JP5274312B2 - Gas separation method - Google Patents

Gas separation method Download PDF

Info

Publication number
JP5274312B2
JP5274312B2 JP2009056859A JP2009056859A JP5274312B2 JP 5274312 B2 JP5274312 B2 JP 5274312B2 JP 2009056859 A JP2009056859 A JP 2009056859A JP 2009056859 A JP2009056859 A JP 2009056859A JP 5274312 B2 JP5274312 B2 JP 5274312B2
Authority
JP
Japan
Prior art keywords
carbon dioxide
gas
coal gasification
hydrogen
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009056859A
Other languages
Japanese (ja)
Other versions
JP2010209215A (en
Inventor
慶太 香川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2009056859A priority Critical patent/JP5274312B2/en
Publication of JP2010209215A publication Critical patent/JP2010209215A/en
Application granted granted Critical
Publication of JP5274312B2 publication Critical patent/JP5274312B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0266Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0223H2/CO mixtures, i.e. synthesis gas; Water gas or shifted synthesis gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0252Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04527Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general
    • F25J3/04539Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the H2/CO synthesis by partial oxidation or oxygen consuming reforming processes of fuels
    • F25J3/04545Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the H2/CO synthesis by partial oxidation or oxygen consuming reforming processes of fuels for the gasification of solid or heavy liquid fuels, e.g. integrated gasification combined cycle [IGCC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04563Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04612Heat exchange integration with process streams, e.g. from the air gas consuming unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/42Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/50Oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/08Cold compressor, i.e. suction of the gas at cryogenic temperature and generally without afterstage-cooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/30Compression of the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2260/00Coupling of processes or apparatus to other units; Integrated schemes
    • F25J2260/42Integration in an installation using nitrogen, e.g. as utility gas, for inerting or purging purposes in IGCC, POX, GTL, PSA, float glass forming, incineration processes, for heat recovery or for enhanced oil recovery
    • F25J2260/44Integration in an installation using nitrogen, e.g. as utility gas, for inerting or purging purposes in IGCC, POX, GTL, PSA, float glass forming, incineration processes, for heat recovery or for enhanced oil recovery using nitrogen for cooling purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2260/00Coupling of processes or apparatus to other units; Integrated schemes
    • F25J2260/80Integration in an installation using carbon dioxide, e.g. for EOR, sequestration, refrigeration etc.
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • F25J2270/904External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration by liquid or gaseous cryogen in an open loop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Industrial Gases (AREA)

Description

本発明は、二酸化炭素と水素を含む混合ガスから当該二酸化炭素と当該水素とを分離することができるガス分離方法に関する。   The present invention relates to a gas separation method capable of separating carbon dioxide and hydrogen from a mixed gas containing carbon dioxide and hydrogen.

従来より、高分子膜によって気体成分を分離できることが知られている。このような高分子膜は、例えば空気中の水素ガスを検出するためのガスセンサに用いられている(例えば、特許文献1参照)。この高分子膜による気体成分の分離技術は、必要とするエネルギーが少なく、装置も小型化できる等のメリットがあり、種々の分野で使用されている。   Conventionally, it is known that gas components can be separated by a polymer membrane. Such a polymer film is used, for example, in a gas sensor for detecting hydrogen gas in the air (see, for example, Patent Document 1). This gas component separation technique using a polymer membrane has advantages such as requiring less energy and miniaturizing the apparatus, and is used in various fields.

また、近年、地球環境保全の観点から、高分子膜(二酸化炭素分離膜)により二酸化炭素を選択的に分離する技術が提供されている。例えば、火力発電所のボイラやゴミ焼却炉等の排ガス等から二酸化炭素を分離回収するために、この分離技術の適用が検討されている。   In recent years, a technique for selectively separating carbon dioxide with a polymer membrane (carbon dioxide separation membrane) has been provided from the viewpoint of global environmental conservation. For example, in order to separate and recover carbon dioxide from exhaust gas from a boiler of a thermal power plant, a garbage incinerator or the like, application of this separation technique is being studied.

特開2008−180529号公報JP 2008-180529 A

しかしながら、従来の二酸化炭素分離膜では、酸素や窒素と二酸化炭素とを区別して分離することができても、二酸化炭素の透過係数と水素の透過係数はそれ程大きくないため、水素と二酸化炭素を分離することは困難であった。   However, even though conventional carbon dioxide separation membranes can separate and separate oxygen and nitrogen from carbon dioxide, the permeability coefficient of carbon dioxide and the permeability coefficient of hydrogen are not so large, so hydrogen and carbon dioxide are separated. It was difficult to do.

このため、例えば、ガス化炉で生成される石炭ガス化ガスから二酸化炭素を回収して水素を分離し、この水素を複合発電システムの燃焼用燃料として供給するような分野においては、扱うガス量が多いため、上記従来の二酸化炭素分離膜では、実用に供し得ないという問題があった。   For this reason, for example, in the field where carbon dioxide is recovered from coal gasification gas produced in a gasification furnace, hydrogen is separated, and this hydrogen is supplied as combustion fuel for a combined power generation system, the amount of gas handled Therefore, the conventional carbon dioxide separation membrane has a problem that it cannot be put to practical use.

したがって、二酸化炭素と水素を含む混合ガスから当該二酸化炭素と当該水素とを分離することができるガス分離手段の提供が望まれていた。   Therefore, it has been desired to provide a gas separation means capable of separating the carbon dioxide and the hydrogen from a mixed gas containing carbon dioxide and hydrogen.

本発明は、上記に鑑みてなされたものであって、二酸化炭素と水素を含む混合ガスから当該二酸化炭素と当該水素とを分離することができるガス分離方法を提供することを目的とする。   This invention is made | formed in view of the above, Comprising: It aims at providing the gas separation method which can isolate | separate the said carbon dioxide and the said hydrogen from the mixed gas containing a carbon dioxide and hydrogen.

上記目的を達成するため、本発明は、以下のようなガス分離方法を提供する。   In order to achieve the above object, the present invention provides the following gas separation method.

(1) 二酸化炭素と水素を含む混合ガスから当該二酸化炭素と当該水素とを分離するガス分離方法であって、前記混合ガスを加圧し冷却することにより前記二酸化炭素を液化する二酸化炭素液化工程と、液化された前記二酸化炭素を除去する二酸化炭素除去工程と、を含み、前記混合ガスは、ガス化炉によって石炭をガス化して生成された石炭ガス化ガスから硫黄分が除去され、更にシフト反応によって当該石炭ガス化ガスに含まれる一酸化炭素を二酸化炭素に変換して生成されたものであり、前記二酸化炭素液化工程における前記二酸化炭素の冷却には、空気から前記ガス化炉でのガス化反応に用いられる気体酸素及び気体窒素を生成すると共に液体酸素及び液体窒素を生成する深冷分離装置による冷熱が使用されることを特徴とする。 (1) A gas separation method for separating carbon dioxide and hydrogen from a mixed gas containing carbon dioxide and hydrogen, wherein the carbon dioxide is liquefied by pressurizing and cooling the mixed gas. , seen containing a carbon dioxide removal step of removing the liquefied said carbon dioxide, wherein the mixed gas, sulfur is removed coal gasification furnace from the coal gasification gas produced by gasification, further shift It is generated by converting carbon monoxide contained in the coal gasification gas into carbon dioxide by a reaction, and for cooling the carbon dioxide in the carbon dioxide liquefaction step, gas from the gas in the gasification furnace is used. It is characterized by using cold heat generated by a cryogenic separator that generates gaseous oxygen and gaseous nitrogen used in the oxidization reaction and produces liquid oxygen and liquid nitrogen .

(1)の発明によれば、二酸化炭素液化工程により二酸化炭素を液化し、液化した二酸化炭素を二酸化炭素除去工程により除去することで、混合ガスには水素が残る。したがって、二酸化炭素と水素を含む混合ガスから当該二酸化炭素と当該水素とを分離することができる。   According to the invention of (1), hydrogen remains in the mixed gas by liquefying carbon dioxide by the carbon dioxide liquefaction step and removing the liquefied carbon dioxide by the carbon dioxide removal step. Therefore, the carbon dioxide and the hydrogen can be separated from the mixed gas containing carbon dioxide and hydrogen.

また、(1)の発明によれば、複合発電システムに供給する水素を混合ガスから分離することができると共に、複合発電システムの運転において二酸化炭素の排出量を低減することができる。 According to the invention of (1 ), hydrogen supplied to the combined power generation system can be separated from the mixed gas, and carbon dioxide emissions can be reduced during operation of the combined power generation system.

また、(1)の発明によれば、深冷分離装置による冷熱を利用することにより、石炭ガス化ガスから二酸化炭素を除去するために必要なエネルギーを削減でき、二酸化炭素を効率良く分離することができる。
In addition, according to the invention of (1 ), the energy required for removing carbon dioxide from the coal gasification gas can be reduced by using the cold heat from the cryogenic separator, and the carbon dioxide can be separated efficiently. Can do.

本発明によれば、二酸化炭素と水素を含む混合ガスから当該二酸化炭素と当該水素とを分離することができる。   According to the present invention, the carbon dioxide and the hydrogen can be separated from the mixed gas containing carbon dioxide and hydrogen.

本発明の第1実施形態に係る二酸化炭素回収システムを示す説明図である。It is explanatory drawing which shows the carbon dioxide collection system which concerns on 1st Embodiment of this invention. 図1の各ポイントにおける熱物質収支計算結果を示す図である。It is a figure which shows the thermal material balance calculation result in each point of FIG. 二酸化炭素の飽和圧力と温度との関係を示すグラフ図である。It is a graph which shows the relationship between the saturation pressure of carbon dioxide, and temperature. 本発明の第2実施形態に係る二酸化炭素回収システムを示す説明図である。It is explanatory drawing which shows the carbon dioxide collection system which concerns on 2nd Embodiment of this invention. 図4の各ポイントにおける熱物質収支計算結果を示す図である。It is a figure which shows the thermal material balance calculation result in each point of FIG.

以下に、本発明の実施形態を図面に基づいて詳細に説明する。また、以下に、本発明の実施形態に係るガス分離方法を、二酸化炭素回収システムに適用する例について説明する。なお、この実施形態により本発明が限定されるものではない。   Embodiments of the present invention will be described below in detail with reference to the drawings. Moreover, the example which applies the gas separation method which concerns on embodiment of this invention to a carbon dioxide recovery system below is demonstrated. In addition, this invention is not limited by this embodiment.

〔第1実施形態〕
図1は、本発明の第1実施形態に係る二酸化炭素回収システム10を示す説明図である。なお、図1においては、一酸化炭素をCOと表示し、二酸化炭素をCO2と表示している。
[First Embodiment]
FIG. 1 is an explanatory diagram showing a carbon dioxide recovery system 10 according to the first embodiment of the present invention. In FIG. 1, carbon monoxide is indicated as CO, and carbon dioxide is indicated as CO2.

<二酸化炭素回収システムの全体構成の説明>
二酸化炭素回収システム10は、石炭ガス化ガスを生成するガス化炉11と、脱硫装置12と、COシフト器13と、除湿装置14と、ガス冷却装置16と、二酸化炭素回収装置18と、を備える。
<Description of overall configuration of carbon dioxide recovery system>
The carbon dioxide recovery system 10 includes a gasification furnace 11 that generates coal gasification gas, a desulfurization device 12, a CO shift device 13, a dehumidification device 14, a gas cooling device 16, and a carbon dioxide recovery device 18. Prepare.

また、二酸化炭素回収システム10は、深冷分離装置20と、気体酸素をガス化炉11に供給する酸素供給ラインL1,L2,L3と、液体酸素の冷熱をガス冷却装置16に供給する液体酸素供給ラインL11と、液体窒素の冷熱を二酸化炭素回収装置18に供給する液体窒素供給ラインL12と、を備える。   The carbon dioxide recovery system 10 includes a cryogenic separation device 20, oxygen supply lines L 1, L 2, and L 3 that supply gaseous oxygen to the gasification furnace 11, and liquid oxygen that supplies cold heat of liquid oxygen to the gas cooling device 16. A supply line L11 and a liquid nitrogen supply line L12 that supplies the cold heat of liquid nitrogen to the carbon dioxide recovery device 18 are provided.

<ガス化炉の説明>
ガス化炉11は、石炭を高温高圧下で部分燃焼(ガス化反応)させて主に水素及び一酸化炭素等を含む石炭ガス化ガスを生成する。ガス化炉11には、気体酸素を吹き込むための酸素供給ラインL1,L2,L3が接続されている。
<Description of gasifier>
The gasification furnace 11 generates coal gasification gas mainly containing hydrogen, carbon monoxide and the like by partially burning coal (gasification reaction) under high temperature and high pressure. The gasification furnace 11 is connected to oxygen supply lines L1, L2, and L3 for blowing gaseous oxygen.

酸素供給ラインL1,L2からは、後述する深冷分離装置20で生成される気体酸素が供給される。酸素供給ラインL3からは、深冷分離装置20で生成される液体酸素が、ガス冷却装置16を流れるガスと熱交換することによって気化した酸素が供給される。   From the oxygen supply lines L1 and L2, gaseous oxygen generated by the cryogenic separator 20 described later is supplied. From the oxygen supply line L3, liquid oxygen generated in the cryogenic separator 20 is supplied with oxygen vaporized by heat exchange with the gas flowing through the gas cooler 16.

また、ガス化炉11には、後述する二酸化炭素回収装置18から気体窒素を供給するための窒素供給ラインL4が接続されている。この気体窒素は、気体酸素をガス化炉11に供給する際のキャリーガスとして有効に利用される。   The gasification furnace 11 is connected to a nitrogen supply line L4 for supplying gaseous nitrogen from a carbon dioxide recovery device 18 described later. This gaseous nitrogen is effectively used as a carry gas when supplying gaseous oxygen to the gasification furnace 11.

このように、ガス化炉11には、空気から分離された気体酸素のみが供給されるため、ガス化炉11から排出されラインL5を通るガスは、一酸化炭素(CO)、水素(H2)、水(H2O)及び二酸化炭素(CO2)を含むものとなる。ガス化炉11は、ラインL5によって脱硫装置12と接続されている。   As described above, since only the gaseous oxygen separated from the air is supplied to the gasifier 11, the gas discharged from the gasifier 11 and passing through the line L5 is carbon monoxide (CO), hydrogen (H2). , Water (H 2 O) and carbon dioxide (CO 2). The gasification furnace 11 is connected to the desulfurization device 12 by a line L5.

<脱硫装置の説明>
脱硫装置12は、ガス化炉11からラインL5を流れてきた石炭ガス化ガス中の硫黄分を除去する。石炭ガス化ガス中の硫黄分を除去することにより、システムを構成する各装置の腐食防止にも資する。脱硫装置12は、ラインL6によってCOシフト器13と接続されている。
<Description of desulfurization equipment>
The desulfurization device 12 removes the sulfur content in the coal gasification gas that has flowed from the gasification furnace 11 through the line L5. By removing the sulfur content in the coal gasification gas, it contributes to corrosion prevention of each device constituting the system. The desulfurization apparatus 12 is connected to the CO shifter 13 by a line L6.

<COシフト器の説明>
COシフト器13は、脱硫装置12からラインL6を流れてきた石炭ガス化ガス中の一酸化炭素(CO)を、蒸気の存在により二酸化炭素(CO2)及び水素(H2)にシフトする(CO+H2O→CO2+H2)ように構成されている。
<Description of CO shifter>
The CO shifter 13 shifts carbon monoxide (CO) in the coal gasification gas flowing through the line L6 from the desulfurizer 12 to carbon dioxide (CO2) and hydrogen (H2) due to the presence of steam (CO + H2O → CO2 + H2).

なお、このシフト反応に必要な蒸気は、例えば、図示しない複合発電システムの中・低圧タービン等からの抽気蒸気を供給しても良く、供給源は任意である。COシフト器13は、ラインL7によって除湿装置14と接続されている。   Note that the steam necessary for this shift reaction may be, for example, extracted steam from a middle / low pressure turbine or the like (not shown) of the combined power generation system, and the supply source is arbitrary. The CO shifter 13 is connected to the dehumidifier 14 by a line L7.

<除湿装置の説明>
除湿装置14は、COシフト器13を経た石炭ガス化ガスから水分を除去可能に構成されている。石炭ガス化ガスが、後述するガス冷却装置16に導入されて冷却(熱交換)されたときに、ガス冷却装置16の伝熱管に氷が付着しないようにするためである。
<Description of dehumidifier>
The dehumidifier 14 is configured to be able to remove moisture from the coal gasification gas that has passed through the CO shifter 13. This is to prevent ice from adhering to the heat transfer tubes of the gas cooling device 16 when the coal gasification gas is introduced into the gas cooling device 16 described later and cooled (heat exchange).

除湿装置14は、例えば、除湿用冷媒(例えば、シリコンオイル等)中に石炭ガス化ガスを供給することにより、石炭ガス化ガスの水分を冷却・固化し、この固化した水分(氷)を当該除湿用冷媒内で捕集するように構成することができる。   The dehumidifier 14 supplies, for example, a coal gasification gas into a dehumidifying refrigerant (eg, silicon oil) to cool and solidify the moisture of the coal gasification gas, and the solidified moisture (ice) It can comprise so that it may collect in the refrigerant | coolant for dehumidification.

また、除湿装置14は、石炭ガス化ガスの水分を吸着すると共に、加熱されることにより吸着した水分を放出して再生する活性アルミナ等の水分吸着剤を備えるように構成されても良い。除湿装置14は、ラインL8によってガス冷却装置16と接続されている。   The dehumidifier 14 may be configured to include a moisture adsorbent such as activated alumina that adsorbs moisture of the coal gasification gas and releases the moisture adsorbed by heating. The dehumidifying device 14 is connected to the gas cooling device 16 by a line L8.

<ガス冷却装置の説明>
ガス冷却装置16は、除湿装置14を経た石炭ガス化ガスと、深冷分離装置20によって生成された液体酸素とを熱交換する熱交換器である。ガス冷却装置16は、液体酸素供給ラインL11によって深冷分離装置20と接続されると共に、酸素供給ラインL3によってガス化炉11と接続され、更に、ラインL9によって二酸化炭素回収装置18と接続されている。
<Description of gas cooling device>
The gas cooling device 16 is a heat exchanger that exchanges heat between the coal gasification gas that has passed through the dehumidifying device 14 and the liquid oxygen generated by the cryogenic separation device 20. The gas cooling device 16 is connected to the cryogenic separator 20 by the liquid oxygen supply line L11, connected to the gasifier 11 by the oxygen supply line L3, and further connected to the carbon dioxide recovery device 18 by the line L9. Yes.

すなわち、ガス冷却装置16は、ガス化炉11に供給する気体酸素を深冷分離装置20で製造する際に生成された液体酸素の冷熱を利用することにより、石炭ガス化ガスを冷却するようにしたものである。   That is, the gas cooling device 16 cools the coal gasification gas by using the cold heat of the liquid oxygen generated when the gaseous oxygen supplied to the gasification furnace 11 is produced by the cryogenic separation device 20. It is a thing.

ガス冷却装置16において、石炭ガス化ガスを冷却することによって気化した酸素は、酸素供給ラインL3を通ってガス化炉11に供給されるようになっている。   In the gas cooling device 16, the oxygen vaporized by cooling the coal gasification gas is supplied to the gasification furnace 11 through the oxygen supply line L3.

<深冷分離装置の説明>
深冷分離装置20は、原料となる空気を加圧冷却して液体酸素及び液体窒素を生成すると共に、気体酸素及び気体窒素を生成可能に構成されている。すなわち、深冷分離装置20は、酸素供給ラインL1,L2によってガス化炉11と接続され、気体酸素及び気体窒素を、酸素供給ラインL1,L2を介してガス化炉11に供給可能に構成されている。
<Description of the cryogenic separator>
The cryogenic separation device 20 is configured to generate liquid oxygen and liquid nitrogen by pressurizing and cooling air as a raw material and generating gaseous oxygen and gaseous nitrogen. That is, the cryogenic separator 20 is connected to the gasification furnace 11 through oxygen supply lines L1 and L2, and is configured to be able to supply gaseous oxygen and gaseous nitrogen to the gasification furnace 11 through the oxygen supply lines L1 and L2. ing.

また、深冷分離装置20は、液体酸素供給ラインL11によってガス冷却装置16と接続され、生成した液体酸素をガス冷却装置16に供給可能に構成されている。更に、深冷分離装置20は、液体窒素供給ラインL12によって二酸化炭素回収装置18と接続され、生成した液体窒素を二酸化炭素回収装置18に供給可能に構成されている。   Further, the cryogenic separation device 20 is connected to the gas cooling device 16 by a liquid oxygen supply line L <b> 11 and is configured to be able to supply the generated liquid oxygen to the gas cooling device 16. Further, the cryogenic separator 20 is connected to the carbon dioxide recovery device 18 by a liquid nitrogen supply line L12, and is configured to be able to supply the generated liquid nitrogen to the carbon dioxide recovery device 18.

なお、ガス冷却装置16に供給する液体酸素及び二酸化炭素回収装置18に供給する液体窒素を生成するには、冷却エネルギーを必要とするので、深冷分離装置20の負荷を低減するためにも、生成する液体酸素及び液体窒素は、必要最小限であることが好ましい。   In order to generate liquid oxygen to be supplied to the gas cooling device 16 and liquid nitrogen to be supplied to the carbon dioxide recovery device 18, cooling energy is required. Therefore, in order to reduce the load on the cryogenic separation device 20, It is preferable that the generated liquid oxygen and liquid nitrogen are the minimum necessary.

<二酸化炭素回収装置の説明>
二酸化炭素回収装置18は、ガス冷却装置16を経た石炭ガス化ガスを、深冷分離装置20によって生成された液体窒素の冷熱により冷却し、当該石炭ガス化ガスに含まれる二酸化炭素を液化分離して回収する熱交換器である。
<Description of carbon dioxide recovery device>
The carbon dioxide recovery device 18 cools the coal gasification gas that has passed through the gas cooling device 16 with the cold heat of the liquid nitrogen generated by the cryogenic separation device 20, and liquefies and separates the carbon dioxide contained in the coal gasification gas. Heat exchanger to be recovered.

二酸化炭素回収装置18は、液体窒素供給ラインL12によって深冷分離装置20と接続されると共に、窒素供給ラインL4によってガス化炉11と接続され、更に、ラインL10によって複合発電システム(図示せず)と接続されている。   The carbon dioxide recovery device 18 is connected to the cryogenic separator 20 by the liquid nitrogen supply line L12, is connected to the gasifier 11 by the nitrogen supply line L4, and is further connected to the combined power generation system (not shown) by the line L10. Connected with.

すなわち、二酸化炭素回収装置18によって二酸化炭素を除去された石炭ガス化ガスは、水素が主成分の水素リッチガスとなり、ラインL10によって、上記複合発電システムのタービンの燃焼器(図示せず)に供給されるようになっている。   That is, the coal gasification gas from which carbon dioxide has been removed by the carbon dioxide recovery device 18 becomes hydrogen-rich gas mainly composed of hydrogen, and is supplied to the turbine combustor (not shown) of the combined power generation system by the line L10. It has become so.

二酸化炭素回収装置18において、石炭ガス化ガスを冷却することによって気化した窒素は、窒素供給ラインL4を通ってガス化炉11に供給されるようになっている。この気体窒素は、気体酸素をガス化炉11に供給する際のキャリーガスとして、有効に利用される。   In the carbon dioxide recovery device 18, the nitrogen vaporized by cooling the coal gasification gas is supplied to the gasification furnace 11 through the nitrogen supply line L4. This gaseous nitrogen is effectively used as a carry gas when supplying gaseous oxygen to the gasification furnace 11.

また、石炭ガス化ガスから分離除去された液体二酸化炭素(液化CO2)は、ラインL13から系の外部に送出されるように構成されている。   The liquid carbon dioxide (liquefied CO2) separated and removed from the coal gasification gas is configured to be sent out of the system from the line L13.

<二酸化炭素回収システムの作用及び効果の説明>
次に、二酸化炭素回収システム10の動作(作用及び効果)について図1、図2及び図3を参照して説明する。ここで、図2は、図1の各ポイント(ポイントP1〜ポイントP10)における熱物質収支計算結果を示す図である。すなわち、図2は、図1の各ポイント(ポイントP1〜ポイントP10)における石炭ガス化ガスの相の種類、温度、圧力、平均分子量、モル流量及び組成を示す。図3は、二酸化炭素の飽和圧力と温度との関係を示すグラフ図である。
<Description of action and effect of carbon dioxide recovery system>
Next, the operation (action and effect) of the carbon dioxide recovery system 10 will be described with reference to FIGS. Here, FIG. 2 is a figure which shows the thermal material balance calculation result in each point (point P1-point P10) of FIG. That is, FIG. 2 shows the phase, temperature, pressure, average molecular weight, molar flow rate, and composition of the coal gasification gas at each point (point P1 to point P10) in FIG. FIG. 3 is a graph showing the relationship between the saturation pressure of carbon dioxide and the temperature.

ガス化炉11は、窒素供給ラインL4からキャリーガスとして供給される気体窒素(ポイントP8において温度が約5度)によって、酸素供給ラインL1,L2からは、後述する深冷分離装置20で生成される気体酸素(ポイントP9,ポイントP10において温度が約25度)が供給される。   The gasification furnace 11 is generated by the cryogenic separator 20 described later from the oxygen supply lines L1 and L2 by gaseous nitrogen (temperature is about 5 degrees at the point P8) supplied as a carry gas from the nitrogen supply line L4. Gas oxygen (at a temperature of about 25 degrees at point P9 and point P10) is supplied.

また、ガス化炉11は、酸素供給ラインL3からも気体酸素(ポイントP6において温度が約5度)が供給される。これにより、ガス化炉11は、石炭を高温高圧下で部分燃焼(ガス化反応)させて、主に水素(H2)及び一酸化炭素(CO)等を含む石炭ガス化ガスを生成する。   The gasification furnace 11 is also supplied with gaseous oxygen (at a temperature of about 5 degrees at the point P6) from the oxygen supply line L3. Thereby, the gasification furnace 11 produces | generates coal gasification gas mainly containing hydrogen (H2), carbon monoxide (CO), etc. by carrying out partial combustion (gasification reaction) of coal under high temperature and high pressure.

ガス化炉11には、空気から分離された気体酸素のみが供給されるため、ガス化炉11で生成される石炭ガス化ガスは、一酸化炭素(CO)、水素(H2)、水(H2O)及び二酸化炭素(CO2)を含むものとなる。この石炭ガス化ガスは、ラインL5を通って脱硫装置12に送られる。   Since only gas oxygen separated from air is supplied to the gasification furnace 11, the coal gasification gas generated in the gasification furnace 11 is carbon monoxide (CO), hydrogen (H2), water (H2O). ) And carbon dioxide (CO2). This coal gasification gas is sent to the desulfurization apparatus 12 through the line L5.

脱硫装置12に送られた石炭ガス化ガスは、硫黄分を除去される。そして、石炭ガス化ガスは、ラインL6と通ってCOシフト器13に送られる。   Sulfur content is removed from the coal gasification gas sent to the desulfurization apparatus 12. Then, the coal gasification gas is sent to the CO shifter 13 through the line L6.

COシフト器13に送られた石炭ガス化ガスは、石炭ガス化ガス中の一酸化炭素(CO)を、図示しない蒸気の供給によってシフト(CO+H2O→CO2+H2)する。すなわち、COシフト器13では、このシフト反応により、二酸化炭素(CO2)及び水素(H2)が生成される。そして、石炭ガス化ガスは、ラインL7と通って除湿装置14に送られる。   The coal gasification gas sent to the CO shifter 13 shifts carbon monoxide (CO) in the coal gasification gas by supplying steam (not shown) (CO + H 2 O → CO 2 + H 2). That is, in the CO shifter 13, carbon dioxide (CO2) and hydrogen (H2) are generated by this shift reaction. Then, the coal gasification gas is sent to the dehumidifier 14 through the line L7.

除湿装置14に送られた石炭ガス化ガスは、水分を除去され、ラインL8と通ってガス冷却装置16に送られる。ガス冷却装置16に導入された石炭ガス化ガスは、既に水分を除去されているので、ガス冷却装置16内で冷却(熱交換)されたときに、ガス冷却装置16の伝熱管に氷を付着させない。   The coal gasification gas sent to the dehumidifying device 14 is dehydrated and sent to the gas cooling device 16 through the line L8. Since the coal gasification gas introduced into the gas cooling device 16 has already been dehydrated, when it is cooled (heat exchanged) in the gas cooling device 16, ice adheres to the heat transfer tubes of the gas cooling device 16. I won't let you.

このときラインL8のポイントP1では、図2に示すように、例えば石炭ガス化ガスの温度が5℃、圧力が7.6MPaとなっている。また、石炭ガス化ガスの組成は、例えば水素が53%、二酸化炭素が37.4%であり、両者で約90%を占めている。   At this time, at the point P1 of the line L8, as shown in FIG. 2, for example, the temperature of the coal gasification gas is 5 ° C. and the pressure is 7.6 MPa. The composition of the coal gasification gas is, for example, 53% for hydrogen and 37.4% for carbon dioxide, which account for about 90%.

そして、ガス冷却装置16に送られた石炭ガス化ガスは、深冷分離装置20の液体酸素供給ラインL11から供給される液体酸素の冷熱によって冷却される。   Then, the coal gasification gas sent to the gas cooling device 16 is cooled by the cold heat of liquid oxygen supplied from the liquid oxygen supply line L11 of the cryogenic separation device 20.

例えば、液体酸素供給ラインL11のポイントP5では、図2に示すように、液体酸素の温度は、約−196℃となっている。石炭ガス化ガスは、この液体酸素によって−23℃(図2に示すラインL9のポイントP2の値を参照)まで冷却され、ラインL9を通って二酸化炭素回収装置18に送られる。   For example, at the point P5 of the liquid oxygen supply line L11, as shown in FIG. 2, the temperature of the liquid oxygen is about −196 ° C. The coal gasification gas is cooled to −23 ° C. (refer to the value of point P2 of the line L9 shown in FIG. 2) by this liquid oxygen, and is sent to the carbon dioxide recovery device 18 through the line L9.

このようにガス冷却装置16は、深冷分離装置20から供給される液体酸素の冷熱を有効に利用して、石炭ガス化ガスを十分に冷却することができる。また、石炭ガス化ガスを冷却した液体酸素は気化し、酸素供給ラインL3を通ってガス化炉11に供給される。   As described above, the gas cooling device 16 can sufficiently cool the coal gasification gas by effectively using the cold heat of the liquid oxygen supplied from the cryogenic separation device 20. Moreover, the liquid oxygen which cooled coal gasification gas vaporizes, and is supplied to the gasification furnace 11 through the oxygen supply line L3.

二酸化炭素回収装置18に送られた石炭ガス化ガスは、深冷分離装置20の液体窒素供給ラインL12から供給される液体窒素の冷熱によって冷却される。   The coal gasification gas sent to the carbon dioxide recovery device 18 is cooled by the cold heat of the liquid nitrogen supplied from the liquid nitrogen supply line L12 of the cryogenic separator 20.

すると、石炭ガス化ガスに含まれていた二酸化炭素(気体二酸化炭素を含む)は、完全に液化され、主流の石炭ガス化ガスから分離される。分離された液体二酸化炭素は、ラインL13から回収される。   Then, carbon dioxide (including gaseous carbon dioxide) contained in the coal gasification gas is completely liquefied and separated from the mainstream coal gasification gas. The separated liquid carbon dioxide is recovered from the line L13.

例えば、液体窒素供給ラインL12のポイントP7では、図2に示すように、液体窒素の温度は、−196℃となっている。石炭ガス化ガスは、この液体窒素によって、約7.58MPaの圧力下において約−56.5℃まで冷却される(図2のポイントP3の値を参照)。これらの条件により、石炭ガス化ガス中の気体二酸化炭素は、液化する(図3参照)。なお、このときにラインL13から回収される液体二酸化炭素の温度は、約−56.5℃である(図2のポイントP4の値を参照)。   For example, at the point P7 of the liquid nitrogen supply line L12, the temperature of liquid nitrogen is −196 ° C. as shown in FIG. The coal gasification gas is cooled by this liquid nitrogen to about −56.5 ° C. under a pressure of about 7.58 MPa (see the value of point P3 in FIG. 2). Under these conditions, gaseous carbon dioxide in the coal gasification gas is liquefied (see FIG. 3). In addition, the temperature of the liquid carbon dioxide collect | recovered from the line L13 at this time is about -56.5 degreeC (refer the value of the point P4 of FIG. 2).

このようにして液体二酸化炭素が分離されると、石炭ガス化ガスは、水素が約74.8%の水素リッチガスとなり(図2のポイントP3の値を参照)、ラインL10を通って複合発電システムのタービンの燃焼器(図示せず)に送られる。   When the liquid carbon dioxide is separated in this way, the coal gasification gas becomes a hydrogen rich gas in which hydrogen is about 74.8% (refer to the value of point P3 in FIG. 2), and the combined power generation system passes through the line L10. To a turbine combustor (not shown).

以上のように、この第1実施形態に係る二酸化炭素回収システム10に適用したガス分離方法によれば、ガス化炉11の燃料(気体酸素)を生成する深冷分離装置20の冷熱を、石炭ガス化ガスから二酸化炭素を液化して除去する際に利用することができる。   As described above, according to the gas separation method applied to the carbon dioxide recovery system 10 according to the first embodiment, the cold heat of the cryogenic separation device 20 that generates the fuel (gaseous oxygen) of the gasifier 11 is converted into coal. It can be utilized when carbon dioxide is liquefied and removed from the gasification gas.

したがって、石炭ガス化ガスから二酸化炭素を除去するために必要なエネルギーを削減でき、二酸化炭素を効率良く分離し、回収することができる。   Therefore, energy required for removing carbon dioxide from the coal gasification gas can be reduced, and carbon dioxide can be efficiently separated and recovered.

また、この二酸化炭素回収システム10を石炭ガス化発電プラントに適用すれば、石炭ガス化ガスから二酸化炭素を効率良く分離し、回収できるので、二酸化炭素の排出量を更に低減させた石炭ガス化発電プラントを提供することができる。   In addition, if this carbon dioxide recovery system 10 is applied to a coal gasification power plant, carbon dioxide can be efficiently separated and recovered from the coal gasification gas, so that the coal gasification power generation further reduces the carbon dioxide emission. A plant can be provided.

また、通常の発電所プラント等での排ガスは常圧であるが、この二酸化炭素回収システム10における石炭ガス化ガスは、高圧(約7.6MPa程度)であるため、冷却された二酸化炭素は固化されず、液体二酸化炭素として除去できるので、その後のハンドリングが容易である。   Moreover, although the exhaust gas in a normal power plant or the like is normal pressure, the coal gasification gas in the carbon dioxide recovery system 10 is high pressure (about 7.6 MPa), so the cooled carbon dioxide is solidified. Since it can be removed as liquid carbon dioxide, subsequent handling is easy.

〔第2実施形態〕
図4は、本発明の第2実施形態に係る二酸化炭素回収システム30を示す説明図である。図5は、図4の各ポイント(ポイントP1〜ポイントP10)における熱物質収支計算結果を示す図である。
[Second Embodiment]
FIG. 4 is an explanatory diagram showing a carbon dioxide recovery system 30 according to the second embodiment of the present invention. FIG. 5 is a diagram showing a thermal mass balance calculation result at each point (point P1 to point P10) in FIG.

すなわち、図5は、図4の各ポイント(ポイントP1〜ポイントP10)における石炭ガス化ガスの相の種類、温度、圧力、平均分子量、モル流量及び組成を示す。なお、以下の説明において、既に説明した部材と同一若しくは相当する部材には、同一の符号を付して重複説明を省略又は簡略化する。   That is, FIG. 5 shows the type, temperature, pressure, average molecular weight, molar flow rate, and composition of the coal gasification gas phase at each point (point P1 to point P10) in FIG. In the following description, members that are the same as or correspond to those already described are assigned the same reference numerals, and redundant description is omitted or simplified.

<二酸化炭素回収システムの全体構成の説明>
図4に示すように、第2実施形態に係る二酸化炭素回収システム30は、第1実施形態に係る二酸化炭素回収システム10の構成(図1参照)において、除湿装置14とガス冷却装置16の間のラインL8に圧縮機15を設けると共に、ガス冷却装置16と二酸化炭素回収装置18の間のラインL9に圧縮機17を設けている点が主に相違する。
<Description of overall configuration of carbon dioxide recovery system>
As shown in FIG. 4, the carbon dioxide recovery system 30 according to the second embodiment is configured between the dehumidifying device 14 and the gas cooling device 16 in the configuration of the carbon dioxide recovery system 10 according to the first embodiment (see FIG. 1). The main difference is that the compressor 15 is provided in the line L8, and the compressor 17 is provided in the line L9 between the gas cooling device 16 and the carbon dioxide recovery device 18.

<圧縮機の構成の説明>
すなわち、図4に示すように、圧縮機15は、ラインL8aによって除湿装置14と接続され、ラインL8bによってガス冷却装置16と接続されている。また、圧縮機17は、ラインL9aによってガス冷却装置16と接続され、ラインL9bによって二酸化炭素回収装置18と接続されている。
<Description of compressor configuration>
That is, as shown in FIG. 4, the compressor 15 is connected to the dehumidifying device 14 by a line L8a, and is connected to the gas cooling device 16 by a line L8b. The compressor 17 is connected to the gas cooling device 16 through a line L9a, and is connected to the carbon dioxide recovery device 18 through a line L9b.

<圧縮機による作用の説明>
除湿装置14を経た石炭ガス化ガス(図5のポイントP1において圧力が3.2MPa)は、圧縮機15によって圧縮される(図5のポイントP2において圧力が5.4MPa)。この圧縮によって石炭ガス化ガスは昇温するが(温度が5℃(図5のポイントP1)から約49℃(図5のポイントP2))、ガス冷却装置16において深冷分離装置20から供給される液体酸素によって冷却される。
<Description of action by compressor>
The coal gasification gas (pressure is 3.2 MPa at point P1 in FIG. 5) that has passed through the dehumidifier 14 is compressed by the compressor 15 (pressure is 5.4 MPa at point P2 in FIG. 5). Although the coal gasification gas is heated by this compression (temperature is 5 ° C. (point P 1 in FIG. 5) to about 49 ° C. (point P 2 in FIG. 5)), it is supplied from the cryogenic separator 20 in the gas cooling device 16. Cooled by liquid oxygen.

また、ガス冷却装置16を経た石炭ガス化ガス(図5のポイントP3において圧力が約5.4MPa)は、圧縮機17によって圧縮される(図5のポイントP4において圧力が約7.4MPa)。この圧縮によって石炭ガス化ガスは昇温する(温度が−15℃(図5のポイントP3)から約9.9℃(図5のポイントP2))が、ガス冷却装置16において深冷分離装置20から供給される液体酸素によって冷却される。   Further, the coal gasification gas that has passed through the gas cooling device 16 (the pressure is approximately 5.4 MPa at the point P3 in FIG. 5) is compressed by the compressor 17 (the pressure is approximately 7.4 MPa at the point P4 in FIG. 5). This compression increases the temperature of the coal gasification gas (the temperature ranges from −15 ° C. (point P3 in FIG. 5) to about 9.9 ° C. (point P2 in FIG. 5)). Cooled by liquid oxygen supplied from

このように、圧縮機15,17による圧縮によって、石炭ガス化ガスに含まれる二酸化炭素の飽和圧力を上げることができるので、二酸化炭素の液化を促進することができ(図3参照)、液体二酸化炭素の回収率を向上させることができる。その他の構成及び効果は、上記第1実施形態の場合とほぼ同様であるので、重複説明を省略する。   Thus, since the saturation pressure of the carbon dioxide contained in coal gasification gas can be raised by compression by the compressors 15 and 17, liquefaction of a carbon dioxide can be accelerated | stimulated (refer FIG. 3), and liquid dioxide The carbon recovery rate can be improved. Other configurations and effects are substantially the same as in the case of the first embodiment, and a duplicate description is omitted.

以上のように、この第2実施形態に係る二酸化炭素回収システム30に適用したガス分離方法によれば、上記第1実施形態の場合と同様の効果を奏する他、二酸化炭素の回収率を向上させることができる。   As described above, according to the gas separation method applied to the carbon dioxide recovery system 30 according to the second embodiment, the same effect as in the case of the first embodiment is obtained, and the carbon dioxide recovery rate is improved. be able to.

10 二酸化炭素回収システム
11 ガス化炉
12 脱硫装置
13 COシフト器
14 除湿装置
15,17 圧縮機
16 ガス冷却装置
18 二酸化炭素回収装置
20 深冷分離装置
30 二酸化炭素回収システム
L1,L2,L3 酸素供給ライン
L4 窒素供給ライン
L5,L6,L7,L8,L8a,L8b,L9,L9a,L9b,L10 ライン
L11 液体酸素供給ライン
L12 液体窒素供給ライン
L13 ライン
DESCRIPTION OF SYMBOLS 10 Carbon dioxide recovery system 11 Gasification furnace 12 Desulfurization device 13 CO shift device 14 Dehumidification device 15, 17 Compressor 16 Gas cooling device 18 Carbon dioxide recovery device 20 Cryogenic separation device 30 Carbon dioxide recovery system L1, L2, L3 Oxygen supply Line L4 Nitrogen supply line L5, L6, L7, L8, L8a, L8b, L9, L9a, L9b, L10 line L11 Liquid oxygen supply line L12 Liquid nitrogen supply line L13 line

Claims (1)

二酸化炭素と水素を含む混合ガスから当該二酸化炭素と当該水素とを分離するガス分離方法であって、
前記混合ガスを加圧し冷却することにより前記二酸化炭素を液化する二酸化炭素液化工程と、
液化された前記二酸化炭素を除去する二酸化炭素除去工程と、を含み、
前記混合ガスは、ガス化炉によって石炭をガス化して生成された石炭ガス化ガスから硫黄分が除去され、更にシフト反応によって当該石炭ガス化ガスに含まれる一酸化炭素を二酸化炭素に変換して生成されたものであり、
前記二酸化炭素液化工程における前記二酸化炭素の冷却には、空気から前記ガス化炉でのガス化反応に用いられる気体酸素及び気体窒素を生成すると共に液体酸素及び液体窒素を生成する深冷分離装置による冷熱が使用されることを特徴とするガス分離方法。
A gas separation method for separating carbon dioxide and hydrogen from a mixed gas containing carbon dioxide and hydrogen,
A carbon dioxide liquefaction step of liquefying the carbon dioxide by pressurizing and cooling the mixed gas;
A carbon dioxide removal step of removing the liquefied said carbon dioxide only contains,
The mixed gas is obtained by removing sulfur from coal gasification gas generated by gasifying coal in a gasification furnace, and further converting carbon monoxide contained in the coal gasification gas into carbon dioxide by a shift reaction. Generated
The carbon dioxide in the carbon dioxide liquefaction step is cooled by a cryogenic separator that generates gaseous oxygen and gaseous nitrogen used in the gasification reaction in the gasification furnace from the air and produces liquid oxygen and liquid nitrogen. A gas separation method, wherein cold heat is used .
JP2009056859A 2009-03-10 2009-03-10 Gas separation method Expired - Fee Related JP5274312B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009056859A JP5274312B2 (en) 2009-03-10 2009-03-10 Gas separation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009056859A JP5274312B2 (en) 2009-03-10 2009-03-10 Gas separation method

Publications (2)

Publication Number Publication Date
JP2010209215A JP2010209215A (en) 2010-09-24
JP5274312B2 true JP5274312B2 (en) 2013-08-28

Family

ID=42969727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009056859A Expired - Fee Related JP5274312B2 (en) 2009-03-10 2009-03-10 Gas separation method

Country Status (1)

Country Link
JP (1) JP5274312B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102635468B (en) * 2012-04-23 2014-03-26 北京建筑工程学院 Carbon dioxide fixing device
CN102925221A (en) * 2012-10-31 2013-02-13 绵阳通美能源科技有限公司 Biomass gas and purification method thereof
CN104937358B (en) * 2013-02-25 2017-05-10 三菱重工压缩机有限公司 carbon dioxide liquefaction device
KR102148919B1 (en) * 2018-08-29 2020-08-28 김민성 Environment-friendly resource production equipment
KR102492426B1 (en) * 2020-11-18 2023-01-30 창원대학교 산학협력단 Process system for separating carbon dioxide

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5782101A (en) * 1980-11-05 1982-05-22 Nippon Sanso Kk Manufacturing of hydrogen using coke oven gas as raw material
JP2000327307A (en) * 1999-05-19 2000-11-28 Mitsubishi Kakoki Kaisha Ltd Method and apparatus for producing ultrahigh-purity hydrogen
JP4632532B2 (en) * 2000-12-22 2011-02-16 関西電力株式会社 Hydrogen production method and system
JP4091755B2 (en) * 2001-07-16 2008-05-28 関西電力株式会社 Hydrogen purification method and system at liquefied natural gas receiving terminal
JP3923766B2 (en) * 2001-09-18 2007-06-06 株式会社日立製作所 Hydrogen production equipment
JP4313662B2 (en) * 2003-12-10 2009-08-12 株式会社神戸製鋼所 Carbon dioxide liquefaction separator
EP2149769A1 (en) * 2008-07-31 2010-02-03 BP Alternative Energy International Limited Separation of carbon dioxide and hydrogen

Also Published As

Publication number Publication date
JP2010209215A (en) 2010-09-24

Similar Documents

Publication Publication Date Title
US20220065161A1 (en) Liquid natural gas processing with hydrogen production
Tranier et al. Air separation, flue gas compression and purification units for oxy-coal combustion systems
US20110252827A1 (en) CO2 Recovery And Cold Water Production Method
CA2793610C (en) Purification of carbon dioxide
US8900355B2 (en) Purification of carbon dioxide
US11067335B1 (en) Devices, systems, facilities, and processes for liquefied natural gas production
US20100126180A1 (en) Separation of carbon dioxide and hydrogen
JP5213745B2 (en) Carbon dioxide recovery system from coal gasification gas
JP5274312B2 (en) Gas separation method
US11293691B2 (en) Devices, systems, facilities, and processes for liquefied natural gas production
US11806664B2 (en) Devices, systems, facilities, and processes of liquid natural gas processing for power generation
US20110252828A1 (en) Carbon Dioxide Recovery Method Using Cryo-Condensation
Fu et al. Heat integration of an oxy-combustion process for coal-fired power plants with CO2 capture by pinch analysis
JPH11315727A (en) Gasification combined cycle power generation plant for removal of carbon dioxide
US20100071381A1 (en) High efficiency integrated gasification combined cycle power plant
JP2013006990A (en) Coal gasification-combined electric power plant and coal gasification plant
JP2627144B2 (en) Method for separating carbon dioxide in exhaust gas and system treatment system for carbon dioxide
US11446587B2 (en) Liquid natural gas processing
JP7025310B2 (en) Gas turbine combined cycle power generation system, gas turbine combined cycle power generation method
AU2011201679B2 (en) System for gas purification and recovery with multiple solvents
US11913718B2 (en) Argon and power production by integration with power plant
JPH05287284A (en) Process for reforming liquefied natural gas
Fu et al. Reducing the power penalty related to CO2 conditioning in oxy-coal combustion plants by pinch analysis
JP5355657B2 (en) Power generation system
WO2018083747A1 (en) Natural gas liquefaction facility

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130514

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5274312

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees