行ってAlOxの反応性蒸着を行った。また実施例3同様に酸素透過率と光線透過率とAlOx膜厚とを測定した。
<Example 3>
The microwave generator similar to Example 1 was installed in the electron beam heating type wind-up type vapor deposition apparatus, and the reactive assist vapor deposition by oxygen plasma was performed with respect to Al evaporation. A PET film (T60 manufactured by Toray Industries Inc., 25 μm thick) was used as the substrate. The electron beam conditions were a beam acceleration voltage of 40 kV and a beam current of 0.3 A. An Al ingot (purity 99.9%) was irradiated with an electron beam to generate Al vapor. At this time, Al vapor deposition is performed so that the light transmittance of the PET film and the film is 40% at a wavelength of 366 nm, oxygen gas is introduced at 300 [sccm] from the gas pipe, and the pressure is 4.6 × 10 −2 [ Pa]. The AlOx film was formed by setting the microwave power to 1.0 [kW]. The winding speed was changed so that the light transmittance of the PET film and the film was 80% at a wavelength of 366 nm, and the AlOx film thickness was 20 nm. The produced AlOx-attached film has an oxygen transmission rate (measurement of oxygen transmission rate by MOCON, OX-TRAN 2/20, measuring condition 30 ° C. 70% RH), light transmittance (use of spectrometer, UV-3100 manufactured by Shimadzu Corporation), AlOx The film thickness (X-ray reflectivity method, Rigaku ATX-G) was measured.
<Comparative Example 3>
Reactive vapor deposition of AlOx was performed by performing electron beam heating vapor deposition in the same manner as in Example 3 except that the microwave power was changed to 0 [kW] and the plasma was extinguished. Further, as in Example 3, the oxygen transmission rate, the light transmission rate, and the AlOx film thickness were measured.

以上実施例3、比較例3の結果を表2に示す。   The results of Example 3 and Comparative Example 3 are shown in Table 2.

比較例3に比べて、実施例3では酸素透過率が低くなったことから、AlOx膜のバリアが向上した結果となった。プラズマを利用しなかった比較例3よりもバリア性の差は明らかである。このことはプラズマアシストによって膜質が密に変化したことと、電子ビームによるバリア性の劣化要因である帯電障害を緩和したとの2つの要因が考えられるため、一意的に決まるものではないがマイクロ波プラズマの効果を示すことができた。 Compared to Comparative Example 3, the oxygen permeability was lower in Example 3, which resulted in an improved barrier of the AlOx film. The difference in barrier properties is clearer than in Comparative Example 3 in which no plasma was used. This can be attributed to two factors: the fact that the film quality has been changed by plasma assist, and that the charging failure, which is the cause of the deterioration of barrier properties due to electron beams, has been considered. The effect of plasma could be shown.

本発明のマイクロ波プラズマ発生装置は、アース電極と適切な長さのアンテナ兼ガスパイプを使うことで、マイクロ波の波長に対して、広い空間があった場合に圧力変化があっても十分に安定したマイクロ波プラズマを発生させることができるため、磁場を発生させるなどの大掛かりな装備を必要とせず、真空容器の大きさが制限されることもなく比較的低い圧力でのプラズマプロセスに応用できる。特にアシスト蒸着では、低圧で行うことで蒸発レートが高いまま反応性アシスト蒸着が可能となるので、生産性が高く高品質な蒸着膜を提供することができる。   The microwave plasma generator of the present invention is sufficiently stable even if there is a pressure change when there is a wide space with respect to the wavelength of the microwave by using an earth electrode and an antenna / gas pipe of an appropriate length. Therefore, it can be applied to a plasma process at a relatively low pressure without requiring a large equipment such as a magnetic field and without limiting the size of the vacuum vessel. In particular, in assist vapor deposition, reactive assist vapor deposition can be performed with a high evaporation rate by performing it at a low pressure, so that a high-quality vapor deposition film with high productivity can be provided.

本発明のマイクロ波プラズマ発生装置の全体側面図。The whole side view of the microwave plasma generator of the present invention. 本発明のマイクロ波プラズマ発生装置の一部拡大側面図。The partially expanded side view of the microwave plasma generator of this invention. 本発明のマイクロ波プラズマ発生装置の一部拡大正面図。The partially expanded front view of the microwave plasma generator of this invention.

符号の説明Explanation of symbols

1…導波管
2…誘電体
3…アース電極
4…ガスパイプ
5…ガス導入口
6…発振器
7…整合器
8…真空容器
10…誘電体2とガス導入口5との間の距離
11…アース電極3とガス導入口5との間の距離
DESCRIPTION OF SYMBOLS 1 ... Waveguide 2 ... Dielectric 3 ... Ground electrode 4 ... Gas pipe 5 ... Gas inlet 6 ... Oscillator 7 ... Matching device 8 ... Vacuum vessel 10 ... Distance 11 between the dielectric 2 and the gas inlet 5 ... Ground Distance between electrode 3 and gas inlet 5

Claims (4)

マイクロ波を発生する発振器と、マイクロ波を伝播させる導波管と、マイクロ波のインピーダンスを調整する整合器と、真空容器と、前記導波管と前記真空容器とを分離する誘電体と、前記誘電体に接しているアース電極と、前記アース電極と垂直に設置され前記真空容器にガスを導入し、かつアンテナとして用いるガスパイプとによりマイクロ波プラズマを発生させるマイクロ波プラズマ発生手段と、蒸着材料から蒸気を発生させる蒸着材料加熱手段とを備え、前記マイクロ波プラズマと前記蒸気を同時に発生させ、前記マイクロ波の波長をλとしたとき、前記ガスパイプのガス導入口が、前記誘電体からλ/2、前記アース電極からλ/4離れた位置に配置されていることを特徴とするプラズマアシスト蒸着装置。 An oscillator that generates a microwave; a waveguide that propagates the microwave; a matching unit that adjusts the impedance of the microwave; a vacuum vessel; a dielectric that separates the waveguide and the vacuum vessel; A microwave plasma generating means for generating a microwave plasma by a ground electrode in contact with a dielectric, a gas pipe installed perpendicularly to the ground electrode, and introducing a gas into the vacuum vessel and used as an antenna; A vapor deposition material heating means for generating vapor, wherein the microwave plasma and the vapor are generated simultaneously, and when the wavelength of the microwave is λ, the gas inlet of the gas pipe is λ / 2 from the dielectric. The plasma-assisted vapor deposition apparatus is disposed at a position λ / 4 away from the ground electrode . 前記マイクロ波の波長をλとしたとき、前記アース電極が、少なくともλ以上の長さの辺を持つ長方形もしくは正方形、またはλ以上の半径を持つ円形であることを特徴とする請求項1に記載のプラズマアシスト蒸着装置。 When the wavelength of the microwave lambda, the ground electrode, according to claim 1, characterized in that a circular with a rectangular or square or lambda more radii, with at least lambda or more the length of the side Plasma assisted deposition equipment. 前記蒸着材料加熱手段が電子ビーム加熱手段であることを特徴とする請求項1または2に記載のプラズマアシスト蒸着装置。 Plasma-assisted vapor deposition apparatus according to claim 1 or 2, wherein the deposition material heating means is an electron beam heating means. 前記蒸着材料にAl金属を用いることを特徴とする請求項1からのいずれか一項に記載のプラズマアシスト蒸着装置。 The plasma assist vapor deposition apparatus according to any one of claims 1 to 3 , wherein an Al metal is used as the vapor deposition material.
JP2006336761A 2006-12-14 2006-12-14 Plasma assisted deposition system Expired - Fee Related JP5278639B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006336761A JP5278639B2 (en) 2006-12-14 2006-12-14 Plasma assisted deposition system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006336761A JP5278639B2 (en) 2006-12-14 2006-12-14 Plasma assisted deposition system

Publications (2)

Publication Number Publication Date
JP2008152940A JP2008152940A (en) 2008-07-03
JP5278639B2 true JP5278639B2 (en) 2013-09-04

Family

ID=39654918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006336761A Expired - Fee Related JP5278639B2 (en) 2006-12-14 2006-12-14 Plasma assisted deposition system

Country Status (1)

Country Link
JP (1) JP5278639B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011017403A1 (en) * 2011-04-18 2012-10-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for depositing a transparent barrier layer system
DE102011017404A1 (en) * 2011-04-18 2012-10-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for depositing a transparent barrier layer system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002060931A (en) * 2000-08-22 2002-02-28 Toppan Printing Co Ltd Winding type vacuum film deposition apparatus, and manufacturing method of deposition film using the same
CN1522215A (en) * 2001-06-26 2004-08-18 ������������ʽ���� Device for manufacturing DLC film coated plastic container, DLC film coated plastic container and manufacturing method thereof
JP3759076B2 (en) * 2002-06-26 2006-03-22 京セラ株式会社 Cat-PECVD method and film processing system
JP2005235464A (en) * 2004-02-17 2005-09-02 Toshio Goto Plasma generator
JP2005330542A (en) * 2004-05-20 2005-12-02 Utec:Kk Plasma cvd film deposition system, method for confirming ignition of plasma, method for confirming property of cvd film and method for confirming stain of system
JP4035568B2 (en) * 2004-11-29 2008-01-23 株式会社エーイーティー Atmospheric pressure large area plasma generator

Also Published As

Publication number Publication date
JP2008152940A (en) 2008-07-03

Similar Documents

Publication Publication Date Title
KR102389512B1 (en) Linearized Active Radio Frequency Plasma Ion Source
JP5698652B2 (en) Coaxial microwave assisted deposition and etching system
US9506142B2 (en) High density microwave plasma generation apparatus, and magnetron sputtering deposition system using the same
JP5567005B2 (en) Microwave-assisted PVD with a rotatable target
US5250328A (en) Process and apparatus for plasma CVD coating or plasma treating substrates
JP3962420B2 (en) Carbon nanowall manufacturing method, carbon nanowall and manufacturing apparatus
US20060196766A1 (en) Plasma deposition apparatus and method
JP5278639B2 (en) Plasma assisted deposition system
JP4775280B2 (en) Plasma assist vapor deposition apparatus and plasma assist vapor deposition method
JPH07109571A (en) Electron-beam continuous vapor deposition device
JP4537032B2 (en) Plasma processing apparatus and plasma processing method
Nagatsu et al. Production of large-area surface-wave plasmas with an internally mounted planar cylindrical launcher
JP4967784B2 (en) Microwave plasma generator
KR102551129B1 (en) Helicon Plasma Beam EUV Generation Apparatus
JP5050651B2 (en) Vacuum deposition system
JP2007258093A (en) Microwave plasma generator
US20210327691A1 (en) High density plasma processing apparatus
JP2010138469A (en) Vacuum film deposition method and vacuum film deposition apparatus
JP5050650B2 (en) Vacuum deposition method
JP2008075164A (en) Coiling type vacuum vapor deposition method and system
TWI321810B (en) Plasma enhanced sputtering method and apparatus
JP2002060931A (en) Winding type vacuum film deposition apparatus, and manufacturing method of deposition film using the same
WO2003080890A1 (en) Production metod and production device for thin film
JPH0417669A (en) Film forming method using plasma and rf ion plating device
JP5636636B2 (en) Vacuum film forming apparatus, method for producing polymer film laminate, and polymer film laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130507

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5278639

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees