JP5677868B2 - Battery can for cylindrical alkaline battery and cylindrical alkaline battery - Google Patents

Battery can for cylindrical alkaline battery and cylindrical alkaline battery Download PDF

Info

Publication number
JP5677868B2
JP5677868B2 JP2011024081A JP2011024081A JP5677868B2 JP 5677868 B2 JP5677868 B2 JP 5677868B2 JP 2011024081 A JP2011024081 A JP 2011024081A JP 2011024081 A JP2011024081 A JP 2011024081A JP 5677868 B2 JP5677868 B2 JP 5677868B2
Authority
JP
Japan
Prior art keywords
battery
opening
cylindrical
negative electrode
ribs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011024081A
Other languages
Japanese (ja)
Other versions
JP2012164522A (en
Inventor
國谷 繁之
繁之 國谷
秀典 都築
秀典 都築
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Energy Co Ltd
Original Assignee
FDK Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Energy Co Ltd filed Critical FDK Energy Co Ltd
Priority to JP2011024081A priority Critical patent/JP5677868B2/en
Publication of JP2012164522A publication Critical patent/JP2012164522A/en
Application granted granted Critical
Publication of JP5677868B2 publication Critical patent/JP5677868B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Primary Cells (AREA)

Description

この発明は、円筒形アルカリ電池用の電池缶に関する。具体的には、かしめ加工によって封口される円筒形アルカリ電池用の電池缶において、生産性と発電要素の収納量をともに向上させるための技術に関する。また、その電池缶を用いた円筒形アルカリ電池にも関する。   The present invention relates to a battery can for a cylindrical alkaline battery. Specifically, the present invention relates to a technique for improving both productivity and the capacity of a power generation element in a battery can for a cylindrical alkaline battery sealed by caulking. The present invention also relates to a cylindrical alkaline battery using the battery can.

図5に本発明の対象となる円筒形アルカリ電池の一般的な構造を示した。当該図は、LR6型の円筒形アルカリ電池1bであり、円筒軸oの延長方向を縦方向としたときの縦断面を示している。このアルカリ電池1bは、有底円筒状の金属製電池缶2b、二酸化マンガン主体の粉体を環状に成形してなる正極合剤3、この正極合剤3の内側に配設された円筒カップ状のセパレータ4、亜鉛合金を含んでセパレータ4の内側に充填される負極ゲル5、この負極ゲル5中に挿入された金属製負極集電子6、皿状の金属製負極端子板7、封口ガスケット8などにより構成される。この構造において、正極合剤3、セパレータ4、および負極ゲル5が、電解液の存在下でアルカリ電池1bの発電要素を形成する。   FIG. 5 shows a general structure of a cylindrical alkaline battery which is an object of the present invention. The figure shows an LR6 type cylindrical alkaline battery 1b and shows a longitudinal section when the extending direction of the cylindrical axis o is the longitudinal direction. The alkaline battery 1b includes a bottomed cylindrical metal battery can 2b, a positive electrode mixture 3 formed by annularly forming a powder mainly composed of manganese dioxide, and a cylindrical cup shape disposed inside the positive electrode mixture 3. Separator 4, negative electrode gel 5 containing zinc alloy and filled inside separator 4, metal negative electrode current collector 6 inserted into negative electrode gel 5, dish-shaped metal negative electrode terminal plate 7, sealing gasket 8 Etc. In this structure, the positive electrode mixture 3, the separator 4, and the negative electrode gel 5 form a power generation element of the alkaline battery 1b in the presence of the electrolytic solution.

電池缶2bは、ニッケルメッキ処理された鋼鈑を素材とし、電池ケースであるとともに、正極合剤3が圧入されることで、この正極合剤3と接触し、正極集電体と正極端子9を兼ねる。負極端子板7と封口ガスケット8は、この電池缶2bの開口を封止するための構成(封口体)である。負極端子板7の内面には、棒状の負極集電子6が溶接により立設固定されて、負極端子板7、負極集電子6および封口ガスケット8は、あらかじめ一体に組み合わせられている。そして、負極集電子6が負極ゲル5の中に挿入されている。なお、封口ガスケット8は、その一部が他の部分より薄肉となっており、この薄肉部分は、電池1b内部におけるガスの発生などにより内圧が上昇した際に先行破断し、内圧を開放し、電池1bが破裂するのを防止する防爆安全機構として動作する。   The battery can 2b is made of a nickel-plated steel plate and is a battery case. The positive electrode mixture 3 is pressed into the battery can 2b so that the positive electrode current collector 3 and the positive electrode terminal 9 are brought into contact with the positive electrode mixture 3. Doubles as The negative electrode terminal plate 7 and the sealing gasket 8 have a configuration (sealing body) for sealing the opening of the battery can 2b. On the inner surface of the negative electrode terminal plate 7, a rod-shaped negative electrode current collector 6 is erected and fixed by welding, and the negative electrode terminal plate 7, the negative electrode current collector 6 and the sealing gasket 8 are combined together in advance. A negative electrode current collector 6 is inserted into the negative electrode gel 5. The sealing gasket 8 is partially thinner than the other part, and this thin part is pre-ruptured when the internal pressure rises due to the generation of gas inside the battery 1b, etc., and the internal pressure is released. It operates as an explosion-proof safety mechanism that prevents the battery 1b from bursting.

このような円筒形アルカリ電池1bの組み立て手順としては、まず、電池缶2bに正極合剤3を圧入して装填するとともに、当該電池缶2bの開口12の下方にビーディング部10を形成する。そして、セパレータ4および負極ゲル5を正極合剤3の内側に順次装填した後、電解液を注入する。そして、負極端子板7、および負極集電子6と一体化された略円盤状の封口ガスケット8の外周部をビーディング部10を座にして載置し、この状態で電池缶2bの開口12をかしめる。   As a procedure for assembling such a cylindrical alkaline battery 1b, first, the positive electrode mixture 3 is press-fitted and loaded into the battery can 2b, and the beading portion 10 is formed below the opening 12 of the battery can 2b. Then, after the separator 4 and the negative electrode gel 5 are sequentially loaded inside the positive electrode mixture 3, an electrolytic solution is injected. Then, the outer peripheral portion of the substantially disc-shaped sealing gasket 8 integrated with the negative electrode terminal plate 7 and the negative electrode current collector 6 is placed with the beading portion 10 as a seat, and the opening 12 of the battery can 2b is opened in this state. Caulking.

あるいは、図6に示した電池缶2cのように、その形状を、開口12側を拡径させて、径が大きな部分(開口端部)20と、それに連続して底部11に至る径が小さな部分(胴部)30とからなる略2段円筒状に成形しておき、上述した封口体(7,8)を、電池缶2bの内面の段差部分13を座にして載置し、この状態で開口端部20を縮径するようにかしめ、負極端子板7の周縁部をガスケット8を介して当該開口12に嵌着する。それによって電池缶2cを気密シールする。   Alternatively, as in the battery can 2c shown in FIG. 6, the shape of the opening 12 is enlarged on the side of the opening 12, and a large diameter portion (opening end portion) 20 and a diameter continuously reaching the bottom portion 11 are small. The sealing body (7, 8) is placed in a state where the stepped portion 13 on the inner surface of the battery can 2b is seated, and is formed in this state. Then, the opening end portion 20 is caulked to reduce the diameter, and the peripheral edge portion of the negative electrode terminal plate 7 is fitted into the opening 12 via the gasket 8. Thereby, the battery can 2c is hermetically sealed.

ところで電池缶(2b,2c)は、外寸が規格によって決められており、より容量を大きくするために、電池缶(2b,2c)の肉厚を、封口強度を確保しつつ可能な限り薄くし、発電要素をより多く充填することが必要となる。例えば、以下の特許文献1には、ニッケルメッキ処理された鉄素材を有底筒状に絞り成形し、その有底筒状に形成された電池缶の側面をしごき加工することにより、底部より側面部分の方の厚さを薄くなるように形成している。それによって、限られた外径の筒状電池の内容積を大きくし、多量の発電要素を充填できるようにしている。   By the way, the outer dimensions of the battery cans (2b, 2c) are determined by the standard, and in order to increase the capacity, the thickness of the battery cans (2b, 2c) is made as thin as possible while ensuring the sealing strength. However, it is necessary to fill more power generation elements. For example, in Patent Document 1 below, a nickel-plated iron material is drawn into a bottomed cylindrical shape, and the side surface of the battery can formed in the bottomed cylindrical shape is ironed to form a side surface from the bottom portion. The portion is formed so as to be thinner. Thereby, the inner volume of the cylindrical battery having a limited outer diameter is increased so that a large amount of power generation elements can be filled.

特許 第2615529号公報Japanese Patent No. 2615529

上述したように、限られた外寸の電池缶内により多量の発電要素を充填するためには、電池缶の肉厚を薄くすることが効果的である。しかし、肉厚を薄肉化していくと、電池缶の強度が不足し、電池の製造過程で電池缶が変形したり、破損したりすることがある。小さな変形であっても、その変形に伴って、電池缶と負極端子板とが短絡する場合もある。このような、電池缶の変形や破損は、電池缶の開口をかしめて封口する工程において、とくに発生し易い。確かに、レーザー溶接など他の封口方式を採用すればよいが、コストアップは免れない。また、円筒形アルカリ電池では、固い正極合剤を圧入する工程があるため、電池缶が薄いと、開口の縁端部が変形しやすくなる。すなわち、円筒形アルカリ電池では、リチウム一次電池などの発電方式が異なる他の電池と比べ、電池缶を薄肉化すること自体に問題がある。   As described above, it is effective to reduce the thickness of the battery can in order to fill a large amount of the power generation element in the battery can having a limited outer size. However, as the thickness is reduced, the strength of the battery can becomes insufficient, and the battery can may be deformed or damaged during the battery manufacturing process. Even if the deformation is small, the battery can and the negative electrode terminal plate may be short-circuited with the deformation. Such deformation and breakage of the battery can easily occur particularly in the process of caulking and sealing the opening of the battery can. Certainly, other sealing methods such as laser welding may be adopted, but cost increases are unavoidable. In addition, in a cylindrical alkaline battery, there is a step of press-fitting a hard positive electrode mixture. Therefore, if the battery can is thin, the edge of the opening is likely to be deformed. That is, in the cylindrical alkaline battery, there is a problem in reducing the thickness of the battery can as compared with other batteries having different power generation methods such as a lithium primary battery.

そこで、円筒形アルカリ電池の電池缶側面において、発電要素が充填される部分の肉厚のみを薄くし、より多くの発電要素を充填しつつ、電池缶の強度を高める場合がある。例えば、電池缶の側面にビーディング加工を施す場合であれば、一律に厚さが同じ寸胴の円筒状の電池缶を部分絞り加工によって部分的に薄肉化し、発電要素が充填される円筒側面の所望の範囲を薄肉化することができる。そして、その上で、発電要素を電池缶内に収納するとともに、開口側の所定の位置にビーディング加工を施し、封口体を組み込んでこれをかしめて封口する。一方、開口側が拡径された電池缶では、トランスファー加工などと呼ばれている周知の多段深絞りプレス加工によって実質的に一つの工程で電池缶を製造し、径が変化する高さ位置を境界にして、略2段円筒の段差部分より下方の側面を薄肉とし、開口側と底部側の肉厚を厚くしている。   Therefore, in some cases, on the battery can side surface of the cylindrical alkaline battery, only the thickness of the portion filled with the power generation element is reduced, and the strength of the battery can is increased while filling more power generation elements. For example, when beading is performed on the side surface of a battery can, a cylindrical battery can having a uniform cylinder thickness is partially thinned by partial drawing processing, and the cylindrical side surface on which the power generation element is filled is filled. The desired range can be thinned. Then, the power generation element is housed in the battery can, and beading is performed at a predetermined position on the opening side, and a sealing body is assembled and caulked to seal it. On the other hand, for battery cans with an enlarged diameter on the opening side, the battery cans are manufactured in substantially one step by a well-known multi-stage deep drawing press process called transfer processing, and the height position where the diameter changes is bounded. Thus, the side surface below the stepped portion of the approximately two-stage cylinder is made thin, and the opening and bottom sides are made thicker.

ここで、円筒形アルカリ電池の製造コストについて再考すると、電池缶の開口をかしめて封口する場合であっても、ビーディング部を形成すると、その形成工程が円筒状の電池缶を製造する工程と別となる。そのため、電池缶にビーディング部が形成されているアルカリ電池では、大幅なコストダウンが難しい。したがって、コストダウンの見地からは、開口側が拡径している電池缶を用いることがより望ましい。しかし、この電池缶では、肉厚が変化する箇所を強大な力で縮径するようにかしめることになり、電池缶が変形したり、破損したりする可能性がより高くなる。すなわち、従来の電池缶を用いた円筒形アルカリ電池では、コストダウンと電池容量の増大という二つの要求を高次元で両立することができない。   Here, when reconsidering the manufacturing cost of the cylindrical alkaline battery, even when the opening of the battery can is caulked and sealed, when the beading portion is formed, the forming process is a process of manufacturing the cylindrical battery can. It becomes another. Therefore, it is difficult to significantly reduce the cost of an alkaline battery in which a beading portion is formed in the battery can. Therefore, from the viewpoint of cost reduction, it is more desirable to use a battery can whose opening side has an enlarged diameter. However, in this battery can, the portion where the wall thickness changes is caulked so as to reduce the diameter with a great force, and the possibility that the battery can is deformed or damaged becomes higher. That is, in a cylindrical alkaline battery using a conventional battery can, the two requirements of cost reduction and battery capacity increase cannot be achieved at a high level.

したがって本発明は、開口側が拡径するとともに、かしめによって開口が封口される円筒形アルカリ電池用の電池缶において、電池容量に寄与する内容積を増大させつつ、封口工程における変形を防止することを目的としている。なお、その他の目的については以下の記載で明らかにする。   Accordingly, the present invention provides a battery can for a cylindrical alkaline battery in which the opening side is enlarged in diameter and the opening is sealed by caulking, while preventing the deformation in the sealing process while increasing the internal volume contributing to the battery capacity. It is aimed. Other purposes will be clarified in the following description.

上記目的を達成するための本発明は、円筒形アルカリ電池用の電池缶であって、
上方に開口部を有する有底円筒状で、内部に、環状に成形されて圧入される正極合剤と、正極合剤の内側にセパレータを介して配置される負極ゲルとが収納されるともに、外方から縮径方向にかしめられることで前記開口部に負極端子板がガスケットを介して嵌着され、
前記負極端子板の嵌着位置から前記開口部に至る開口端部と、当該開口端部の下端に連続して底部に至る胴部とからなり、
前記負極端子板が嵌着される前において、前記開口端部の外径が前記胴部の外径よりも大きく、かつ前記開口端部の内径が前記胴部の内径よりも大きい二段円筒状に形成されていることで、当該電池缶の内面における前記胴部の上端と前記開口端部の下端との境界に前記ガスケットの下方周縁を上下方向に直交する水平面で下支えする段差が形成され、
前記開口端部の厚さが前記胴部の厚さよりも大きく、
前記胴部の内面には、当該胴部の上端から下方に延長しつつ内方に突出する複数のリブが形成されている、
ことを特徴としている。
The present invention for achieving the above object is a battery can for a cylindrical alkaline battery,
In the bottomed cylindrical shape having an opening on the upper side, a positive electrode mixture that is molded into an annular shape and press-fitted therein, and a negative electrode gel that is disposed inside the positive electrode mixture via a separator are housed, A negative electrode terminal plate is fitted to the opening through a gasket by caulking in the direction of diameter reduction from the outside ,
It consists of an opening end that reaches from the fitting position of the negative electrode terminal plate to the opening, and a body that reaches the bottom continuously from the lower end of the opening end,
Before the negative electrode terminal plate is fitted, the outer diameter of the opening end is larger than the outer diameter of the barrel, and the inner diameter of the opening end is larger than the inner diameter of the barrel. by being formed in a step to prop up a horizontal plane perpendicular to the lower peripheral edge of the gasket in the vertical direction at the boundary between the lower end of the upper end of the barrel portion on the inner surface of the battery can the opening edge portion is formed,
The thickness of the opening end is larger than the thickness of the trunk,
On the inner surface of the body portion, a plurality of ribs are formed that protrude inward while extending downward from the upper end of the body portion.
It is characterized by that.

また、好ましくは、前記リブが、前記胴部の円周に沿って等角度間隔で偶数本形成されている円筒形アルカリ電池用電池缶とすることである。その上で、前記リブにおける前記胴部の内面から突出する高さが、0.04mm以上、0.05mm以下であればより好ましい。   Moreover, it is preferable that the rib is a cylindrical battery can for alkaline batteries in which an even number of ribs are formed at equal angular intervals along the circumference of the body portion. In addition, it is more preferable that the height of the rib protruding from the inner surface of the body portion is 0.04 mm or more and 0.05 mm or less.

さらに、前記リブにおける前記胴部の内周方向に沿う幅が、0.5mm以上1.0mm以下としてもよい。または、前記リブを4本以上としてもよい。リブのサイズに依らず、前記リブを8本以上としてもよい。   Furthermore, the width along the inner circumferential direction of the body portion of the rib may be 0.5 mm or more and 1.0 mm or less. Alternatively, four or more ribs may be used. Regardless of the rib size, the number of ribs may be eight or more.

また、本発明は、上記いずれかに記載の電池缶の内部に、環状に成形されて圧入されている正極合剤と、当該正極合剤の内側にセパレータを介して配置されている負極ゲルとが収納され、前記開口端部が縮径方向にかしめ加工されていることで、当該電池缶の前記開口部に、前記負極端子板が前記段差を座として載置されている前記ガスケットを介して嵌着されてる円筒形アルカリ電池にも及んでいる。 Further, the present invention provides a positive electrode mixture that is annularly molded and press-fitted inside the battery can according to any of the above, and a negative electrode gel that is disposed inside the positive electrode mixture via a separator. There is housed, that the open mouth end being caulked diameter direction, the opening of the battery can, through the gasket and the negative electrode terminal plate is placed over the step as a seat also it extends to cylindrical alkaline batteries that have been fitted Te.

本発明によれば、開口側が拡径するとともに、かしめによって開口が封口される円筒形アルカリ電池用の電池缶において、電池容量に寄与する内容積を増大させつつ、封口工程における変形を防止することができる。また、本発明に係る円筒形アルカリ電池用電池缶は、簡素な製造工程によって製造することが可能であり、高性能で、かつ安価な円筒形アルカリ電池を提供することが可能となる。   According to the present invention, in a battery can for a cylindrical alkaline battery whose opening side is enlarged in diameter and whose opening is sealed by caulking, deformation in the sealing process is prevented while increasing the internal volume contributing to the battery capacity. Can do. The cylindrical alkaline battery battery can according to the present invention can be manufactured by a simple manufacturing process, and can provide a high-performance and inexpensive cylindrical alkaline battery.

本発明の一実施例に係る円筒形アルカリ電池用電池缶を用いた円筒形アルカリ電池の構造図である。1 is a structural diagram of a cylindrical alkaline battery using a cylindrical alkaline battery battery can according to an embodiment of the present invention. 上記実施例に係る電池缶の構造を示す図である。It is a figure which shows the structure of the battery can which concerns on the said Example. 上記実施例に係る電池缶に形成されているリブの形成条件を説明するための図である。It is a figure for demonstrating the formation conditions of the rib currently formed in the battery can which concerns on the said Example. 上記実施例に係る電池缶の開口を封口する際の状態を説明するための図である。It is a figure for demonstrating the state at the time of sealing the opening of the battery can which concerns on the said Example. 一般的な円筒形アルカリ電池の構造図である。1 is a structural diagram of a general cylindrical alkaline battery. 従来の円筒形アルカリ電池用電池缶の構造を示す図である。It is a figure which shows the structure of the conventional battery can for cylindrical alkaline batteries.

===電池缶の構造===
図1は、本発明の一実施例に係る円筒形アルカリ電池用電池缶(以下、電池缶)2a内に発電要素を収納してなる円筒形アルカリ電池(以下、アルカリ電池)1aの構造図であり、電池缶2aの底部11を下方にしたときの縦断面に相当する。図示したアルカリ電池1aの構成は、従来のアルカリ乾電池と同様であるが、電池缶2aの構造が従来の電池缶(図6、1c)と異なっている。
=== Structure of battery can ===
FIG. 1 is a structural diagram of a cylindrical alkaline battery (hereinafter referred to as an alkaline battery) 1a in which a power generation element is housed in a cylindrical alkaline battery battery can (hereinafter referred to as a battery can) 2a according to an embodiment of the present invention. Yes, this corresponds to a longitudinal section when the bottom 11 of the battery can 2a is turned downward. The configuration of the illustrated alkaline battery 1a is the same as that of a conventional alkaline battery, but the structure of the battery can 2a is different from that of the conventional battery can (FIGS. 6 and 1c).

図2に、本実施例の電池缶2aの構造を示した。当該図2は、かしめによって封口体(7,8)が開口12に嵌着される前の状態の電池缶2aを示しており、図2(A)は、その縦断面図であり、電池缶2aの底部11を下方にして示している。(B)は、水平断面図であり、(A)におけるa−a矢視断面に対応する。図2に示したように、本実施例に係る電池缶2bは、上方を開口12とした有底円筒状で、開口12側に拡径した開口端部20と、開口端部20の下方に連続して底部11にかけて縮径した胴部30とを備えた略2段円筒状である。また、電池缶2aの側面は、開口端部20の方が、胴部30より肉厚となっている。そして、胴部30の内面31には、上記開口端部20と胴部30との段差部分(以下、境界)13を起点にして下方に延長しつつ、内方に突出する複数の突起(以下、リブ)33が形成されている。当該実施例の電池缶2aは、多段深絞りプレス加工によって製造されており、リブ33は、その下端が底面32に接するまで延長している。なお、図1および図2を含め、以下の図では、説明を容易にするために、リブ33のサイズを誇張して示している。なお、ここに示した電池缶2aにはビーディング部が形成されていないが、ビーディング部が形成されていてもよい。すなわち、開口側が拡径するとともに、かしめによって開口が封口されるタイプの円筒型アルカリ電池用の電池缶であればよい。   FIG. 2 shows the structure of the battery can 2a of this example. FIG. 2 shows the battery can 2a in a state before the sealing body (7, 8) is fitted into the opening 12 by caulking, and FIG. 2 (A) is a longitudinal sectional view showing the battery can. 2a is shown with the bottom 11 downward. (B) is a horizontal sectional view and corresponds to the cross section taken along the line aa in (A). As shown in FIG. 2, the battery can 2b according to the present example is a bottomed cylindrical shape having an opening 12 on the upper side, and has an opening end 20 that has a diameter expanded toward the opening 12 and a lower portion of the opening end 20. It has a substantially two-stage cylindrical shape including a body portion 30 continuously reduced in diameter toward the bottom portion 11. Further, the side surface of the battery can 2 a is thicker at the opening end 20 than at the body 30. A plurality of protrusions (hereinafter referred to as inward projections) are formed on the inner surface 31 of the body portion 30 while extending downward from a step portion (hereinafter referred to as a boundary) 13 between the opening end portion 20 and the body portion 30. , Ribs) 33 are formed. The battery can 2a of the embodiment is manufactured by multistage deep drawing press processing, and the rib 33 extends until the lower end thereof contacts the bottom surface 32. In the following drawings including FIG. 1 and FIG. 2, the size of the rib 33 is exaggerated for easy explanation. In addition, although the beading part is not formed in the battery can 2a shown here, the beading part may be formed. That is, any battery can be used for a cylindrical alkaline battery of the type in which the diameter of the opening is increased and the opening is sealed by caulking.

本実施例に係る電池缶2aは、より多くの発電要素を充填するために胴部30を薄肉としつつ、その胴部30に複数の微細なリブ33を形成することで、当該胴部33が補強されている。それによって、開口端部20をかしめて封口する際、あるいは正極合剤3を圧入する際に、電池缶2aが変形したり破損したりすることを高い確度で防止することができるようになっている。また、リブ33が上記境界13を跨いで形成されていないため、開口端部20の内面に起伏がなく、開口端部20をかしめた際、ガスケット8の外周面と電池缶2aの内面とが確実に密着する。それによって、封口ガスケット8の防爆安全機構が動作せずに電解液が電池缶2a外に漏れ出すことを確実に防止することができる。   In the battery can 2a according to the present embodiment, the barrel portion 30 is formed by forming a plurality of minute ribs 33 on the barrel portion 30 while making the barrel portion 30 thin in order to fill more power generation elements. It is reinforced. As a result, it is possible to prevent the battery can 2a from being deformed or damaged with high accuracy when the open end portion 20 is caulked and sealed, or when the positive electrode mixture 3 is press-fitted. Yes. Further, since the rib 33 is not formed across the boundary 13, the inner surface of the opening end portion 20 has no undulation, and when the opening end portion 20 is caulked, the outer peripheral surface of the gasket 8 and the inner surface of the battery can 2 a are Adhere securely. Thereby, it is possible to reliably prevent the electrolyte from leaking out of the battery can 2a without the explosion-proof safety mechanism of the sealing gasket 8 operating.

===リブの最適化===
ここで、リブ33についての形成条件(本数、サイズなど)について考察すると、例えば、本数が少なければ、強度が不足することが懸念され、サイズが適切でないと、アルカリ電池の製造過程の封口工程以外の工程で、生産性を低下させる可能性もある。そこで、リブ33の最適形成条件について検討することとした。
=== Optimization of ribs ===
Here, considering the formation conditions (number, size, etc.) of the ribs 33, for example, if the number is small, there is a concern that the strength will be insufficient, and if the size is not appropriate, other than the sealing step of the alkaline battery manufacturing process. In this process, productivity may be reduced. Therefore, the optimum formation condition of the rib 33 was examined.

図3にリブ33のサイズに関する説明図を示した。図3の(A)と(B)は、それぞれ、図2(A)と(B)のそれぞれにおける円100内と円101内を拡大した図である。図示したように、開口端部20の肉厚がt1、胴部30の肉厚がt2の電池缶2aを用い、その電池缶2aの胴部30の内面31に幅wと高さhのリブ33を形成することとした。なお、底部11と底面32との肉厚はt1である。そして、サンプルとして、従来と同じ構造のリブ33が無い電池缶(図6、2c)と、リブ33が形成されて、そのリブ33の本数n、幅w、高さhが異なる種々の電池缶2aを用いてLR6型のアルカリ電池を作成し、リブ33の有無による効果、およびリブ33の本数や形状についての最適条件などを検討した。   FIG. 3 is an explanatory diagram regarding the size of the rib 33. 3A and 3B are enlarged views of the circle 100 and the circle 101 in FIGS. 2A and 2B, respectively. As shown in the drawing, a battery can 2a having a thickness t1 of the open end 20 and a thickness t2 of the barrel 30 is used, and a rib having a width w and a height h is formed on the inner surface 31 of the barrel 30 of the battery can 2a. 33 was formed. In addition, the thickness of the bottom part 11 and the bottom face 32 is t1. And as a sample, a battery can (FIGS. 6 and 2c) having no rib 33 having the same structure as the conventional one, and various battery cans in which the rib 33 is formed and the number n, width w, and height h of the rib 33 are different. An LR6 type alkaline battery was prepared using 2a, and the effects of the presence or absence of the ribs 33 and the optimum conditions for the number and shape of the ribs 33 were studied.

===電池缶の強度試験===
図6に示したような一般的に流通しているアルカリ電池の電池缶2cの肉厚は、0.25mm程度であり、発電要素をより多く充填する際には、胴部30の肉厚を0.2mm程度の薄さにしている。そこで、本発明の実施例に係る電池缶2aの性能をより明白にするために、開口端部20の肉厚t1を0.25mmとし、胴部30の肉厚t2を現実の電池缶2cよりもかなり薄い0.16mmに規定した。その上で、リブ33が形成されていない電池缶2cを用いたサンプル(比較例)と、各種条件のリブ33を形成した電池缶2aを用いたサンプル(実施例)とを、実際の電池製造ラインにて多数製造した。そして、不良サンプルの発生率(不良発生率)を調査した。
=== Battery can strength test ===
The thickness of the battery can 2c of the alkaline battery that is generally distributed as shown in FIG. 6 is about 0.25 mm. The thickness is about 0.2 mm. Therefore, in order to clarify the performance of the battery can 2a according to the embodiment of the present invention, the wall thickness t1 of the opening end 20 is set to 0.25 mm, and the wall thickness t2 of the body 30 is set to be greater than that of the actual battery can 2c. Is also defined as 0.16 mm which is considerably thin. In addition, a sample using the battery can 2c in which the ribs 33 are not formed (comparative example) and a sample using the battery can 2a in which the ribs 33 of various conditions are formed (examples) are actually manufactured. Many manufactured in line. Then, the occurrence rate of defective samples (defect occurrence rate) was investigated.

===リブの本数と配置===
まず、リブ33の本数について、その最適値求めた。具体的にはリブ33の本数が多いほど電池缶2aの強度が増すことは自明であるため、最小値を求めた。また、かしめによる封口工程では、図4に示した電池缶2bの水平断面図のように、電池缶2bには、外方から円筒軸o方向に向かってほぼ均等に力(図中、白抜き矢印)が加わることから、リブ33の形成位置は、等角度間隔であることがより望ましい。さらに、封口工程に際しては、電池缶2aの外側から円筒軸o方向に加わる力を均等にリブ33に伝えることで、変形をより確実に防止できると考えられるため、その数を偶数とすればより好ましい。すなわち、直径Lの両端の一方にのみリブ33が形成されていると、開口端部20の円周上の1点P1に加わった力に対する強度と、円周上の反対側の点P2に加わる力に対する強度とが不均等となり、変形しやすくなる。そこで、実施例に係るサンプルとして、リブ33の個数が偶数で、その配置が等角度間隔となる電池缶2aを用いたアルカリ電池1aを作成した。
=== Number and arrangement of ribs ===
First, the optimum value of the number of ribs 33 was obtained. Specifically, since it is obvious that the strength of the battery can 2a increases as the number of the ribs 33 increases, the minimum value is obtained. Further, in the sealing step by caulking, as shown in the horizontal cross-sectional view of the battery can 2b shown in FIG. (Arrow) is added, it is more desirable that the ribs 33 are formed at equiangular intervals. Furthermore, in the sealing step, it is considered that the force applied in the direction of the cylindrical axis o from the outside of the battery can 2a can be evenly transmitted to the rib 33, so that deformation can be prevented more reliably. Therefore, if the number is even, preferable. That is, if the rib 33 is formed only at one end of the diameter L, the strength against the force applied to the point P1 on the circumference of the opening end 20 and the point P2 on the opposite side of the circumference are added. The strength with respect to the force becomes uneven, and it becomes easy to deform. Therefore, as a sample according to the example, an alkaline battery 1a using a battery can 2a in which the number of ribs 33 is an even number and the arrangement thereof is equiangularly spaced was produced.

表1に、作成したサンプル条件と不良発生率とを示した。
Table 1 shows the prepared sample conditions and the defect occurrence rate.

表1は、リブ33の形成条件(有無、高さh,幅w,本数n)が異なる各種サンプルについて、封口工程において電池缶(2a、2c)が変形したり破損したりしたサンプルの発生率を示している。リブ33の本数n=0の比較例では、92%ものサンプルにおいて不良が発生し、これは、胴部30の肉厚が0.16mmの電池缶2cを使用してアルカリ電池を製造することが実質的にできない、ということを意味している。換言すれば、実施例のサンプルは、従来のアルカリ電池と比較すると、極めて厳しい条件下で製造されたことになる。しかし、このような条件下においても、リブ33を形成した電池缶2aを採用した実施例のサンプルでは、不良発生率が低減することが確認できた。   Table 1 shows the incidence of samples in which battery cans (2a, 2c) were deformed or damaged in the sealing process for various samples with different formation conditions (existence / absence, height h, width w, number n) of ribs 33. Is shown. In the comparative example in which the number of ribs 33 is n = 0, defects occur in as many as 92% of the samples. This is because an alkaline battery can be manufactured by using the battery can 2c having the body 30 having a wall thickness of 0.16 mm. It means that it is practically impossible. In other words, the sample of the example was manufactured under extremely severe conditions as compared with the conventional alkaline battery. However, even under such conditions, it was confirmed that the defect occurrence rate was reduced in the sample of the example employing the battery can 2a in which the rib 33 was formed.

実施例のサンプルの内、リブ33の高さh≧0.04mmとすると、リブ33の本数nによらず、不良サンプルの発生数が半数近くとなり、不良発生率55%以下を達成した。また、h≧0.04mmとした上で、リブ33の幅wに着目すると、幅w≧0.5mmでは、不良発生率が最大で51%となり不良サンプルの数がほぼ半数となった。また、リブ33の本数に着目すると、その本数を4本以上とすることで、不良発生率が最大でも47%となり、不良サンプルの数を半数未満に抑えることができた。   Among the samples of the example, when the height h of the ribs 33 is equal to or greater than 0.04 mm, the number of defective samples generated is almost half regardless of the number n of the ribs 33, and the defect occurrence rate is 55% or less. Further, focusing on the width w of the rib 33 with h ≧ 0.04 mm, when the width w ≧ 0.5 mm, the defect occurrence rate was 51% at the maximum, and the number of defective samples was almost half. Focusing on the number of ribs 33, by setting the number to four or more, the defect occurrence rate was 47% at the maximum, and the number of defective samples could be suppressed to less than half.

また、リブ33の本数nのみに着目すれば、リブ33の本数を8本以上とすると、リブ33のサイズに依らず、不良発生率を32%まで低減させることができた。すなわち、不良サンプルの数を1/3以下にすることができた。   Focusing only on the number n of the ribs 33, if the number of the ribs 33 is 8 or more, the defect occurrence rate can be reduced to 32% regardless of the size of the ribs 33. That is, the number of defective samples could be reduced to 1/3 or less.

以上より、リブ33の高さh≧0.04mmの条件が不良サンプルの発生をより高い確率で防止するための条件となり、その上で、リブ33の幅w≧0.5mm、あるいはリブ33の本数n≧4とすればより効果的である。あるいは、リブ33のサイズに依らず、リブ33の数nを8本以上とすることでも不良発生率を劇的に低減させることができる、ということが確認できた。そして、上記h≧0.04mm、w≧0.5mm、n≧8とすると、上述した極めて厳しい条件下においても、不良発生率を0%とすることができた。すなわち、封口工程における電池缶2aの変形を完全に防止することができた。なお、リブ33の数を無制限に多くすると、実質的に、胴部30の肉厚を厚くすることと同じになってしまうため、リブ33の本数n≧8とし、その具体的な本数nは、リブ33のサイズ、歩留まり、あるいは電気容量などを勘案して適宜に決定すればよい。   From the above, the condition that the height of the rib 33 is h ≧ 0.04 mm is a condition for preventing the occurrence of a defective sample with a higher probability. If the number n ≧ 4, it is more effective. Alternatively, it has been confirmed that the defect occurrence rate can be drastically reduced by setting the number n of the ribs 33 to 8 or more regardless of the size of the ribs 33. When h ≧ 0.04 mm, w ≧ 0.5 mm, and n ≧ 8, the defect occurrence rate could be 0% even under the extremely severe conditions described above. That is, the deformation of the battery can 2a in the sealing step could be completely prevented. If the number of the ribs 33 is increased without limitation, it becomes substantially the same as increasing the thickness of the body portion 30. Therefore, the number of ribs 33 is set to n ≧ 8, and the specific number n is The size of the rib 33, the yield, or the electric capacity may be taken into consideration as appropriate.

<リブの高さについて>
上述したように、h≧0.04mm、w≧0.5mm、n≧8とすることで、電池缶2aの変形を完全に防止することができた。しかし、アルカリ電池1aでは、電池缶2aに正極合剤3を圧入する工程があり、リブ33の高さが高いと、正極合剤3が欠損する可能性がある。そこで、リブ33の高さhについて、その上限を求めることした。ここでは、不良率が0%だった条件から、さらにリブ33を高くしたサンプルを作成し、正極合剤3の欠損に起因する不良率を調査した。
<About the height of the rib>
As described above, by setting h ≧ 0.04 mm, w ≧ 0.5 mm, and n ≧ 8, the deformation of the battery can 2a could be completely prevented. However, in the alkaline battery 1a, there is a step of press-fitting the positive electrode mixture 3 into the battery can 2a. If the height of the rib 33 is high, the positive electrode mixture 3 may be lost. Therefore, the upper limit of the height h of the rib 33 was determined. Here, a sample in which the ribs 33 were further increased was prepared from the condition where the defect rate was 0%, and the defect rate due to the loss of the positive electrode mixture 3 was investigated.

表2にその結果を示した。
Table 2 shows the results.

表2に示したように、リブ33の高さhが0.06mm以上で正極合剤3が欠損する不良サンプルが出現した。したがって、リブ33の高さhの最適値は、0.04mm≦h≦0.05mmであると言える。   As shown in Table 2, a defective sample in which the positive electrode mixture 3 was missing when the height h of the rib 33 was 0.06 mm or more appeared. Therefore, it can be said that the optimum value of the height h of the rib 33 is 0.04 mm ≦ h ≦ 0.05 mm.

<リブの幅>
リブ33の幅wについては、それが広いと、多段深絞りプレス加工時にプレス用の金型との接触面積が大きくなり、金型から電池缶2aが離れず、次の工程に移行できなくなる「焼き付け」という現象が発生する。そこで、リブ33の幅wについてもその上限を求めた。なお、ここでもリブ33の数nは8本とし、リブ33の高さhについては、上記最適値0.04mm≦h≦0.05mmを採用した。
<Rib width>
If the width w of the rib 33 is wide, the contact area with the pressing mold becomes large at the time of multistage deep drawing press processing, the battery can 2a is not separated from the mold, and the process cannot be shifted to the next process. The phenomenon of “burning” occurs. Therefore, the upper limit of the width w of the rib 33 was also obtained. Here, the number n of the ribs 33 is eight, and the optimum value 0.04 mm ≦ h ≦ 0.05 mm is employed for the height h of the ribs 33.

表3に、リブ33の幅wを変えたサンプルについての不良発生率を示した。
Table 3 shows the defect occurrence rate for samples in which the width w of the rib 33 is changed.

表3に示したように、リブ33の幅wが1.1mm以上で僅かながら焼き付きが見られた。しかし、w≦1.0mmでは、焼き付けが全く発生しなかった。したがって、リブ33の幅wは1.0mm以下であることが望ましい。そして、表1に示した結果と合わせると、0.5mm≦w≦1.0とすることで、焼き付きを完全に防止することができる、と言える。   As shown in Table 3, a slight burn-in was observed when the width w of the rib 33 was 1.1 mm or more. However, when w ≦ 1.0 mm, no baking occurred. Therefore, the width w of the rib 33 is desirably 1.0 mm or less. When combined with the results shown in Table 1, it can be said that by setting 0.5 mm ≦ w ≦ 1.0, it is possible to completely prevent burn-in.

1a,1b アルカリ電池、2a,2b,2c 電池缶、3 正極合剤、
4 セパレータ、5 負極ゲル、6 負極集電子、7 負極端子板、
8 封口ガスケット、9 正極端子、11 電池缶の底部、12 電池缶の開口、
13 段差部分(境界)、20 開口端部、30 胴部、31 胴部の内面、
32 電池缶の底面、33 リブ
1a, 1b alkaline battery, 2a, 2b, 2c battery can, 3 positive electrode mixture,
4 separator, 5 negative electrode gel, 6 negative electrode current collector, 7 negative electrode terminal plate,
8 Sealing gasket, 9 Positive terminal, 11 Bottom of battery can, 12 Opening of battery can,
13 step part (boundary), 20 opening end part, 30 trunk part, 31 inner surface of trunk part,
32 Bottom of battery can, 33 rib

Claims (7)

円筒形アルカリ電池用の電池缶であって、
上方に開口部を有する有底円筒状で、内部に、環状に成形されて圧入される正極合剤と、正極合剤の内側にセパレータを介して配置される負極ゲルとが収納されるともに、外方から縮径方向にかしめられることで前記開口部に負極端子板がガスケットを介して嵌着され、
前記負極端子板の嵌着位置から前記開口部に至る開口端部と、当該開口端部の下端に連続して底部に至る胴部とからなり、
前記負極端子板が嵌着される前において、前記開口端部の外径が前記胴部の外径よりも大きく、かつ前記開口端部の内径が前記胴部の内径よりも大きい二段円筒状に形成されていることで、当該電池缶の内面における前記胴部の上端と前記開口端部の下端との境界に前記ガスケットの下方周縁を上下方向に直交する水平面で下支えする段差が形成され、
前記開口端部の厚さが前記胴部の厚さよりも大きく、
前記胴部の内面には、当該胴部の上端から下方に延長しつつ内方に突出する複数のリブが形成されている、
ことを特徴とする円筒形アルカリ電池用電池缶。
A battery can for a cylindrical alkaline battery,
In the bottomed cylindrical shape having an opening on the upper side, a positive electrode mixture that is molded into an annular shape and press-fitted therein, and a negative electrode gel that is disposed inside the positive electrode mixture via a separator are housed, A negative electrode terminal plate is fitted to the opening through a gasket by caulking in the direction of diameter reduction from the outside ,
It consists of an opening end that reaches from the fitting position of the negative electrode terminal plate to the opening, and a body that reaches the bottom continuously from the lower end of the opening end,
Before the negative electrode terminal plate is fitted, the outer diameter of the opening end is larger than the outer diameter of the barrel, and the inner diameter of the opening end is larger than the inner diameter of the barrel. by being formed in a step to prop up a horizontal plane perpendicular to the lower peripheral edge of the gasket in the vertical direction at the boundary between the lower end of the upper end of the barrel portion on the inner surface of the battery can the opening edge portion is formed,
The thickness of the opening end is larger than the thickness of the trunk,
On the inner surface of the body portion, a plurality of ribs are formed that protrude inward while extending downward from the upper end of the body portion.
A cylindrical battery can for alkaline batteries.
請求項1において、前記リブは、前記胴部の円周に沿って等角度間隔で偶数本形成されていることを特徴とする円筒形アルカリ電池用電池缶。   2. The cylindrical battery can for alkaline batteries according to claim 1, wherein an even number of ribs are formed at equal angular intervals along the circumference of the body portion. 請求項2において、前記リブは、前記胴部の内面から突出する高さが、0.04mm以上、0.05mm以下であることを特徴とする円筒形アルカリ電池用電池缶。   3. The cylindrical battery can for alkaline batteries according to claim 2, wherein the rib protrudes from the inner surface of the body portion with a height of 0.04 mm or more and 0.05 mm or less. 請求項3において、前記リブは、前記胴部の内周方向に沿う幅が、0.5mm以上1.0mm以下であることを特徴とする円筒形アルカリ電池用電池缶。   4. The cylindrical battery can for alkaline batteries according to claim 3, wherein the rib has a width along the inner circumferential direction of the body portion of 0.5 mm to 1.0 mm. 請求項3において、前記リブは、4本以上であることを特徴とする円筒形アルカリ電池用電池缶。   4. The battery can for a cylindrical alkaline battery according to claim 3, wherein the number of the ribs is four or more. 請求項2〜4のいずれかにおいて、前記リブは、8本以上であることを特徴とする円筒形アルカリ電池用電池缶。   5. The cylindrical alkaline battery battery can according to claim 2, wherein the number of ribs is eight or more. 請求項1〜6のいずれかに記載の前記電池缶を備えたアルカリ電池であって、
当該電池缶の内部に、環状に成形されて圧入されている正極合剤と、当該正極合剤の内側にセパレータを介して配置されている負極ゲルとが収納され、
前記開口端部が縮径方向にかしめ加工されていることで、当該電池缶の前記開口部に、前記負極端子板が前記段差を座として載置されている前記ガスケットを介して嵌着されている、
ことを特徴とする円筒形アルカリ電池。
An alkaline battery comprising the battery can according to claim 1,
Inside the battery can, a positive electrode mixture formed in a ring and press-fitted, and a negative electrode gel disposed via a separator inside the positive electrode mixture are housed,
By the open mouth end being caulked diameter direction, the opening of the battery can, is fitted over the gasket and the negative electrode terminal plate is placed over the step as a seat ing,
A cylindrical alkaline battery.
JP2011024081A 2011-02-07 2011-02-07 Battery can for cylindrical alkaline battery and cylindrical alkaline battery Active JP5677868B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011024081A JP5677868B2 (en) 2011-02-07 2011-02-07 Battery can for cylindrical alkaline battery and cylindrical alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011024081A JP5677868B2 (en) 2011-02-07 2011-02-07 Battery can for cylindrical alkaline battery and cylindrical alkaline battery

Publications (2)

Publication Number Publication Date
JP2012164522A JP2012164522A (en) 2012-08-30
JP5677868B2 true JP5677868B2 (en) 2015-02-25

Family

ID=46843725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011024081A Active JP5677868B2 (en) 2011-02-07 2011-02-07 Battery can for cylindrical alkaline battery and cylindrical alkaline battery

Country Status (1)

Country Link
JP (1) JP5677868B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7312743B2 (en) * 2018-04-06 2023-07-21 パナソニックエナジー株式会社 battery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04132156A (en) * 1990-09-20 1992-05-06 Toyo Takasago Kandenchi Kk Battery
JP3402047B2 (en) * 1996-02-08 2003-04-28 松下電器産業株式会社 Battery
JP2009181754A (en) * 2008-01-29 2009-08-13 Fdk Energy Co Ltd Positive electrode can for alkaline battery, and alkaline battery
JP5355012B2 (en) * 2008-09-25 2013-11-27 Fdkエナジー株式会社 Battery cans and alkaline batteries

Also Published As

Publication number Publication date
JP2012164522A (en) 2012-08-30

Similar Documents

Publication Publication Date Title
US5422201A (en) Current collector assembly for an electrochemical cell
EP2367219A2 (en) Cylindrical secondary battery and method of manufacturing the same
KR101352098B1 (en) Flat battery
US10873060B2 (en) Battery can for a battery
KR101416520B1 (en) Cap plate for secondary batteries having vent structure and manufacturing mathod of it
JP5159076B2 (en) Cylindrical storage battery and manufacturing method thereof
JP2021150243A (en) Cylindrical battery
JP2009230991A (en) Cylindrical cell and manufacturing method of cylindrical cell
JP5677868B2 (en) Battery can for cylindrical alkaline battery and cylindrical alkaline battery
JP2011228019A (en) Battery can, method for producing the same, and nonaqueous electrolytic solution secondary battery
KR101889592B1 (en) Beading-free Cylindrical Battery and Manufacturing Method for the Same
JP2008078158A (en) Coin battery
JP2006066308A (en) Coin-shaped cell
US20230114471A1 (en) Cylindrical battery
JP2013073804A (en) Cathode can for lithium battery, lithium battery, and method for manufacturing the same
US9614195B2 (en) Energy storage device and manufacturing method of the same
US20160093841A1 (en) Energy storage device and manufacturing method of the same
JP2012252922A (en) Cylinder type battery
KR102693189B1 (en) Cylindrical secondary battery and manufacturing method of secondary battery
CN114284542B (en) Manufacturing method of battery and battery
JP2023086489A (en) Cylindrical battery sealing body and cylindrical battery including the sealing body
JP7187205B2 (en) cylindrical battery
KR102545593B1 (en) Cylindrical secondary battery and manufacturing method of secondary battery
WO2021172233A1 (en) Power storage device
JP5557453B2 (en) Alkaline battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150105

R150 Certificate of patent or registration of utility model

Ref document number: 5677868

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250