JP5272456B2 - Method and apparatus for manufacturing flat battery - Google Patents

Method and apparatus for manufacturing flat battery Download PDF

Info

Publication number
JP5272456B2
JP5272456B2 JP2008062171A JP2008062171A JP5272456B2 JP 5272456 B2 JP5272456 B2 JP 5272456B2 JP 2008062171 A JP2008062171 A JP 2008062171A JP 2008062171 A JP2008062171 A JP 2008062171A JP 5272456 B2 JP5272456 B2 JP 5272456B2
Authority
JP
Japan
Prior art keywords
battery
sealing plate
jig
sealing
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008062171A
Other languages
Japanese (ja)
Other versions
JP2009218135A (en
Inventor
俊樹 石川
隆幸 青井
望 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2008062171A priority Critical patent/JP5272456B2/en
Publication of JP2009218135A publication Critical patent/JP2009218135A/en
Application granted granted Critical
Publication of JP5272456B2 publication Critical patent/JP5272456B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a non-sealed flat battery into which an electrolytic solution is injected, wherein a problem that the amount of electrolytic solution is decreased by exposure to the air until the battery is sealed. <P>SOLUTION: In a third step, in a container-shaped sealing plate 18, a negative electrode material 22, a separator 27, and a gasket 21, and next, a battery body 15 assembled with an electrolytic solution and a positive electrode material 23 are stored in a hollow part 25 of the jig 14 for battery conveyance. From immediately above of the jig 14, by assembling a battery can 16, the hollow part 25 is made to be a closed space 82. Next, while removing air in the closed space 82, the battery body 15 and a battery can 16 are mutually fitted, and the flat battery 17 is sealed by folding back an opening 16a of the battery can 16 inside. By doing this, the electrolytic solution amount is supressed which is evaporated until the battery body 15 and a battery can 16 are mutually fitted. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、組み立て過程における電解液の蒸発を抑制し、電池組み立て後の電解液量のばらつきを低減する偏平形電池の製造方法及び製造装置を提供するものである。   The present invention provides a method and apparatus for manufacturing a flat battery that suppresses evaporation of the electrolyte during the assembly process and reduces variations in the amount of electrolyte after battery assembly.

近年、メモリのバックアップや通信機器、時計等の駆動電源には、円盤状の偏平形電池で厚みの薄い電池が用いられている。とりわけ厳しい環境に耐え、長期信頼性を保つことが可能な電池が需要拡大傾向にあり、偏平形電池においても製造過程で安定したばらつきの少ない高品質なものづくりが要求されている。特に電解液は電池の特性を左右する重要な要素であり、電解液が減少すると電池の内部抵抗が上昇し商品価値がなくなる不都合が生じる。このため電解液量については厳しい管理基準が要求されている。   In recent years, a disk-shaped flat battery with a small thickness has been used as a drive power source for memory backup, communication equipment, watches, and the like. Batteries that can withstand harsh environments and can maintain long-term reliability are on the rise in demand, and even flat batteries are required to have high-quality manufacturing that is stable and stable in the manufacturing process. In particular, the electrolytic solution is an important factor that influences the characteristics of the battery. If the electrolytic solution decreases, the internal resistance of the battery increases and the commercial value is lost. For this reason, strict management standards are required for the amount of electrolyte.

以下、従来例について図を参照しながら説明する。図9は従来例の偏平形電池107の断面図を示す。図10(a)は従来例の封口前を示す製造装置の断面図を示し、同図10(b)は従来例の封口状態を示す製造装置の断面図を示す。具体的には、図9に示す偏平形電池は、上部が開口した容器状の電池缶101とガスケット103と正極材104とセパレータ106および負極材105とキャップ状の封口板102で構成されており、電池缶101の円筒状の周壁面部100は、封口時内側にガスケット103を介して折り曲げられ電池内を密閉して偏平形電池107が製作される。   Hereinafter, a conventional example will be described with reference to the drawings. FIG. 9 is a sectional view of a conventional flat battery 107. FIG. 10A shows a cross-sectional view of a manufacturing apparatus showing a conventional example before sealing, and FIG. 10B shows a cross-sectional view of the manufacturing apparatus showing a conventional sealing state. Specifically, the flat battery shown in FIG. 9 includes a container-shaped battery can 101 having an open top, a gasket 103, a positive electrode material 104, a separator 106, a negative electrode material 105, and a cap-shaped sealing plate 102. The cylindrical peripheral wall surface portion 100 of the battery can 101 is bent through a gasket 103 at the time of sealing, and the inside of the battery is sealed to produce a flat battery 107.

図10(a)に示す製造装置は、プレス機に封口用金型の下金型137と上金型138とが相互に芯合わせした位置決め状態で取り付けられた構造になっている。下金型137は、プレス機のプレスベット(図示せず)に固定された下型台部161と、この下型台部161に立設状態に固定された円柱状の支持体142と、この支持体142の外周面に摺動自在に外嵌されて圧縮ばね144で下方に向け退避可能に弾性的に支持されたほぼ円筒状の位置決め部材143とから構成されている。   The manufacturing apparatus shown in FIG. 10 (a) has a structure in which a lower mold 137 and an upper mold 138 are attached to a press machine in a positioning state in which they are aligned with each other. The lower mold 137 includes a lower mold base 161 fixed to a press bed (not shown) of a press machine, a columnar support 142 fixed to the lower mold base 161 in an upright state, A substantially cylindrical positioning member 143 that is slidably fitted on the outer peripheral surface of the support 142 and elastically supported so as to be retracted downward by a compression spring 144 is formed.

支持体142は、加工すべき電池缶101を載置する上端の支持面142aが電池缶101の底面と略同じ径の円形を有し、封口加工時に作用する荷重を受け止める。位置決め部材143は、加工前において圧縮ばね144により支持体142の支持面142aの周端上方を取り囲む図示の上限位置に保持されている。但し、位置決め部材143、ガイド体147および下型カップリング部148における相互の摺動面の各間には、摺動可能な範囲で可及的に狭い隙間が設けられているとともに、各摺動面には真空グリースを十分に塗布して、隙間からの空気漏れの発生が防止されている。   The support 142 has a circular shape with a support surface 142a at the upper end on which the battery can 101 to be processed is placed having a diameter substantially the same as the bottom surface of the battery can 101, and receives a load acting during sealing. The positioning member 143 is held at the illustrated upper limit position surrounding the upper peripheral end of the support surface 142a of the support body 142 by the compression spring 144 before processing. However, a gap as narrow as possible is provided between the sliding surfaces of the positioning member 143, the guide body 147, and the lower mold coupling portion 148. The surface is sufficiently coated with vacuum grease to prevent air leakage from the gap.

一方、上金型138はプレス機のプレスラム(図示せず)に連結されて上下動する円筒状の上型本体152と、この上型本体152の内部に摺動自在に内装されて圧縮ばね154により常時下方に付勢された押圧軸体153と、この押圧軸体153の下端面に電気絶縁部材を介在して連結された押圧部材157と、上型本体152の下端面に取付部材を介して連結された加工用部材159とから構成されている。   On the other hand, the upper mold 138 is connected to a press ram (not shown) of a press machine and moves up and down, and a cylindrical upper mold main body 152 is slidably mounted inside the upper mold main body 152 and is a compression spring 154. The pressing shaft 153 always urged downward by the pressure, the pressing member 157 connected to the lower end surface of the pressing shaft 153 with an electrical insulating member interposed therebetween, and the lower end surface of the upper mold main body 152 via the attachment member And processing members 159 connected together.

押圧部材157および押圧軸体173には真空吸引孔167がそれぞれ形成されており、この真空吸引孔167は、封口加工前において、真空配管継ぎ手およびバルブ(図示せず)などを介して真空ポンプ(図示せず)に連結されている上型本体152の真空吸引孔168に連通されている。また真空吸引孔170A,171Aも同様に真空配管継ぎ手およびバルブ(図示せず)などを介して真空ポンプ(図示せず)に連結されている。図10(b)に示す密閉空間164は、支持体142、位置決め部材143、下型カップリング
部148、上型カップリング部163および押圧部材157により形成される。
A vacuum suction hole 167 is formed in each of the pressing member 157 and the pressing shaft body 173, and the vacuum suction hole 167 is connected to a vacuum pump (not shown) via a vacuum pipe joint and a valve (not shown) before sealing. The upper die main body 152 is connected to a vacuum suction hole 168 connected to the upper die body 152 (not shown). Similarly, the vacuum suction holes 170A and 171A are connected to a vacuum pump (not shown) through a vacuum pipe joint and a valve (not shown). A sealed space 164 shown in FIG. 10B is formed by the support 142, the positioning member 143, the lower mold coupling part 148, the upper mold coupling part 163, and the pressing member 157.

次に偏平形電池の製造方法は、図9に示す電池缶101内に、ガスケット103、正極材104およびセパレータ106を組み付けたのちに、所定量の電解液を注入する。電池缶101は、図10(a)に示す上金型138がガイド体147の上方に離間した状態において、位置決め部材143内に挿入して支持体142の支持面142a上に載置する。これにより電池缶101は、位置決め部材143と支持面142aとで構成される容器状の内部に保持されて、下金型137に対し所定位置に取り付けられる。一方、負極材105が予め取り付けられた封口板102の取り付けに際しては、封口板102を位置決め治具173の凹部173aに嵌め込み、この位置決め治具173を加工用部材159に嵌め合わせると、真空ポンプの駆動による真空吸引力が真空吸引孔168,167を介して封口板102に対し真空吸着力として作用し、封口板102が押圧部材157の軸芯と一致する位置決め状態で押圧部材157の押圧面157aに吸着保持される。その後、位置決め治具173は取り除かれる。   Next, in the flat battery manufacturing method, a gasket 103, a positive electrode material 104, and a separator 106 are assembled in a battery can 101 shown in FIG. The battery can 101 is inserted into the positioning member 143 and placed on the support surface 142 a of the support body 142 in a state where the upper mold 138 shown in FIG. 10A is spaced above the guide body 147. As a result, the battery can 101 is held inside a container formed by the positioning member 143 and the support surface 142a, and is attached to the lower mold 137 at a predetermined position. On the other hand, when attaching the sealing plate 102 to which the negative electrode material 105 has been attached in advance, the sealing plate 102 is fitted into the concave portion 173a of the positioning jig 173, and the positioning jig 173 is fitted into the processing member 159. The vacuum suction force by driving acts as a vacuum suction force on the sealing plate 102 through the vacuum suction holes 168 and 167, and the pressing surface 157a of the pressing member 157 is positioned in a state where the sealing plate 102 coincides with the axis of the pressing member 157. Is adsorbed and retained. Thereafter, the positioning jig 173 is removed.

次に、図10(b)に示すプレスラム(図示せず)の下降工程に伴い、上金型138が下降すると押圧部材157の押圧面157aに吸着されている封口板102が電池缶101の内部に組み付けられる直前に、上型カップリング部163の下端面が位置決め部材143の上端部の下型カップリング部148に気密状態に密着する。これは、図10(b)において、上型カップリング部163の下端部が下型カップリング部148の上端の段部に嵌まり合う状態に相当する。これにより、製造装置の内部には、支持体142、位置決め部材143、下型カップリング部148、上型カップリング部163および押圧部材157によって電池缶101の周囲を囲む密閉空間164を形成する。   Next, when the upper mold 138 is lowered in accordance with the lowering process of the press ram (not shown) shown in FIG. 10B, the sealing plate 102 adsorbed on the pressing surface 157 a of the pressing member 157 is formed inside the battery can 101. Immediately before being assembled, the lower end surface of the upper mold coupling part 163 comes into close contact with the lower mold coupling part 148 at the upper end part of the positioning member 143 in an airtight state. This corresponds to a state in which the lower end portion of the upper mold coupling portion 163 fits into the stepped portion at the upper end of the lower mold coupling portion 148 in FIG. Thereby, a sealed space 164 surrounding the periphery of the battery can 101 is formed by the support 142, the positioning member 143, the lower mold coupling portion 148, the upper mold coupling portion 163, and the pressing member 157.

上記のようにして形成された密閉空間164は、真空吸引孔170A,171Aを介して真空ポンプに接続されているので、形成されると同時に内部の空気が排出される。この密閉空間164は、容積が極めて小さいので、速やかに空気を排出し所要の内圧に減圧する。これにより、電池缶101の開口部周辺の空気および電池缶101の周壁面部100、封口板102、ガスケット103、正極材104、負極材105、セパレータ106に含まれている空気は速やかに外部に排出される。   Since the sealed space 164 formed as described above is connected to the vacuum pump via the vacuum suction holes 170A and 171A, the internal air is discharged at the same time as being formed. Since this sealed space 164 has a very small volume, air is quickly discharged to reduce the internal pressure to a required level. As a result, the air around the opening of the battery can 101 and the air included in the peripheral wall surface portion 100 of the battery can 101, the sealing plate 102, the gasket 103, the positive electrode material 104, the negative electrode material 105, and the separator 106 are quickly released to the outside. Discharged.

上金型138は上述の減圧時にも下降動作を継続しているので、押圧部材157の押圧面157aに吸着されている封口板102は、図10(b)に示す電池缶101の内部に組み付けられる。ここで、封口板102は、位置決め治具173によって位置決めして押圧面157aに吸着されているので、電池缶101に対して正確に所定の位置に組み付ける。上金型138がさらに下降すると、図10(b)に示す上金型138の下降に伴って圧縮される圧縮ばね154の復元力を受ける押圧部材157は、封口板102を一方、上型カップリング部163は、下型カップリング部148に当接したのちに、これと一体の位置決め部材143を圧縮ばね144の付勢力に抗して押し下げながら下降するとともに、加工用部材159は図9に示す電池缶101の周壁面部100を加工用面159aに沿わせて内方に湾曲変形させながら下降することによりその電池缶101の周壁面部100を封口板102の周端部とガスケット103とを抱き込むような形状にかしめ封口していく。   Since the upper mold 138 continues the lowering operation even when the pressure is reduced as described above, the sealing plate 102 adsorbed to the pressing surface 157a of the pressing member 157 is assembled inside the battery can 101 shown in FIG. It is done. Here, since the sealing plate 102 is positioned by the positioning jig 173 and is adsorbed to the pressing surface 157 a, the sealing plate 102 is accurately assembled at a predetermined position with respect to the battery can 101. When the upper die 138 is further lowered, the pressing member 157 that receives the restoring force of the compression spring 154 compressed as the upper die 138 is lowered as shown in FIG. After the ring portion 163 comes into contact with the lower mold coupling portion 148, the positioning member 143 integrated therewith is lowered while being pushed down against the urging force of the compression spring 144, and the processing member 159 is shown in FIG. The peripheral wall surface portion 100 of the battery can 101 is lowered along the processing surface 159a while being curved and deformed inward, so that the peripheral wall surface portion 100 of the battery can 101 is moved to the peripheral edge portion of the sealing plate 102, the gasket 103, and the like. It is squeezed and sealed in a shape that embraces.

上金型138は、上型本体152がガイド体147の上端面に接触するまで下降する。これは加工用部材159の底面がガイド体147の上端面に接触した状態である。上金型138が上述のように設定された下限位置まで下降したとき、支持体142の支持面142aと押圧部材157の押圧面157aとの隙間は、製造すべき偏平形型電池の厚みとなり、この時点で偏平形型電池の封口加工が終了する。その後、上金型138は、図10(a)に示す高さ位置まで上昇し、でき上がった偏平形電池を取り出す偏平形電池の製造方
法が提案されている(例えば、特許文献1参照)。
特開2000−251850号公報
The upper mold 138 is lowered until the upper mold main body 152 comes into contact with the upper end surface of the guide body 147. This is a state in which the bottom surface of the processing member 159 is in contact with the upper end surface of the guide body 147. When the upper mold 138 is lowered to the lower limit position set as described above, the gap between the support surface 142a of the support 142 and the pressing surface 157a of the pressing member 157 becomes the thickness of the flat battery to be manufactured. At this point, the sealing process for the flat battery is completed. After that, the upper mold 138 is raised to the height position shown in FIG. 10A, and a method of manufacturing a flat battery for taking out the completed flat battery has been proposed (for example, see Patent Document 1).
JP 2000-251850 A

従来の製造方法は図9に示す電池缶101内に、ガスケット103、正極材104およびセパレータ106を組み付けた後所定量の電解液を注入する。しかし図10(b)に示す密閉空間164の減圧下で電池缶101と封口板102を嵌め合わせて電池内を密閉するまでには、電池缶101を支持体142に設置し、次いで封口板102を位置決め治具173を用いて加工用部材159に嵌め合わせて、そして封口板102の凸部を吸着保持して、最後に位置決め治具173を取り除いた後、上金型138と下金型137を嵌め合わせて電池を封口する。上述したように封口までの作業工程は多く最速でも30秒は必要と考えられる。このため電池を封口するまでの間に、作業初期に電池缶101内に注液された電解液は大気中に曝されることとなり、とりわけリチウム電池などに用いられる電解液は低沸点成分を含み、且つ揮発性が高いために上記作業中に電解液が蒸発するという不都合が生じる。   In the conventional manufacturing method, a predetermined amount of electrolyte is injected after assembling the gasket 103, the positive electrode material 104, and the separator 106 into the battery can 101 shown in FIG. However, until the inside of the battery is sealed by fitting the battery can 101 and the sealing plate 102 under reduced pressure in the sealed space 164 shown in FIG. 10B, the battery can 101 is installed on the support 142 and then the sealing plate 102. Is fitted to the processing member 159 using the positioning jig 173, and the convex portion of the sealing plate 102 is sucked and held. Finally, the positioning jig 173 is removed, and then the upper mold 138 and the lower mold 137 are assembled. And seal the battery. As described above, there are many work steps up to the sealing, and it is considered that 30 seconds are necessary at the fastest. For this reason, before the battery is sealed, the electrolyte injected into the battery can 101 in the initial stage of the work is exposed to the atmosphere, and in particular, the electrolyte used for lithium batteries and the like contains low-boiling components. Moreover, due to the high volatility, there arises a disadvantage that the electrolytic solution evaporates during the above operation.

そこで本発明は上記従来の課題を鑑みてなされたもので、容器状の封口板に負極材、セパレータおよびガスケットを組み込んだ後、封口板に電解液および正極材を組み込み、これらの部材を組み込んだ封口板を中空状の治具内に収納して、その治具の上部に直ちに電池缶を組み込んで治具の中空部を密閉空間として、この密閉空間を減圧し封口板内の空気を排除しながら封口板と電池缶を嵌め合わせた後、電池缶の開口部を内側に折り曲げてガスケットを介して封口板と電池缶とを封口することにより、注液された電解液が蒸発することを抑制しながら偏平形電池を組み立て電解液量のばらつきを低減する偏平形電池の製造方法を提供することを目的とする。   Therefore, the present invention has been made in view of the above conventional problems, and after incorporating a negative electrode material, a separator and a gasket into a container-shaped sealing plate, an electrolytic solution and a positive electrode material are incorporated into the sealing plate, and these members are incorporated. The sealing plate is housed in a hollow jig, and a battery can is immediately installed on the upper part of the jig to make the hollow portion of the jig a sealed space, and this sealed space is decompressed to eliminate air in the sealing plate. While fitting the sealing plate and battery can, the opening of the battery can is folded inward and the sealing plate and the battery can are sealed via a gasket to prevent the injected electrolyte from evaporating. An object of the present invention is to provide a method for manufacturing a flat battery that assembles a flat battery and reduces variations in the amount of electrolyte.

上記課題を解決するために本発明は、容器状の封口板に負極材、セパレータおよびガスケットを組み込む第1の工程と、封口板に電解液および正極材を組み込む第2の工程とこれらの部材を組み込んだ封口板を、非磁性体からなる中空部を有する本体と、中空部に高さ方向の異なる2段の位置に封口板と電池缶を磁気的に吸着保持する吸着部を設けた構成の中空状の治具内に収納しその治具の上方から直ちに電池缶を組み込んで治具の中空部を密閉空間とする第3の工程と、密閉空間を減圧し封口板内の空気を排除しながら封口板と電池缶を嵌め合わせた後電池缶の開口部を内側に折り曲げてガスケットを介して封口板と電池缶とを封口する第4の工程からなることを特徴としている。
In order to solve the above problems, the present invention includes a first step of incorporating a negative electrode material, a separator and a gasket into a container-shaped sealing plate, a second step of incorporating an electrolyte and a positive electrode material into the sealing plate, and these members. The built-in sealing plate has a main body having a hollow portion made of a non-magnetic material, and a suction portion for magnetically holding and holding the sealing plate and the battery can at two levels in the height direction in the hollow portion. A third step in which the battery can is immediately inserted from above the jig into the hollow jig and the hollow portion of the jig is made a sealed space, and the air in the sealing plate is eliminated by reducing the pressure in the sealed space. However, the sealing plate and the battery can are fitted together, and thereafter the opening of the battery can is bent inward to seal the sealing plate and the battery can through the gasket.

本発明によれば、封口板と電池缶とが嵌め合わされるまでに電解液が蒸発することを低減でき、さらには治具の密閉空間の空気を排出し減圧した状態で封口板を電池缶に嵌め込むこみ封口することで、電池組み立て時に電解液が電池外に飛散することを抑止することで、電池組み立て後における電池の電解液量のばらつきを低減した偏平形電池を提供することが可能となる。   According to the present invention, it is possible to reduce the evaporation of the electrolyte before the sealing plate and the battery can are fitted together, and further, the sealing plate is attached to the battery can in a state where the air in the sealed space of the jig is discharged and decompressed. By fitting and sealing, it is possible to provide a flat battery with reduced variation in the amount of electrolyte in the battery after battery assembly by preventing the electrolyte from scattering outside the battery during battery assembly. Become.

本発明の第1の発明は、容器状の封口板に負極材、セパレータおよびガスケットを組み込む第1の工程と、封口板に電解液および正極材を組み込む第2の工程と、これらの部材を組み込んだ封口板を中空状の治具内に収納しその治具の上方から直ちに電池缶を組み込んで治具の中空部を密閉空間とする第3の工程と、密閉空間を減圧し封口板内の空気を排除しながら封口板と電池缶を嵌め合わせた後電池缶の開口部を内側に折り曲げてガスケットを介して封口板と電池缶とを封口する第4の工程からなることにより、封口板と電池缶とが嵌めあわされるまでの間に電解液が蒸発することを抑制することが可能となり、電解
液量のばらつきを低減した偏平形電池を提供することが可能となる。
The first aspect of the present invention includes a first step of incorporating a negative electrode material, a separator and a gasket into a container-shaped sealing plate, a second step of incorporating an electrolytic solution and a positive electrode material into the sealing plate, and incorporating these members. A third step in which the sealed plate is housed in a hollow jig and a battery can is immediately assembled from above the jig to make the hollow portion of the jig a sealed space; The sealing plate and the battery can are fitted together while excluding air, and then the opening portion of the battery can is folded inward to seal the sealing plate and the battery can through the gasket. It is possible to prevent the electrolyte from evaporating before the battery can is fitted together, and it is possible to provide a flat battery with reduced variations in the amount of electrolyte.

本発明の第2の発明は、各種部材を組み込んだ封口板および上方から組み込まれる電池缶を収納する治具の上下面の開口部を上金型および下金型により密閉して密閉空間を形成したことにより、封口板と電池缶とを嵌め合せるまでに蒸発する電解液の蒸発量を抑制することが可能となり、さらには密閉空間内を減圧することにより減圧下で電池缶とを嵌め合せることができ、電池組み立て時に電解液が電池外に飛散することを抑制することが可能となる。   The second invention of the present invention forms a sealed space by sealing the upper and lower openings of a jig for housing a sealing plate incorporating various members and a battery can assembled from above with an upper mold and a lower mold. By doing so, it becomes possible to suppress the evaporation amount of the electrolyte solution that evaporates until the sealing plate and the battery can are fitted together, and furthermore, fitting the battery can under reduced pressure by reducing the pressure in the sealed space Thus, it is possible to prevent the electrolyte from scattering outside the battery during battery assembly.

本発明の第3の発明は、負極材、セパレータ、正極材、電解液および絶縁ガスケットを組み込んだ封口板を下方に電池缶を上方に組込む中空状の治具と、この治具の下方に配置され治具の下面に当接して中空部の下面を密閉するとともに封口板に嵌合わされた電池缶の開口部を内側に折り曲げてガスケットを介して封口する封口金型と封口板の底面を支持する下ピンとからなる下金型と、治具の上面に当接して中空部に組み込まれる電池缶を保持する上ピンとこの上ピンとで治具の上面側を密閉する上部ホルダとからなる上金型とで構成したことにより電解液の蒸発を抑制しながら偏平形電池を組み立てることが可能となる。   According to a third aspect of the present invention, there is provided a hollow jig in which a sealing plate incorporating a negative electrode material, a separator, a positive electrode material, an electrolytic solution and an insulating gasket is assembled downward, and a battery can is disposed upward, and the jig is disposed below the jig. The sealing mold that seals the lower surface of the hollow portion by contacting the lower surface of the jig and that bends the opening of the battery can fitted to the sealing plate inward and seals it through the gasket and the bottom surface of the sealing plate are supported. A lower mold composed of a lower pin, an upper mold comprising an upper pin that holds the battery can that is in contact with the upper surface of the jig and is incorporated in the hollow portion, and an upper holder that seals the upper surface side of the jig with the upper pin; The flat battery can be assembled while suppressing the evaporation of the electrolyte.

本発明の第4の発明は、治具として、非磁性体からなる中空部を有する本体と、この中空部に高さ方向の異なる2段の位置に封口板と電池缶を磁気的に吸着保持する吸着部を設けた構成としたことにより、封口板を下方に収納した後電池缶を上方から直ちに組み込んで治具の中空部を密閉空間とすることにより、注液後の電解液の蒸発を抑制することが可能となる。   According to a fourth aspect of the present invention, as a jig, a main body having a hollow portion made of a nonmagnetic material, and a sealing plate and a battery can are magnetically held by holding the hollow portion at two stages in different height directions. Since the suction part is provided, the battery can is immediately assembled from above after the sealing plate is housed downward, and the hollow part of the jig is made into a sealed space, thereby evaporating the electrolyte after injection. It becomes possible to suppress.

本発明の第5の発明は、治具を上金型と下金型との間に配置された水平方向に移動可能な搬送体に保持させた構成としたことにより、治具内に封口板と電池缶とを収納し、電解液の蒸発を抑制した状態で電池缶や電池本体を搬送することが可能となる。   According to a fifth aspect of the present invention, the jig is held in a horizontally movable transfer body disposed between the upper mold and the lower mold. And the battery can, and the battery can and the battery body can be transported in a state where evaporation of the electrolyte is suppressed.

以下、本発明の最良の実施形態について図を参照しながら説明する。但し、本発明に係る偏平形電池と製造装置及び製造方法はこれらに限定されるものではない。図1(a)は本発明における偏平形電池の第1工程の説明図を示し、図1(b)は2工程の説明図を示し、図1(c)は電池搬送用の治具に収納する第3工程の説明図を示し、図1(d)は第3工程の説明図を示し、図1(e)は第4工程の説明図を示す。図2(a)は本発明の製造装置の断面図を示し、図2(b)は図2(a)の矢視Aで示す製造装置の側面図を示す。   Hereinafter, the best embodiment of the present invention will be described with reference to the drawings. However, the flat battery, the manufacturing apparatus, and the manufacturing method according to the present invention are not limited to these. FIG. 1 (a) shows an explanatory view of the first step of the flat battery according to the present invention, FIG. 1 (b) shows an explanatory view of two steps, and FIG. 1 (c) is stored in a jig for battery transfer. FIG. 1D shows an explanatory diagram of the third process, and FIG. 1E shows an explanatory diagram of the fourth process. 2A shows a cross-sectional view of the manufacturing apparatus of the present invention, and FIG. 2B shows a side view of the manufacturing apparatus shown by arrow A in FIG.

図3(a)は本発明における封口板と電池缶を電池搬送用の治具に収納した状態を示す製造装置の断面図を示し、図3(b)は封口板が吸着された状態を示す製造装置の断面図を示し、図3(c)は電池缶が吸着され密閉空間が排気された状態を示す製造装置の断面図を示し、図3(d)は封口板と電池缶を嵌め合わせた状態を示す製造装置の断面図を示す。図4(a)は本発明における未封口の偏平形電池を封口した状態を示す製造装置の断面図を示し、図4(b)は封口後の偏平形電池が電池搬送治具に戻された状態を示す製造装置の断面図を示し、図4(c)は封口後の偏平形電池が電池搬送治具に保持された状態を示す製造装置の断面図を示す。図5(a)は上ピンの断面図を示し、図5(b)は上ピンの平面図を示し、次に図6(a)は下ピンの断面図を示し、図6(b)は下ピンの平面図を示し、図7は電池搬送治具の斜視図を示し、図8は本発明における電池缶の断面図を示す。   FIG. 3A shows a cross-sectional view of the manufacturing apparatus showing a state in which the sealing plate and the battery can in the present invention are housed in a battery transport jig, and FIG. 3B shows a state in which the sealing plate is adsorbed. FIG. 3 (c) shows a sectional view of the manufacturing apparatus, FIG. 3 (c) shows a sectional view of the manufacturing apparatus showing a state where the battery can is adsorbed and the sealed space is evacuated, and FIG. 3 (d) shows the sealing plate and the battery can fitted together. Sectional drawing of the manufacturing apparatus which shows the state is shown. FIG. 4A is a cross-sectional view of a manufacturing apparatus showing a state in which an unsealed flat battery according to the present invention is sealed, and FIG. 4B is a state where the flat battery after sealing is returned to the battery carrying jig. FIG. 4C is a cross-sectional view of the manufacturing apparatus showing a state in which the flat battery after sealing is held by the battery transport jig. FIG. 5 (a) shows a cross-sectional view of the upper pin, FIG. 5 (b) shows a plan view of the upper pin, FIG. 6 (a) shows a cross-sectional view of the lower pin, and FIG. FIG. 7 shows a perspective view of the battery transport jig, and FIG. 8 shows a cross-sectional view of the battery can according to the present invention.

具体的には図1(a)〜(e)は、図1(e)に示す外径4mmで総高1.4mmの二次電池としての偏平形電池17を製作する製造工程であり、負極材22は負極活物質とな
る板状の金属リチウムやリチウム合金を打ち抜いてペレット状に成形し、ペレット状の金属リチウムとリチウム化合可能な金属若しくは化合物を貼り合わせた状態で放置しておき、リチウム合金化したものを負極活物質として用いる。
Specifically, FIGS. 1A to 1E are manufacturing steps for manufacturing a flat battery 17 as a secondary battery having an outer diameter of 4 mm and a total height of 1.4 mm shown in FIG. The material 22 is formed by punching a plate-like metal lithium or lithium alloy serving as a negative electrode active material into a pellet, and leaving the pellet-like metal lithium and a lithium-combinable metal or compound bonded together. The alloyed material is used as the negative electrode active material.

図1(a)に示す封口板18は負極材22を収納するシャーレ状の導電性金属からなる容器であり、負極材22と接することで偏平形電池の外部負極となる。封口板18にはアルミニウムとステンレスとが貼り合わされたクラッド材等を用い、第1の金属層がアルミニウムとなるように形成し、負極材22が収納される側の面にはペレット状の金属リチウムを貼り付け後にリチウム合金を形成する。   A sealing plate 18 shown in FIG. 1A is a petri dish-like conductive metal that houses a negative electrode material 22, and becomes an external negative electrode of a flat battery by contacting the negative electrode material 22. The sealing plate 18 is made of a clad material in which aluminum and stainless steel are bonded together, the first metal layer is formed to be aluminum, and the surface on the side where the negative electrode material 22 is accommodated is formed into pellet-shaped metallic lithium. After bonding, a lithium alloy is formed.

次いでセパレータ27は熱変形温度が270℃以上の繊維樹脂状により形成された不織布であり、空孔率が10%〜50%、厚みが40μm〜200μmのものを用い、ここではポリフェニレンサルファイトを用いる。正極材23はリチウム・マンガン酸化合物を用いる。電解液は図示しないが、ペンタグライム、テトラグライム等が上げられ、これらのうちの何れか一種以上を用いる。   Next, the separator 27 is a nonwoven fabric formed of a fiber resin having a heat distortion temperature of 270 ° C. or higher, and has a porosity of 10% to 50% and a thickness of 40 μm to 200 μm. Here, polyphenylene sulfite is used. . The positive electrode material 23 uses a lithium manganate compound. Although the electrolytic solution is not shown, pentag lime, tetraglyme and the like are raised, and any one or more of these are used.

電池缶16はシャーレ状の導電性金属からなる容器であり、正極材23と接触することで偏平形電池17の外部正極となる。材質にはステンレス等からなる金属容器を用いる。   The battery can 16 is a container made of a petri dish-like conductive metal, and becomes an external positive electrode of the flat battery 17 by contacting the positive electrode material 23. A metal container made of stainless steel or the like is used as the material.

ガスケット21は、円環状に形成され封口板18と電池缶16との間に生じる隙間に嵌め込まれるように取り付けられて隙間を封止する。ガスケット21は、熱変形温度が270℃以上の繊維樹脂等によって形成されており、ポリフェニレンサルファイト樹脂およびポリエーテルケトン樹脂、ポリエーテルエーテルケトン樹脂、ポリチレンテレフタート樹脂、ポリアリレート樹脂等を用いることができ、何れか一種又は複数種を混合して用いる。組み立て封口板19は、封口板18と負極材22を及びセパレータ27とガスケット21から構成されている。   The gasket 21 is formed in an annular shape and attached so as to be fitted into a gap generated between the sealing plate 18 and the battery can 16 to seal the gap. The gasket 21 is made of a fiber resin having a heat deformation temperature of 270 ° C. or higher, and uses polyphenylene sulfite resin, polyether ketone resin, polyether ether ketone resin, polyethylene terephthalate resin, polyarylate resin, or the like. Any one kind or a mixture of plural kinds can be used. The assembly sealing plate 19 includes a sealing plate 18, a negative electrode material 22, a separator 27, and a gasket 21.

図1(b)に示す電池本体15は、組み立て封口板19と電解液および正極材23から構成されている。図1(c)に示す電池搬送用の治具14は図7に詳細を示すが非磁性体材料からなる中空部25を備える本体14aで内部に電池や磁性体からなる電池構成部品を収納し搬送可能であり、中空部25の形状が円筒形で、且つ、円筒形の内側面の一横断面上に複数個の磁石12を配置した吸着部の1段目10aと吸着部の2段目10bを異なる位置に少なくとも軸方向に上下に2段備えており、磁石12の配列は治具14の本体14aの円周方向に等角度で交互にN極、S極と複数個を備えている。   The battery body 15 shown in FIG. 1B is composed of an assembly sealing plate 19, an electrolytic solution, and a positive electrode material 23. The battery transporting jig 14 shown in FIG. 1 (c) is shown in detail in FIG. 7, but a main body 14a having a hollow portion 25 made of a non-magnetic material accommodates a battery or a battery component made of a magnetic material. The first stage 10a of the attracting part and the second stage of the attracting part in which the shape of the hollow part 25 is cylindrical and a plurality of magnets 12 are arranged on one transverse section of the cylindrical inner surface. 10b is provided at two positions at the top and bottom at least in the axial direction at different positions, and the arrangement of the magnets 12 is provided with N poles, S poles, and a plurality of alternates at equal angles in the circumferential direction of the main body 14a of the jig 14. .

次に偏平形電池の製造工程について図1(a)〜(e)を参照しながら説明する。第1の工程は、図1(a)に示す負極材22を封口板18に貼りつけ合金化させた後、封口板18の凹み面にセパレータ27を載せ、ガスケット21の内周面と封口板18の外周面が密接するように組み合わせて組み立て封口板19を製作する。   Next, a manufacturing process of the flat battery will be described with reference to FIGS. In the first step, the negative electrode material 22 shown in FIG. 1A is bonded to the sealing plate 18 to be alloyed, and then a separator 27 is placed on the recessed surface of the sealing plate 18, and the inner peripheral surface of the gasket 21 and the sealing plate The assembly sealing plate 19 is manufactured by combining the outer peripheral surfaces of the 18 so as to be in close contact with each other.

第2の工程は、図1(a)のガスケット21を組み付けた組み立て封口板19に電解液(図示せず)を注液した後、正極材23を収納して図1(b)に示す電池本体15を製作する。第3の工程は、図1(c)に示す電池本体15と電池缶16の凹面を対向にして電池搬送用の治具14に収納し、治具14の中空部25に閉空間82を形成する。次いで治具14の中空部25を上下金型により密閉して閉空間を密閉空間82とする。第4の工程は、図1(d)に示すように図1(c)に示す電池本体15と電池缶16とを密閉空間82を減圧した後、嵌め合わせて封口前の偏平形電池を製作する。次いで図1(e)に示す封口前の電池缶16の開口部を内側に向け折り曲げて、電池内部を密閉し偏平形電池17を製作する。   In the second step, an electrolytic solution (not shown) is injected into the assembly sealing plate 19 assembled with the gasket 21 of FIG. 1A, and then the positive electrode material 23 is accommodated and the battery shown in FIG. The main body 15 is manufactured. In the third step, the battery body 15 and the battery can 16 shown in FIG. 1C are stored in the battery transporting jig 14 with the concave surfaces facing each other, and a closed space 82 is formed in the hollow portion 25 of the jig 14. To do. Next, the hollow portion 25 of the jig 14 is sealed with the upper and lower molds, and the closed space is set as the sealed space 82. In the fourth step, as shown in FIG. 1 (d), the battery body 15 and the battery can 16 shown in FIG. 1 (c) are decompressed in the sealed space 82, and then fitted into a flat battery before sealing. To do. Next, the opening of the battery can 16 before sealing shown in FIG. 1 (e) is bent inward to seal the inside of the battery, and the flat battery 17 is manufactured.

次いで製造装置について、図2(a)と図2(b)を参照しながら説明する。図2(a)に示す製造装置60は、相対向する配置で設けられた上金型部35と下金型部50からなる接離可能なダイセット構造であり、上金型部35は中空円筒形の上部ホルダ30と上部ホルダ30の中空部に保持され相対的に摺動可能な上ピン31とで構成される。上部ホルダ30は上ベース83に対し垂直方向に設けられた貫通穴に、同軸上で固定され上ベース83より上部の位置に上バネ53を備え、一方の下部には円環状のゴム材からなる上弾性材54を備えている。上弾性材54は封口の際に電池搬送用の治具14の上面と気密性を保つように密着する。また上ピン31は、図5(b)に示す吸着面31bに吸着穴31aを少なくとも1個以上備えている。   Next, the manufacturing apparatus will be described with reference to FIGS. 2 (a) and 2 (b). The manufacturing apparatus 60 shown in FIG. 2 (a) has a die set structure including an upper mold part 35 and a lower mold part 50 provided in an opposing arrangement, and the upper mold part 35 is hollow. A cylindrical upper holder 30 and an upper pin 31 which is held in a hollow portion of the upper holder 30 and can slide relative to each other are configured. The upper holder 30 is coaxially fixed in a through-hole provided in a direction perpendicular to the upper base 83 and is provided with an upper spring 53 at a position above the upper base 83, and one lower portion is made of an annular rubber material. An upper elastic material 54 is provided. The upper elastic member 54 is in close contact with the upper surface of the battery transport jig 14 so as to maintain airtightness at the time of sealing. The upper pin 31 has at least one suction hole 31a on the suction surface 31b shown in FIG.

次いで下金型部50は下ベース85上に上ピン31と同軸上に設置した円筒形状の封口金型47と封口金型47の外面および底面を保持する金型固定台84と、封口金型47と同軸状に配置され、軸線上に貫通する円筒形状の下ピン46と下ピン46の下端面を保持する下バネ52から構成されている。   Next, the lower mold part 50 includes a cylindrical sealing mold 47 disposed coaxially with the upper pin 31 on the lower base 85, a mold fixing base 84 for holding the outer surface and the bottom surface of the sealing mold 47, and a sealing mold. The cylindrical lower pin 46 is disposed coaxially with the shaft 47 and penetrates on the axis, and the lower spring 52 holds the lower end surface of the lower pin 46.

封口金型47は図8に示す電池缶16の開口部16aを電池缶16の内側に向けて折り曲げるために設けた封口金型47の凹部51と治具14の中空部25の空気を排出する排気穴42と減圧弁(図示せず)が少なくとも1箇所以上に備えている。さらに封口金型47の上面にはゴム材からなる円環状の下弾性材45が備えられている。また下ピン46は図6(b)に示す吸着面46bに吸着穴46aを少なくとも1個以上備えている。   The sealing die 47 discharges the air in the concave portion 51 of the sealing die 47 and the hollow portion 25 of the jig 14 provided to bend the opening 16 a of the battery can 16 shown in FIG. 8 toward the inside of the battery can 16. An exhaust hole 42 and a pressure reducing valve (not shown) are provided in at least one place. Further, an annular lower elastic member 45 made of a rubber material is provided on the upper surface of the sealing mold 47. The lower pin 46 has at least one suction hole 46a on the suction surface 46b shown in FIG.

図2(b)に示す搬送体80は治具14と治具14を収納する円筒形状の搬送ホルダ40と、搬送ホルダ40の外径を保持し、軸方向に摺動可能な搬送プレート41から構成される。搬送体80は上金型部35と下金型部50の間に長手方向に直角に配置され、搬送プレート41の一部がシリンダー(図示せず)に連結されており、上金型部35と下金型部50の間を水平方向に移動する。   2B includes a jig 14, a cylindrical conveyance holder 40 that houses the jig 14, and a conveyance plate 41 that holds the outer diameter of the conveyance holder 40 and is slidable in the axial direction. Composed. The transport body 80 is disposed between the upper mold part 35 and the lower mold part 50 at a right angle in the longitudinal direction, and a part of the transport plate 41 is connected to a cylinder (not shown). And the lower mold part 50 are moved in the horizontal direction.

次に製造方法について、図1と図3及び図4を参照しながら説明する。第1工程で、図1(a)に示す負極材22を封口板18に貼りつけ合金化させた後セパレータ27を載せ、ガスケット21の内周面と封口板18の外周面が密接するように組み合わせて組み立て封口板19を作製した後、第2工程において組み立て封口板19に所定量の電解液(図示せず)を注液し、図1(b)に示す正極材23を載せて電池本体15を製作する。   Next, a manufacturing method will be described with reference to FIGS. 1, 3, and 4. In the first step, the anode material 22 shown in FIG. 1A is bonded to the sealing plate 18 and alloyed, and then the separator 27 is placed, so that the inner peripheral surface of the gasket 21 and the outer peripheral surface of the sealing plate 18 are in close contact with each other. After the assembly sealing plate 19 is manufactured in combination, a predetermined amount of electrolyte (not shown) is injected into the assembly sealing plate 19 in the second step, and the positive electrode material 23 shown in FIG. 15 is produced.

次いで第3の工程で、図示はしないが吸着パッドで、図1(c)に示す電池本体15および電池缶16の凸部を吸着して、電池本体15を治具14の吸着部の1段目10aに凹面を上に向けて収納すると同時に、電池缶16を治具14の吸着部の2段目10bに凹面を下に向け電池本体15を覆うように収納保持する。設備仕様に依存するが、10秒以内で行うことが可能である。この時、電池本体15と電池缶16との対向距離81は3mm以下とし治具14の中空部25に閉空間82を形成する。そして図3(a)に示す治具14を搬送ホルダ40に収納し封口金型47と同軸上まで搬送して位置決めを完了させる。   Next, in the third step, although not shown in the drawing, the bumps of the battery body 15 and the battery can 16 shown in FIG. The battery can 16 is stored and held in the second stage 10b of the suction portion of the jig 14 so as to cover the battery body 15 with the concave surface facing down, while being stored in the eye 10a with the concave surface facing upward. Depending on the equipment specifications, it can be done within 10 seconds. At this time, the facing distance 81 between the battery main body 15 and the battery can 16 is 3 mm or less, and the closed space 82 is formed in the hollow portion 25 of the jig 14. Then, the jig 14 shown in FIG. 3A is accommodated in the conveyance holder 40 and conveyed to the same axis as the sealing mold 47 to complete the positioning.

次に図2(a)に示す下金型部50に連結したサーボプレス(図示せず)を上昇させて、図3(b)に示す封口金型47の上面が搬送ホルダ40の底部に接触するまで上昇させた後、図6に示す下ピン46の端面に設けた吸着穴46aで、電池本体15を構成する封口板18の底部を吸着し保持する。そして、図3(c)に示す封口金型47を図5に示す電池缶16の底面が上ピン31の吸着面31bに接触するまで上昇させる。この時、上ピン31は、吸着面31bで電池缶16の底面を吸着する。   Next, the servo press (not shown) connected to the lower mold part 50 shown in FIG. 2A is raised, and the upper surface of the sealing mold 47 shown in FIG. Then, the bottom portion of the sealing plate 18 constituting the battery body 15 is sucked and held by the suction holes 46a provided on the end face of the lower pin 46 shown in FIG. Then, the sealing die 47 shown in FIG. 3C is raised until the bottom surface of the battery can 16 shown in FIG. 5 comes into contact with the suction surface 31 b of the upper pin 31. At this time, the upper pin 31 sucks the bottom surface of the battery can 16 with the suction surface 31b.

次いで図3(d)に示す搬送ホルダ40の底面と封口金型47に備えられた下弾性材45とが密着して、また治具14の上面と上部ホルダ30に備えられた上弾性材54とが密
着し封口金型47の凹部51と治具14の中空部25に図1(c)に示す密閉空間82を形成する。そして排気穴42から密閉空間の空気を排出して、密閉空間82内を減圧下とした状態を維持しながらサーボプレス(図示せず)を上昇させ、上部ホルダ30の上バネ53を弾性的に後退させて電池本体15に電池缶16を嵌め合せる。
Next, the bottom surface of the transport holder 40 shown in FIG. 3D and the lower elastic material 45 provided in the sealing die 47 are brought into close contact with each other, and the upper elastic material 54 provided in the upper surface of the jig 14 and the upper holder 30 is used. Close to each other to form a sealed space 82 shown in FIG. 1C in the concave portion 51 of the sealing mold 47 and the hollow portion 25 of the jig 14. Then, the air in the sealed space is discharged from the exhaust hole 42 and the servo press (not shown) is raised while maintaining the state where the sealed space 82 is under reduced pressure, and the upper spring 53 of the upper holder 30 is elastically moved. The battery can 16 is fitted to the battery body 15 by retreating.

第4の工程は、図4(a)に示す上ピン31と下ピン46で未封口の偏平形電池17を挟み込み保持した状態で、封口金型47を上昇させると同時に上部ホルダ30を弾性的に上方に後退させる。下ピン46は下方に弾性的に後退させて、未封口の偏平形電池を封口金型47に挿入して電池缶16の開口部を電池内側に向けて折り曲げて密閉する。加工終了後は図4(b)に示す封口金型47と治具14および、搬送ホルダ40を下降させるが下ピン46は図2(a)に示す下バネ52の復元力により封口金型47に挿入された偏平形電池17を定位置で上ピン31と挟み込んだ状態で保持しつづける。さらに封口金型47の下降を進めると、上ピン31と下ピン46で挟み込まれた偏平形電池17が治具14の吸着部の1段目10aに吸着され収納される。図4(c)に示す封口金型47が初期位置に戻ると、搬送ホルダ40も初期位置に戻り加工を終了する。   In the fourth step, the upper die 31 and the lower pin 46 shown in FIG. 4A sandwich the unsealed flat battery 17 and hold the upper die 30 at the same time as the upper holder 30 is elastically held. Retreat upward. The lower pin 46 is elastically retracted downward, an unsealed flat battery is inserted into the sealing mold 47, and the opening of the battery can 16 is bent toward the inside of the battery to be sealed. After the completion of processing, the sealing die 47 and jig 14 and the conveyance holder 40 shown in FIG. 4B are lowered, but the lower pin 46 is closed by the restoring force of the lower spring 52 shown in FIG. The flat battery 17 inserted in is continuously held in a state of being sandwiched between the upper pin 31 at a fixed position. When the sealing die 47 is further lowered, the flat battery 17 sandwiched between the upper pin 31 and the lower pin 46 is sucked and stored in the first stage 10a of the chucking portion of the jig 14. When the sealing die 47 shown in FIG. 4C is returned to the initial position, the transport holder 40 is also returned to the initial position and the processing is finished.

以下、本製造装置と製造方法を用いて偏平形電池17を製作した実施例について述べる。実施例1は、図1(c)に示す電池本体15を電池缶16で覆った後、治具14の中空部25を密閉空間として、標準気圧下で封口を行い外径が4mmで、高さが1.4mmの偏平形電池17を作製した。評価は、電池組み立て前後の電解液減少率とした。   Hereinafter, an embodiment in which the flat battery 17 is manufactured by using the manufacturing apparatus and the manufacturing method will be described. In Example 1, the battery body 15 shown in FIG. 1C is covered with the battery can 16 and then the hollow portion 25 of the jig 14 is used as a sealed space to perform sealing under standard atmospheric pressure. A flat battery 17 having a length of 1.4 mm was produced. Evaluation was made into the electrolyte solution decreasing rate before and behind battery assembly.

具体的には図1(a)に示すリチウム金属である負極材22を貼り付けた封口板18にガスケット21を組み付けてセパレータ27を収納した組み立て封口板19に、図1(b)に示す電解液(図示せず)を注液した後、正極材23を収納して、図1(c)に示す電池本体15と電池缶16を治具14に10〜20秒以内に対向した状態で収納し、閉空間82を形成した状態で搬送した後、電池本体15に電池缶16を嵌め合せて封口前の偏平形電池17を作製した。次いで未封口の偏平形電池17を封口金型47に挿入し、電池缶16の開口部を内側に向けて折り曲げ密封した。注液から封口までは約30秒程度費やした。   Specifically, the electrolytic sealing shown in FIG. 1B is applied to the assembled sealing plate 19 in which the gasket 21 is assembled to the sealing plate 18 to which the negative electrode material 22 made of lithium metal shown in FIG. After injecting a liquid (not shown), the positive electrode material 23 is accommodated, and the battery body 15 and the battery can 16 shown in FIG. 1 (c) are accommodated in a state facing the jig 14 within 10 to 20 seconds. Then, after transporting in a state where the closed space 82 was formed, the battery can 16 was fitted into the battery body 15 to produce the flat battery 17 before sealing. Next, the unsealed flat battery 17 was inserted into the sealing mold 47, and the opening of the battery can 16 was bent and sealed inward. It took about 30 seconds from injection to sealing.

実施例2は、図1(c)に示す治具14の上下面を封口金型47で密着して中空部25を密閉空間とし、この密閉空間を減圧した後、電池本体15と電池缶16を嵌め合わせて封口を行い、偏平形電池17内を密閉して図1(e)に示す外径が4mmで、高さが1.4mmの偏平形電池17を製作した。そして作製後の偏平形電池17にリフロー処理を、余熱温度150〜200℃、ピーク温度210〜250℃の条件で約10分間加熱した。上述したリフロー処理とは、はんだクリームを塗布した偏平形電池をプリント基板の所定の位置に装着した状態で高温炉内を所定の時間で通過させてプリント基板に偏平形電池をはんだ付けをする方法である。そしてリフロー処理後から2日後に顕微鏡を用いて漏液の有無を確認した後、偏平形電池17の内部抵抗を測定した。   In Example 2, the upper and lower surfaces of the jig 14 shown in FIG. 1C are brought into close contact with a sealing mold 47 to form the hollow portion 25 as a sealed space. After the sealed space is decompressed, the battery body 15 and the battery can 16 are moved. Were sealed, and the inside of the flat battery 17 was sealed to produce a flat battery 17 having an outer diameter of 4 mm and a height of 1.4 mm shown in FIG. And the reflow process was heated to the flat battery 17 after preparation on the conditions of preheating temperature 150-200 degreeC and peak temperature 210-250 degreeC for about 10 minutes. The reflow process described above is a method of soldering the flat battery to the printed circuit board by passing the flat battery coated with the solder cream in a predetermined position on the printed circuit board for a predetermined time. It is. Two days after the reflow treatment, the presence or absence of liquid leakage was confirmed using a microscope, and the internal resistance of the flat battery 17 was measured.

具体的には、図1(a)に示すリチウム金属である負極材22を貼り付けた封口板18にガスケット21を組み付けてセパレータ27を収納した組み立て封口板19に、図1(b)に示す電解液(図示せず)を注液した後、正極材23を収納して、図1(c)に示す電池本体15と電池缶16を電池搬送用の治具14に対向した状態で収納し搬送した後、電池本体15に電池缶16を減圧下で嵌め合せて未封口の偏平形電池を作製した。次いで未封口の偏平形電池17を封口金型47に挿入し、電池缶16の開口部を電池内側に向けて折り曲げ密封した。   Specifically, the assembled sealing plate 19 in which the gasket 21 is assembled to the sealing plate 18 to which the negative electrode material 22 made of lithium metal shown in FIG. After injecting an electrolytic solution (not shown), the positive electrode material 23 is accommodated, and the battery body 15 and the battery can 16 shown in FIG. 1C are accommodated in a state facing the jig 14 for conveying the battery. After the transfer, the battery can 16 was fitted into the battery body 15 under reduced pressure to produce an unsealed flat battery. Next, the unsealed flat battery 17 was inserted into the sealing mold 47, and the opening of the battery can 16 was bent and sealed toward the inside of the battery.

(比較例1)
比較例1は、図1(c)に示す電池本体15を電池缶16で覆うことなく、また電池搬送用の治具14の中空部25を密閉空間とはせず、さらには減圧下で封口も行うことなく偏平形電池17を製作した。
(Comparative Example 1)
In Comparative Example 1, the battery body 15 shown in FIG. 1 (c) is not covered with the battery can 16, and the hollow portion 25 of the battery transport jig 14 is not sealed, and further sealed under reduced pressure. The flat battery 17 was manufactured without performing the process.

具体的には、図1(a)に示すリチウム金属である負極材22を貼り付けた封口板18にガスケット21を組み付けてセパレータ27を収納した組み立て封口板19に、図1(b)に示す電解液(図示せず)を注液した後、正極材23を収納した組み立て封口板19を構成する封口板18の凸面を図6(b)に示す吸着穴46aに吸着させて、電池缶16の凸面を図5(b)に示す吸着穴31aに吸着させた後、電池本体15と電池缶16を嵌め合せて未封口の偏平形電池17を製作し、未封口の偏平形電池17を封口金型47に挿入して電池缶16の開口部を内側に向けて折り曲げて密封した。注液から封口までは約20〜30秒程度費やした。   Specifically, the assembled sealing plate 19 in which the gasket 21 is assembled to the sealing plate 18 to which the negative electrode material 22 made of lithium metal shown in FIG. After injecting an electrolyte solution (not shown), the convex surface of the sealing plate 18 constituting the assembly sealing plate 19 containing the positive electrode material 23 is adsorbed in the adsorption holes 46a shown in FIG. 5 (b), the battery body 15 and the battery can 16 are fitted together to produce an unsealed flat battery 17, and the unsealed flat battery 17 is sealed. Inserted into the mold 47, the opening of the battery can 16 was bent inward and sealed. About 20 to 30 seconds were spent from injection to sealing.

評価は先ず実施例1と同様の方法で電解液の減少率を測定し、次いで実施例2と同様にリフロー処理を行い、顕微鏡を用いて漏液の有無を確認した。そして最後に内部抵抗を測定した。但し電解液の減少率は、先ず電解液を注液していない未封口の偏平形電池の重量を測定した後、注液後封口を行った偏平形電池17の重量を測定し、次いで未封口の初期注液時の電解液重量を加算した偏平形電池17の重量から封口後の偏平形電池の重量を差し引き、電解液の減少重量を算出した。電解液の減少率は、減少重量を初期の電解液の注液重量で除して算出した。   In the evaluation, first, the decrease rate of the electrolytic solution was measured in the same manner as in Example 1, and then the reflow treatment was performed in the same manner as in Example 2, and the presence or absence of liquid leakage was confirmed using a microscope. Finally, the internal resistance was measured. However, the decrease rate of the electrolytic solution was determined by first measuring the weight of the unsealed flat battery not injected with the electrolytic solution, then measuring the weight of the flat battery 17 sealed after the injection, and then unsealed. The weight of the flat battery 17 after sealing was subtracted from the weight of the flat battery 17 obtained by adding the weight of the electrolytic solution at the time of the initial liquid injection to calculate the reduced weight of the electrolytic solution. The decreasing rate of the electrolytic solution was calculated by dividing the reduced weight by the initial weight of the injected electrolytic solution.

(表1)は実施例1と比較例1における偏平形電池17の電解液減少率の平均値を示し、(表2)は実施例2と比較例1におけるリフロー処理後の漏液の有無と偏平形電池の内部抵抗の平均値を示す。上記実施例と比較例は、1000個の偏平形電池を用いて評価を行った。   (Table 1) shows the average value of the electrolytic solution decreasing rate of the flat battery 17 in Example 1 and Comparative Example 1, and (Table 2) shows the presence or absence of leakage after reflow treatment in Example 2 and Comparative Example 1. The average value of the internal resistance of a flat battery is shown. The examples and comparative examples were evaluated using 1000 flat batteries.

Figure 0005272456
Figure 0005272456

Figure 0005272456
Figure 0005272456

(表1)より実施例1は治具14を用い注液後の電池本体15を収納し、次いで電池缶16で電池本体15を覆うように収納した後、治具14の中空部25を密閉空間として電解液の蒸発を抑制したことにより電解液の減少率は低く0.16%であった。次いで比較例1は、注液後の電池本体15を電池缶16で覆うことなく、また密閉空間を形成して、この密閉空間で封口を行わなかったために、封口までのかかる時間中に蒸発する電解液を抑制することができず、電解液の減少率は高くなったと考えられる。   From Table 1, Example 1 uses the jig 14 to store the injected battery body 15, and then stores the battery body 15 so as to cover the battery body 15, and then seals the hollow portion 25 of the jig 14. Since the evaporation of the electrolyte solution was suppressed as a space, the decrease rate of the electrolyte solution was as low as 0.16%. Next, in Comparative Example 1, since the battery body 15 after the injection was not covered with the battery can 16 and a sealed space was formed, and sealing was not performed in this sealed space, it evaporates during the time required until sealing. It is thought that the electrolytic solution could not be suppressed and the decreasing rate of the electrolytic solution was increased.

(表2)より実施例2は減圧下で封口を行ったことにより、偏平形電池17内部の空気が排気されておりリフロー処理時に外部から与えられた熱により偏平形電池17の内部に残留した空気が膨張することがなく、電解液が偏平形電池17の外部に押し出さなかったために漏れが抑制できたと考えられる。また偏平形電池17の内部抵抗は、規格値内の250mΩであり良好な電池特性を示した。   From Table 2, in Example 2, sealing was performed under reduced pressure, so that the air inside the flat battery 17 was exhausted and remained inside the flat battery 17 due to heat applied from the outside during the reflow process. It is considered that the air was not expanded and the electrolyte was not pushed out of the flat battery 17, so that leakage could be suppressed. The internal resistance of the flat battery 17 was 250 mΩ within the standard value, indicating good battery characteristics.

次いで、比較例1は減圧下で封口を行わなかったことで、リフロー処理時に外部から与えられた熱により偏平形電池の内部に残留した空気が膨張して電解液を偏平形電池の外部に押し出したことにより950個の漏液が発生した。内部抵抗は742Ωと高く、これは正極と負極間の導通部となる電解液量が減少し、正極と負極間の接触面積が減少したため内部抵抗が増大したと考えられる。   Next, in Comparative Example 1, since sealing was not performed under reduced pressure, the air remaining inside the flat battery was expanded by heat applied from the outside during the reflow process, and the electrolyte was pushed out of the flat battery. As a result, 950 leaks occurred. The internal resistance is as high as 742Ω, which is thought to be due to a decrease in the amount of electrolyte that becomes a conducting part between the positive electrode and the negative electrode, and a decrease in the contact area between the positive electrode and the negative electrode.

以上より本製造方法及び製造装置を用いることで、電池本体15と電池缶16を嵌め合わせるまでに間に蒸発する電解液量を最少に抑制でき、更にはリフロー処理後の電解液の漏液を防止することが可能となる。   As described above, by using the present manufacturing method and manufacturing apparatus, the amount of the electrolytic solution that evaporates before the battery body 15 and the battery can 16 are fitted together can be minimized, and further, the leakage of the electrolytic solution after the reflow treatment can be reduced. It becomes possible to prevent.

本発明によれば、注液済みの組み立て封口板と電池缶とが嵌め合わされるまでの間に蒸発する電解液の蒸発量を抑制することが可能となり、とりわけ厳しい環境に耐え、長期信頼性を保つことが可能な電池が需要拡大傾向に対応したメモリのバックアップや通信機器、時計等の駆動電源としての有用な偏平形電池の製造方法である。   According to the present invention, it is possible to suppress the evaporation amount of the electrolytic solution that evaporates until the assembled sealing plate and the battery can are fitted together, withstanding particularly severe environments, and providing long-term reliability. A battery that can be maintained is a method for manufacturing a flat battery useful as a drive power source for memory backup, communication equipment, watches, etc., in response to a growing demand.

(a)本発明に係る偏平形電池の製造方法の第1工程の説明図、(b)本発明に係る第2工程の説明図、(c)本発明に係る電池搬送用の治具に収納する第3工程の説明図、(d)本発明に係る第3工程の説明図、(e)本発明に係る第4工程の説明図(A) Explanatory drawing of the 1st process of the manufacturing method of the flat battery which concerns on this invention, (b) Explanatory drawing of the 2nd process concerning this invention, (c) It accommodates in the jig for battery conveyance which concerns on this invention. Explanatory diagram of the third step, (d) explanatory diagram of the third step according to the present invention, (e) explanatory diagram of the fourth step according to the present invention (a)本発明に係る製造装置の断面図、(b)同図の矢視Aで示した製造装置の側面図(A) Sectional view of manufacturing apparatus according to the present invention, (b) Side view of manufacturing apparatus shown by arrow A in the same figure (a)本発明の一実施の形態における封口板と電池缶を電池搬送用の治具に収納した状態を示す製造装置の断面図、(b)本発明の一実施の形態における封口板が吸着された状態を示す製造装置の断面図、(c)本発明の一実施の形態における電池缶が吸着され密閉空間が排気された状態を示す製造装置の断面図、(d)本発明の一実施の形態における封口板と電池缶を嵌め合わせた状態を示す製造装置の断面図(A) Sectional drawing of the manufacturing apparatus which shows the state which accommodated the sealing board and battery can in one embodiment of this invention in the jig for battery conveyance, (b) The sealing board in one embodiment of this invention adsorb | sucks Sectional drawing of the manufacturing apparatus which shows the state which was carried out, (c) Sectional drawing of the manufacturing apparatus which shows the state which the battery can in one embodiment of this invention was adsorbed, and the sealed space was exhausted, (d) One implementation of this invention Sectional drawing of the manufacturing apparatus which shows the state which fitted the sealing plate and battery can in the form of this (a)本発明の一実施の形態における未封口の偏平形電池を封口した状態を示す製造装置の断面図、(b)本発明の一実施の形態における封口後の偏平形電池が電池搬送治具に戻された状態を示す製造装置の断面図、(c)本発明の一実施の形態における封口後の偏平形電池が電池搬送用の治具に保持された状態を示す製造装置の断面図(A) Cross-sectional view of a manufacturing apparatus showing a state in which an unsealed flat battery in one embodiment of the present invention is sealed, (b) the flat battery after sealing in one embodiment of the present invention is a battery transporter. Sectional drawing of the manufacturing apparatus which shows the state returned to the tool, (c) Sectional drawing of the manufacturing apparatus which shows the state by which the flat battery after sealing in one embodiment of this invention was hold | maintained at the jig | tool for battery conveyance (a)同実施の形態における上ピンの断面図、(b)同実施形態における上ピンの平面図(a) Cross-sectional view of the upper pin in the same embodiment, (b) Plan view of the upper pin in the same embodiment (a)同実施の形態における下ピンの断面図、(b)同実施形態における下ピンの平面図(A) Cross-sectional view of the lower pin in the same embodiment, (b) Plan view of the lower pin in the same embodiment 本発明の一実施の形態における電池搬送用の治具の斜視図The perspective view of the jig for battery conveyance in one embodiment of the present invention 本発明の一実施の形態における電池缶の断面図Sectional drawing of the battery can in one embodiment of this invention 従来例の電池の断面図Sectional view of a conventional battery (a)従来例の封口前を示す製造装置の断面図、(b)従来例の封口状態を示す製造装置の断面図(A) Sectional view of manufacturing apparatus showing before sealing of conventional example, (b) Sectional view of manufacturing apparatus showing sealing state of conventional example

符号の説明Explanation of symbols

10a 吸着部の1段目
10b 吸着部の2段目
12 磁石
14 治具
14a 本体
15 電池本体
16 電池缶
16a 開口部
17 偏平形電池
18 封口板
19 組み立て封口板
21 ガスケット
22 負極材
23 正極材
25 中空部
27 セパレータ
30 上部ホルダ
31 上ピン
31a 吸着穴
31b 吸着面
35 上金型部
40 搬送ホルダ
41 搬送プレート
42 排気穴
45 下弾性材
46 下ピン
46a 吸着穴
46b 吸着面
47 封口金型
50 下金型部
51 凹部
52 下バネ
53 上バネ
54 上弾性材
60 製造装置
80 搬送体
81 対向距離
82 密閉空間
83 上ベース
84 金型固定台
85 下ベース
10a First stage of the adsorption part 10b Second stage of the adsorption part 12 Magnet 14 Jig 14a Main body 15 Battery main body 16 Battery can 16a Opening part 17 Flat battery 18 Sealing plate 19 Assembly sealing plate 21 Gasket 22 Negative electrode material 23 Positive electrode material 25 Hollow part 27 Separator 30 Upper holder 31 Upper pin 31a Suction hole 31b Suction surface 35 Upper mold part 40 Transport holder 41 Transport plate 42 Exhaust hole 45 Lower elastic material 46 Lower pin 46a Suction hole 46b Suction surface 47 Sealing mold 50 Lower mold Mold part 51 Concave 52 Lower spring 53 Upper spring 54 Upper elastic material 60 Manufacturing device 80 Conveyance body 81 Opposite distance 82 Sealed space 83 Upper base 84 Mold fixing base 85 Lower base

Claims (4)

容器状の封口板に負極材、セパレータおよびガスケットを組み込む第1の工程と、前記封口板に電解液および正極材を組み込む第2の工程と、これらの部材を組み込んだ前記封口板を、非磁性体からなる中空部を有する本体と、前記中空部に高さ方向の異なる2段の位置に前記封口板と電池缶を磁気的に吸着保持する吸着部を設けた構成の中空状の治具内に収納し、前記治具の上方から直ちに電池缶を組み込んで治具の中空部を密閉空間とする第3の工程と、前記密閉空間を減圧し前記封口板内の空気を排除しながら前記封口板と電池缶を嵌め合わせた後、前記電池缶の開口部を内側に折り曲げて前記ガスケットを介して前記封口板と電池缶とを封口する第4の工程とからなる偏平形電池の製造方法。 A first step of incorporating a negative electrode material, a separator and a gasket into a container-shaped sealing plate, a second step of incorporating an electrolyte and a positive electrode material into the sealing plate, and the sealing plate incorporating these members are non-magnetic. In a hollow jig having a structure in which a main body having a hollow portion made of a body and an adsorption portion for magnetically adsorbing and holding the sealing plate and the battery can are provided in two positions at different heights in the hollow portion . A third step in which a battery can is immediately assembled from above the jig to make the hollow portion of the jig a sealed space, and the sealing space is decompressed to eliminate air in the sealing plate. A flat battery manufacturing method comprising a fourth step of fitting the plate and the battery can, then bending the opening of the battery can inward and sealing the sealing plate and the battery can via the gasket. 前記各種部材を組み込んだ封口板および上方から組み込まれる電池缶を収納する治具の上下面の開口部を上金型および下金型により密閉して密閉空間を形成する請求項1に記載の偏平形電池の製造方法。   The flat structure according to claim 1, wherein the sealing plate including the various members and the opening on the upper and lower surfaces of the jig for storing the battery can assembled from above are sealed by an upper mold and a lower mold to form a sealed space. A manufacturing method of a battery. 負極材、セパレータ、正極材、電解液およびガスケットを組み込んだ封口板を下方に電池缶を上方に組み込む、非磁性体からなる中空部を有する本体と、前記中空部に高さ方向の異なる2段の位置に前記封口板と前記電池缶を磁気的に吸着保持する吸着部を設けた構成の中空状の治具と、前記治具の下方に配置され治具の下面に当接して中空部の下面を密閉するとともに排気機構を備え前記封口板に嵌合された前記電池缶の開口部を内側に折り曲げて前記ガスケットを介して封口する封口金型と前記封口板の底面を支持する下ピンとからなる下金型と、前記治具の上面に当接して中空部に組み込まれる前記電池缶を保持する上ピンと前記上ピンとで治具の上面側を密閉する上部ホルダとからなる上金型とで構成したことを特徴とする偏平形電池の製造装置。 A main body having a hollow portion made of a non-magnetic material, in which a sealing plate in which a negative electrode material, a separator, a positive electrode material, an electrolyte solution and a gasket are incorporated is installed on the lower side and a battery can is installed on the lower side. A hollow jig having a configuration in which an adsorbing part for magnetically adsorbing and holding the sealing plate and the battery can is provided at a position of A sealing mold that seals the lower surface and has an exhaust mechanism, bends the opening of the battery can fitted to the sealing plate inward and seals it through the gasket, and a lower pin that supports the bottom surface of the sealing plate A lower mold, and an upper mold that includes an upper pin that holds the battery can that is in contact with the upper surface of the jig and is incorporated in the hollow portion, and an upper holder that seals the upper surface side of the jig with the upper pin. A flat-type electric device characterized by comprising Of manufacturing equipment. 前記治具を前記上金型と下金型との間に配置された水平方向に移動可能な搬送体に保持させた構成とした請求項3記載の偏平形電池の製造装置。   The flat battery manufacturing apparatus according to claim 3, wherein the jig is held by a horizontally movable transfer body disposed between the upper mold and the lower mold.
JP2008062171A 2008-03-12 2008-03-12 Method and apparatus for manufacturing flat battery Active JP5272456B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008062171A JP5272456B2 (en) 2008-03-12 2008-03-12 Method and apparatus for manufacturing flat battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008062171A JP5272456B2 (en) 2008-03-12 2008-03-12 Method and apparatus for manufacturing flat battery

Publications (2)

Publication Number Publication Date
JP2009218135A JP2009218135A (en) 2009-09-24
JP5272456B2 true JP5272456B2 (en) 2013-08-28

Family

ID=41189772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008062171A Active JP5272456B2 (en) 2008-03-12 2008-03-12 Method and apparatus for manufacturing flat battery

Country Status (1)

Country Link
JP (1) JP5272456B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7112860B2 (en) * 2018-03-14 2022-08-04 セイコーインスツル株式会社 Coin type non-aqueous electrolyte secondary battery for reflow mounting
KR102410663B1 (en) 2018-07-06 2022-06-17 주식회사 엘지에너지솔루션 Secondary cell and manufacturing method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0636773A (en) * 1992-07-21 1994-02-10 Matsushita Electric Ind Co Ltd Manufacture of flat organic electrolyte battery
JP3625608B2 (en) * 1997-04-03 2005-03-02 三洋電機株式会社 Sealing method of sealed battery
JP3221859B2 (en) * 1999-02-24 2001-10-22 松下電器産業株式会社 Sealing method and sealing device for coin-shaped battery
JP2001057197A (en) * 1999-08-18 2001-02-27 Toshiba Battery Co Ltd Carrying jig for thin type battery
JP2004079355A (en) * 2002-08-19 2004-03-11 Sony Corp Nonaqueous electrolyte battery and its manufacturing method
JP5194354B2 (en) * 2005-11-16 2013-05-08 パナソニック株式会社 Manufacturing method of flat battery
JP2007165170A (en) * 2005-12-15 2007-06-28 Matsushita Electric Ind Co Ltd Method of manufacturing secondary battery and device of manufacturing same

Also Published As

Publication number Publication date
JP2009218135A (en) 2009-09-24

Similar Documents

Publication Publication Date Title
JP2015133179A (en) Method of manufacturing power storage device and electrolyte injector
US9246157B2 (en) Sealed secondary battery and manufacturing method therefor
JP5272456B2 (en) Method and apparatus for manufacturing flat battery
JPWO2020202744A1 (en) Batteries and their manufacturing methods
JP2018113160A (en) Sealing method of battery case and manufacturing method of sealed battery
JP2008310987A (en) Battery
JP3221859B2 (en) Sealing method and sealing device for coin-shaped battery
KR102555959B1 (en) Electrochemical energy storage device comprising external connecting terminal
JP2007134156A (en) Sealed battery
KR20020062194A (en) Connecting structure of conductive connecting tab of battery
CN102484238B (en) Process for making fill hole in a wall of an energy storage device
JP7528408B2 (en) Welding device for manufacturing secondary batteries and welding method using the same
JP2016076297A (en) Power storage element and method for manufacturing power storage element
JP4983095B2 (en) Alkaline storage battery and manufacturing method thereof
WO2022107712A1 (en) Cylindrical battery
JP2006236604A (en) Cylindrical battery and its sealing method
WO2016088287A1 (en) Manufacturing method for sealed type battery and sealed type battery
JP2003257414A (en) Sealed battery and its manufacturing method
US10629969B2 (en) Batteries and battery manufacturing methods
KR101280051B1 (en) Device for Manufacturing Secondary Battery of Improved Sealability
JP5194354B2 (en) Manufacturing method of flat battery
CN221659158U (en) Button type energy storage element sealing ring nesting tool
US12018704B2 (en) Shell member for accumulator, method of producing the same, accumulator, and method of producing the same
CN117484436A (en) Button type energy storage element sealing ring nesting tool
JP4665513B2 (en) Method for producing coin-type electrochemical device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110214

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20110314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121031

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130429

R151 Written notification of patent or utility model registration

Ref document number: 5272456

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151