JP2006275462A - Device for producing nitrogen gas - Google Patents

Device for producing nitrogen gas Download PDF

Info

Publication number
JP2006275462A
JP2006275462A JP2005098050A JP2005098050A JP2006275462A JP 2006275462 A JP2006275462 A JP 2006275462A JP 2005098050 A JP2005098050 A JP 2005098050A JP 2005098050 A JP2005098050 A JP 2005098050A JP 2006275462 A JP2006275462 A JP 2006275462A
Authority
JP
Japan
Prior art keywords
cold box
heat insulation
nitrogen gas
vacuum
insulation cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005098050A
Other languages
Japanese (ja)
Inventor
Hideyuki Honda
秀幸 本田
Osamu Asano
道 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2005098050A priority Critical patent/JP2006275462A/en
Publication of JP2006275462A publication Critical patent/JP2006275462A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/044Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a single pressure main column system only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04424Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system without thermally coupled high and low pressure columns, i.e. a so-called split columns
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04872Vertical layout of cold equipments within in the cold box, e.g. columns, heat exchangers etc.
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04872Vertical layout of cold equipments within in the cold box, e.g. columns, heat exchangers etc.
    • F25J3/04878Side by side arrangement of multiple vessels in a main column system, wherein the vessels are normally mounted one upon the other or forming different sections of the same column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/0489Modularity and arrangement of parts of the air fractionation unit, in particular of the cold box, e.g. pre-fabrication, assembling and erection, dimensions, horizontal layout "plot"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04945Details of internal structure; insulation and housing of the cold box
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/20Processes or apparatus using separation by rectification in an elevated pressure multiple column system wherein the lowest pressure column is at a pressure well above the minimum pressure needed to overcome pressure drop to reject the products to atmosphere

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device for producing nitrogen gas, that is small enough to transport without causing inconveniences during transportation and easy to construct at an installation site. <P>SOLUTION: The device for producing nitrogen gas 1 to be used for a deep cold air separation method comprises a first vacuum insulating cold box 2 storing a main heat exchanger 10, a second vacuum insulating cold box 3 storing a first rectifier 11, and a normal pressure insulating cold box 4 storing an expansion turbine 33. The normal pressure insulating cold box 4 is arranged under the first vacuum insulating cold box 2, and the main heat exchanger 10 and the first rectifier 11 are connected to each other via pipes 40, 44, 50 passing through the normal pressure insulating cold box 4. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、窒素ガス製造装置に関するものであり、特に、運搬・輸送が簡便な窒素ガス製造装置に関するものである。   The present invention relates to a nitrogen gas production apparatus, and more particularly to a nitrogen gas production apparatus that is easy to transport and transport.

近年、窒素ガスの消費量の増大に伴って、窒素ガス製造装置も大型化する傾向にある。例えば、図7は、精留塔を1基備えた従来の窒素ガス製造装置の概略構成図である。この窒素ガス製造装置1は、真空断熱コールドボックス5内に、第1精留塔11と、第1凝縮器20と、主熱交換器10を収容し、膨張タービン33を、常圧断熱コールドボックス4の内部に配置した構成となっている。   In recent years, as the consumption of nitrogen gas increases, the nitrogen gas production apparatus tends to increase in size. For example, FIG. 7 is a schematic configuration diagram of a conventional nitrogen gas production apparatus provided with one rectification column. This nitrogen gas production apparatus 1 contains a first rectifying column 11, a first condenser 20, and a main heat exchanger 10 in a vacuum heat insulation cold box 5, and an expansion turbine 33 is connected to an atmospheric pressure heat insulation cold box. 4 is arranged inside.

さらに窒素ガスの製造量を増大させる場合には、図8に示したような精留塔を2基備えた窒素ガス製造装置が提案されている(例えば、特許文献1参照)。   In order to further increase the production amount of nitrogen gas, a nitrogen gas production apparatus provided with two rectification towers as shown in FIG. 8 has been proposed (for example, see Patent Document 1).

図8に示した窒素ガス製造装置1は、真空断熱コールドボックス5内に、第1精留塔11と、第1凝縮器20と、第2精留塔12と、第2凝縮器21と、主熱交換器10を収容し、真空断熱コールドボックス5の下方に、膨張タービン33を収容した常圧断熱コールドボックス4を配置した構成となっている。
特開2003−329364号公報
The nitrogen gas production apparatus 1 shown in FIG. 8 includes a first rectifying column 11, a first condenser 20, a second rectifying column 12, a second condenser 21, and a vacuum heat insulating cold box 5. The main heat exchanger 10 is accommodated, and the normal pressure insulated cold box 4 containing the expansion turbine 33 is disposed below the vacuum insulated cold box 5.
JP 2003-329364 A

しかしながら、図8に示すように窒素ガス製造装置の大型化に伴って、個々の機器全部を真空断熱コールドボックス内に収容して窒素ガス製造装置全体を大きくすると、輸送が困難になるという問題があった。例えば、輸送時に道幅の広い道路しか通行できない等の問題や、場合によっては、大きすぎて車両で運搬できないという問題があった。   However, as shown in FIG. 8, with the increase in the size of the nitrogen gas production apparatus, if all the individual devices are accommodated in a vacuum insulation cold box and the entire nitrogen gas production apparatus is enlarged, there is a problem that transportation becomes difficult. there were. For example, there is a problem that only wide roads can pass during transportation, and in some cases, it is too large to be transported by a vehicle.

そこで、個々の機器を複数の真空断熱コールドボックスに収容して別個に輸送する方法が考えられるが、この場合、真空断熱コールドボックス間を連結する配管が必要となり、これを真空断熱配管とすると、設置現場での施工が困難になるという問題がある。   Therefore, a method of accommodating individual devices in a plurality of vacuum insulated cold boxes and transporting them separately can be considered, but in this case, a pipe connecting the vacuum insulated cold boxes is required, and if this is a vacuum insulated pipe, There is a problem that construction at the installation site becomes difficult.

本発明は、上記従来技術の問題点に鑑み、輸送が可能な大きさで輸送時に不都合を生じず、設置現場での施工が容易な窒素ガス製造装置を提供することを目的とする。   The present invention has been made in view of the above-described problems of the prior art, and an object thereof is to provide a nitrogen gas production apparatus that is transportable in size and does not cause inconvenience during transportation and that can be easily installed at an installation site.

かかる課題を解決するため、
請求項1にかかる発明は、深冷空気分離法に用いられる窒素ガス製造装置において、主熱交換器を収容した第1真空断熱コールドボックスと、第1精留塔を収容した第2真空断熱コールドボックスと、膨張タービンを収容した常圧断熱コールドボックスを備えてなり、前記第1真空断熱コールドボックスの下方に、前記常圧断熱コールドボックスを配置し、前記主熱交換器と前記第1精留塔を、前記常圧断熱コールドボックス内を通過する配管で連結したことを特徴とする窒素ガス製造装置である。
To solve this problem,
The invention according to claim 1 is the nitrogen gas production apparatus used for the cryogenic air separation method, wherein the first vacuum heat insulation cold box containing the main heat exchanger and the second vacuum heat insulation cold containing the first rectification tower. And a normal pressure insulated cold box containing an expansion turbine, the normal pressure insulated cold box is disposed below the first vacuum insulated cold box, and the main heat exchanger and the first rectification It is a nitrogen gas production apparatus characterized in that the towers are connected by piping passing through the inside of the atmospheric pressure cold box.

請求項2にかかる発明は、前記第2真空断熱コールドボックスを、前記常圧断熱コールドボックスの側方に配置した請求項1に記載の窒素ガス製造装置である。   The invention according to claim 2 is the nitrogen gas production apparatus according to claim 1, wherein the second vacuum heat insulation cold box is disposed on a side of the atmospheric pressure heat insulation cold box.

請求項3にかかる発明は、深冷空気分離法に用いられる窒素ガス製造装置において、主熱交換器と第2精留塔を収容した第1真空断熱コールドボックスと、第1精留塔を収容した第2真空断熱コールドボックスと、膨張タービンを収容した常圧断熱コールドボックスを備えてなり、前記第1真空断熱コールドボックスの下方に、前記常圧断熱コールドボックスを配置し、前記主熱交換器と前記第1精留塔を、前記常圧断熱コールドボックス内を通過する配管で連結したことを特徴とする窒素ガス製造装置である。   The invention according to claim 3 is the nitrogen gas production apparatus used in the cryogenic air separation method, wherein the first vacuum heat insulation cold box containing the main heat exchanger and the second rectifying tower, and the first rectifying tower are housed. The second vacuum heat insulation cold box and the normal pressure heat insulation cold box containing the expansion turbine, the normal pressure heat insulation cold box is disposed below the first vacuum heat insulation cold box, and the main heat exchanger And a first rectifying column connected by a pipe passing through the atmospheric pressure cold box.

請求項4にかかる発明は、前記第2真空断熱コールドボックスを、前記常圧断熱コールドボックスの側方に配置した請求項3に記載の窒素ガス製造装置である。   The invention according to claim 4 is the nitrogen gas production apparatus according to claim 3, wherein the second vacuum heat insulation cold box is disposed on a side of the atmospheric pressure heat insulation cold box.

本発明の窒素ガス製造装置によれば、2つの真空断熱コールドボックスと常圧断熱コールドボックスを用意して、主熱交換器と第1精留塔とを別個の真空断熱コールドボックスに収容し、膨張タービンを常圧断熱コールドボックスに収容したことにより、各々が輸送可能な大きさとなり、輸送時に不都合を生じるのを防止することができる。   According to the nitrogen gas production apparatus of the present invention, two vacuum heat insulation cold boxes and an atmospheric pressure heat insulation cold box are prepared, and the main heat exchanger and the first rectification tower are accommodated in separate vacuum heat insulation cold boxes, By accommodating the expansion turbine in the atmospheric pressure heat insulation cold box, each becomes a size that can be transported, and it is possible to prevent inconvenience during transportation.

また、本発明の窒素ガス製造装置によれば、真空断熱コールドボックスの下方に、常圧断熱コールドボックスを配置し、主熱交換器と第1精留塔を、常圧断熱コールドボックス内を通過する配管で連結したことにより、真空断熱配管を使用する必要がないため、設置現場での施工を容易とすることができる。   Moreover, according to the nitrogen gas production apparatus of the present invention, an atmospheric pressure cold box is disposed below the vacuum heat insulation cold box, and passes through the main heat exchanger and the first rectification tower through the atmospheric pressure cold box. Since it is not necessary to use vacuum heat insulation piping by connecting with piping to perform, construction at the installation site can be facilitated.

以下、本発明の実施の形態に係る窒素ガス製造装置の例を図面に示し、詳細に説明する。   Hereinafter, an example of a nitrogen gas production apparatus according to an embodiment of the present invention will be described in detail with reference to the drawings.

[第1の実施形態]
図1は、本実施形態に係る窒素ガス製造装置1の概略構成図である。また、図2は、本実施形態に係る窒素ガス製造装置1の概略系統図である。
[First Embodiment]
FIG. 1 is a schematic configuration diagram of a nitrogen gas production apparatus 1 according to the present embodiment. FIG. 2 is a schematic system diagram of the nitrogen gas production apparatus 1 according to this embodiment.

この窒素ガス製造装置1は、主熱交換器10を収容した第1真空断熱コールドボックス2と、第1精留塔11と第1凝縮器20を収容した第2真空断熱コールドボックス3と、膨張タービン33を収容した常圧断熱コールドボックス4とから概略構成されている。   The nitrogen gas production apparatus 1 includes a first vacuum heat insulation cold box 2 containing a main heat exchanger 10, a second vacuum heat insulation cold box 3 containing a first rectification column 11 and a first condenser 20, and expansion. A normal pressure adiabatic cold box 4 in which the turbine 33 is accommodated is schematically configured.

常圧断熱コールドボックス4は、第1真空断熱コールドボックス2の下方に配置されている。そして、第1真空断熱コールドボックス2内の主熱交換器10と、第2真空断熱コールドボックス3内の第1精留塔11とを連結する配管40,44,50等は、真空断熱コールドボックス2,3間を直接連結しておらず、一旦常圧断熱コールドボックス4内を通過してから真空断熱コールドボックス内に入るようになっている。   The normal pressure heat insulation cold box 4 is disposed below the first vacuum heat insulation cold box 2. And piping 40,44,50 etc. which connect the main heat exchanger 10 in the 1st vacuum heat insulation cold box 2 and the 1st fractionator 11 in the 2nd vacuum heat insulation cold box 3 are vacuum heat insulation cold boxes. They are not directly connected to each other, but once pass through the normal pressure heat insulation cold box 4 and then enter the vacuum heat insulation cold box.

第1真空断熱コールドボックス2および第2真空断熱コールドボックス3は、円筒状の容器で、内蔵機器・配管とコールドボックス外槽との間は、減圧されて真空となっている。また、真空部には、パーライト等の断熱材が充填されていても良い。第1真空断熱コールドボックス2および第2真空断熱コールドボックス3として、公知の真空断熱コールドボックスを用いることができる。   The first vacuum heat insulation cold box 2 and the second vacuum heat insulation cold box 3 are cylindrical containers, and the internal device / piping and the cold box outer tank are evacuated and evacuated. The vacuum part may be filled with a heat insulating material such as pearlite. As the first vacuum heat insulation cold box 2 and the second vacuum heat insulation cold box 3, known vacuum heat insulation cold boxes can be used.

第1真空断熱コールドボックス2の大きさは、直径2〜3.5m、高さ8〜15mであり、その内部には主熱交換器10が収容されている。また、第2真空断熱コールドボックス3の大きさは、直径2〜3.5m、高さ8〜15mであり、第1精留塔11と、第1凝縮器20と、これらを連結する配管41,42,43等が収容されている。真空断熱コールドボックス2,3を、上記のような大きさとすることにより、トラック等の車両で輸送することができる。   The first vacuum heat insulation cold box 2 has a diameter of 2 to 3.5 m and a height of 8 to 15 m, and the main heat exchanger 10 is accommodated therein. The size of the second vacuum heat insulation cold box 3 is 2 to 3.5 m in diameter and 8 to 15 m in height. The first rectifying column 11, the first condenser 20, and a pipe 41 connecting them. , 42, 43, etc. are accommodated. By making the vacuum heat insulation cold boxes 2 and 3 as described above, they can be transported by vehicles such as trucks.

また、常圧断熱コールドボックス4は、直方体形状の容器からなり、内蔵された配管・弁・その他部品との隙間は常圧となっていて、パーライト等の断熱材が充填されている。   Moreover, the normal pressure heat insulation cold box 4 consists of a rectangular parallelepiped container, and the space | gap with built-in piping, a valve, and other components is normal pressure, and is filled with heat insulating materials, such as pearlite.

常圧断熱コールドボックス4の大きさは、幅5〜10m、奥行2.5〜3.5m、高さ1〜2.5mであり、その内部には膨張タービン33と、減圧弁31、弁32等が収容されていると共に、第1真空断熱コールドボックス2内の機器と第2真空断熱コールドボックス3内の機器とを連結する配管40,44,47,48,49,50が通過している。常圧断熱コールドボックス4を、上記のような大きさとすることにより、トラック等の車両で輸送することができる。   The normal pressure insulated cold box 4 has a width of 5 to 10 m, a depth of 2.5 to 3.5 m, and a height of 1 to 2.5 m. Inside the expansion turbine 33, a pressure reducing valve 31, and a valve 32. Etc. are accommodated, and pipes 40, 44, 47, 48, 49, 50 for connecting the devices in the first vacuum heat insulation cold box 2 and the devices in the second vacuum heat insulation cold box 3 pass therethrough. . By making the normal pressure heat insulation cold box 4 as described above, it can be transported by a vehicle such as a truck.

本実施形態の窒素ガス製造装置1では、原料空気供給口、製品窒素採取口、排ガス排出口などコールドボックス外と接続される口を除いて、すべての配管は第1真空断熱コールドボックス2、第2真空断熱コールドボックス3、常圧断熱コールドボックス4のいずれかに収容されていて、コールドボックス外を通過するようには連結されていない。すべての配管をコールドボックス内に収容したことにより、配管からの放熱を防止することができる。   In the nitrogen gas production apparatus 1 of the present embodiment, all the pipes are connected to the first vacuum heat insulation cold box 2, the first air intake port, the product nitrogen collection port, the exhaust gas discharge port and the like connected to the outside of the cold box. 2 It is accommodated in either the vacuum insulation cold box 3 or the normal pressure insulation cold box 4 and is not connected so as to pass outside the cold box. Since all the pipes are accommodated in the cold box, heat radiation from the pipes can be prevented.

また、主熱交換器10を第1真空断熱コールドボックス2に収容し、第1精留塔11を第2真空断熱コールドボックス3に収容して、窒素ガス製造装置1を構成する機器を二分したことにより、各真空断熱コールドボックス2,3の大きさを輸送に適したものとすることができ、輸送時に不都合が生じるのを防止することができる。   Further, the main heat exchanger 10 is accommodated in the first vacuum insulation cold box 2 and the first rectifying column 11 is accommodated in the second vacuum insulation cold box 3 to bisect the equipment constituting the nitrogen gas production apparatus 1. Thus, the size of each vacuum heat insulation cold box 2, 3 can be made suitable for transportation, and inconvenience can be prevented during transportation.

また、膨張タービン33、減圧弁31、弁32等を常圧断熱コールドボックス4に収容したことにより、これらの機器からの放熱を防止することができる。さらに、これらの機器が故障等した際には、真空断熱コールドボックスのように真空を破って開放する必要がないため、簡単にコールドボックスを開放・閉鎖することができ、故障機器の修理・交換等の作業を容易に行うことができる。   Moreover, since the expansion turbine 33, the pressure reducing valve 31, the valve 32, and the like are accommodated in the normal pressure heat insulation cold box 4, heat radiation from these devices can be prevented. Furthermore, when these devices break down, it is not necessary to break and open the vacuum like a vacuum insulated cold box, so the cold box can be opened and closed easily, and repair and replacement of the failed device. Etc. can be easily performed.

また、第1真空断熱コールドボックス2の下方に、常圧断熱コールドボックス4を配置したことにより、設置面積を小さくすることができると共に、第1真空断熱コールドボックス2内の機器と第2真空断熱コールドボックス3内の機器とを連結する配管40,44,47,48,49,50等を、常圧断熱コールドボックス4内を通過するように配置することができる。   In addition, by disposing the normal pressure heat insulation cold box 4 below the first vacuum heat insulation cold box 2, the installation area can be reduced, and the equipment in the first vacuum heat insulation cold box 2 and the second vacuum heat insulation cold box 2 can be reduced. Pipings 40, 44, 47, 48, 49, 50, etc. that connect equipment in the cold box 3 can be arranged so as to pass through the atmospheric pressure insulated cold box 4.

その結果、これらの配管がコールドボックス外を通過することがないため、配管からの放熱を防止することができる。また、これらの配管を真空断熱配管にして、真空断熱コールドボックス2,3間を連結する必要がないため、コストを低下できると共に、設置現場での真空断熱施工が不要となり、施工を容易とすることができる。   As a result, since these pipes do not pass outside the cold box, heat radiation from the pipes can be prevented. Moreover, since it is not necessary to connect these pipes to vacuum heat insulation pipes and connect the vacuum heat insulation cold boxes 2 and 3, the cost can be reduced and the vacuum heat insulation work at the installation site is not required and the work is facilitated. be able to.

次に、図2に示した本実施形態に係る窒素ガス製造装置1におけるガスの流れを説明し、この装置を用いた窒素ガス製造方法について、説明する。   Next, the gas flow in the nitrogen gas production apparatus 1 according to this embodiment shown in FIG. 2 will be described, and a nitrogen gas production method using this apparatus will be described.

大気から吸入した原料空気は、原料空気圧縮機(図示略)、原料空気精製器(図示略)等を通過して水分、二酸化炭素等の不純物が除去された後、第1真空断熱コールドボックス2内の主熱交換器10に導入される。   The raw material air sucked from the atmosphere passes through a raw material air compressor (not shown), a raw material air purifier (not shown) and the like, and after impurities such as moisture and carbon dioxide are removed, the first vacuum insulation cold box 2 The main heat exchanger 10 is introduced.

この主熱交換器10とは、圧縮された原料空気を製品ガスと熱交換して、液化点付近まで冷却するものである。主熱交換器10で液化点付近まで冷却された原料空気は、配管40を介して、常圧断熱コールドボックス4を通過してから第2真空断熱コールドボックス3内の第1精留塔11下部に導入される。   The main heat exchanger 10 heats the compressed raw material air with the product gas and cools it to the vicinity of the liquefaction point. The raw material air cooled to the vicinity of the liquefaction point by the main heat exchanger 10 passes through the atmospheric pressure cold box 4 via the pipe 40 and then the lower part of the first rectification column 11 in the second vacuum heat insulation cold box 3. To be introduced.

この第1精留塔11内には、精留段(棚)、規則充填材、または不規則充填材等が設けられていて、原料空気を精留できるようになっている。第1精留塔11に導入された原料空気は、精留により、第1精留塔11内上昇中に下降液である液化窒素と向流接触を行い、それにしたがって低沸点成分の組成が増加し、第1精留塔11の塔頂部における窒素ガスと、第1精留塔11の塔底部における酸素富化流体とに分離される。   In the first rectifying column 11, a rectifying stage (shelf), a regular filler, an irregular filler, or the like is provided so that the raw air can be rectified. The raw air introduced into the first rectifying column 11 is brought into countercurrent contact with liquefied nitrogen, which is a descending liquid, while rising in the first rectifying column 11 by rectification, and the composition of low-boiling components increases accordingly. Then, it is separated into nitrogen gas at the top of the first rectifying column 11 and oxygen-enriched fluid at the bottom of the first rectifying column 11.

第1精留塔11の塔頂部に生成した窒素ガスは、第1精留塔11上部から配管41より導出され、一部は分岐した配管44を通過し、主熱交換器10で熱回収されて常温まで昇温され、製品窒素ガスとして配管45から採取される。この配管44は、第2真空断熱コールドボックス3から常圧断熱コールドボックス4を通過して、第1真空断熱コールドボックス2内の主熱交換器10に連結されている。   The nitrogen gas generated at the top of the first rectifying column 11 is led out from the upper part of the first rectifying column 11 through the pipe 41, and partly passes through the branched pipe 44 and is recovered by the main heat exchanger 10. Then, the temperature is raised to room temperature and collected from the pipe 45 as product nitrogen gas. The pipe 44 passes from the second vacuum heat insulation cold box 3 to the normal pressure heat insulation cold box 4 and is connected to the main heat exchanger 10 in the first vacuum heat insulation cold box 2.

第1精留塔11の塔頂部に生成した窒素ガスの残部は、配管42から第1凝縮器20に導入される。第1凝縮器20では、この窒素ガスと、第1精留塔11塔底部からの酸素富化流体との間で熱交換が行われ、窒素ガスは凝縮して液化窒素となり、酸素富化流体はガス化する。   The remainder of the nitrogen gas generated at the top of the first rectifying column 11 is introduced into the first condenser 20 from the pipe 42. In the first condenser 20, heat exchange is performed between this nitrogen gas and the oxygen-enriched fluid from the bottom of the first rectifying column 11, and the nitrogen gas is condensed into liquefied nitrogen, and the oxygen-enriched fluid Gasifies.

この液化窒素は、配管43を通って、還流液として第1精留塔11上部に導入される。第1精留塔11では、この液化窒素は、下降液として第1精留塔11内を下降し、上昇ガスと向流接触を行い、それにしたがって高沸点成分の組成が増加し、第1精留塔11塔底部に酸素富化流体が生成する。   The liquefied nitrogen is introduced into the upper part of the first rectifying column 11 as a reflux liquid through the pipe 43. In the first rectifying column 11, this liquefied nitrogen descends in the first rectifying column 11 as a descending liquid and makes countercurrent contact with the ascending gas. Accordingly, the composition of the high-boiling components increases accordingly. An oxygen-enriched fluid is generated at the bottom of the distillation column 11.

第1精留塔11塔底部に生成した酸素富化流体は、第1精留塔11塔底部に設けられた配管46から導出され、減圧弁31を経由して、第1凝縮器20に導入される。この減圧弁31は、常圧断熱コールドボックス4に収容されていて、配管46は、第2真空断熱コールドボックス3から常圧断熱コールドボックス4を通過して、再度第2真空断熱コールドボックス3に戻るように連結されている。ただし、減圧弁31を真空対応として、真空断熱コールドボックスに入れる例もある。この場合、配管46は、常圧断熱コールドボックス4を通過することなく、第2真空断熱コールドボックス3内に収容される。   The oxygen-enriched fluid generated at the bottom of the first rectifying column 11 is led out from a pipe 46 provided at the bottom of the first rectifying column 11 and introduced into the first condenser 20 via the pressure reducing valve 31. Is done. The pressure reducing valve 31 is accommodated in the normal pressure heat insulation cold box 4, and the pipe 46 passes through the normal pressure heat insulation cold box 4 from the second vacuum heat insulation cold box 3 and again enters the second vacuum heat insulation cold box 3. Linked back. However, there is an example in which the pressure reducing valve 31 is vacuum-compatible and is placed in a vacuum insulated cold box. In this case, the pipe 46 is accommodated in the second vacuum heat insulation cold box 3 without passing through the normal pressure heat insulation cold box 4.

第1凝縮器20でガス化した酸素富化ガスは、配管47から導出され、第2真空断熱コールドボックス3から常圧断熱コールドボックス4を通過して、配管49から第2真空断熱コールドボックス3内の主熱交換器10を通過した後、膨張タービン33に導入されて、必要な寒冷を発生する。配管49は、配管50と配管48に分岐し、配管50を通過した酸素富化ガスは、再度、主熱交換器10で冷熱を回収した後、配管51から排ガスとして排出される。一方、弁32を通過し、配管48に分岐された酸素富化ガスは、配管49と合流する。   The oxygen-enriched gas gasified by the first condenser 20 is led out from the pipe 47, passes through the atmospheric pressure cold box 4 from the second vacuum heat insulation cold box 3, and passes through the second vacuum heat insulation cold box 3 from the pipe 49. After passing through the main heat exchanger 10, it is introduced into the expansion turbine 33 to generate the necessary cold. The pipe 49 is branched into a pipe 50 and a pipe 48, and the oxygen-enriched gas that has passed through the pipe 50 is discharged again from the pipe 51 as exhaust gas after the cold heat is collected again by the main heat exchanger 10. On the other hand, the oxygen-enriched gas that has passed through the valve 32 and branched into the pipe 48 joins the pipe 49.

[第2の実施形態]
図3は、本実施形態に係る窒素ガス製造装置1の概略構成図である。この窒素ガス製造装置1は、第2真空断熱コールドボックス3を、常圧断熱コールドボックス4の側方に配置した以外は、第1の実施形態と同様であるので、それらの説明は省略する。
[Second Embodiment]
FIG. 3 is a schematic configuration diagram of the nitrogen gas production apparatus 1 according to the present embodiment. The nitrogen gas production apparatus 1 is the same as that of the first embodiment except that the second vacuum heat insulation cold box 3 is disposed on the side of the atmospheric pressure heat insulation cold box 4, and thus the description thereof is omitted.

本実施形態の第1真空断熱コールドボックス2および第2真空断熱コールドボックス3の大きさは、第1の実施形態と同様でよいが、常圧断熱コールドボックス4の大きさは、第2真空断熱コールドボックス3を常圧断熱コールドボックス4の側方に配置する点から、幅1.5〜4m、奥行1.5〜5m、高さ1〜3.5mであるのが好ましい。   The size of the first vacuum insulation cold box 2 and the second vacuum insulation cold box 3 of this embodiment may be the same as that of the first embodiment, but the size of the atmospheric pressure insulation cold box 4 is the second vacuum insulation. From the point of arranging the cold box 3 to the side of the normal pressure heat insulation cold box 4, the width is preferably 1.5 to 4 m, the depth is 1.5 to 5 m, and the height is 1 to 3.5 m.

本実施形態では、第2真空断熱コールドボックス3を、常圧断熱コールドボックス4の側方に配置したことにより、常圧断熱コールドボックス内を通過する配管40,44,50等が、第1の実施形態のように、一旦下方に下がってから上方に上がる配置となっていないため、上記配管内で液体が発生しても、液溜まりができることがなく、主熱交換器10出口での液化を防止する配慮や、溜まった液を抜き出す処置をするなどの配慮を省くことができる。この配管40、44、45は、液体が発生しても第1精留塔11の塔底部に流れやすいように、傾斜がついていることがより好ましい。   In the present embodiment, the second vacuum heat insulation cold box 3 is disposed on the side of the normal pressure heat insulation cold box 4, so that the pipes 40, 44, 50, etc. passing through the normal pressure heat insulation cold box are As in the embodiment, since it is not arranged so that it once falls downward and then rises upward, even if liquid is generated in the pipe, there is no liquid pooling, and liquefaction at the outlet of the main heat exchanger 10 can be achieved. It is possible to dispense with considerations such as prevention and measures such as removing the accumulated liquid. It is more preferable that the pipes 40, 44, 45 are inclined so as to easily flow to the bottom of the first rectifying column 11 even if liquid is generated.

[第3の実施形態]
図4は、本実施形態に係る窒素ガス製造装置1の概略構成図である。また、図5は、本実施形態に係る窒素ガス製造装置1の概略系統図である。
[Third Embodiment]
FIG. 4 is a schematic configuration diagram of the nitrogen gas production apparatus 1 according to the present embodiment. FIG. 5 is a schematic system diagram of the nitrogen gas production apparatus 1 according to this embodiment.

この窒素ガス製造装置1は、第1真空断熱コールドボックス2内に、主熱交換器10と、第2精留塔12と、第2凝縮器21を収容した以外は、第1の実施形態と同様であるので、それらの説明は省略する。   This nitrogen gas production apparatus 1 is the same as that of the first embodiment except that the main heat exchanger 10, the second rectifying column 12, and the second condenser 21 are housed in the first vacuum heat insulation cold box 2. Since they are the same, their description is omitted.

本実施形態の第1真空断熱コールドボックス2および第2真空断熱コールドボックス3の大きさは、第1の実施形態と同様でよい。また、第1真空断熱コールドボックス2内には、主熱交換器10に加えて、第2精留塔12と、第2凝縮器21と、これらを連結する配管53,54等が収容されている。   The magnitude | size of the 1st vacuum heat insulation cold box 2 and the 2nd vacuum heat insulation cold box 3 of this embodiment may be the same as that of 1st Embodiment. In addition to the main heat exchanger 10, the first vacuum heat insulation cold box 2 accommodates the second rectifying column 12, the second condenser 21, and the pipes 53, 54 connecting them. Yes.

また、常圧断熱コールドボックス4の大きさも、第1の実施形態と同様でよく、常圧断熱コールドボックス4内には、膨張タービン33の他に、減圧弁31,34と、弁32等が収容されている。   The size of the normal pressure heat insulation cold box 4 may be the same as that of the first embodiment. In addition to the expansion turbine 33, the pressure reduction valves 31 and 34, the valve 32, and the like are provided in the normal pressure heat insulation cold box 4. Contained.

本実施形態では、配管41,44を通過した窒素ガスは、第1製品窒素ガスとして配管45から採取される。   In the present embodiment, the nitrogen gas that has passed through the pipes 41 and 44 is collected from the pipe 45 as the first product nitrogen gas.

また、第1凝縮器20でガス化した酸素富化ガスは、配管47から導出され、第2真空断熱コールドボックス3から常圧断熱コールドボックス4を通過して、二分され、一方は第1の実施形態と同様に、配管49から第2真空断熱コールドボックス3内の主熱交換器10を通過した後、膨張タービン33に導入されて、必要な寒冷を発生する。その後、配管50を通過し、配管51から排ガスとして排出される。   Further, the oxygen-enriched gas gasified by the first condenser 20 is led out from the pipe 47, passes through the atmospheric pressure cold box 4 from the second vacuum heat insulation cold box 3, and is divided into two parts. Similar to the embodiment, after passing through the main heat exchanger 10 in the second vacuum heat insulation cold box 3 from the pipe 49, it is introduced into the expansion turbine 33 to generate necessary cold. Thereafter, it passes through the pipe 50 and is discharged from the pipe 51 as exhaust gas.

他方は、配管52から第2真空断熱コールドボックス3内の第2精留塔12下部に導入される。第2精留塔12内には、第1精留塔11と同様に精留段(棚)、規則充填材、または不規則充填材等が設けられている。   The other is introduced from the pipe 52 into the lower part of the second rectification column 12 in the second vacuum heat insulation cold box 3. In the second rectifying column 12, as in the first rectifying column 11, a rectifying stage (shelf), a regular filler, an irregular filler, or the like is provided.

第2精留塔12に導入された酸素富化ガスは、精留により、第2精留塔12内上昇中に下降液と向流接触を行い、それにしたがって低沸点成分の組成が増加し、第2精留塔12の塔頂部における窒素ガスと、第2精留塔12の塔底部における酸素富化流体とに分離される。   The oxygen-enriched gas introduced into the second rectification column 12 makes a countercurrent contact with the descending liquid while rising in the second rectification column 12 by rectification, and the composition of the low boiling point component increases accordingly. The gas is separated into nitrogen gas at the top of the second rectifying column 12 and oxygen-enriched fluid at the bottom of the second rectifying column 12.

第2精留塔12の塔頂部に生成した窒素ガスは、第2精留塔12上部から導出され、二つに分岐された一方は、配管55を通って、主熱交換器10で熱回収されて常温まで昇圧され、第2製品窒素ガスとして配管56から採取される。   The nitrogen gas generated at the top of the second rectifying column 12 is led out from the upper part of the second rectifying column 12, and one of the branched two gas passes through the pipe 55 and is recovered by the main heat exchanger 10. Then, the pressure is raised to room temperature, and the second product nitrogen gas is collected from the pipe 56.

第2精留塔12の塔頂部に生成した窒素ガスの残部は、配管53から第2凝縮器21に導入される。第2凝縮器21では、この窒素ガスと、第2精留塔12塔底部に生成した酸素富化流体との間で熱交換が行われ、窒素ガス流体は凝縮して液化窒素となり、酸素富化流体はガス化して酸素富化ガスになる。   The remainder of the nitrogen gas generated at the top of the second rectifying column 12 is introduced into the second condenser 21 through the pipe 53. In the second condenser 21, heat exchange is performed between this nitrogen gas and the oxygen-enriched fluid generated at the bottom of the second rectifying column 12, and the nitrogen gas fluid is condensed to liquefied nitrogen, thereby enriching oxygen. The gasified fluid is gasified to an oxygen-enriched gas.

この液化窒素は、配管54を通って、還流液として第2精留塔12上部に導入される。第2精留塔12では、この還流液は、下降液として第2精留塔12内を下降し、上昇ガスと向流接触を行い、それにしたがって高沸点成分の組成が増加し、第2精留塔12塔底部に酸素富化流体が生成する。   This liquefied nitrogen is introduced into the upper part of the second fractionator 12 as a reflux liquid through the pipe 54. In the second rectifying column 12, this reflux liquid descends in the second rectifying column 12 as a descending liquid and makes countercurrent contact with the ascending gas. Accordingly, the composition of the high boiling point component increases accordingly, An oxygen-enriched fluid is generated at the bottom of the distillation column 12.

第2精留塔12塔底部に生成した酸素富化流体は、第2精留塔12塔底部の配管57から導出され、減圧弁34を経由して、第2凝縮器21に導入される。この減圧弁34は、常圧断熱コールドボックス4に収容されていて、配管57は、第1真空断熱コールドボックス2から常圧断熱コールドボックス4に入り、減圧弁34を通過して、再度第1真空断熱コールドボックス2に戻るように連結されている。ただし、第1の実施形態でも述べたように、減圧弁34を真空対応の弁とした場合、配管57は、常圧断熱コールドボックス4を通過することなく、第2凝縮器21に接続される。   The oxygen-enriched fluid generated at the bottom of the second rectifying column 12 is led out from the pipe 57 at the bottom of the second rectifying column 12 and introduced into the second condenser 21 via the pressure reducing valve 34. The pressure reducing valve 34 is accommodated in the normal pressure heat insulation cold box 4, and the pipe 57 enters the normal pressure heat insulation cold box 4 from the first vacuum heat insulation cold box 2, passes through the pressure reduction valve 34, and again enters the first pressure again. It connects so that it may return to the vacuum insulation cold box 2. FIG. However, as described in the first embodiment, when the pressure reducing valve 34 is a vacuum-compatible valve, the pipe 57 is connected to the second condenser 21 without passing through the atmospheric pressure cold box 4. .

第2凝縮器21でガス化した酸素富化ガスは、配管58から導出され、第1真空断熱コールドボックス2から常圧断熱コールドボックス4で、弁32を通過し、配管50に合流後、第1真空断熱コールドボックス2内の主熱交換器10を通過して、配管51から排ガスとして排出される。   The oxygen-enriched gas gasified by the second condenser 21 is led out from the pipe 58, passes through the valve 32 in the first vacuum adiabatic cold box 2 and the normal pressure adiabatic cold box 4, joins the pipe 50, 1 It passes through the main heat exchanger 10 in the vacuum heat insulation cold box 2 and is discharged from the pipe 51 as exhaust gas.

本実施形態では、精留塔を複数とし、第1真空断熱コールドボックス2内に、主熱交換器10と、第2精留塔12と、第2凝縮器21を収容したことにより、窒素ガス製造装置1をさらに大型化しても輸送可能とし、かつ窒素ガス製造量を増加することができる。   In the present embodiment, a plurality of rectification towers are provided, and the main heat exchanger 10, the second rectification tower 12, and the second condenser 21 are accommodated in the first vacuum heat insulation cold box 2, so that nitrogen gas is contained. Even if the manufacturing apparatus 1 is further increased in size, it can be transported and the amount of nitrogen gas produced can be increased.

本実施形態では、第1凝縮器20でガス化した酸素富化ガスを二分しているが、全量を第2精留塔12下部に導入してもよい。また、本実施形態では、第2凝縮器21でガス化した酸素富化ガスを全量排ガスとしているが、これを二分して、その一方を膨張タービン33に導入してもよい。   In the present embodiment, the oxygen-enriched gas gasified by the first condenser 20 is divided into two, but the entire amount may be introduced into the lower part of the second rectifying column 12. Further, in this embodiment, the oxygen-enriched gas gasified by the second condenser 21 is used as the exhaust gas, but it may be divided into two and one of them may be introduced into the expansion turbine 33.

[第4の実施形態]
図6は、本実施形態に係る窒素ガス製造装置1の概略構成図である。この窒素ガス製造装置1は、第2真空断熱コールドボックス3を、常圧断熱コールドボックス4の側方に配置した以外は、第3の実施形態と同様であるので、それらの説明は省略する。
[Fourth Embodiment]
FIG. 6 is a schematic configuration diagram of the nitrogen gas production apparatus 1 according to the present embodiment. The nitrogen gas production apparatus 1 is the same as that of the third embodiment except that the second vacuum heat insulation cold box 3 is disposed on the side of the atmospheric pressure heat insulation cold box 4, and thus the description thereof is omitted.

本実施形態の第1真空断熱コールドボックス2および第2真空断熱コールドボックス3の大きさは、第1の実施形態と同様でよいが、常圧断熱コールドボックス4の大きさは、第2真空断熱コールドボックス3を常圧断熱コールドボックス4の側方に配置する点から、第2の実施形態と同様であるのが好ましい。   The size of the first vacuum insulation cold box 2 and the second vacuum insulation cold box 3 of this embodiment may be the same as that of the first embodiment, but the size of the atmospheric pressure insulation cold box 4 is the second vacuum insulation. It is preferable that the cold box 3 is arranged on the side of the normal pressure heat insulation cold box 4 in the same manner as the second embodiment.

本実施形態では、第2真空断熱コールドボックス3を、常圧断熱コールドボックス4の側方に配置したことにより、常圧断熱コールドボックス内を通過する配管40,44,50等が、第3の実施形態のように、一旦下方に下がってから上方に上がる配置となっていないため、上記配管内で液体が発生しても、液溜まりができることがなく、主熱交換器10出口での液化を防止する配慮や、溜まった液を抜き出す処置をするなどの配慮を省くことができる。この配管40、44、45は、液体が発生しても第1精留塔11の塔底部に流れやすいように、傾斜がついていることがより好ましい。   In the present embodiment, the second vacuum heat insulation cold box 3 is arranged on the side of the normal pressure heat insulation cold box 4, so that the pipes 40, 44, 50, etc. passing through the normal pressure heat insulation cold box are connected to the third pressure insulation cold box 3. As in the embodiment, since it is not arranged so that it once falls downward and then rises upward, even if liquid is generated in the pipe, there is no liquid pooling, and liquefaction at the outlet of the main heat exchanger 10 can be achieved. It is possible to dispense with considerations such as prevention and measures such as removing the accumulated liquid. It is more preferable that the pipes 40, 44, 45 are inclined so as to easily flow to the bottom of the first rectifying column 11 even if liquid is generated.

第1の実施形態に係る窒素ガス製造装置の概略構成図である。It is a schematic block diagram of the nitrogen gas manufacturing apparatus which concerns on 1st Embodiment. 第1の実施形態に係る窒素ガス製造装置の概略系統図である。1 is a schematic system diagram of a nitrogen gas production apparatus according to a first embodiment. 第2の実施形態に係る窒素ガス製造装置の概略構成図である。It is a schematic block diagram of the nitrogen gas manufacturing apparatus which concerns on 2nd Embodiment. 第3の実施形態に係る窒素ガス製造装置の概略構成図である。It is a schematic block diagram of the nitrogen gas manufacturing apparatus which concerns on 3rd Embodiment. 第3の実施形態に係る窒素ガス製造装置の概略系統図である。It is a schematic systematic diagram of the nitrogen gas manufacturing apparatus which concerns on 3rd Embodiment. 第4の実施形態に係る窒素ガス製造装置の概略構成図である。It is a schematic block diagram of the nitrogen gas manufacturing apparatus which concerns on 4th Embodiment. 精留塔を1基備えた従来の窒素ガス製造装置の概略構成図である。It is a schematic block diagram of the conventional nitrogen gas manufacturing apparatus provided with one rectification tower. 精留塔を2基備えた従来の窒素ガス製造装置の概略構成図である。It is a schematic block diagram of the conventional nitrogen gas manufacturing apparatus provided with two rectification towers.

符号の説明Explanation of symbols

1 窒素ガス製造装置
2 第1真空断熱コールドボックス
3 第2真空断熱コールドボックス
4 常圧断熱コールドボックス
10 主熱交換器
11 第1精留塔
12 第2精留塔
33 膨張タービン
40,44,50 常圧断熱コールドボックス内を通過する配管


DESCRIPTION OF SYMBOLS 1 Nitrogen gas production apparatus 2 1st vacuum heat insulation cold box 3 2nd vacuum heat insulation cold box 4 Atmospheric pressure heat insulation cold box 10 Main heat exchanger 11 1st rectification tower 12 2nd rectification tower 33 Expansion turbines 40, 44, 50 Piping passing through the normal pressure insulated cold box


Claims (4)

深冷空気分離法に用いられる窒素ガス製造装置において、
主熱交換器を収容した第1真空断熱コールドボックスと、
第1精留塔を収容した第2真空断熱コールドボックスと、
膨張タービンを収容した常圧断熱コールドボックスを備えてなり、
前記第1真空断熱コールドボックスの下方に、前記常圧断熱コールドボックスを配置し、
前記主熱交換器と前記第1精留塔を、前記常圧断熱コールドボックス内を通過する配管で連結したことを特徴とする窒素ガス製造装置。
In the nitrogen gas production equipment used for the cryogenic air separation method,
A first vacuum insulated cold box containing the main heat exchanger;
A second vacuum insulated cold box containing the first rectifying column;
It is equipped with an atmospheric pressure cold box containing the expansion turbine,
The atmospheric pressure insulated cold box is disposed below the first vacuum insulated cold box,
An apparatus for producing nitrogen gas, wherein the main heat exchanger and the first rectifying column are connected by a pipe passing through the inside of the atmospheric pressure insulated cold box.
前記第2真空断熱コールドボックスを、前記常圧断熱コールドボックスの側方に配置した請求項1に記載の窒素ガス製造装置。   The nitrogen gas production apparatus according to claim 1, wherein the second vacuum heat insulation cold box is disposed on a side of the atmospheric pressure heat insulation cold box. 深冷空気分離法に用いられる窒素ガス製造装置において、
主熱交換器と第2精留塔を収容した第1真空断熱コールドボックスと、
第1精留塔を収容した第2真空断熱コールドボックスと、
膨張タービンを収容した常圧断熱コールドボックスを備えてなり、
前記第1真空断熱コールドボックスの下方に、前記常圧断熱コールドボックスを配置し、
前記主熱交換器と前記第1精留塔を、前記常圧断熱コールドボックス内を通過する配管で連結したことを特徴とする窒素ガス製造装置。
In the nitrogen gas production equipment used for the cryogenic air separation method,
A first vacuum insulated cold box containing a main heat exchanger and a second rectifying column;
A second vacuum insulated cold box containing the first rectifying column;
It is equipped with an atmospheric pressure cold box containing the expansion turbine,
The atmospheric pressure insulated cold box is disposed below the first vacuum insulated cold box,
An apparatus for producing nitrogen gas, wherein the main heat exchanger and the first rectifying column are connected by a pipe passing through the inside of the atmospheric pressure insulated cold box.
前記第2真空断熱コールドボックスを、前記常圧断熱コールドボックスの側方に配置した請求項3に記載の窒素ガス製造装置。


The nitrogen gas production apparatus according to claim 3, wherein the second vacuum heat insulation cold box is disposed on a side of the atmospheric pressure heat insulation cold box.


JP2005098050A 2005-03-30 2005-03-30 Device for producing nitrogen gas Withdrawn JP2006275462A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005098050A JP2006275462A (en) 2005-03-30 2005-03-30 Device for producing nitrogen gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005098050A JP2006275462A (en) 2005-03-30 2005-03-30 Device for producing nitrogen gas

Publications (1)

Publication Number Publication Date
JP2006275462A true JP2006275462A (en) 2006-10-12

Family

ID=37210405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005098050A Withdrawn JP2006275462A (en) 2005-03-30 2005-03-30 Device for producing nitrogen gas

Country Status (1)

Country Link
JP (1) JP2006275462A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012229870A (en) * 2011-04-27 2012-11-22 Kobe Steel Ltd Argon separation device, and argon separation method
FR3052243A1 (en) * 2016-06-06 2017-12-08 L'air Liquide Sa Pour L'etude Et L'exploitation Des Procedes Georges Claude ASSEMBLY OF MODULAR CONSTRUCTION ELEMENTS OF A MASS AND / OR HEAT EXCHANGE APPARATUS AND EXCHANGE METHOD USING AN ASSEMBLY
CN111981249A (en) * 2019-05-22 2020-11-24 乔治洛德方法研究和开发液化空气有限公司 Thermally insulated enclosure containing equipment intended to operate at temperatures below 0 ℃

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012229870A (en) * 2011-04-27 2012-11-22 Kobe Steel Ltd Argon separation device, and argon separation method
FR3052243A1 (en) * 2016-06-06 2017-12-08 L'air Liquide Sa Pour L'etude Et L'exploitation Des Procedes Georges Claude ASSEMBLY OF MODULAR CONSTRUCTION ELEMENTS OF A MASS AND / OR HEAT EXCHANGE APPARATUS AND EXCHANGE METHOD USING AN ASSEMBLY
WO2017212145A1 (en) * 2016-06-06 2017-12-14 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Assembly of modular elements for construction of a mass and/or heat exchange apparatus and exchange method using such an assembly
CN111981249A (en) * 2019-05-22 2020-11-24 乔治洛德方法研究和开发液化空气有限公司 Thermally insulated enclosure containing equipment intended to operate at temperatures below 0 ℃
EP3742094A1 (en) * 2019-05-22 2020-11-25 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Thermally insulated enclosure containing a device to operate at a temperature below 0°c
FR3096442A1 (en) * 2019-05-22 2020-11-27 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Thermally insulated enclosure containing equipment that must operate at a temperature below 0 ° C

Similar Documents

Publication Publication Date Title
EP1050509B1 (en) Carbon dioxide cleaning system with improved recovery
US7621152B2 (en) Compact cryogenic plant
CN101351681A (en) Method for designing a cryogenic air separation plant
US20090320520A1 (en) Nitrogen liquefier retrofit for an air separation plant
US20130283855A1 (en) Piping module for air fractionation plant
JP2006275462A (en) Device for producing nitrogen gas
US6948337B2 (en) Low temperature air fractionation system
JP2007064617A (en) Method of manufacturing krypton and/or xenon by cryogenic air separation
US6182470B1 (en) Air distillation plant and corresponding cold box
JP5005894B2 (en) Nitrogen generation method and apparatus used therefor
JP4206083B2 (en) Argon production method using cryogenic air separator
US7481074B2 (en) Self-contained distillation purifier/superheater for liquid-fill product container and delivery systems
CN102016467A (en) Method and device for separating air by cryogenic distillation
JP2721591B2 (en) Ultra high purity nitrogen production equipment
JP2004251569A (en) Cryogenic air separator
JP2859663B2 (en) Nitrogen gas and oxygen gas production equipment
AU2011101525A4 (en) Nitrogen gas generator
FR3102548A1 (en) Process and apparatus for air separation by cryogenic distillation
JP3095238B2 (en) Ultra high purity nitrogen production equipment
JP2009204193A (en) Manufacturing method of extra-pure oxygen
JP2721590B2 (en) Ultra high purity nitrogen production equipment
KR20240057420A (en) Plant and method for low temperature air separation
JP2686050B2 (en) High-purity nitrogen gas production equipment
JPH10325674A (en) Air liquefying and separating device
JP4790979B2 (en) Air separation device with multiple condensers

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080603