JP4313662B2 - Carbon dioxide liquefaction separator - Google Patents

Carbon dioxide liquefaction separator Download PDF

Info

Publication number
JP4313662B2
JP4313662B2 JP2003411687A JP2003411687A JP4313662B2 JP 4313662 B2 JP4313662 B2 JP 4313662B2 JP 2003411687 A JP2003411687 A JP 2003411687A JP 2003411687 A JP2003411687 A JP 2003411687A JP 4313662 B2 JP4313662 B2 JP 4313662B2
Authority
JP
Japan
Prior art keywords
heat transfer
gas
transfer tube
outer container
inner heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003411687A
Other languages
Japanese (ja)
Other versions
JP2005170722A (en
Inventor
正彦 満田
一三 服部
正幸 田中
裕 宮川
辰与志 関
智之 浅田
宏 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Kobe Steel Ltd
Original Assignee
Kansai Electric Power Co Inc
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Kobe Steel Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP2003411687A priority Critical patent/JP4313662B2/en
Publication of JP2005170722A publication Critical patent/JP2005170722A/en
Application granted granted Critical
Publication of JP4313662B2 publication Critical patent/JP4313662B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/06Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
    • F25J3/0605Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the feed stream
    • F25J3/0625H2/CO mixtures, i.e. synthesis gas; Water gas or shifted synthesis gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/06Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
    • F25J3/063Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream
    • F25J3/0655Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream separation of hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/06Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
    • F25J3/063Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream
    • F25J3/067Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream separation of carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J5/00Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants
    • F25J5/002Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants for continuously recuperating cold, i.e. in a so-called recuperative heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/62Liquefied natural gas [LNG]; Natural gas liquids [NGL]; Liquefied petroleum gas [LPG]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/04Recovery of liquid products
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/30Compression of the feed stream
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

本発明は、液化天然ガス(LNG)受入基地での水素精製システム等に適した二酸化炭素の液化分離装置に関するものである。
The present invention relates to liquefied fraction HanareSo location of carbon dioxide suitable for hydrogen purification system or the like in the liquefied natural gas (LNG) receiving terminal.

近年、水素の原料として天然ガスが注目を集めており、例えば液化天然ガス(以下、LNGという)受入基地に水素精製システムを設け、高純度の水素ガスを精製することが行われている。   In recent years, natural gas has attracted attention as a raw material for hydrogen. For example, a hydrogen purification system is provided at a liquefied natural gas (hereinafter referred to as LNG) receiving terminal to purify high-purity hydrogen gas.

図3は、そのような精製システムを系統図で示している。同図において、液化天然ガスタンク10内には例えば輸送船で運び込まれたLNGが貯溜されている。このLNGが気化器12に圧送され、海水等との熱交換により気化することにより、天然ガス(以下、NGという)が生成される。NGは基本的に発電所その他の燃料需要先へ送られるが、その一部は水素原料として水素ガス製造装置14へ導入される。そして、この水素ガス製造装置14において例えば水蒸気改質のプロセスと水素PSA(Pressure Swing Adsorption)のプロセスを経ることにより前記NGから富水素ガスが生成され、さらにこの水素ガスが圧縮されることにより高純度の製品水素ガスが精製される。なお、このような水素製造プロセスについては特許文献1に開示されている。   FIG. 3 shows such a purification system in a system diagram. In the figure, LNG carried by, for example, a transport ship is stored in the liquefied natural gas tank 10. The LNG is pumped to the vaporizer 12 and vaporized by heat exchange with seawater or the like, thereby generating natural gas (hereinafter referred to as NG). NG is basically sent to a power plant or other fuel demand destination, but a part of it is introduced into the hydrogen gas production apparatus 14 as a hydrogen raw material. In the hydrogen gas production apparatus 14, for example, a hydrogen-rich gas is generated from the NG through a steam reforming process and a hydrogen PSA (Pressure Swing Adsorption) process, and the hydrogen gas is compressed to increase the hydrogen gas. Purity product hydrogen gas is purified. Such a hydrogen production process is disclosed in Patent Document 1.

そして、水素ガス製造装置14からの排ガス、すなわち前記水素PSAのプロセスで副生される水素と二酸化炭素等との混合ガスが圧縮機16を経てCO2液化分離装置18に圧送され、ここでLNGとの熱交換に供されることによりCO2が液化分離され、残った水素ガスが再度水素ガス製造装置14に導入される一方で、LNGが気化されて燃料需要先へ送られるように構成されている。
特開2000−327307号公報
Then, the exhaust gas from the hydrogen gas production device 14, that is, a mixed gas of hydrogen and carbon dioxide, etc. produced as a by-product in the hydrogen PSA process, is pumped to the CO 2 liquefaction separation device 18 through the compressor 16, where LNG The CO 2 is liquefied and separated by being subjected to heat exchange with the gas, and the remaining hydrogen gas is introduced again into the hydrogen gas production apparatus 14 while the LNG is vaporized and sent to the fuel demand destination. ing.
JP 2000-327307 A

このような水素精製システムは、水素ガス製造装置14で副生される排ガスをCO液化分離装置18においてLNGと熱交換させ、これにより排ガス中のCO2を液化させて分離する一方で、LNGを気化させてNGを生成する構成であるため、LNGの冷熱(気化潜熱)を有効利用した合理的なシステムといえる。 Such a hydrogen purification system heat-exchanges the exhaust gas by-produced in the hydrogen gas production device 14 with LNG in the CO 2 liquefaction separation device 18, thereby liquefying and separating CO 2 in the exhaust gas, while LNG It can be said that it is a rational system that effectively uses the cold heat (vaporization latent heat) of LNG.

ところが、このシステムにおいては、上記CO2液化分離装置18が二重管構造の熱交換器から構成され、さらにCO2を確実に分離するために排ガスをCO2の固化温度ぎりぎりまで冷却するのが一般的であるため、過冷却が生じて排ガスに含まれるCO2の一部が固化(ドライアイス化)して伝熱管に堆積し、その結果、CO2液化分離装置18が閉塞することがある。そのため、これを防止するために高い頻繁で保守点検作業を行い、あるいは複数のCO2液化分離装置18を設けて定期的に使い分けることが行われており、運転管理が煩雑であるという問題があった。 However, in this system, the CO 2 separation plant 18 is composed of the heat exchanger of the double pipe structure, is to cool to a solidification temperature very limit exhaust gas CO 2 in order to further reliably separate the CO 2 Since it is general, overcooling occurs and a part of CO 2 contained in the exhaust gas solidifies (dry ice) and accumulates on the heat transfer tube, and as a result, the CO 2 liquefaction separation device 18 may be blocked. . Therefore, in order to prevent this, maintenance and inspection work is frequently performed frequently, or a plurality of CO 2 liquefaction separation devices 18 are provided and used regularly, and there is a problem that operation management is complicated. It was.

本発明は、上記課題に鑑みてなされたものであって、排ガス中のCO2をLNGの冷熱を有効に利用しながら液化分離する一方で、CO2の固化に伴う閉塞トラブルを回避できるようにすることを目的としている。 The present invention has been made in view of the above problems, and is capable of liquefying and separating CO 2 in exhaust gas while effectively using the cold heat of LNG, while avoiding clogging troubles associated with solidification of CO 2. The purpose is to do.

上記課題を解決するために、本発明に係る二酸化炭素の液化分離装置は、外側容器と、この外側容器内に設けられて両端部が外側容器に固定され、内部に二酸化炭素を含む対象ガスが流される内伝熱管と、この内伝熱管の径方向外側に設けられ、かつ内伝熱管よりも短い軸長を有し、該内伝熱管の外面との間にガス通路を形成する外伝熱管と、前記外伝熱管の端部であって前記対象ガスの流れ方向上流側の端部に前記外側容器の外部から低温液化ガスを導入する導入部と、低温液化ガスから生成されるガス状体を前記外側容器の端部であって前記対象ガスの流れ方向下流側の端部において外側容器から導出する導出部と、前記ガス通路を含み前記導入部から導入される低温液化ガスを前記導出部に案内する流路とを備え、この流路は、外側容器内に導入される低温液化ガスが外伝熱管の外面に沿って内伝熱管内の対象ガスとは反対方向に流通し、この流通中に前記ガス通路を隔てて前記内伝熱管内の対象ガスと熱交換することにより気化した後、前記外伝熱管の端部であって前記対象ガスの流れ方向上流側の端部から前記ガス通路に入って前記対象ガスと同方向に流通し、このガス通路から出て前記導出部に案内されるように構成されており、前記内伝熱管および外伝熱管のうち前記導入部に対応する部分の径はそれ以外の部分よりも大きく形成されているものである。
In order to solve the above-described problems, a carbon dioxide liquefaction separation apparatus according to the present invention includes an outer container, a target gas that is provided in the outer container, both ends thereof are fixed to the outer container, and carbon dioxide is contained inside. An inner heat transfer tube to be flown, and an outer heat transfer tube that is provided on the radially outer side of the inner heat transfer tube and has a shorter axial length than the inner heat transfer tube and forms a gas passage between the inner heat transfer tube and the outer surface of the inner heat transfer tube; An introduction portion for introducing a low-temperature liquefied gas from the outside of the outer container to an end portion of the outer heat transfer tube and upstream of the target gas in the flow direction; and a gaseous body generated from the low-temperature liquefied gas, A lead-out part that leads out from the outer container at an end of the outer container that is downstream in the flow direction of the target gas, and guides the liquefied gas introduced from the lead-in part including the gas passage to the lead-out part A flow path that has an outer volume. The low-temperature liquefied gas introduced into the inner heat transfer tube flows along the outer surface of the outer heat transfer tube in the direction opposite to the target gas in the inner heat transfer tube, and the target gas in the inner heat transfer tube is separated from the gas passage during the flow. After vaporizing by heat exchange, it enters the gas passage from the end of the outer heat transfer tube upstream of the target gas in the flow direction and flows in the same direction as the target gas. out it is configured to be guided to the outlet portion, the diameter of the portion corresponding to the introduction part of the inner heat transfer pipe and Gaiden heat pipe Ru der what is larger than the other portion .

本発明の液化分離装置によると、二酸化炭素を含む対象ガスが内伝熱管内を流れる一方、LNG等の低温液化ガスが外伝熱管の外側を対象ガスとは反対方向に流れる。これにより低温液化ガスと対象ガスとがガス通路を介して熱交換され、内伝熱管内を流れる対象ガス中の二酸化炭素が液化されて取出されることとなる。他方、低温液化ガスは、この熱交換によりガス化した状態でガス通路に入り、ここで一旦冷却された後、ガス通路から導出部に案内されてここから取出されることとなる。この装置によると、低温液化ガスと対象ガスとの熱交換をガス通路を挟んだ状態で、すなわち低温液化ガスよりも温度の高いガス状体(低温液化ガスが気化したもの)を間に介在させた状態で行うため、対象ガスを低温液化ガスそのものと直接熱交換させる場合に比べて対象ガスが過冷却され難くなる。従って、対象ガス中の二酸化炭素がドライアイス化し難くなり、装置の閉塞トラブルを効果的に防止することができるようになる。
According to the liquefaction separation apparatus of the present invention, the target gas containing carbon dioxide flows in the inner heat transfer tube, while the low-temperature liquefied gas such as LNG flows in the opposite direction to the target gas outside the outer heat transfer tube. As a result, the low-temperature liquefied gas and the target gas are heat-exchanged through the gas passage, and carbon dioxide in the target gas flowing in the inner heat transfer tube is liquefied and taken out. On the other hand, the low-temperature liquefied gas enters the gas passage in a gasified state by this heat exchange, and after being cooled here, is guided from the gas passage to the lead-out portion and taken out from here. According to this apparatus, heat exchange between the low-temperature liquefied gas and the target gas is performed with the gas passage sandwiched therebetween, that is, a gaseous body having a temperature higher than that of the low-temperature liquefied gas (the vaporized low-temperature liquefied gas) interposed therebetween. Therefore, the target gas is less likely to be supercooled compared to the case where the target gas is directly heat-exchanged with the low-temperature liquefied gas itself. Therefore, it becomes difficult for the carbon dioxide in the target gas to become dry ice, and the trouble of blockage of the apparatus can be effectively prevented.

なお、導入部に対応する部分では上記のようにガス通路内のガス状体の温度が一旦下がるため二酸化炭素がドライアイス化して多少堆積することが考えられるが、内伝熱管および外伝熱管のうち低温液化ガスの導入部に対応する部分の径その他の部分よりも大きく形成されているので、後述するように安価な構成で装置の閉塞トラブルを確実に防止できるようになる。
In the portion corresponding to the introduction portion, the temperature of the gaseous body in the gas passage once decreases as described above, so it is considered that carbon dioxide becomes dry ice and accumulates to some extent. Of the internal heat transfer tubes and the external heat transfer tubes, since the diameter of the portion corresponding to the inlet portion of the low-temperature liquefied gas is formed larger than the other portions, it becomes possible to reliably prevent clogging troubles inexpensive structure in apparatus as described below.

本発明の最良の実施形態について図面を用いて説明する。   The best embodiment of the present invention will be described with reference to the drawings.

図1は、本発明に係る二酸化炭素(CO)の液化分離装置(本発明に係る液化分離方法を実施する装置)を示す断面模式図である。この図に示すようにCO液化分離装置20は、上下方向に延びる外胴22を有している。外胴22内の上下両端部分にはそれぞれ水平な管板23が設けらており、これら外胴22および管板23により本発明の外側容器が構成されており、両管板23には上下に延びる複数本の内伝熱管28の上下両端部が固定されている。なお、同図では便宜上、内伝熱管28を1本だけ示している。 FIG. 1 is a schematic cross-sectional view showing a carbon dioxide (CO 2 ) liquefaction separation apparatus according to the present invention (an apparatus for carrying out a liquefaction separation method according to the present invention). As shown in this figure, the CO 2 liquefaction separation apparatus 20 has an outer cylinder 22 extending in the vertical direction. Each of the upper and lower end portions a horizontal tube plate 23 in the outer cylinder 22 have been found provided is configured outer container of the present invention by these outer cylinder 22 and the tube plate 23, vertically in Ryokanban 23 The upper and lower ends of the plurality of inner heat transfer tubes 28 extending in the direction are fixed. In the figure, only one internal heat transfer tube 28 is shown for convenience.

前記外胴22において上側の管板23よりも上方の空間24に望む位置には排ガス(CO2を含む対象ガス)の導入管24aが接続されており、従来技術で説明した水素PSAのプロセスで副生される水素と二酸化炭素(CO2)との混合ガスがこの導入管24aを通じて導入されるようになっている。一方、外胴22において下側の管板23よりも下方の空間26に望む位置には導出管26aが接続されており、処理後の排ガス、すなわち後述するようにガス状の水素(H2)と液化したCO2との混合気体がこの導出管26aを通じて外部に導出されるようになっている。 An exhaust pipe 24a for exhaust gas (a target gas containing CO 2 ) is connected to a position desired in the space 24 above the upper tube plate 23 in the outer cylinder 22, which is a hydrogen PSA process described in the prior art. A mixed gas of hydrogen and carbon dioxide (CO 2 ) produced as a by-product is introduced through the introduction pipe 24a. On the other hand, a lead-out pipe 26a is connected to a position desired in the space 26 below the lower tube plate 23 in the outer cylinder 22, and exhaust gas after processing, that is, gaseous hydrogen (H 2 ) as will be described later. A gas mixture of CO 2 and liquefied CO 2 is led out to the outside through the lead-out pipe 26a.

前記外胴22内は、その上下中間部分に設けられる仕切板34によって上側の第1室36と下側の第2室38とに仕切られている。   The inside of the outer body 22 is partitioned into an upper first chamber 36 and a lower second chamber 38 by a partition plate 34 provided at an upper and lower intermediate portion thereof.

前記第1室において前記内伝熱管28には、上下方向に延び、かつ内伝熱管28の軸長よりも短い外伝熱管30が被せられており、この外伝熱管30が、同図に示すように上側の管板23との間に隙間が保たれ、かつその内部が前記第2室38と連通する状態で前記仕切板34に固定されている。これにより内伝熱管28の外面と外伝熱管30との間に、上側が外伝熱管30の上端部を境に第1室36と連通し、かつ下側が第2室38に連通する本発明のガス通路であるNG通路32が形成されている。   In the first chamber, the internal heat transfer tube 28 is covered with an external heat transfer tube 30 that extends in the vertical direction and is shorter than the axial length of the internal heat transfer tube 28, as shown in FIG. A gap is maintained between the upper tube plate 23 and the interior thereof is fixed to the partition plate 34 in a state of communicating with the second chamber 38. Thereby, between the outer surface of the inner heat transfer tube 28 and the outer heat transfer tube 30, the upper side communicates with the first chamber 36 with the upper end of the outer heat transfer tube 30 as a boundary, and the lower side communicates with the second chamber 38. An NG passage 32 that is a passage is formed.

外胴22において、さらに仕切板34の近傍には第1室36に連通する導入管40が設けられており、低温液化ガスであるLNGがこの導入管40を通じて外胴22内に導入されるようになっている。また、外胴22において下側の管板23の近くには第2室38に連通する導出管42が設けられており、後述するように前記排ガスとの熱交換によりガス状化したLNG(すなわちNG)がこの導出管42を通じて導出されるようになっている。   In the outer cylinder 22, an introduction pipe 40 communicating with the first chamber 36 is further provided in the vicinity of the partition plate 34, and LNG that is a low-temperature liquefied gas is introduced into the outer cylinder 22 through the introduction pipe 40. It has become. In addition, a lead-out pipe 42 communicating with the second chamber 38 is provided near the lower tube plate 23 in the outer body 22, and as described later, LNG gasified by heat exchange with the exhaust gas (ie, LNG (ie, NG) is led out through the lead-out pipe 42.

なお、前記内伝熱管28において前記導入管40に対応する部分には、同図に示すようにその径がその他の部分よりも若干大きく形成された大径部28aが設けられており、また外伝熱管30にも、この大径部28aに対応してその他の部分よりも径が大きく形成された大径部30aが設けられている。   In the inner heat transfer tube 28, a portion corresponding to the introduction tube 40 is provided with a large-diameter portion 28a having a diameter slightly larger than other portions as shown in FIG. The heat pipe 30 is also provided with a large diameter portion 30a corresponding to the large diameter portion 28a and having a larger diameter than other portions.

このCO2液化分離装置20において、外胴22の上部からは前記導入管24aを通じて排ガスが導入され、この排ガスが空間24から内伝熱管28に導入されて内伝熱管28内を下降する。一方、外胴22の中間部分からは前記導入管40を通じてLNGが第1室36に導入され、このLNGが第1室36内を上昇しながら内伝熱管28内の排ガスとNG通路32を介して熱交換して気化され、NG(ガス状体)となる。この熱交換により内伝熱管28内を下降する排ガスは冷却され、排ガス中のCO2が液化し、CO2(液体)/H2(気体)混合気流となって前記導出管26aを通じて導出されることとある。 In the CO 2 liquefaction separation apparatus 20, exhaust gas is introduced from the upper part of the outer cylinder 22 through the introduction pipe 24 a, and the exhaust gas is introduced from the space 24 into the internal heat transfer pipe 28 and descends in the internal heat transfer pipe 28. On the other hand, LNG is introduced into the first chamber 36 from the intermediate portion of the outer cylinder 22 through the introduction pipe 40, and the LNG rises in the first chamber 36 while passing through the exhaust gas in the internal heat transfer pipe 28 and the NG passage 32. It is vaporized by heat exchange and becomes NG (gaseous body). Due to this heat exchange, the exhaust gas descending in the internal heat transfer tube 28 is cooled, and CO 2 in the exhaust gas is liquefied to be led out as a CO 2 (liquid) / H 2 (gas) mixed gas stream through the outlet pipe 26a. There is something.

一方、第1室36の上端に達したNGは、外伝熱管30の上端部で折り返して内伝熱管28と外伝熱管30との間のNG通路32に導入される。そして、このNG通路32を下降し、この下降中に第1室36内のLNG/NG混合気流と熱交換して一旦冷却されるが第2室38に入ってここで再び昇温し、最終的にNGとして導出管42を通じて導出されることとなる。   On the other hand, NG that has reached the upper end of the first chamber 36 is folded back at the upper end of the outer heat transfer tube 30 and introduced into the NG passage 32 between the inner heat transfer tube 28 and the outer heat transfer tube 30. Then, the NG passage 32 is lowered, and during this lowering, heat is exchanged with the LNG / NG mixed air flow in the first chamber 36 to be temporarily cooled, but then enters the second chamber 38 where the temperature is raised again, and finally Therefore, it is derived through the outlet tube 42 as NG.

図2は上記CO2液化分離装置20内のLNG(NG)および排ガスの温度分布を示したものである。この図に示すように、LNGは、例えば−150°Cで前記導入管40を通じて第1室36に導入され、同室36内を上昇する間に排ガスとの熱交換により−75°CのNGとなる。そして内側のNG通路32内に入り、ここを下降する間にLNGの導入位置(導入管40に対応する部分)近傍で−90°Cまで冷却された後、第2室38に入ることにより再び−62°Cまで昇温して導出管42から導出されることとなる。一方、排ガスは、40°Cで内伝熱管28に導入されてLNG(NG)との熱交換により冷却されて、最終的に−52°CのCO2(液体)/H2(気体)の混合気として導出されることとなる。 FIG. 2 shows the temperature distribution of LNG (NG) and exhaust gas in the CO 2 liquefaction separation apparatus 20. As shown in this figure, LNG is introduced into the first chamber 36 through the introduction pipe 40 at −150 ° C., for example, and is exchanged with NG at −75 ° C. by heat exchange with the exhaust gas while rising in the chamber 36. Become. Then, after entering the NG passage 32 on the inner side and cooling down to −90 ° C. near the LNG introduction position (portion corresponding to the introduction pipe 40) while descending, it enters the second chamber 38 again. The temperature is raised to −62 ° C. and led out from the outlet pipe 42. On the other hand, the exhaust gas is introduced into the internal heat transfer tube 28 at 40 ° C. and is cooled by heat exchange with LNG (NG), and finally the CO 2 (liquid) / H 2 (gas) of −52 ° C. It will be derived as a mixture.

以上のようなCO2液化分離装置20によると、上述のようにCO2を含む排ガスはNG通路32を通るガス状体、つまりLNGよりも温度の高いNGを介してLNGと熱交換して冷却されることとなる。そのため、LNGと排ガスとを直接冷却する場合のように排ガスが過冷却されることがなく、排ガスは二酸化炭素の液化温度以下であって凝固温度以上の温度まで適切に冷却され、その結果、排ガス中のCO2がドライアイス化して内伝熱管28内に堆積するといった現象が効果的に抑制される。従って、LNGの冷熱を有効に利用して排ガス中のCO2を液化分離する一方で、CO2のドライアイス化に伴う閉塞トラブルの発生を効果的に防止することができる。 According to the above-described CO 2 liquefaction separation apparatus 20, as described above, the exhaust gas containing CO 2 is cooled by exchanging heat with LNG via a gaseous body passing through the NG passage 32, that is, NG having a temperature higher than that of LNG. Will be. Therefore, the exhaust gas is not supercooled as in the case of directly cooling the LNG and the exhaust gas, and the exhaust gas is appropriately cooled to a temperature below the liquefaction temperature of carbon dioxide and above the solidification temperature. The phenomenon that CO 2 in the inside becomes dry ice and accumulates in the internal heat transfer tube 28 is effectively suppressed. Therefore, it is possible to effectively prevent the occurrence of a clogging trouble associated with the conversion of CO 2 to dry ice while effectively liquefying and separating CO 2 in the exhaust gas by effectively using the cold heat of LNG.

特に、上記のCO2液化分離装置20では、内伝熱管28のうちLNGの導入位置(導入管40)に対応する部分に大径部28aを設けていることにより、より確実に閉塞トラブルを回避できるという効果もある。すなわち、NG通路32を下降するNGは、第1室36に導入された直後のLNGと熱交換することにより上記のように導入管40の近傍で一旦温度が大幅に下がる。そのため、内伝熱管28もその影響を受けてその部分では壁面温度が局所的に低くなり僅かではあるが排ガス中のCO2がドライアイス化して堆積する。しかしながら、上記のように内伝熱管28のうちLNGの導入位置(導入管40)に対応する部分に大径部28aが設けられている結果、ドライアイスが多少堆積しても内伝熱管28内の流路が確実に確保され、これにより閉塞トラブルの発生が防止されることとなる。 In particular, in the CO 2 liquefaction separation device 20 described above, the large-diameter portion 28a is provided in the portion corresponding to the LNG introduction position (introduction tube 40) in the internal heat transfer tube 28, thereby more reliably avoiding the clogging trouble. There is also an effect that can be done. In other words, the temperature of the NG descending the NG passage 32 is greatly lowered once in the vicinity of the introduction pipe 40 by exchanging heat with the LNG immediately after being introduced into the first chamber 36 as described above. For this reason, the inner heat transfer tube 28 is also affected by this, and the wall surface temperature is locally lowered in that portion, and CO 2 in the exhaust gas becomes dry ice and deposits slightly. However, as described above, the large-diameter portion 28a is provided in the portion corresponding to the LNG introduction position (introduction tube 40) in the internal heat transfer tube 28. As a result, even if some dry ice accumulates, the internal heat transfer tube 28 Thus, the flow path is surely secured, thereby preventing the occurrence of a blockage trouble.

なお、LNGの導入管40近傍での内伝熱管28の閉塞トラブルを防止する構成としては、上記のように内伝熱管28を部分的に大径にする代わりに、内伝熱管28全体の径を一律に大きく設定することも考えられる。すなわち、伝熱面積を拡大してドライアイスの堆積を抑制するとともに仮に堆積しても流路が充分に確保されるように構成することが考えられる。しかし、内伝熱管28全体の径を一律に大きくすると、その分だけ排ガスの流速が低下して液化熱伝達率が低下し、伝熱面積を拡大したことによる効果が相殺されることとなる。つまり、内伝熱管28を全体に大きくした分だけコスト高になる一方で性能的には実施形態のものと殆ど相違ないものとなる。従って、上記実施形態の構成のように内伝熱管28を部分的に大径にする構成によると、安価な構成で閉塞トラブルを良好に防止することができるという利点がある。   In addition, as a structure which prevents the blockage trouble of the internal heat transfer pipe 28 in the vicinity of the LNG introduction pipe 40, instead of partially increasing the diameter of the internal heat transfer pipe 28 as described above, the diameter of the entire internal heat transfer pipe 28 is used. It is also conceivable to set a large value uniformly. That is, it can be considered that the heat transfer area is enlarged to suppress the accumulation of dry ice and the flow path is sufficiently secured even if it is temporarily accumulated. However, if the diameter of the entire inner heat transfer tube 28 is uniformly increased, the flow rate of the exhaust gas is reduced by that amount, the liquefied heat transfer coefficient is lowered, and the effect of expanding the heat transfer area is offset. That is, the cost is increased by increasing the size of the internal heat transfer tube 28 as a whole, but the performance is almost the same as that of the embodiment. Therefore, according to the configuration in which the inner heat transfer tube 28 is partially made large in diameter as in the configuration of the above embodiment, there is an advantage that it is possible to satisfactorily prevent a clogging trouble with an inexpensive configuration.

なお、上述したCO2液化分離装置20は、本発明に係る二酸化炭素の液化分離装置の一つの実施形態であってその具体的な構成は、本発明の要旨を逸脱しない範囲で適宜変更可能である。また、この実施形態では、排ガス(CO2を含む対象ガス)を冷却する冷媒としての低温液化ガスとしてLNGを使用しているが、低温液化ガスはLNGに限られるものではなく、可能な場合には液体窒素や液体酸素を提供するようにしてもよい。 The above-described CO 2 liquefaction separation apparatus 20 is an embodiment of the carbon dioxide liquefaction separation apparatus according to the present invention, and its specific configuration can be appropriately changed without departing from the gist of the present invention. is there. In this embodiment, LNG is used as the low-temperature liquefied gas as the refrigerant for cooling the exhaust gas (target gas containing CO 2 ). However, the low-temperature liquefied gas is not limited to LNG, and it is possible. May provide liquid nitrogen or liquid oxygen.

本発明に係る二酸化炭素液化分離装置の構成を示す断面模式図である。It is a cross-sectional schematic diagram which shows the structure of the carbon dioxide liquefaction separation apparatus which concerns on this invention. 図1に示す二酸化炭素液化分離装置内のLNG(液化天然ガス)、NG(天然ガス)および排ガスの温度分布を説明する図である。It is a figure explaining the temperature distribution of LNG (liquefied natural gas), NG (natural gas), and waste gas in the carbon dioxide liquefaction separation apparatus shown in FIG. 水素ガス精製システムを示す系統図である。It is a systematic diagram showing a hydrogen gas purification system.

符号の説明Explanation of symbols

20 二酸化炭素液化分離装置
28 内伝熱管
28a 大径部
30 外伝熱管
30a 外伝熱管
32 NG通路(ガス通路)
34 仕切板
36 第1室
38 第2室
40 導入管
42 導出管
20 Carbon Dioxide Liquefaction Separator 28 Inner Heat Transfer Tube 28a Large Diameter Part 30 Outer Heat Transfer Tube 30a Outer Heat Transfer Tube 32 NG Passage (Gas Passage)
34 Partition plate 36 1st chamber 38 2nd chamber 40 Inlet pipe 42 Outlet tube

Claims (1)

外側容器と、この外側容器内に設けられて両端部が外側容器に固定され、内部に二酸化炭素を含む対象ガスが流される内伝熱管と、この内伝熱管の径方向外側に設けられ、かつ内伝熱管よりも短い軸長を有し、該内伝熱管の外面との間にガス通路を形成する外伝熱管と、前記外伝熱管の端部であって前記対象ガスの流れ方向上流側の端部に前記外側容器の外部から低温液化ガスを導入する導入部と、低温液化ガスから生成されるガス状体を前記外側容器の端部であって前記対象ガスの流れ方向下流側の端部において外側容器から導出する導出部と、前記ガス通路を含み前記導入部から導入される低温液化ガスを前記導出部に案内する流路とを備え、この流路は、外側容器内に導入される低温液化ガスが外伝熱管の外面に沿って内伝熱管内の対象ガスとは反対方向に流通し、この流通中に前記ガス通路を隔てて前記内伝熱管内の対象ガスと熱交換することにより気化した後、前記外伝熱管の端部であって前記対象ガスの流れ方向上流側の端部から前記ガス通路に入って前記対象ガスと同方向に流通し、このガス通路から出て前記導出部に案内されるように構成されており、前記内伝熱管および外伝熱管のうち前記導入部に対応する部分の径はそれ以外の部分よりも大きく形成されていることを特徴とする二酸化炭素の液化分離装置
An outer container, an inner heat transfer pipe that is provided in the outer container, both ends are fixed to the outer container, and a target gas containing carbon dioxide is flown therein, and is provided on the radially outer side of the inner heat transfer pipe; and An outer heat transfer tube having a shorter axial length than the inner heat transfer tube and forming a gas passage with the outer surface of the inner heat transfer tube; and an end of the outer heat transfer tube on the upstream side in the flow direction of the target gas An introduction part for introducing a low-temperature liquefied gas into the part from the outside of the outer container, and a gaseous body generated from the low-temperature liquefied gas at the end part of the outer container at the downstream side in the flow direction of the target gas A lead-out portion led out from the outer container; and a flow path for guiding the low-temperature liquefied gas introduced from the introduction section including the gas passage to the lead-out section, the flow path being a low temperature introduced into the outer container The liquefied gas flows along the outer surface of the outer heat transfer tube in the inner heat transfer tube. The gas flows in a direction opposite to that of the gas, and is vaporized by exchanging heat with the target gas in the inner heat transfer tube through the gas passage during the flow, and then at the end of the outer heat transfer tube and the target gas. It is configured to enter the gas passage from the upstream end in the flow direction and flow in the same direction as the target gas, and to exit from the gas passage and be guided to the outlet portion. A carbon dioxide liquefaction / separation apparatus, wherein a diameter of a portion corresponding to the introduction portion of the heat pipe is formed larger than that of the other portions .
JP2003411687A 2003-12-10 2003-12-10 Carbon dioxide liquefaction separator Expired - Fee Related JP4313662B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003411687A JP4313662B2 (en) 2003-12-10 2003-12-10 Carbon dioxide liquefaction separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003411687A JP4313662B2 (en) 2003-12-10 2003-12-10 Carbon dioxide liquefaction separator

Publications (2)

Publication Number Publication Date
JP2005170722A JP2005170722A (en) 2005-06-30
JP4313662B2 true JP4313662B2 (en) 2009-08-12

Family

ID=34732357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003411687A Expired - Fee Related JP4313662B2 (en) 2003-12-10 2003-12-10 Carbon dioxide liquefaction separator

Country Status (1)

Country Link
JP (1) JP4313662B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103604277A (en) * 2013-10-25 2014-02-26 兰州裕隆气体有限责任公司 Carbon dioxide pre-cooling liquidation and purification integrated device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5274312B2 (en) * 2009-03-10 2013-08-28 中国電力株式会社 Gas separation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103604277A (en) * 2013-10-25 2014-02-26 兰州裕隆气体有限责任公司 Carbon dioxide pre-cooling liquidation and purification integrated device
CN103604277B (en) * 2013-10-25 2016-01-20 兰州裕隆气体有限责任公司 Carbon dioxide precooling liquefaction purification integration apparatus

Also Published As

Publication number Publication date
JP2005170722A (en) 2005-06-30

Similar Documents

Publication Publication Date Title
EP0144430B1 (en) Apparatus for producing high-purity nitrogen gas
AU2005249880B2 (en) Method and apparatus for cooling in hydrogen plants
JPH0313505B2 (en)
KR900005985B1 (en) High- purity nitrogen gas production equipment
US20070199344A1 (en) Compact cryogenic plant
EP0175791B1 (en) Apparatus for producing high-purity nitrogen gas
CN104548639A (en) Purification of carbon dioxide
EP2310111B1 (en) Purification of a gas stream for removing hydrides or silane by absorption into liquid propane
US10317135B2 (en) Separation at sub-ambient temperature of a gaseous mixture containing carbon dioxide and a lighter contaminant
US5778698A (en) Ultra high purity nitrogen and oxygen generator unit
US9625209B2 (en) Method for cryogenically separating a mixture of nitrogen and carbon monoxide
BR112021015733A2 (en) PLANT AND PROCESS FOR AIR GAS SEPARATION WITH THE USE OF A PARALLELIPEDAL ADSORBOR
JP4313662B2 (en) Carbon dioxide liquefaction separator
TWI417495B (en) Method of generating nitrogen and device used therefor
JP4490033B2 (en) Low temperature separation method and apparatus for air
JP7339929B2 (en) Air separation unit, method for producing oxygen and/or nitrogen
JP2009299930A (en) Air separating method and device used for the same
WO2020100463A1 (en) Hydrogen production apparatus
US20200318895A1 (en) Device and System for Condensing Gas
TWI723105B (en) Process and device for the cryogenic separation of synthesis gas
JP2006275462A (en) Device for producing nitrogen gas
CN110044133A (en) The apparatus and method for of separating-purifying carbon monoxide
US9950274B2 (en) Method and apparatus for cooling a flow containing at least 35% carbon dioxide and mercury
JP2004286348A (en) Carbon dioxide removing method and its device
US20240123388A1 (en) Gas apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090515

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4313662

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140522

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees