JP5278334B2 - 光学的情報記録再生装置および光ヘッド装置、光学的情報記録再生方法 - Google Patents

光学的情報記録再生装置および光ヘッド装置、光学的情報記録再生方法 Download PDF

Info

Publication number
JP5278334B2
JP5278334B2 JP2009548914A JP2009548914A JP5278334B2 JP 5278334 B2 JP5278334 B2 JP 5278334B2 JP 2009548914 A JP2009548914 A JP 2009548914A JP 2009548914 A JP2009548914 A JP 2009548914A JP 5278334 B2 JP5278334 B2 JP 5278334B2
Authority
JP
Japan
Prior art keywords
light
polarization component
optical
recording
liquid crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009548914A
Other languages
English (en)
Other versions
JPWO2009087993A1 (ja
Inventor
瑞穂 冨山
龍一 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2009548914A priority Critical patent/JP5278334B2/ja
Publication of JPWO2009087993A1 publication Critical patent/JPWO2009087993A1/ja
Application granted granted Critical
Publication of JP5278334B2 publication Critical patent/JP5278334B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • G11B7/1378Separate aberration correction lenses; Cylindrical lenses to generate astigmatism; Beam expanders
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0065Recording, reproducing or erasing by using optical interference patterns, e.g. holograms

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Head (AREA)
  • Optical Recording Or Reproduction (AREA)

Description

本発明は、光記録媒体に対して情報の記録再生を3次元的に行う光学的情報記録再生装置および光ヘッド装置、光学的情報記録再生方法に係る。
光記録媒体である光ディスクの大容量化技術の一つとして、3次元光記録再生技術がある。3次元光記録再生技術では、光ディスクの面内方向の次元だけでなく厚さ方向の次元も利用され、光ディスクに対して3次元的に情報の記録再生が行われる。この3次元光記録再生技術として、ホログラム記録技術がある。ホログラム記録技術では、まず、2つの光の干渉縞が回折格子として光記録媒体に記録される。次に、2つの光のうちのどちらか一方をこの回折格子に照射し、回折格子からの回折光を受光することにより情報の再生が行われる。
ホログラム記録技術には、「ページデータのホログラム技術」と呼ばれる技術がある。この技術では、まず、干渉させる2つの光のうち、一方の光に空間光変調器により2次元の情報が与えられ、一度に記録される。次に、情報を持たない他方の光を回折格子に照射して、回折格子からの回折光をCCD(charge coupled device)やCMOS(complementary metal oxide semiconductor)などの撮像素子で受光し、2次元の情報が一度に再生される。
ページデータのホログラム記録技術では、温度変化による記録層の収縮や、記録再生を行う光源の波長の変化により、形成される回折格子の形状が変化する。そのため、再生時の回折格子の回折効率が低下し、再生性能が低下することがある。
ホログラム記録技術には、もう一つ、「ビットバイビットの反射型ホログラム記録技術」と呼ばれる技術がある。この技術では、まず、対向する2つの光を光ディスクの記録層内の同一の位置に集光して干渉させ、集光点の近傍に微小な回折格子を形成することにより情報の記録を行う。次に、2つの光のうちどちらか一方をこの回折格子に集光し、回折格子からの反射光を受光することにより情報の再生が行われる。
ビットバイビットの反射型ホログラム記録技術においては、ページデータのホログラム記録技術に比べて、光ディスクの記録層内に形成される回折格子が小さい。そのため、温度変化による記録層の収縮や、記録再生を行う光源の波長の変化による回折格子の形状の変化が小さい。したがって、再生時の再生性能の低下はページデータのホログラム記録技術に比べて小さい。
ホログラム記録技術においては、記録層と反射層とを有する反射型の光ディスクを用いることが出来る。こうすることにより、光ディスクに対して情報の記録再生を行うための光ヘッド装置の光学系を光ディスクの片側のみに集約して簡素化することができる。このような反射型の光ディスクを使用対象とし、ビットバイビットの反射型ホログラム記録に用いられる光学的情報記録再生装置として、文献(Kimihiro Saito and Seiji Kobayashi, “Analysis of Micro−Reflector 3−D optical disc recording”, 2006 Optical Data Storage Topical Meeting Conference Proceedings, IEEE, pp.188−190.)に記載される光学的情報記録再生装置がある。
図1は、上記文献に記載される光学的情報記録再生装置に用いられる光ヘッド装置の構成を説明するためのブロック図である。
レーザ63から出射した光は、まず、凹レンズ64と凸レンズ65とを具備するエキスパンダレンズ系を透過することによって光径が拡大される。次に、この光の一部がビームスプリッタ66で反射され、1/2波長板67を透過して偏光方向が所定の方向となる。そのうちのP偏光成分は偏光ビームスプリッタ68を透過し、S偏光成分は偏光ビームスプリッタ68で反射する。
ここで、光ディスク62の記録時について説明する。偏光ビームスプリッタ68を透過した光は、まず、ミラー69で反射され、1/4波長板73を透過して直線偏光から円偏光へ変換される。次に、この光は、凸レンズ75と凸レンズ76とを具備するリレーレンズ系を透過して収束光となり、その一部がビームスプリッタ80で反射される。そして、この光は、対物レンズ81により光ディスク62の記録層内に集光される。
一方、偏光ビームスプリッタ68で反射された光は、まず、1/2波長板70を透過して偏光方向が90°回転し、シャッタ71を通る。次に、この光は、偏光ビームスプリッタ72へP偏光として入射してほぼ100%が透過し、1/4波長板74を透過して直線偏光から円偏光へ変換される。さらに、この光は、凸レンズ77と凸レンズ78とを具備するリレーレンズ系を透過して発散光となり、一部がビームスプリッタ79で反射される。そして、この光の一部がビームスプリッタ80を透過し、対物レンズ81により光ディスク62の記録層内に集光される。
ここで、光ディスク62の再生時について説明する。再生時、シャッタ71は閉じられる。したがって、偏光ビームスプリッタ68を透過した光は、上述と同じように、その一部が光ディスク62の記録層内に集光されるが、偏光ビームスプリッタ68で反射された光は、シャッタ71で遮断され、光ディスク62へ向かわない。
光ディスク62の記録層内に集光された光は、光ディスク62の記録層で反射され、対物レンズ81を逆向きに通る。この光の一部は、ビームスプリッタ80で反射され、凸レンズ76と凸レンズ75とを具備するリレーレンズ系を逆向きに通る。さらに、この光は、1/4波長板73を透過して円偏光から往路と偏光方向が直交した直線偏光へ変換され、ミラー69で反射され、偏光ビームスプリッタ68へS偏光として入射する。この光のほぼ100%が、偏光ビームスプリッタ68によって反射され、凸レンズ82により光検出器83の受光部上に集光される。
図2A〜2Cは、光ディスク62への入射光および光ディスク62からの反射光の光路を説明するための図である。図2Aと図2Bとは、光ディスク62の記録時における入射光および反射光の光路を示している。図2Cは、光ディスク62の再生時における入射光および反射光の光路を示している。
図2A〜2Cに示される例では、光ディスク62は、記録層86と反射層87とがこの順に積層されて、基板84と基板85との間に挟まれるように構成されている。図2A〜2Cにおいて、光は、基板84側から記録層86に入射し、反射層87側に向かう。図2Aに示される入射光89は、記録時に偏光ビームスプリッタ68(図1参照)を透過した光に対応し、図2Bに示される入射光91は、偏光ビームスプリッタ68で反射された光に対応する。なお、図2Cに示される入射光93は、再生時に偏光ビームスプリッタ68を透過した光に対応する。
図2Aに示されるように、入射光89は、収束光として対物レンズ81へ入射し、記録層86内を反射層87の側へ向かう途中で集光される。この光は、反射層87で反射されて反射光90となり、記録層86を透過し、収束光として対物レンズ81から出射する。一方、図2Bに示されるように、入射光91は発散光として対物レンズ81へ入射し、記録層86を透過し、反射層87で反射されて反射光92となり、記録層86内を反射層87と反対の側へ向かう途中で集光される。この光は、発散光として対物レンズ81から出射する。入射光89と反射光92とは記録層86内の同一の位置に集光されて干渉し、集光点の近傍に微小な回折格子が形成される。
これに対し、図2Cに示されるように、入射光93は、収束光として対物レンズ81へ入射し、記録層86内を反射層87の側へ向かう途中で上記の回折格子88に集光される。この光は、回折格子88で反射されて反射光94となり、発散光として対物レンズ81から出射する。反射光94は、図1における光検出器83で受光される。
ここで、回折格子88は記録マークに相当する。入射光89および反射光92の集光点の位置は、記録層86の厚さ方向へ移動させることが可能である。このようにして、記録層86の面内方向だけでなく厚さ方向にも多数の回折格子を形成することにより、3次元記録再生を行うことができる。
この光学的情報記録再生装置においては、入射光89と反射光92との干渉により回折格子88が形成される。入射光89と反射光92とは、記録層86内の同一の位置に集光する。集光点の近傍での入射光89および反射光92の単位面積当たりの強度は強いため、回折格子88の集光点の近傍における回折効率は高い。
ところで、他の干渉によって回折格子88以外に5つの回折格子が形成される。他の干渉とは、入射光89と反射光90との干渉、入射光91と反射光92との干渉、入射光89と入射光91との干渉、反射光90と反射光92との干渉、入射光91と反射光90との干渉である。
このうち、入射光91および反射光90は、記録層86内で集光しない。そのため、入射光91および反射光90の単位面積当たりの強度は弱く、入射光91と反射光90との干渉により形成される回折格子の回折効率は非常に低い。
しかし、他の4つの干渉により形成される回折格子の回折効率は、それぞれそれほど低くない。すなわち、入射光89と反射光90との干渉により形成される回折格子の入射光89の集光点の近傍における回折効率、入射光91と反射光92との干渉により形成される回折格子の反射光92の集光点の近傍における回折効率、入射光89と入射光91との干渉により形成される回折格子の入射光89の集光点の近傍における回折効率、反射光90と反射光92との干渉により形成される回折格子の反射光92の集光点の近傍における回折効率は低くない。すなわち、入射光89および反射光92の集光点の近傍に、回折効率が高い回折格子88以外に、回折効率がそれほど低くない4つの回折格子が重なって形成される。
入射光93を収束光として対物レンズ81へ入射させると、入射光89と反射光90との干渉により形成される回折格子と、入射光91と反射光92との干渉により形成される回折格子とにより、収束光として対物レンズ81から出射する反射光が生じる。この反射光は、光検出器83の位置で大きく広がっているため光検出器83で受光されない。
一方、入射光93を収束光として対物レンズ81へ入射させると、入射光89と入射光91との干渉により形成される回折格子と、反射光90と反射光92との干渉により形成される回折格子とにより、対物レンズ81から発散光として出射する反射光が生じる。この反射光は、反射光94と同じく光検出器83で受光される。
ところで、回折格子88は、格子の方向が記録層86の面内方向である反射型の回折格子である。これに対し、入射光89と入射光91との干渉により形成される回折格子、および、反射光90と反射光92との干渉により形成される回折格子は、格子の方向が記録層86の厚さ方向である透過型の回折格子である。
ここで、記録層86の温度が変化すると、記録層86は膨張または収縮し、回折格子における格子の間隔が変化する。記録層86の膨張または収縮の度合いは、面内方向と厚さ方向とで異なる。したがって、回折格子における格子の間隔の変化の度合いも、反射型の回折格子と透過型の回折格子とで異なる。このとき、入射光89と入射光91との干渉により形成される回折格子と、反射光90と反射光92との干渉により形成される回折格子とにより生じる反射光は、反射光94に対する発散の度合いが変化する。
その結果、反射光94が光検出器83の受光部上に集光される場合、入射光89と入射光91との干渉により形成される回折格子と、反射光90と反射光92との干渉により形成される回折格子とにより生じる反射光は、光検出器83の位置で広がる。その結果、この反射光は光検出器83で受光されなくなる。すなわち、記録層86の温度の変化を考慮すると、入射光89および反射光92の集光点の近傍に形成される回折格子88以外の4つの回折格子は、いずれも情報の再生に寄与しない。このように、情報の再生に寄与しない回折格子が形成されると、情報の再生に寄与する回折格子88の回折効率がその分だけ低下し、再生信号の品質が低下する。
また、この光学的情報記録再生装置は、記録層86内で干渉させる入射光89と入射光91とを生成するために、レーザ63からの出射光の光路を偏光ビームスプリッタ68により2つに分離し、ビームスプリッタ80によりその2つの光路を合成する。そのため、光ヘッド装置の光学系が複雑化し、光ヘッド装置の小型化が困難である。
上記に関連して、特開2004−335044号公報には、ホログラフィック情報記録装置が開示されている。このホログラフィック情報記録装置は、ホログラフィを利用して情報が記録される情報記録層を備えた光情報記録媒体に対して情報を記録するためのものである。このホログラフィック情報記録装置は、物体光生成手段と、記録用参照光生成手段と、記録光学系とを備える。ここで、物体光生成手段は、情報を担持した物体光を生成するものである。記録用参照光生成手段は、記録用参照光を生成するものである。記録光学系は、情報記録層に物体光と記録用参照光との干渉による干渉パターンによって情報が記録されるように、物体光と記録用参照光とを、情報記録層に対して同一面側から照射するものである。また、記録光学系は、この記録光学系内で発生する散乱光をカットするための散乱光遮断光学手段を備えている。
また、特開2005−18840号公報には、光ピックアップ装置が開示されている。この光ピックアップ装置は、情報が記録されたトラックを含む情報記録面に光ビームを照射し、光ビームの集光位置を調整しつつ情報記録面からの戻り光から情報を取り出す。この光ピックアップ装置は、焦点可変レンズと、コントローラと、焦点可変レンズ駆動部とを備える。ここで、焦点可変レンズは、供給される駆動信号に応じて光ビームの集光位置を可変に定める屈折率分布を形成するものである。コントローラは、光ビームを集光すべき位置の変動に合わせて、屈折率分布を焦点可変レンズの光学軸から偏らせるようにサーボ信号を生成するものである。焦点可変レンズ駆動部は、サーボ信号に応じて駆動信号を生成して焦点可変レンズに供給するものである。
また、特開2005−302248号公報には、光ヘッド装置が開示されている。この光ヘッド装置は、光源と、対物レンズと、焦点可変素子と、焦点可変素子制御回路とを備えている。ここで、対物レンズは、光源からの出射光を光記録媒体上に集光させるためのものである。焦点可変素子は、光源と対物レンズとの間に設けられ焦点位置を変化させるものである。焦点可変素子制御回路は、焦点位置を変化させるための電圧を焦点可変素子に出力するものである。また、焦点可変素子は、少なくとも一対の基板と、液晶層と、第1の電極と、第2の電極とを有する。ここで、液晶層は、各基板の間に挟持された液晶からなる。第1の電極は、各基板の対向する面のうちのいずれか一方の面に形成されている。第2の電極は、各基板の対向する面のうち、第1の電極が形成された面と対向する面に形成されている。さらに、第1の電極の電位分布は、焦点可変素子の光軸を中心にほぼ回転対称である。第1の電極は、光軸からの半径の2乗に比例する成分を有する電圧分布を、滑らかにまたは階段状に実現できるような電極形状を有する。第2の電極は、光軸を中心にほぼ回転対称の電位分布が実現できるような電極形状を有する。
また、特開2006−338782号公報には、多層の記録層を持つ記録媒体を用いる光ピックアップ装置が開示されている。この光ピックアップ装置は、光源と、対物レンズと、第1の検出手段とを備える。ここで、対物レンズは、光源からの光束を所望の記録層上に集光するものである。第1の検出手段は、対物レンズによって所望の記録層上に形成された第1の集光スポットの反射光から信号を検出するものである。さらに、光ピックアップ装置は、スポット形成手段と、反射光分離手段と、第2の検出手段と、補正演算手段とを設けている。ここで、スポット形成手段は、所望の記録層以外の記録層上に、対物レンズによって第1の集光スポットと同軸上に、少なくとも1以上の第2の集光スポットを形成するものである。反射光分離手段は、第1の集光スポットの反射光と第2の集光スポットの反射光を分離するものである。第2の検出手段は、第2の集光スポットの反射光から信号を検出するものである。補正演算手段は、第2の集光スポットの反射光から得られる信号を用いて、第1の集光スポットの反射光から得られる信号に対して補正演算するものである。
本発明の目的は、光ディスクの記録層内に情報の再生に寄与しない回折格子が形成されず、高品質な再生信号が得られ、更に、光学系が簡素で、小型化が容易な光学的情報記録再生装置およびそれに用いる光ヘッド装置を提供することにある。
本発明の光学的情報記録再生装置は、記録層、1/4波長板層、反射層をこの順に備える反射型の光記録媒体を使用対象とし、ビットバイビットの反射型ホログラム記録に用いられる光学的情報記録再生装置であり、光源と、光生成手段と、偏光性レンズとを具備する。光生成手段は、光源から出射した光から、偏光方向が互いに直交する第1の偏光成分と第2の偏光成分とを有する光を生成する。偏光性レンズは、第1の偏光成分に対する第1の焦点距離と、第2の偏光成分に対する第2の焦点距離とが互いに異なり、第1の偏光成分と第2の偏光成分とを有する光から、第1の偏光成分のみを有する光と第2の偏光成分のみを有する光とを生成する。第1の偏光成分だけを有する光と、第2の偏光成分だけを有する光とは、偏光性レンズと光記録媒体との間において、同一の光路を有する。また、第1の焦点距離と、第2の焦点距離とは、それぞれ独立に可変であり、第1の焦点距離と、第2の焦点距離とをそれぞれ独立に変化させる偏光性レンズ駆動回路をさらに具備する、としても良い。また、光生成手段よりも光記録媒体側に設けられ、第1の偏光成分を有する光、第2の偏光成分を有する光の両方、又は、どちらか一方を偏向する光偏向素子をさらに具備しても良い。また、偏向された光の偏向角は可変であり、偏向角を変化させる光偏向素子駆動回路をさらに具備しても良い。また、光生成手段は、光源から出射した光から、第1の偏光成分と第2の偏光成分とを有する光を生成するか、第1の偏光成分のみを有する光を生成するかを切り替え可能であり、光記録媒体の記録時において、光生成手段は、第1の偏光成分と第2の偏光成分とを有する光を生成し、光記録媒体の再生時において、光生成手段は第1の偏光成分のみを有する光を生成するように、光生成手段を駆動する光生成手段駆動回路をさらに具備しても良い。
本発明の光ヘッド装置は、記録層、1/4波長板層、反射層をこの順に備える反射型の光記録媒体を使用対象とし、ビットバイビットの反射型ホログラム記録に用いられる光ヘッド装置であり、光源と、光生成手段と、偏光性レンズとを具備する。光生成手段は、光源から出射した光から、偏光方向が互いに直交する第1の偏光成分と第2の偏光成分とを有する光を生成する。偏光性レンズは、第1の偏光成分に対する第1の焦点距離と、第2の偏光成分に対する第2の焦点距離とが互いに異なり、第1の偏光成分と第2の偏光成分とを有する光から、第1の偏光成分のみを有する光と第2の偏光成分のみを有する光とを生成する。第1の偏光成分だけを有する光と、第2の偏光成分だけを有する光とは、偏光性レンズと光記録媒体との間において、同一の光路を有する。また、第1の焦点距離と、第2の焦点距離とは、それぞれ独立に可変である、としても良い。また、光生成手段よりも光記録媒体側に設けられ、第1の偏光成分を有する光と第2の偏光成分を有する光の両方、又は、どちらか一方を偏向する光偏向素子をさらに具備しても良い。また、偏向された光の偏向角は可変であっても良い。また、光生成手段は、光源から出射した光から、第1の偏光成分と第2の偏光成分とを有する光を生成するか、第1の偏光成分のみを有する光を生成するかを切り替え可能であっても良い。
本発明の光学的情報記録再生方法は、記録層、1/4波長板層、反射層をこの順に備える反射型の光記録媒体に対し、ビットバイビットの反射型ホログラム記録に用いられる光学的情報記録再生方法であり、出射ステップと、光生成ステップと、焦点距離を設定するステップと、生成するステップとを具備する。出射ステップでは、光源から光源出射光が出射される。光生成ステップでは、光源出射光から、偏光方向が互いに直交する第1の偏光成分と第2の偏光成分とを有する光が生成される。焦点距離を設定するステップでは、第1の偏光成分と、第2の偏光成分に対して、それぞれ互いに異なる第1の焦点距離と、第2の焦点距離とが設定される。生成するステップでは、第1の偏光成分と第2の偏光成分とを有する光から、第1の偏光成分のみを有する光と第2の偏光成分のみを有する光とが生成される。また、焦点距離を設定するステップでは、第1の焦点距離と、第2の焦点距離とをそれぞれ独立に変化させるステップを具備しても良い。また、第1の偏光成分を有する光、第2の偏光成分を有する光の両方、又は、どちらか一方を偏向する光を偏向するステップをさらに具備しても良い。また、光を偏向するステップでは、偏向された光の偏向角を変化させる偏向角変更ステップを具備しても良い。また、光生成ステップは、光記録媒体の記録時において、光源出射光から第1の偏光成分と第2の偏光成分とを有する光を生成し、光記録媒体の再生時において、光源出射光から第1の偏光成分のみを有する光を生成するステップを備えても良い。
上記発明の目的、効果、特徴は、添付される図面と連携して実施の形態の記述から、より明らかになる。
図1は、関連技術による光学的情報記録再生装置に用いられる光ヘッド装置の構成を説明するためのブロック図である。 図2A〜2Cは、関連技術による光学的情報記録再生装置における光ディスクへの入射光および光ディスクからの反射光の光路を説明するための図である。図2A、図2Bは、光ディスクの記録時における入射光および反射光の光路を示す図である。図2Cは、光ディスクの再生時における入射光および反射光の光路を示す図である。 図3は、本発明の実施の形態に係る光学的情報記録再生装置の構成を説明するためのブロック図である。 図4は、本発明の実施の形態に係る光ヘッド装置の構成を説明するためのブロック図である。 図5は、本発明の実施の形態に係る光ディスクの構成を説明するための俯瞰図である。 図6A〜6Cは、光ディスク2への入射光および光ディスク2からの反射光の光路を説明するための図である。図6A、図6Bは、光ディスク2の記録時における入射光および反射光の光路を示す図である。図6Cは、光ディスクの再生時における入射光および反射光の光路を示す図である。 図7は、偏光制御素子の構成を説明するための断面図である。 図8A〜8Bは、回折格子部201の平面図および断面図である。図8Aは、電圧が印加されていない場合の液晶高分子の配向方向を示す図である。また、図8Bは、電圧が印加された場合の液晶高分子の配向方向を示す図である。 図9は、偏光性可変焦点レンズ8の構成を説明するための断面図である。 図10は、偏光性可変焦点レンズ8の透明電極38、40の電極パターンを示す図である。 図11A〜11Bは、偏光性可変焦点レンズ8の液晶層32の平面図および断面図である。図11Aは、電圧が印加されていない場合の液晶高分子の配向方向を示す図である。図11Bは、電圧が印加された場合の液晶高分子の配向方向を示す図である。 図12A〜12Bは、偏光性可変焦点レンズ8の液晶層33の平面図および断面図である。図12Aは、電圧が印加されていない場合の液晶高分子の配向方向を示す図である。図12Bは、電圧が印加された場合の液晶高分子の配向方向を示す図である。 図13は、光偏向素子119の構成を説明するための断面図である。 図14は、光偏向素子119の透明電極126の電極パターンを示す図である。 図15は、光偏向素子119の透明電極128の電極パターンを示す図である。 図16A〜16Bは、液晶層120の平面図および断面図である。図16Aは、電圧が印加されていない場合の液晶高分子の配向方向を示す図である。図16Bは、領域136aから領域136pに向かって低くなる電圧が印加された場合の液晶高分子の配向方向を示す図である。 図17A〜17Bは、液晶層121の平面図および断面図である。図17Aは、電圧が印加されていない場合の液晶高分子の配向方向を示す図である。図17Bは、領域137aから領域137pに向かって高くなる電圧が印加された場合の液晶高分子の配向方向を示す図である。 図18は、偏光制御素子5aの構成を示す断面図である。 図19A〜19Bは、液晶層108の平面図および断面図である。図19Aは、電圧が印加されていない場合の液晶高分子の配向方向を示す図である。図19Bは、電圧が印加された場合の液晶高分子の配向方向を示す図である。
図面を参照して、本発明による光学的情報記録再生装置および光学的情報記録再生方法を実施するための最良の形態を以下に説明する。
図3は、本発明による光学的情報記録再生装置の実施の形態を説明するためのブロック図である。
本発明の実施の形態に係る光学的情報記録再生装置は、光ヘッド装置1と、ポジショナ98と、スピンドルモータ97と、スピンドルモータ駆動回路61と、コントローラ46と、対物レンズ駆動回路60と、偏光性レンズ駆動回路59と、レンズ位置制御回路118と、偏光制御素子駆動回路58と、変調回路47と、記録信号生成回路48と、レーザ駆動回路49と、増幅回路50と、位置ずれ信号生成回路51と、増幅回路52と、再生信号処理回路53と、復調回路54と、レーザ駆動回路55と、増幅回路56と、誤差信号生成回路57と、ポジショナ駆動回路99とを具備する。
コントローラ46は、変調回路47からレーザ駆動回路49までの回路、増幅回路50から位置ずれ信号生成回路51までの回路、増幅回路52から復調回路54までの回路、レーザ駆動回路55、増幅回路56から誤差信号生成回路57までの回路、偏光制御素子駆動回路58、偏光性レンズ駆動回路59、対物レンズ駆動回路60、スピンドルモータ駆動回路61、ポジショナ駆動回路99、レンズ位置制御回路118に接続されている。
変調回路47は、さらに、記録信号生成回路48に接続されている。記録信号生成回路48は、さらに、レーザ駆動回路49に接続されている。
レーザ駆動回路49、レーザ駆動回路55、偏光制御素子駆動回路58、偏光性レンズ駆動回路59、対物レンズ駆動回路60、レンズ位置制御回路118は、それぞれ、さらに、光ヘッド装置1に接続されている。光ヘッド装置1は、さらに、増幅回路50、増幅回路52、増幅回路56に接続されている。
増幅回路50は、さらに、位置ずれ信号生成回路51に接続されている。位置ずれ信号生成回路51は、さらに、偏光性レンズ駆動回路59、レンズ位置制御回路118に接続されている。増幅回路52は、さらに、再生信号処理回路53に接続されている。再生信号処理回路53は、さらに、復調回路54に接続されている。増幅回路56は、さらに、誤差信号生成回路57に接続されている。誤差信号生成回路57は、さらに、対物レンズ駆動回路60に接続されている。
光ヘッド装置1は、ポジショナ98に搭載されている。光記録媒体である光ディスク2は、スピンドルモータ97に搭載されている。スピンドルモータ駆動回路61は、さらに、スピンドルモータ97に接続されている。ポジショナ駆動回路99は、ポジショナ98に接続されている。
変調回路47からレーザ駆動回路49までの回路、増幅回路50から位置ずれ信号生成回路51までの回路、増幅回路52から復調回路54までの回路、レーザ駆動回路55、増幅回路56から誤差信号生成回路57までの回路、偏光制御素子駆動回路58、偏光性レンズ駆動回路59、対物レンズ駆動回路60、スピンドルモータ駆動回路61、ポジショナ駆動回路99、レンズ位置制御回路118は、いずれもコントローラ46により制御される。これらの回路の動作に関しては後述する。
図4は、本発明による光ヘッド装置1の実施の形態を詳細に説明するためのブロック図である。
本発明による光ヘッド装置1は、レーザ光源3と、凸レンズ4と、偏光制御素子5と、ハーフミラー6と、偏光性可変焦点レンズ8と、干渉フィルタ7と、対物レンズ9と、偏光ビームスプリッタ10と、非点収差レンズ11と、凸レンズ116と、光検出器12と、凸レンズ13と、光検出器14と、レーザ光源15と、凸レンズ16と、ビームスプリッタ17と、非点収差レンズ117と、凸レンズ18と、光検出器19とを具備する。
これらの光学機器は、次のように配置されている。すなわち、レーザ光源3と、凸レンズ4と、偏光制御素子5と、ハーフミラー6の第1の軸と、偏光性可変焦点レンズ8と、干渉フィルタ7の第1の軸と、対物レンズ9とは、この順番に、それぞれ同一光軸上に配置されている。また、ハーフミラー6の第2の軸と、偏光ビームスプリッタ10の第1の軸と、非点収差レンズ11と、凸レンズ116と、光検出器12とは、この順番に、それぞれ同一光軸上に配置されている。また、偏光ビームスプリッタ10の第2の軸と、凸レンズ13と、光検出器14とは、この順番に、それぞれ同一光軸上に配置されている。また、レーザ光源15と、凸レンズ16と、ビームスプリッタ17の第1の軸と、干渉フィルタ7の第2の軸とは、この順番に、それぞれ同一光軸上に配置されている。また、ビームスプリッタ17の第2の軸と、非点収差レンズ117と、凸レンズ18と、光検出器19とは、この順番に、それぞれ同一光軸上に配置されている。
光ディスク2の記録時における、光ヘッド装置1の動作について説明する。レーザ光源3から出射した光は、凸レンズ4により平行光とされる。この平行光は、偏光方向によらず、全ての成分が光生成手段である偏光制御素子5を透過し、その一部がハーフミラー6を透過する。ここで、レーザ光源3からの出射光は、ハーフミラー6に対するS偏光方向から45度傾いた直線偏光である。
ハーフミラー6の透過光は、偏光性可変焦点レンズ8に入射する。偏光性可変焦点レンズ8を透過することによって、ハーフミラー6に対するP偏光成分は発散光となり、ハーフミラー6に対するS偏光成分は収束光となる。そして、偏光性可変焦点レンズ8の透過光は、干渉フィルタ7を透過し、対物レンズ9により光ディスク2内に集光される。
図5は、本発明の光学的情報記録再生装置で使用するための光ディスク2の構成を説明するための俯瞰図である。
光ディスク2は、保護層21と、反射層24と、1/4波長板層23と、記録層22と、保護層20とを具備する。保護層21と、反射層24と、1/4波長板層23と、記録層22と、保護層20とは、この順番に積層されている。言い換えれば、光ディスク2は、保護層20と保護層21との間に、記録層22、1/4波長板層23、反射層24がこの順に挟まれた構成をしている。
保護層20、21の材料としては、例えば、ガラス、プラスチック等が用いられる。記録層22の材料としては、例えば、フォトポリマ等が用いられる。1/4波長板層23の材料としては、例えば、面内方向に配向した液晶高分子材料、面内方向に周期的な溝が形成された構造複屈折材料、面内方向に周期的な溝が形成され、その上に低屈折率層と高屈折率層とが交互に積層されたフォトニック結晶材料等が用いられる。反射層24の材料としては、例えば、アルミニウム、銀等が用いられる。これらの材料は、あくまでも一例であって、上記のものに制限されない。
図6A〜6Cは、光ディスク2への入射光および光ディスク2からの反射光の光路を説明するための図である。図6Aと図6Bとは、光ディスク2の記録時における、入射光および反射光の光路を示している。図6Cは、光ディスク2の再生時における、入射光および反射光の光路を示している。
図6Aは、ハーフミラー6に対するP偏光成分が発散光として光ディスク2に入射する場合の光路を示している。図6Bは、ハーフミラー6に対するS偏光成分が収束光として光ディスク2に入射する場合の光路を示している。
図6Aに示されるように、入射光25は、発散光として対物レンズ9に入射し、記録層22を透過し、1/4波長板層23を透過して円偏光に変換され、反射層24で反射されて反射光26となる。反射光26は、1/4波長板層23を透過し、偏光方向が入射光25と直交する直線偏光に変換され、記録層22内に集光され、光ディスク2から出射し、発散光として対物レンズ9から出射する。
また、図6Bに示されるように、入射光27は、収束光として対物レンズ9に入射し、記録層22内を反射層24の側へ向かう途中に集光され、1/4波長板層23を透過して円偏光に変換され、反射層24で反射されて反射光28となる。反射光28は、1/4波長板層23を透過し、偏光方向が入射光27と直交する直線偏光に変換され、光ディスク2から出射し、収束光として対物レンズ9から出射する。
入射光27と反射光26とは、記録層22内の同一の位置に集光されて干渉し、集光点の近傍に微小な回折格子31が形成される。ここで、回折格子31は、記録マークに相当する。入射光27および反射光26の集光点の位置を記録層22の厚さ方向へ移動させ、記録層22の面内方向だけでなく厚さ方向にも多数の回折格子を形成することにより、3次元記録再生を行うことができる。
反射光28は、対物レンズ9を逆向きに透過し、干渉フィルタ7を透過し、偏光性可変焦点レンズ8により平行光とされ、ハーフミラー6にP偏光として入射する。そして、ハーフミラー6で一部が反射され、偏光ビームスプリッタ10を透過し、非点収差レンズ11により非点収差が与えられ、凸レンズ116により光検出器12の受光部に集光される。
光検出器12は、非点収差レンズ11と凸レンズ116により形成される2つの焦線の中間に設けられる。光検出器12は、光ディスク2の半径方向に対応する分割線および接線方向に対応する分割線で4つに分割された受光部を有する。
光ディスク2の記録時においては、各受光部から出力される電圧信号に基づいて、記録層22内における反射光26の集光点に対する入射光27の集光点の位置ずれが検出される。これら2つの集光点の光ディスク2の厚さ方向における位置ずれを示す厚さ方向位置ずれ信号は、公知の非点収差法により検出される。光ディスク2の半径方向の2つの集光点の位置ずれを示す半径方向位置ずれ信号は、公知のラジアルプッシュプル法により検出される。光ディスク2の接線方向の2つの集光点の位置ずれを示す接線方向位置ずれ信号は、公知のタンジェンシャルプッシュプル法により検出される。
次に、光ディスク2の再生時における光ヘッド装置1の動作について説明する。レーザ光源3から出射した光は、凸レンズ4により平行光とされ、ハーフミラー6に対するS偏光成分のみが偏光制御素子5を透過する。透過したS偏光成分は、ハーフミラー6に入射して一部がハーフミラー6を透過し、偏光性可変焦点レンズ8に入射し、収束光として偏光性可変焦点レンズ8を出射する。偏光性可変焦点レンズ8から出射した光は、干渉フィルタ7を透過し、対物レンズ9により光ディスク2内に集光される。
図6Cは、光ディスク2の再生時における光ディスク2への入射光および光ディスク2からの反射光の光路を示す図である。図6Cに示されるように、入射光29は、収束光として対物レンズ9に入射し、記録層22内を反射層24の側へ向かう途中で回折格子31に集光され、回折格子31で反射して反射光30となる。反射光30は、入射光27と偏光方向が同じ直線偏光として、光ディスク2から出射し、発散光として対物レンズ9から出射する。
反射光30は、対物レンズ9を逆向きに透過し、干渉フィルタ7を透過し、偏光性可変焦点レンズ8により平行光とされ、ハーフミラー6にS偏光として入射する。その一部は、ハーフミラー6で反射され、偏光ビームスプリッタ10で反射され、凸レンズ13により光検出器14の受光部に集光される。光検出器14の受光部から出力される電圧信号に基づいて、再生信号が検出される。
本実施の形態においては、入射光27と反射光26とは、記録層22内では偏光方向が同じであるため干渉し、これにより回折格子31が形成される。入射光27と反射光26とは、記録層22内の同一の位置に集光する。したがって、集光点の近傍での入射光27および反射光26の単位面積当たりの強度は強く、回折格子31の集光点の近傍における回折効率は高い。
ところで、入射光25と反射光28とは、記録層22内では偏光方向が同じであるために干渉する。これによっても回折格子31以外に回折格子が形成される。しかし、入射光25および反射光28は、記録層22内で集光しない。そのため、入射光25および反射光28の単位面積当たりの強度は弱く、入射光25と反射光28との干渉により形成される回折格子の回折効率は非常に低い。
また、入射光25と反射光26とは、記録層22内では偏光方向が互いに直交しているため干渉しない。同様に、入射光27と反射光28とは、記録層22内では偏光方向が互いに直交しているため干渉しない。同様に、入射光25と入射光27とは記録層22内では偏光方向が互いに直交しているため干渉しない。同様に、反射光26と反射光28とは記録層22内では偏光方向が互いに直交しているため干渉しない。したがって、これらによる回折格子の形成は無い。
すなわち、入射光27および反射光26の集光点の近傍に、回折効率が高い回折格子31以外に、回折効率がそれほど低くない回折格子が重なって形成されることはない。このように、情報の再生に寄与しない回折格子が形成されないため、情報の再生に寄与する回折格子31の回折効率は低下せず、高品質な再生信号が得られる。
更に、本実施の形態においては、レーザ光源3からの出射光の光路を分離することなく、記録層22内で干渉させる入射光25と入射光27とを生成する。そのため、光ヘッド装置の光学系が簡素で、小型化が容易である。
次に、対物レンズ9を駆動するための誤差信号の検出を行う光学系について説明する。レーザ光源15から出射した光は、凸レンズ16により平行光になる。その一部は、ビームスプリッタ17を透過し、干渉フィルタ7で反射される。干渉フィルタ7で反射された光は、対物レンズ9により光ディスク2の反射層24上に集光される。そして、反射層24で反射された光は、対物レンズ9を逆向きに透過し、干渉フィルタ7で反射される。干渉フィルタ7の反射光の一部は、ビームスプリッタ17で反射され、非点収差レンズ117により非点収差が与えられ、凸レンズ18により、光検出器19の受光部に集光される。
光検出器19は、非点収差レンズ117および凸レンズ18により形成される2つの焦線の中間に設けられている。また、光検出器19は、光ディスク2の半径方向に対応する分割線および接線方向に対応する分割線で4つに分割された受光部を有する。
光ディスク2の反射層24には、接線方向に平行な溝が形成されている。光ディスク2の反射層24に形成された溝に対するレーザ光源15から出射した光の集光点の位置ずれが、光検出器19の各受光部から出力される電圧信号に基づいて検出される。光ディスク2の厚さ方向の集光点位置ずれを示すフォーカス誤差信号は、公知の非点収差法により検出される。また、光ディスク2の半径方向の集光点位置ずれを示すトラック誤差信号は、公知のラジアルプッシュプル法により検出される。
対物レンズ9は、図示されない電磁駆動型の2軸アクチュエータに搭載されている。2軸アクチュエータは、フォーカス誤差信号およびトラック誤差信号に基づいて、対物レンズ9を光ディスク2の厚さ方向および半径方向に移動させることができ、対物レンズ9により記録層内に集光された光の集光点の位置を3次元的に変化させることができる。
図7は、偏光制御素子5の構成を説明するための断面図である。偏光制御素子5には、特定の偏光成分の光に対する透過率を変化可能な液晶素子が用いられる。液晶素子は、液晶高分子を含む液晶層100と、液晶高分子の配向方向を決定する配向膜101、102と、液晶層に電場を発生させる透明電極103、104と、ガラス板105、106とを具備する。ガラス板105と、透明電極103と、配向膜101と、液晶層100と、配向膜102と、透明電極104と、ガラス板106とは、この順番に積層されている。また、配向膜102と透明電極104との間に、光学的等方体107により回折格子が形成される。配向膜102は回折格子上に成膜されている。なお、配向膜102と透明電極104とに挟まれる部分を回折格子部201と称する。
図8A、図8Bは、回折格子部201の平面図および断面図である。図中に示される矢印は、液晶高分子の配向方向を示す。また、X、Y、Z軸は、それぞれハーフミラー6に対するS偏光方向、P偏光方向、光軸方向に対応する。図8Aは、透明電極103、104に電圧が印加されていない場合の液晶高分子の配向方向を示す図である。また、図8Bは、透明電極103、104に電圧が印加された場合の液晶高分子の配向方向を示す図である。液晶層100の常光に対する屈折率をno、異常光に対する屈折率をneとすると、neはnoより大きい。また、光学的等方体107の屈折率は、液晶層100の常光に対する屈折率noと等しい。
図8Aに示されるように、液晶高分子の配向方向は、Y軸と平行である。この場合、液晶高分子は、偏光制御素子5への入射光のうちのX軸に平行な偏光成分に対しては回折格子として作用せず、Y軸に平行な偏光成分に対しては回折格子として作用する。ここで、回折格子の溝の深さをt、偏光制御素子5への入射光の波長をλと置く。(ne−no)×t/λ=πが成り立つようにtの値を定めることにより、偏光制御素子5においてY軸に平行な偏光成分は全て回折される。
一方、図8Bに示されるように、液晶高分子の配向方向はZ軸と平行である。この場合、偏光制御素子5への入射光の偏光方向によらず、偏光制御素子5は回折格子として作用しない。
すなわち、光ディスク2の記録時には、透明電極103、104に電圧を印加することによって、光ディスク2にS偏光とP偏光の両方の光を入射させることができる。また、光ディスク2の再生時には、透明電極103、104に電圧を印加しないことによって、光ディスク2にS偏光のみを入射させることができる。
図9は、偏光性可変焦点レンズ8の構成を説明するための断面図である。偏光性可変焦点レンズ8は、第1の液晶レンズ44と、第2の液晶レンズ45とを具備する。ここで、第1の液晶レンズ44は、ガラス板42と、透明電極38と、配向膜34と、液晶高分子を含む液晶層32と、配向膜35と、透明電極39と、ガラス板43とを、この順番に積層して具備する。言い換えれば、第1の液晶レンズ44は、液晶層32を2枚の配向膜34、35で挟み、これらをさらに2枚の透明電極38、39で挟み、これらをさらに2枚のガラス板42、43で挟んだものである。
同様に、第2の液晶レンズ45は、ガラス板95と、透明電極40と、配向膜36と、液晶高分子を含む液晶層33と、配向膜37と、透明電極41と、ガラス板96とを、この順番に積層して具備する。言い換えれば、第2の液晶レンズ45は、液晶層32を2枚の配向膜36、37で挟み、これらをさらに2枚の透明電極40、41で挟み、これらをさらに2枚のガラス板95、96で挟んだものである。なお、偏光性可変焦点レンズ8全体においては、第1の液晶レンズ44と、第2の液晶レンズ45とが、平行に配置されている。
図10は、偏光性可変焦点レンズ8の透明電極38、40の電極パターンを示す図である。透明電極38、40は、領域115aから領域115jまでの10領域に分割され、それぞれの領域に電圧V1〜V10が印加される。一方、透明電極39、41の電極パターンは、分割されておらず、全面に同一の電圧が印加される。
図11A、図11Bは、液晶層32の平面図および断面図である。同様に、図12A、図12Bは、液晶層33の、平面図および断面図である。図中に示される矢印は、液晶高分子の配向方向を示す。X、Y、Z軸は、ハーフミラー6に対するS偏光方向、P偏光方向、光軸方向にそれぞれ対応する。また、この断面図は、平面図内に点線で示される液晶層32、33の中心を通りY軸に平行な線を含む紙面に垂直な面内での断面を示す。
図11Aは、透明電極38、39に電圧が印加されていない場合の液晶高分子の配向方向を示す図である。図11Aに示されるように、液晶高分子の配向方向はY軸と平行であり、液晶層32は入射する光の偏光方向に関わらずレンズ作用を持たない。
図11Bは、透明電極38、39に電圧が印加された場合の液晶高分子の配向方向を示す図である。このとき、液晶レンズ44の透明電極38に印加される電圧は、領域115aから領域115jに向かって電圧が低くなるように設定されている。すなわち、透明電極38、39によって液晶層32内に生じる電界強度は、中心部から周辺部に向かって小さくなるように設定される。液晶層32内の液晶高分子の配向方向は、液晶層32内に生じる電界強度に応じて変化し、周辺部ではY軸と平行で、中心部に近くなるほどZ軸方向に傾いている。このため、偏光方向がY軸に平行な直線偏光が入射する場合、液晶層32の屈折率は、周辺部から中心部に向かって小さくなり、液晶層32は凹レンズとして作用する。しかし、偏光方向がX軸に平行な直線偏光が入射する場合、液晶層32の屈折率は、入射位置によらず一定であり、液晶層32はレンズ作用を持たない。
また、液晶層32内の液晶高分子の配向方向は、透明電極38、39への印加電圧に応じて変化する。そのため、偏光方向がY軸に平行な直線偏光に対する屈折率も変化する。したがって、液晶レンズ44は、偏光方向がY軸に平行な直線偏光に対して、透明電極38、39への印加電圧に応じて焦点を変化可能な可変焦点レンズとして動作する。
図12Aは、透明電極40、41に電圧が印加されていない場合の液晶高分子の配向方向を示す図である。図12Aに示されるように、液晶高分子の配向方向はX軸と平行である。したがって、液晶層33は、入射する光の偏光方向に関わらずレンズ作用を持たない。
図12Bは、透明電極40、41に電圧が印加された場合の液晶高分子の配向方向を示す図である。このとき、液晶レンズ45の透明電極40に印加される電圧は、領域115aから領域115jに向かって電圧が高くなるように設定される。すなわち、透明電極40、41によって液晶層33内に生じる電界強度は、中心部から周辺部に向かって大きくなるように設定される。液晶層33内の液晶高分子の配向方向は、液晶層33内に生じる電界強度に応じて変化し、周辺部ではZ軸と平行で、中心部に近くなるほどX軸方向に傾いている。このため、液晶層33に偏光方向がX軸に平行な直線偏光が入射する場合、液晶層33の屈折率は周辺部から中心部に向かって大きくなり、液晶層33は凸レンズとして作用する。しかし、偏光方向がY軸に平行な直線偏光が入射する場合、液晶層33の屈折率は、入射位置によらず一定であり、液晶層33はレンズ作用を持たない。
また、液晶層33内の液晶高分子の配向方向は、透明電極40、41への印加電圧に応じて変化する。そのため、偏光方向がX軸に平行な直線偏光に対する屈折率も変化する。したがって、液晶レンズ45は、偏光方向がX軸に平行な直線偏光に対して、透明電極40、41への印加電圧に応じて焦点を変化可能な可変焦点レンズとして動作する。
前述のように、光ディスク2に情報を記録するためには、入射光27の記録層22内での集光点の位置と、反射光26の記録層22内での集光点の位置とを一致させる必要がある。ここで、記録層22内における反射光26の集光点に対する入射光27の集光点のZ軸方向の位置ずれを示す厚さ方向位置ずれ信号に応じて、液晶レンズ45の焦点距離を変化させることにより、これら2つの集光点のZ軸方向の位置を一致させることができる。
また、液晶レンズ45は、図示されない電磁駆動型の2軸アクチュエータに搭載されている。この2軸アクチュエータにより光軸に垂直な面内で液晶レンズ45を移動させることにより、入射光27の集光点における面内の位置を変化させることが可能となる。こうすることによって、記録層22内における反射光26の集光点に対する入射光27の集光点の半径方向の位置ずれを示す半径方向位置ずれ信号と、接線方向の位置ずれを示す接線方向位置ずれ信号とに応じて、2つの集光点の面内の位置を一致させることができる。
また、電磁駆動型の2軸アクチュエータに液晶レンズ45を搭載する代わりに、偏光性可変焦点レンズ8と干渉フィルタ7の間に光偏向素子119を設けてもよい。光偏向素子119は、偏光方向がX軸に平行な直線偏光に対して偏向角を変化可能な偏向素子として働く。このような偏向素子は、液晶素子を用いることで実現可能である。
図13は、光偏向素子119の構成を説明するための断面図である。光偏向素子119は、第1の液晶素子134と、第2の液晶素子135とを具備する。第1の液晶素子134は、ガラス板130と、透明電極126と、配向膜122と、液晶高分子を含む液晶層120と、配向膜123と、透明電極127と、ガラス板131とをこの順番に積層して具備する。言い換えれば、第1の液晶素子134は、液晶層120を2枚の配向膜122、123で挟み、これらをさらに2枚の透明電極126、127で挟み、これらをさらに2枚のガラス板130、131で挟んだものである。
同様に、第2の液晶素子135は、ガラス板132と、透明電極128と、配向膜124と、液晶高分子を含む液晶素子135と、配向膜125と、透明電極129と、ガラス板133とを、この順番に積層して具備する。言い換えれば、第1の液晶素子135は、液晶層121を2枚の配向膜124、125で挟み、これらをさらに2枚の透明電極128、129で挟み、これらをさらに2枚のガラス板132、133で挟んでものである。
なお、光偏向素子119全体においては、第1の液晶素子134と、第2の液晶素子135とは平行に配置されている。
ここで、液晶層120、121の常光に対する屈折率をno’、異常光に対する屈折率をne’とすると、ne’はno’より大きい。また、液晶層120、121内の液晶高分子の配向方向は、X−Z平面に平行である。
図14に、光偏向素子119の透明電極126の電極パターンが示される。同じく、図15に、光偏向素子119の透明電極128の電極パターンが示される。X、Y、Z軸は、ハーフミラー6に対するS偏光方向、P偏光方向、光軸方向にそれぞれ対応する。
図14に示されるように、透明電極126は、Y軸方向に領域136aから領域136pまでの16領域に分割されており、それぞれの領域に電圧Va〜電圧Vpが印加される。また、図15に示されるように、透明電極128は、X軸方向に領域137aから領域137pまでの16領域に分割されており、それぞれの領域に電圧V’a〜電圧V’pが印加される。一方、透明電極127、129の電極パターンは分割されておらず、全面に同一の電圧が印加される。
図16A、16Bは、液晶層120の平面図および断面図である。同様に、図17A、17Bは、液晶層121の平面図および断面図である。図中に示される矢印は、液晶高分子の配向方向を示す。X、Y、Z軸は、ハーフミラー6に対するS偏光方向、P偏光方向、光軸方向にそれぞれ対応する。また、これらの断面図は、平面図に点線で示される液晶層120、121の中心を通りY軸に平行な線を含む紙面に垂直な面内での断面をそれぞれ示す。
図16Aは、透明電極126、127に電圧が印加されていない場合の液晶高分子の配向方向を示す図である。図16Aに示されるように、液晶高分子の配向方向はX軸と平行であり、液晶層120は、入射する光の偏光方向に関わらず偏向作用を持たない。
図16Bは、液晶素子134の透明電極126に、領域136aから領域136pに向かって低くした電圧が印加された場合の液晶高分子の配向方向を示す図である。このとき、液晶層120内に生じる電界強度は、Y軸方向の正の側に向かって小さくなる。液晶層120内の液晶高分子の配向方向は、液晶層120内に生じる電界強度に応じて変化する。電界強度が大きいと、配向方向はZ軸と平行になり、電界強度が小さいと、配向方向はX軸と平行となる。このため、偏光方向がX軸に平行な直線偏光が入射する場合、液晶層120の屈折率は、Y軸方向の正の側に向かって大きくなり、液晶層120を透過した光は、Y軸方向の正の側に偏向される。
一方、偏光方向がY軸に平行な直線偏光が入射する場合、液晶層120の屈折率は、入射位置によらず一定であり、液晶層120を透過した光は偏向されない。また、液晶層120内の液晶高分子の配向方向は、透明電極126、127への印加電圧に応じて変化するため、偏光方向がX軸に平行な直線偏光に対する屈折率も変化する。したがって、液晶素子134は、偏光方向がX軸に平行な直線偏光に対して、透明電極126、127への印加電圧に応じて偏向角を変化可能な偏向素子として動作する。
図17Aは、透明電極128、129に電圧が印加されていない場合の液晶高分子の配向方向を示す図である。図17Aに示されるように、液晶高分子の配向方向はX軸と平行であり、液晶層121は入射する光の偏光方向に関わらず偏向作用を持たない。
図17Bは、液晶素子135の透明電極128に、領域137aから領域137pに向かって高くした電圧が印加された場合の液晶高分子の配向方向を示す図である。このとき、液晶層121内に生じる電界強度は、X軸方向の正の側に向かって小さくなる。液晶層121内の液晶高分子の配向方向は、液晶層121内に生じる電界強度に応じて変化する。すなわち、電界強度が大きいと配向方向はZ軸と平行になり、電界強度が小さいと配向方向はX軸と平行となる。
このため、液晶層121に偏光方向がX軸に平行な直線偏光が入射する場合、液晶層121の屈折率は、X軸方向の正の側に向かって大きくなる。その結果、液晶層121を透過した光は、X軸方向の正の側に偏向される。一方、偏光方向がY軸に平行な直線偏光が入射する場合、液晶層121の屈折率は入射位置によらず一定であり、液晶層121を透過した光は偏向されない。また、液晶層121内の液晶高分子の配向方向は、透明電極128、129への印加電圧に応じて変化するため、偏光方向がX軸に平行な直線偏光に対する屈折率も変化する。したがって、液晶素子135は、偏光方向がX軸に平行な直線偏光に対して、透明電極128、129への印加電圧に応じて偏向角を変化可能な偏向素子として動作する。
ここで、半径方向位置ずれ信号は、記録層22内において反射光26の集光点に対する入射光27の集光点の半径方向の位置ずれを示す信号であり、接線方向位置ずれ信号は、同じく接線方向の位置ずれを示す信号である。半径方向位置ずれ信号と接線方向位置ずれ信号とに応じて、透明電極126、127、128、129に印加する電圧を変化させることにより、入射光27の集光点の面内の位置を変化させることが出来る。すなわち、これら2つの集光点の面内の位置を一致させることができる。
また、液晶レンズ45を電磁駆動型の2軸アクチュエータに搭載する代わりに、偏光性可変焦点レンズ8と干渉フィルタ7との間に2つの光偏向素子を設けてもよい。2つの光偏向素子のうちの一方の光偏向素子は、偏光方向がX軸に平行な直線偏光に対して偏向角を変化可能な偏向素子として働く。他方の光偏向素子は、偏光方向がY軸に平行な直線偏光に対して偏向角を変化可能な偏向素子として働く。このような偏向素子は液晶素子を用いることで実現可能である。
X軸に平行な直線偏光に対して偏向角を変化可能な偏向素子として、光偏向素子119を用いても良い。Y軸に平行な直線偏光に対して偏向角を変化可能な偏向素子として、光偏向素子119をZ軸のまわりで90度回転させて配置したものを用いても良い。
光偏向素子119の液晶層120、121内の液晶高分子の配向方向は、X−Z平面に平行で、液晶高分子の配向方向に応じて、X軸に平行な直線偏光に対する屈折率が変化する。一方、光偏向素子119をZ軸のまわりで90度回転させて配置することにより、液晶高分子の配向方向は、Y−Z平面に平行となり、液晶高分子の配向方向に応じて、Y軸に平行な直線偏光に対する屈折率が変化する。したがって、光偏向素子119をZ軸のまわりで90度回転させて配置することにより、偏光方向がY軸に平行な直線偏光に対して、透明電極126、127、128、129への印加電圧に応じて偏向角を変化可能な偏向素子として動作する。
このように、偏光方向がX軸に平行な直線偏光とY軸に平行な直線偏光とを偏向することにより、対物レンズ9を光ディスク2の面内方向に移動させることなく、反射光26および入射光27の集光点の位置を光ディスク2の面内方向に変化させることができる。これにより、対物レンズ9の位置を調整する機構を簡素化することができる。
また、光生成手段として、偏光制御素子5aを用いる構成も可能である。図18は、偏光制御素子5aの構成を示す断面図である。
偏光制御素子5aには、透過する光の偏光方向を変化させることが可能な液晶素子が用いられる。図18に示されるように、偏光制御素子5aは、ガラス板113と、透明電極111と、配向膜109と、液晶高分子を含む液晶層108と、配向膜110と、透明電極112と、ガラス板114とを、この順番に積層して具備する。配向膜109は、液晶高分子の配向方向を決定するものである。また、透明電極111、112は、液晶層108に電場を発生させるためのものである。言い換えれば、この液晶素子は、液晶層108を2枚の配向膜109、110で挟み、これらをさらに2枚の透明電極111、112で挟み、これらをさらに2枚のガラス板113、114で挟んだものである。
図19A、19Bは、液晶層108の平面図および断面図である。図中に示される矢印は、液晶高分子の配向方向を示す。また、X、Y、Z軸は、ハーフミラー6に対するS偏光方向、P偏光方向、光軸方向にそれぞれ対応する。図19Aは、透明電極111、112に電圧が印加されていない場合の液晶高分子の配向方向を示す図である。図19Bは、透明電極111、112に電圧が印加された場合の液晶高分子の配向方向を示す図である。
図19Aに示されるように、液晶高分子の配向方向は、Z軸と垂直でX軸に対し22.5度傾いている。この液晶層108は、1/2波長板として作用する。このとき、偏光方向がX軸に対して45度傾いた直線偏光として偏光制御素子5aに入射した光は、液晶層108を透過し、偏光方向がX軸と平行な直線偏光となる。 一方、図19Bに示されるように、液晶高分子の配向方向はZ軸と平行であり、液晶層108を透過した光の偏光状態は変化しない。
したがって、光ディスク2の記録時には、透明電極111、112に電圧が印加されることによって、光ディスク2にS偏光とP偏光の両方の光を入射させることができる。また、光ディスク2の再生時には、透明電極111、112に電圧を印加しないことによって、光ディスク2にS偏光のみを入射させることができる。
また、光生成手段として、光路上に出し入れ可能な偏光子を用いる構成も可能である。この偏光子は、ハーフミラー6に対するS偏光成分のみを透過させるものである。光ディスク2の記録時には、この偏光子を光路上から外して、偏光状態によらず全ての光が透過するようにする。また、光ディスク2の再生時には、偏光子を光路上に入れて、ハーフミラー6に対するS偏光成分のみが透過するようにする。
さらに、光生成手段として、入射光の光軸の回りに回転可能な1/2波長板を用いる構成も可能である。この場合、偏光制御素子5には、ハーフミラー6に対するS偏光方向から45度傾いた直線偏光が入射する。光ディスク2の記録時には、偏光制御素子5を透過する光の偏光状態がハーフミラー6に対するS偏光方向から45度傾いた直線偏光となるように1/2波長板を回転する。光ディスク2の再生時には、偏光制御素子5を透過する光の偏光状態がハーフミラー6に対するS偏光方向の直線偏光となるように1/2波長板を回転する。
次に、図3に示される光学的情報記録再生装置の動作に関して説明する。
変調回路47は、光ディスク2の記録時に、記録データとして外部から入力された信号を変調規則に従って変調する。記録信号生成回路48は、変調回路47で変調された信号に基づいて、光ヘッド装置1内のレーザ光源3を駆動するための記録信号を生成する。レーザ駆動回路49は、光ディスク2の記録時には、記録信号生成回路48で生成された記録信号に基づいて、記録信号に応じた電流を供給してレーザ光源3を駆動する。光ディスク2の再生時には、レーザ駆動回路49は、レーザ光源3からの出射光のパワーが一定になるように、一定の電流を供給してレーザ光源3を駆動する。
増幅回路52は、光ディスク2の再生時に、光ヘッド装置1内の光検出器14の受光部から出力される電圧信号を増幅する。再生信号処理回路53は、増幅回路52で増幅された電圧信号に基づいて、光ディスク2に記録されたマーク/スペース信号である再生信号の生成、波形等化、2値化を行う。復調回路54は、再生信号処理回路53で2値化された信号を復調規則に従って復調し、再生データとして外部へ出力する。
光生成手段駆動回路である偏光制御素子駆動回路58は、光ディスク2の記録時において、偏光状態によらず全ての光が出射するように、光生成手段である偏光制御素子5を駆動する。また、光ディスク2の再生時には、ハーフミラー6に対するS偏光成分のみが出射するように、偏光制御素子5を駆動する。
増幅回路50は、光ディスク2の記録時に、光ヘッド装置1内の光検出器12の各受光部から出力される電圧信号を増幅する。位置ずれ信号生成回路51は、増幅回路50で増幅された電圧信号に基づいて、光ヘッド装置1内の偏光性可変焦点レンズ8を構成する液晶レンズ45を駆動するための厚さ方向位置ずれ信号を生成する。
偏光性レンズ駆動回路59は、光ディスク2の記録時に光ディスク2の記録層22内における入射光27の集光点の位置と、反射光26の集光点の位置とが一致するように、液晶レンズ45を駆動する。すなわち、偏光性レンズ駆動回路59は、厚さ方向位置ずれ信号に基づいて、液晶レンズ45の透明電極40、41に電圧を印加し、液晶レンズ45の焦点距離を変化させる。
位置ずれ信号生成回路51は、増幅回路50で増幅された電圧信号に基づいて、光ヘッド装置1内の偏光性可変焦点レンズ8を構成する液晶レンズ45を駆動するための半径方向位置ずれ信号および接線方向位置ずれ信号を生成する。
レンズ位置制御回路118は、光ディスク2の記録時に光ディスク2の記録層22内における入射光27の集光点の位置と、反射光26の集光点の位置とが一致するように液晶レンズ45が搭載されている2軸のアクチュエータを駆動する。すなわち、レンズ位置制御回路118は、半径方向位置ずれ信号及び接線方向位置ずれ信号に基づいて、2軸のアクチュエータに電流を供給し、液晶レンズ45を光軸に対して垂直な面内方向に駆動する。
レーザ駆動回路55は、光ディスク2の記録時および光ディスク2の再生時に、光ヘッド装置1内のレーザ光源15からの出射光のパワーが一定になるように、レーザ光源15へ一定の電流を供給する。
増幅回路56は、光ディスク2の記録時および光ディスク2の再生時に、光ヘッド装置1内の光検出器19の各受光部から出力される電圧信号を増幅する。誤差信号生成回路57は、増幅回路56で増幅された電圧信号に基づいて、光ヘッド装置1内の対物レンズ9を駆動するためのフォーカス誤差信号およびトラック誤差信号を生成する。
対物レンズ駆動回路60は、対物レンズ9を光ディスク2の厚さ方向および半径方向に駆動するために、図示されない電磁駆動型の2軸アクチュエータを駆動する。すなわち、対物レンズ駆動回路60は、誤差信号生成回路57で生成されたフォーカス誤差信号およびトラック誤差信号に基づいて、電磁駆動型の2軸アクチュエータへ電流を供給する。
スピンドル駆動回路61は、スピンドルモータ97により光ディスク2を回転させる。ポジショナ駆動回路99は、図示されないモータにより光ヘッド装置1を搭載するポジショナ98を光ディスク2の半径方向へ移動させる。
また、光ヘッド装置1の液晶レンズ45を電磁駆動型の2軸アクチュエータに搭載する代わりに、偏光性可変焦点レンズ8と干渉フィルタ7の間に光偏向素子119を設ける場合、レンズ位置制御回路118の代わりに光偏向素子駆動回路が用いられる。光偏向素子駆動回路は、半径方向位置ずれ信号および接線方向位置ずれ信号に基づいて、光偏向素子119の透明電極126、127、128、129に電圧を印加して、偏光方向がX軸に平行な直線偏光の偏向角を変化させる。こうすることによって、光ディスク2の記録時に光ディスク2の記録層22内における入射光27の集光点の位置と、反射光26の集光点の位置とを一致させることができる。
また、電磁駆動型の2軸アクチュエータに光ヘッド装置1の液晶レンズ45を搭載する代わりに、偏光性可変焦点レンズ8と干渉フィルタ7の間に2つの光偏向素子119を設け、2つのうち1つをZ軸のまわりに90度回転させて配置する場合、レンズ位置制御回路118の代わりに光偏向素子駆動回路が用いられる。光偏向素子駆動回路は、半径方向位置ずれ信号および接線方向位置ずれ信号に基づいて、2つの光偏向素子119の透明電極126、127、128、129に電圧を印加して、偏光方向がX軸に平行な直線偏光および偏光方向がY軸に平行な直線偏光の偏向角を変化させる。こうすることによって、光ディスク2の記録時に光ディスク2の記録層22内における入射光27の集光点の位置と、反射光26の集光点の位置とを一致させることができる。
このように、光ヘッド装置の光生成手段が生成する光の持つ偏光成分を制御する。お互いに直交した2つの偏光成分の光を物体光および参照光として用いる。光記録媒体に内蔵された1/4波長板層を往復することによって、入射光と反射光との偏光方向が一致して、記録層に回折格子が形成される。偏光性レンズの両偏光成分に対する焦点距離を独立に制御することによって、光記録媒体の記録層において回折格子が形成される深さが変更可能である。物体光と参照光が同じ光路を共有するので光学系が簡素であり、容易な小型化も可能となる。すなわち、本発明によれば、光ディスクの記録層内に情報の再生に寄与しない回折格子が形成されず、高品質な再生信号が得られ、更に、光学系が簡素で、小型化が容易な光学的情報記録再生装置およびそれに用いる光ヘッド装置を提供することができる。
以上、実施の形態を参照して本願発明を説明したが、本願発明は上記実施の形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
なお、本出願は、日本出願番号2008−003021に基づく優先権を主張するものであり、日本出願番号2008−003021における開示内容は引用により本出願に組み込まれる。

Claims (10)

  1. 記録層、1/4波長板層、反射層をこの順に備える反射型の光記録媒体に照射する光を生成する光源と、
    前記光源から出射した光から、偏光方向が互いに直交する第1の偏光成分と第2の偏光成分とを有する光を生成する光生成手段と、
    前記第1の偏光成分と前記第2の偏光成分とを有する光から、前記第1の偏光成分のみを有する光と前記第2の偏光成分のみを有する光とを生成するように、前記第1の偏光成分に対する第1の焦点距離と、前記第2の偏光成分に対する第2の焦点距離とが互いに異なる偏光性レンズと
    を具備し、
    前記第1の偏光成分のみを有する光と、前記第2の偏光成分のみを有する光とは、前記偏光性レンズと前記光記録媒体との間において、同一の光路を有する
    ビットバイビットの反射型ホログラム記録に用いられる光学的情報記録再生装置。
  2. 請求項1に記載の光学的情報記録再生装置において、
    前記第1の焦点距離と、前記第2の焦点距離とは、それぞれ独立に可変であり、
    前記第1の焦点距離と、前記第2の焦点距離とをそれぞれ独立に変化させる偏光性レンズ駆動回路をさらに具備する
    光学的情報記録再生装置。
  3. 請求項1に記載の光学的情報記録再生装置において、
    前記光生成手段より前記光記録媒体側に設けられ、前記第1の偏光成分を有する光、前記第2の偏光成分を有する光の両方、又は、どちらか一方を偏向するための光偏向素子をさらに具備する
    光学的情報記録再生装置。
  4. 請求項3に記載の光学的情報記録再生装置において、
    前記偏向された光の偏向角は可変であり、
    前記偏向角を変化させる光偏向素子駆動回路をさらに具備する
    光学的情報記録再生装置。
  5. 請求項1に記載の光学的情報記録再生装置において、
    前記光生成手段は、前記光源から出射した光から、前記第1の偏光成分と前記第2の偏光成分とを有する光を生成するか、前記第1の偏光成分のみを有する光を生成するかを切り替え可能であり、
    前記光記録媒体の記録時に前記第1の偏光成分と前記第2の偏光成分とを有する光を生成し、前記光記録媒体の再生時に前記第1の偏光成分のみを有する光を生成するように、前記光生成手段を駆動する光生成手段駆動回路をさらに具備する
    光学的情報記録再生装置。
  6. 記録層、1/4波長板層、反射層をこの順に備える反射型の光記録媒体に照射する光を生成する光源と、
    前記光源から出射した光から、偏光方向が互いに直交する第1の偏光成分と第2の偏光成分とを有する光を生成する光生成手段と、
    前記第1の偏光成分と前記第2の偏光成分とを有する光から、前記第1の偏光成分のみを有する光と前記第2の偏光成分のみを有する光とを生成するように、前記第1の偏光成分に対する第1の焦点距離と、前記第2の偏光成分に対する第2の焦点距離とが互いに異なる偏光性レンズと、
    を具備し、
    前記第1の偏光成分のみを有する光と、前記第2の偏光成分のみを有する光とは、前記偏光性レンズと前記光記録媒体との間において、同一の光路を有する
    ビットバイビットの反射型ホログラム記録に用いられる光ヘッド装置。
  7. 請求項6に記載の光ヘッド装置において、
    前記第1の焦点距離と、前記第2の焦点距離とは、それぞれ独立に可変である
    光ヘッド装置。
  8. 請求項6に記載の光ヘッド装置において、
    前記光生成手段より前記光記録媒体側に設けられ、前記第1の偏光成分を有する光、前記第2の偏光成分を有する光の両方、又は、どちらか一方を偏向するための光偏向素子をさらに具備する
    光ヘッド装置。
  9. 請求項6に記載の光ヘッド装置において、
    前記光生成手段は、前記光源から出射した光から、前記第1の偏光成分と、前記第2の偏光成分とを有する光を生成するか、前記第1の偏光成分のみを有する光を生成するかを切り替え可能である
    光ヘッド装置。
  10. 記録層、1/4波長板層、反射層をこの順に備える反射型の光記録媒体に対し、ビットバイビットの反射型ホログラム記録を行う光学的情報記録再生方法であって、
    光源から光源出射光を出射する出射ステップと、
    前記光源出射光から、偏光方向が互いに直交する第1の偏光成分と第2の偏光成分とを有する光を生成する光生成ステップと、
    前記第1の偏光成分に対する第1の焦点距離と、前記第2の偏光成分に対する第2の焦点距離とをそれぞれ互いに異なるように焦点距離を設定するステップと、
    前記第1の偏光成分と前記第2の偏光成分とを有する光から、前記第1の偏光成分のみを有する光と前記第2の偏光成分のみを有する光とを生成するステップと
    を具備する
    光学的情報記録再生方法。
JP2009548914A 2008-01-10 2009-01-06 光学的情報記録再生装置および光ヘッド装置、光学的情報記録再生方法 Expired - Fee Related JP5278334B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009548914A JP5278334B2 (ja) 2008-01-10 2009-01-06 光学的情報記録再生装置および光ヘッド装置、光学的情報記録再生方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008003021 2008-01-10
JP2008003021 2008-01-10
JP2009548914A JP5278334B2 (ja) 2008-01-10 2009-01-06 光学的情報記録再生装置および光ヘッド装置、光学的情報記録再生方法
PCT/JP2009/050036 WO2009087993A1 (ja) 2008-01-10 2009-01-06 光学的情報記録再生装置および光ヘッド装置、光学的情報記録再生方法

Publications (2)

Publication Number Publication Date
JPWO2009087993A1 JPWO2009087993A1 (ja) 2011-05-26
JP5278334B2 true JP5278334B2 (ja) 2013-09-04

Family

ID=40853107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009548914A Expired - Fee Related JP5278334B2 (ja) 2008-01-10 2009-01-06 光学的情報記録再生装置および光ヘッド装置、光学的情報記録再生方法

Country Status (2)

Country Link
JP (1) JP5278334B2 (ja)
WO (1) WO2009087993A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005174401A (ja) * 2003-12-09 2005-06-30 Pioneer Electronic Corp ホログラム記録媒体及び記録再生システム
JP2005292765A (ja) * 2004-03-09 2005-10-20 Samsung Electronics Co Ltd ホログラムメモリ媒体および記録装置、再生装置
JP2005292766A (ja) * 2004-03-12 2005-10-20 Samsung Yokohama Research Institute Co Ltd ホログラムメモリ媒体および記録装置、再生装置
JP2006154444A (ja) * 2004-11-30 2006-06-15 Sony Corp ホログラム記録媒体、ホログラム記録装置、およびホログラム記録方法
JP2007157305A (ja) * 2005-12-08 2007-06-21 Fuji Xerox Co Ltd データ再生方法及び装置
JP2008234693A (ja) * 2007-03-16 2008-10-02 Matsushita Electric Ind Co Ltd ホログラム記録装置およびホログラム再生装置
WO2008132994A1 (ja) * 2007-04-25 2008-11-06 Nec Corporation 光記録媒体、光ヘッド装置及び光学式情報記録再生装置
JP2008287758A (ja) * 2007-05-15 2008-11-27 Sony Corp 光照射方法、光照射装置、光記録媒体
JP2008544323A (ja) * 2005-06-24 2008-12-04 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 反射型ホログラフィックデータ記憶担体

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005174401A (ja) * 2003-12-09 2005-06-30 Pioneer Electronic Corp ホログラム記録媒体及び記録再生システム
JP2005292765A (ja) * 2004-03-09 2005-10-20 Samsung Electronics Co Ltd ホログラムメモリ媒体および記録装置、再生装置
JP2005292766A (ja) * 2004-03-12 2005-10-20 Samsung Yokohama Research Institute Co Ltd ホログラムメモリ媒体および記録装置、再生装置
JP2006154444A (ja) * 2004-11-30 2006-06-15 Sony Corp ホログラム記録媒体、ホログラム記録装置、およびホログラム記録方法
JP2008544323A (ja) * 2005-06-24 2008-12-04 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 反射型ホログラフィックデータ記憶担体
JP2007157305A (ja) * 2005-12-08 2007-06-21 Fuji Xerox Co Ltd データ再生方法及び装置
JP2008234693A (ja) * 2007-03-16 2008-10-02 Matsushita Electric Ind Co Ltd ホログラム記録装置およびホログラム再生装置
WO2008132994A1 (ja) * 2007-04-25 2008-11-06 Nec Corporation 光記録媒体、光ヘッド装置及び光学式情報記録再生装置
JP2008287758A (ja) * 2007-05-15 2008-11-27 Sony Corp 光照射方法、光照射装置、光記録媒体

Also Published As

Publication number Publication date
WO2009087993A1 (ja) 2009-07-16
JPWO2009087993A1 (ja) 2011-05-26

Similar Documents

Publication Publication Date Title
US20070230295A1 (en) Aberration correcting element in the optical head of a recording and reproduction system
KR100965890B1 (ko) 홀로그래픽 정보 기록/재생 장치 및 방법
JP2011507136A (ja) ホログラフィック情報記録/再生装置
WO2006064660A1 (ja) ホログラム記録再生方法及び装置並びにシステム
JP2006085834A (ja) 光情報記録装置及び光情報再生装置
JP2010055741A (ja) ホログラフィック情報記録/再生装置及び記録層位置の調整方法
KR100965892B1 (ko) 광디스크에 대한 기록/재생 장치 및 방법
JP2004178652A (ja) 光学ピックアップ装置、記録再生装置及びギャップ検出方法
JP4284209B2 (ja) 再生装置、記録再生装置及び再生方法
KR100982520B1 (ko) 광디스크, 광디스크에 대한 기록/재생 방법 및 장치
JP4045384B2 (ja) 光情報記録装置および方法ならびに光情報記録再生装置および方法
JP5447985B2 (ja) 光ヘッド装置および光学的情報記録再生装置
JP5278334B2 (ja) 光学的情報記録再生装置および光ヘッド装置、光学的情報記録再生方法
US20100046353A1 (en) Optical recording medium, optical head device and optical information recording/reproducing device
JPH10293941A (ja) 光ヘッド
JP5780932B2 (ja) 光情報記録再生装置、光情報記録装置
JP2008175925A (ja) 光情報記録再生装置および光記録媒体
JP4137830B2 (ja) 記録再生装置
JP2001167453A (ja) 多層記録/再生ディスク装置
JPWO2009048032A1 (ja) 光学的情報記録再生装置及び光ヘッド装置
JP4128964B2 (ja) 記録再生装置
JP2007149251A (ja) 光情報記録再生装置
JP5240098B2 (ja) 光学ユニット及び光学的情報記録再生装置
JP2009266342A (ja) 光情報記録再生装置および光情報記録再生方法
JPH06168477A (ja) 光記録再生装置及び空間光変調器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130506

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees