JP2013073804A - Cathode can for lithium battery, lithium battery, and method for manufacturing the same - Google Patents

Cathode can for lithium battery, lithium battery, and method for manufacturing the same Download PDF

Info

Publication number
JP2013073804A
JP2013073804A JP2011212393A JP2011212393A JP2013073804A JP 2013073804 A JP2013073804 A JP 2013073804A JP 2011212393 A JP2011212393 A JP 2011212393A JP 2011212393 A JP2011212393 A JP 2011212393A JP 2013073804 A JP2013073804 A JP 2013073804A
Authority
JP
Japan
Prior art keywords
positive electrode
lithium battery
opening
sealing
plate thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011212393A
Other languages
Japanese (ja)
Other versions
JP5851177B2 (en
Inventor
Yoshiteru Nakagawa
吉輝 中川
Hiroshi Hamada
浩 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Energy Co Ltd
Original Assignee
FDK Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Energy Co Ltd filed Critical FDK Energy Co Ltd
Priority to JP2011212393A priority Critical patent/JP5851177B2/en
Publication of JP2013073804A publication Critical patent/JP2013073804A/en
Application granted granted Critical
Publication of JP5851177B2 publication Critical patent/JP5851177B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a cathode can for a lithium battery, which is reduced in dimensional variation and can be manufactured at a low cost.SOLUTION: A cathode can 11 for a lithium battery is molded in a cylindrical shape comprising an opening part 16, a body part 17, and a bottom part 18 by pressing a stainless steel material. A sealing body is attached to the opening part 16 of the cathode can 11, and a cathode mixture is stored in the body part 17. In the cathode can 11, the opening part 16 is formed so that its plate thickness T1 is thinner than a plate thickness T2 of the body part 17.

Description

本発明は、ステンレス鋼材をプレス加工して製缶されたリチウム電池用正極缶、その正極缶を備えたリチウム電池及びリチウム電池の製造方法に関するものである。   The present invention relates to a positive electrode can for a lithium battery produced by pressing a stainless steel material, a lithium battery provided with the positive electrode can, and a method for producing the lithium battery.

ボビン型リチウム電池は、有底円筒状の正極缶と、正極缶の内周部に配置された筒状の正極合剤と、正極合剤の中空部に配置された有底円筒状のセパレータと、セパレータの内側に配置されたリチウム負極と、正極缶の開口部を閉塞するように配置された封口体とを備える。   The bobbin-type lithium battery includes a bottomed cylindrical positive electrode can, a cylindrical positive electrode mixture disposed on the inner periphery of the positive electrode can, a bottomed cylindrical separator disposed in a hollow portion of the positive electrode mixture, And a lithium negative electrode disposed inside the separator, and a sealing body disposed so as to close the opening of the positive electrode can.

従来、電池缶における胴部を開口部側よりも薄く形成して、電池内容積を増加させるように構成した電池が提案されている(例えば、特許文献1参照)。また一般に、リチウム電池に用いられる正極缶は、耐腐食性を確保するためにステンレス鋼材をプレス加工することで製缶されている。ここで、ステンレス鋼材をプレス加工すると、加工硬化が生じる。そのため、従来ではプレス工程の後工程として加工硬化を緩和するための焼きなまし(熱処理)を行うことにより、正極缶を軟化させている。この結果、正極缶の開口部が厚く形成されていても、封口加工を行うことが可能となる。   2. Description of the Related Art Conventionally, a battery has been proposed in which a body portion of a battery can is formed thinner than the opening side to increase the battery internal volume (see, for example, Patent Document 1). In general, a positive electrode can used for a lithium battery is manufactured by pressing a stainless steel material in order to ensure corrosion resistance. Here, when the stainless steel material is pressed, work hardening occurs. Therefore, conventionally, the positive electrode can is softened by performing annealing (heat treatment) for relaxing work hardening as a subsequent process of the pressing process. As a result, even if the opening of the positive electrode can is formed thick, sealing can be performed.

特開2002−151017号公報JP 2002-151017 A

ところが、従来のリチウム電池のように正極缶の製缶後に熱処理を行う場合、処理コストや設備コストが嵩んでしまう。また、熱処理によって正極缶が軟化するため、変形し易くなり寸法精度が悪化するとともに、缶強度のバラツキも大きくなる。よって、製造工程でのトラブルを引き起こしやすくなる。この結果、リチウム電池の生産時における不良率が高まり、電池の製造コストが増大する。   However, when the heat treatment is performed after the positive electrode can is made like the conventional lithium battery, the processing cost and the equipment cost increase. Further, since the positive electrode can is softened by the heat treatment, the positive electrode can is easily deformed, the dimensional accuracy is deteriorated, and the variation in can strength is increased. Therefore, it becomes easy to cause trouble in the manufacturing process. As a result, the defect rate during production of the lithium battery increases, and the manufacturing cost of the battery increases.

本発明は上記の課題に鑑みてなされたものであり、その目的は、寸法バラツキを改善し、かつ低コストで製造することができるリチウム電池用正極缶を提供することにある。また、別の目的は、上記リチウム電池用正極缶を用いて低コストで製造することができるリチウム電池を提供することにある。さらに、別の目的は、リチウム電池の製造コストを抑えることができるリチウム電池の製造方法を提供することにある。   This invention is made | formed in view of said subject, The objective is to provide the positive electrode can for lithium batteries which can improve a dimensional variation and can be manufactured at low cost. Another object is to provide a lithium battery that can be manufactured at low cost using the positive electrode can for a lithium battery. Furthermore, another object is to provide a method of manufacturing a lithium battery that can suppress the manufacturing cost of the lithium battery.

上記課題を解決するための手段[1]〜[5]を以下に列挙する。   Means [1] to [5] for solving the above problems are listed below.

[1]ステンレス鋼材をプレス加工して、開口部、胴部及び底部を有する筒状に成形したプレス加工品であり、前記開口部に封口体が装着されるリチウム電池用正極缶であって、前記開口部の板厚は、前記胴部の板厚よりも薄いことを特徴とするリチウム電池用正極缶。   [1] A positive electrode can for a lithium battery in which a stainless steel material is pressed and formed into a cylindrical shape having an opening, a body, and a bottom, and a sealing body is attached to the opening. The positive electrode can for a lithium battery, wherein a thickness of the opening is thinner than a thickness of the barrel.

手段1に記載の発明によると、ステンレス鋼材をプレス加工して筒状に製缶する場合、ステンレス鋼材の加工硬化が生じる。このため、開口部の板厚が厚く開口部の強度が大きくなると、封口加工が難しくなり、製缶後の焼きなまし(熱処理)が必要となる。本発明では、従来技術とは異なり、胴部よりも開口部が薄く形成されるため、熱処理をしなくても開口部を適度な強度とすることができ、封口加工を行うことが可能となる。また、開口部の厚みを薄くしても、プレス加工時の加工硬化によって強度が増しているため、封口加工後の強度を十分に確保することができる。さらに、従来技術のような熱処理を行う必要がないため、正極缶の寸法バラツキや強度バラツキを低減することができる。また、熱処理の処理コストや設備コストを低減できるので、正極缶を低コストで製造することができる。   According to the invention described in Means 1, when a stainless steel material is pressed to form a cylinder, work hardening of the stainless steel material occurs. For this reason, when the plate | board thickness of an opening part is thick and the intensity | strength of an opening part becomes large, a sealing process will become difficult and the annealing (heat processing) after can-making will be needed. In the present invention, unlike the prior art, the opening is formed thinner than the body, so that the opening can have an appropriate strength without heat treatment and can be sealed. . Moreover, even if the thickness of the opening is reduced, the strength is increased by work hardening at the time of press working, so that the strength after the sealing process can be sufficiently secured. Furthermore, since there is no need to perform heat treatment as in the prior art, it is possible to reduce dimensional variation and strength variation of the positive electrode can. In addition, since the heat treatment cost and equipment cost can be reduced, the positive electrode can can be manufactured at low cost.

[2]手段1において、前記開口部の板厚は、前記胴部の板厚の0.5倍以上0.8倍以下であることを特徴とするリチウム電池用正極缶。   [2] The lithium battery positive electrode can according to [1], wherein the thickness of the opening is not less than 0.5 times and not more than 0.8 times the thickness of the barrel.

手段2に記載の発明によると、開口部の板厚を上記の好適範囲に設定しているため、封口加工性や封口加工後の強度を確保することができる。   According to the invention described in Means 2, since the plate thickness of the opening is set in the above-mentioned preferable range, the sealing processability and the strength after the sealing process can be ensured.

[3]手段1または2おいて、プレス加工による製缶後のビッカース硬度Hvが250以上であることを特徴とするリチウム電池用正極缶。   [3] A positive electrode can for a lithium battery according to means 1 or 2, wherein the can has a Vickers hardness Hv of 250 or more after canning by press working.

手段3に記載の発明によると、製缶後のビッカース硬度Hvが250以上であるので、開口部を薄くすることにより、封口加工を確実に行うことができる。また、開口部を薄くしても十分な強度を確保することができる。   According to the invention described in the means 3, since the Vickers hardness Hv after canning is 250 or more, the sealing process can be reliably performed by thinning the opening. Moreover, sufficient strength can be ensured even if the opening is thinned.

具体的には、開口部の板厚は、0.12mm以上0.2mm以下であることが好ましい、またこの場合、製缶後のビッカース硬度Hvが300〜400であることがより好ましい。このようにすると、開口部の薄肉化による強度の低下を製缶時の加工硬化によって相殺することが可能となる。   Specifically, the plate thickness of the opening is preferably 0.12 mm or more and 0.2 mm or less, and in this case, the Vickers hardness Hv after canning is more preferably 300 to 400. If it does in this way, it will become possible to cancel the strength fall by thinning of an opening by work hardening at the time of can making.

[4]手段1乃至3のいずれか1項に記載の正極缶を備えたことを特徴とするリチウム電池。   [4] A lithium battery comprising the positive electrode can according to any one of means 1 to 3.

手段4に記載の発明によると、寸法バラツキの少ない正極缶を用いることができるため、リチウム電池の生産歩留まりが向上する。この結果、リチウム電池の製造コストを低く抑えることができる。   According to the invention described in the means 4, since the positive electrode can with little dimensional variation can be used, the production yield of the lithium battery is improved. As a result, the manufacturing cost of the lithium battery can be kept low.

[5]手段4に記載のリチウム電池の製造方法であって、ステンレス鋼材を用いてプレス加工を行って、開口部、胴部及び底部を有し前記胴部の板厚よりも前記開口部の板厚のほうが薄い筒状の正極缶を製造する製缶工程と、前記製缶工程の後工程として、熱処理を行わずに前記開口部に封口体を配置してその開口部を封口加工する封口工程とを含むことを特徴とするリチウム電池の製造方法。   [5] A method for manufacturing a lithium battery as described in means 4, wherein a pressing process is performed using a stainless steel material, and the opening portion, the body portion, and the bottom portion are provided, and the opening portion has a thickness greater than the plate thickness of the body portion. A can manufacturing process for manufacturing a cylindrical positive electrode can with a thinner plate thickness, and a sealing process for placing the sealing body in the opening and sealing the opening without performing heat treatment as a subsequent process of the can manufacturing process A process for producing a lithium battery comprising the steps of:

手段5に記載の発明によると、ステンレス鋼材を用いているため、正極缶の製缶工程後において加工硬化が生じるが、正極缶の開口部の板厚を薄く形成することで、熱処理を行わずに封口工程を行うことができる。この場合、熱処理を行う必要がなくなることで、熱処理の処理コストや設備コストを低減することができるとともに、正極缶の寸法バラツキや強度バラツキを低減することができる。従って、寸法バラツキや強度バラツキが少ない正極缶を用いてリチウム電池を製造することができ、リチウム電池の生産歩留まりが向上する。この結果、リチウム電池の製造コストを低く抑えることができる。   According to the invention described in means 5, since a stainless steel material is used, work hardening occurs after the can manufacturing process of the positive electrode can, but heat treatment is not performed by forming a thin plate thickness of the opening of the positive electrode can. The sealing step can be performed. In this case, since it is not necessary to perform heat treatment, it is possible to reduce heat treatment costs and equipment costs, and it is possible to reduce dimensional variation and strength variation of the positive electrode can. Therefore, a lithium battery can be manufactured using a positive electrode can with little dimensional variation and strength variation, and the production yield of the lithium battery is improved. As a result, the manufacturing cost of the lithium battery can be kept low.

以上詳述したように、手段1〜3に記載の発明によると、寸法バラツキを改善し、かつ低コストでリチウム電池用正極缶を製造することができる。また、手段4または5に記載の発明によると、リチウム電池の製造コストを抑えることができる。   As described above in detail, according to the inventions described in the means 1 to 3, the dimensional variation can be improved and a positive electrode can for a lithium battery can be manufactured at a low cost. Moreover, according to the invention described in the means 4 or 5, the manufacturing cost of the lithium battery can be suppressed.

一実施の形態のリチウム電池の概略構成を示す断面図。Sectional drawing which shows schematic structure of the lithium battery of one embodiment. リチウム電池の正極缶を示す断面図。Sectional drawing which shows the positive electrode can of a lithium battery.

以下、本発明を具体化した一実施の形態を図面に基づき詳細に説明する。図1は、本実施の形態におけるリチウム電池の概略構成を示す断面図である。また、図2は、そのリチウム電池に用いられる正極缶を示す断面図である。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a cross-sectional view showing a schematic configuration of a lithium battery in the present embodiment. Moreover, FIG. 2 is sectional drawing which shows the positive electrode can used for the lithium battery.

図1に示されるように、本実施の形態のリチウム電池10では、正極缶11の内部に、円筒状の正極合剤12が装填され、その正極合剤12の中空部分にセパレータ13を介してリチウム負極14が配置されている。なお、本実施の形態のリチウム電池10は、直径が16mm、高さが30mmのサイズを有するボビン型の一次電池である。   As shown in FIG. 1, in the lithium battery 10 of the present embodiment, a cylindrical positive electrode mixture 12 is loaded inside a positive electrode can 11, and a hollow portion of the positive electrode mixture 12 is interposed via a separator 13. A lithium negative electrode 14 is disposed. The lithium battery 10 of the present embodiment is a bobbin type primary battery having a size of 16 mm in diameter and 30 mm in height.

正極缶11の内部には、正極合剤12及びリチウム負極14の上方まで非水電解液15が注液されている。非水電解液15は、例えば、過塩素酸リチウムを溶質とし、プロピレンカーボネート(PC)及び1,2−ジメトキシエタン(DME)を溶媒とした溶液などからなる。   Inside the positive electrode can 11, a nonaqueous electrolyte solution 15 is injected up to above the positive electrode mixture 12 and the lithium negative electrode 14. The non-aqueous electrolyte 15 is made of, for example, a solution containing lithium perchlorate as a solute and propylene carbonate (PC) and 1,2-dimethoxyethane (DME) as a solvent.

正極合剤12は、例えば、二酸化マンガン、黒鉛、及びバインダとしての粉末フッ素樹脂を混合した正極合剤粉を円筒状にプレス成形することで作製される。本実施の形態では、正極缶11の内部においてその軸方向に沿って2つの正極合剤12が積層装填されている。なお、正極合剤12の真上には、正極リング30をスペーサーとして配置している。   The positive electrode mixture 12 is produced, for example, by press-molding a positive electrode mixture powder in which manganese dioxide, graphite, and a powder fluororesin as a binder are mixed into a cylindrical shape. In the present embodiment, two positive electrode mixtures 12 are stacked and loaded inside the positive electrode can 11 along the axial direction thereof. Note that the positive electrode ring 30 is disposed as a spacer immediately above the positive electrode mixture 12.

リチウム負極14は、リチウム金属の金属板を用い、円筒状にロール加工(曲げ加工)して作製されている。また、セパレータ13は、ポリプロピレン製の不織布からなるセパレータ原紙を二重巻きにした後、底部となる一方の端部を折り重ねた状態で底部及び胴部の一部を熱融着加工することで有底円筒状に形成されている。   The lithium negative electrode 14 is produced by rolling (bending) into a cylindrical shape using a metal plate of lithium metal. In addition, the separator 13 is formed by double-rolling a separator base paper made of a nonwoven fabric made of polypropylene, and then heat-bonding a part of the bottom part and the body part with one end part being the bottom part folded. It is formed in a bottomed cylindrical shape.

正極缶11は、例えばSUS304などのステンレス鋼材をプレス加工することで製造されたプレス加工品であり、開口部16、胴部17及び底部18を有する有底筒状に成形されている。正極缶11の底部18の中央に正極端子19が突設されている。正極缶11のビッカース硬度Hvは、300〜400程度となっている。また、正極缶11の開口部16は、金属製の負極端子21、金属製の封口板22、及び樹脂製のガスケット23からなる封口体24によって封口されている。   The positive electrode can 11 is a pressed product manufactured by, for example, pressing a stainless steel material such as SUS304, and is formed into a bottomed cylindrical shape having an opening 16, a body portion 17, and a bottom portion 18. A positive terminal 19 projects from the center of the bottom 18 of the positive electrode can 11. The Vickers hardness Hv of the positive electrode can 11 is about 300 to 400. The opening 16 of the positive electrode can 11 is sealed by a sealing body 24 including a metal negative electrode terminal 21, a metal sealing plate 22, and a resin gasket 23.

詳しくは、正極缶11の開口部16には、正極缶11の外周面に沿って溝状のビード部26が形成されている。そして、正極缶11のビード部26の上方に、リング状のガスケット23、封口板22及び負極端子21の順で嵌め込む。その状態で、正極缶11の開口部16を缶内側にかしめることにより、正極缶11が密閉封口されている。なお、本実施の形態において、負極端子21及び封口板22は、正極缶11と同様にステンレス鋼材を用いて形成され、ガスケット23は、ポリプロピレンを用いて形成されている。   Specifically, a groove-shaped bead portion 26 is formed in the opening 16 of the positive electrode can 11 along the outer peripheral surface of the positive electrode can 11. Then, the ring-shaped gasket 23, the sealing plate 22, and the negative electrode terminal 21 are fitted in this order above the bead portion 26 of the positive electrode can 11. In this state, the positive electrode can 11 is hermetically sealed by caulking the opening 16 of the positive electrode can 11 inside the can. In the present embodiment, the negative electrode terminal 21 and the sealing plate 22 are formed using a stainless steel material similarly to the positive electrode can 11, and the gasket 23 is formed using polypropylene.

また、リチウム負極14の内側面には、負極集電体27が設けられている。負極集電体27のリード部27aは、リチウム負極14の上端面から突出し、ガスケット23の中央開口部23aを挿通して、封口板22の下面に溶接にて接続されている。   A negative electrode current collector 27 is provided on the inner side surface of the lithium negative electrode 14. The lead portion 27a of the negative electrode current collector 27 protrudes from the upper end surface of the lithium negative electrode 14, passes through the central opening 23a of the gasket 23, and is connected to the lower surface of the sealing plate 22 by welding.

負極端子21において、略中央部には電池内側に向けて突出した刃突起29が設けられている。この刃突起29は、負極端子21の一部を切り欠くとともにその切り欠いた部分を下方に折り曲げることで形成される。   In the negative electrode terminal 21, a blade protrusion 29 protruding toward the inside of the battery is provided at a substantially central portion. The blade protrusion 29 is formed by notching a part of the negative electrode terminal 21 and bending the notched part downward.

リチウム電池10では、誤使用等によって電池内部が異常な状態になったとき、電池内部でガスが発生する場合がある。この場合、電池内圧が所定の圧力に達すると、圧力によって封口板22が外側に押しひろげられ負極端子21の刃突起29に接触する。そして、封口板22において刃突起29の接触部に孔が開けられ、その孔を通じて電池内のガスが電池外部に放出される。このように、封口板22と刃突起29とが安全弁機構として機能して、リチウム電池10の破裂が未然に防止される。   In the lithium battery 10, when the inside of the battery becomes abnormal due to misuse or the like, gas may be generated inside the battery. In this case, when the battery internal pressure reaches a predetermined pressure, the sealing plate 22 is pushed outward by the pressure and contacts the blade protrusion 29 of the negative terminal 21. Then, a hole is formed in the contact portion of the blade projection 29 in the sealing plate 22, and the gas in the battery is released to the outside of the battery through the hole. Thus, the sealing plate 22 and the blade protrusion 29 function as a safety valve mechanism, and the rupture of the lithium battery 10 is prevented in advance.

次に、本実施の形態のリチウム電池10に使用されている正極缶11の構成について詳述する。   Next, the configuration of the positive electrode can 11 used in the lithium battery 10 of the present embodiment will be described in detail.

図2に示されるように、正極缶11は、開口部16の内径D1よりも胴部17の内径D2のほうが小さくなるよう形成されている。また、正極缶11において、開口部16の板厚T1は、胴部17の板厚T2よりも薄くなっている。具体的には、開口部16の板厚T1は、例えば0.2mmであり、胴部17の板厚T2は、例えば0.25mmである。この正極缶11において、開口部16と胴部17との境界部分は、胴部17側(図2では下側)ほど縮径するよう傾斜している。より詳しくは、開口部16と胴部17との境界部分において、正極缶11の内面側及び外面側に傾斜面28a,28bが形成されており、開口部16の内径D1よりも胴部17の内径D2のほうが小さくなっている。   As shown in FIG. 2, the positive electrode can 11 is formed such that the inner diameter D <b> 2 of the trunk portion 17 is smaller than the inner diameter D <b> 1 of the opening 16. Further, in the positive electrode can 11, the plate thickness T <b> 1 of the opening 16 is thinner than the plate thickness T <b> 2 of the trunk portion 17. Specifically, the plate thickness T1 of the opening 16 is, for example, 0.2 mm, and the plate thickness T2 of the trunk portion 17 is, for example, 0.25 mm. In the positive electrode can 11, the boundary portion between the opening 16 and the trunk portion 17 is inclined so as to decrease in diameter toward the trunk portion 17 side (lower side in FIG. 2). More specifically, inclined surfaces 28 a and 28 b are formed on the inner surface side and the outer surface side of the positive electrode can 11 at the boundary portion between the opening portion 16 and the body portion 17. The inner diameter D2 is smaller.

また、正極缶11において、正極合剤12が配置される胴部17の内面は、表面粗さRaが開口部16よりも大きく、例えば、表面粗さRaが3μ〜7μmとなるよう表面が粗化されている。このように胴部17の表面を粗くすることによって、正極合剤12と正極缶11との接触面積が増し、リチウム電池10の放電性能が高められている。   In addition, in the positive electrode can 11, the inner surface of the body portion 17 in which the positive electrode mixture 12 is disposed has a surface roughness Ra larger than that of the opening 16, for example, the surface is rough so that the surface roughness Ra is 3 μm to 7 μm. It has become. By roughening the surface of the body portion 17 in this way, the contact area between the positive electrode mixture 12 and the positive electrode can 11 is increased, and the discharge performance of the lithium battery 10 is enhanced.

次に、本実施の形態におけるリチウム電池10の製造方法を説明する。   Next, the manufacturing method of the lithium battery 10 in this Embodiment is demonstrated.

まず、正極合剤12、セパレータ13、リチウム負極14、非水電解液15、封口体24(負極端子21、封口板22、及びガスケット23)を予め作製して準備する。   First, the positive electrode mixture 12, the separator 13, the lithium negative electrode 14, the nonaqueous electrolytic solution 15, and the sealing body 24 (the negative electrode terminal 21, the sealing plate 22, and the gasket 23) are prepared and prepared in advance.

また、板状のステンレス鋼材を用意し、段階的に深絞りを行う多段絞り加工によって正極缶11を製造する(製缶工程)。なお、多段絞り加工において、金型のクリアランスを調整することで、開口部16の板厚T1よりも胴部17の板厚T2のほうが薄くなるよう正極缶11が製缶される。   Further, a plate-like stainless steel material is prepared, and the positive electrode can 11 is manufactured by multistage drawing processing in which deep drawing is performed in stages (can making process). In the multistage drawing process, the positive electrode can 11 is manufactured by adjusting the mold clearance so that the plate thickness T2 of the body portion 17 is smaller than the plate thickness T1 of the opening portion 16.

その後、円筒状に成形された正極合剤12を有底筒状の正極缶11内に挿入し、その上に正極リング30をはめる。なお、ここで用いた正極缶11は、製缶工程の後工程として、焼きなまし(熱処理)を行っていないものを用いている。さらに、セパレータ13内に円筒状のリチウム負極14を挿入し、一体となったセパレータ13とリチウム負極14とを正極缶11の正極合剤12の中空部分に挿入配置する。そして、正極缶11において、開口部16付近の側面に円盤状ローラーを押しつけ、正極缶周を回転させることで、ビード部26を形成する。   Thereafter, the positive electrode mixture 12 formed into a cylindrical shape is inserted into the bottomed cylindrical positive electrode can 11, and the positive electrode ring 30 is fitted thereon. In addition, the positive electrode can 11 used here is one that has not been annealed (heat treated) as a post-process of the can manufacturing process. Further, a cylindrical lithium negative electrode 14 is inserted into the separator 13, and the integrated separator 13 and lithium negative electrode 14 are inserted and disposed in the hollow portion of the positive electrode mixture 12 of the positive electrode can 11. And in the positive electrode can 11, the bead part 26 is formed by pressing a disk-shaped roller to the side surface of the opening part 16 vicinity, and rotating a positive electrode can periphery.

次いで、正極缶11のビード部26の上方にガスケット23を載置し、負極集電体27のリード部27aに封口板22をスポット溶接にて接続する。その後、正極缶11の内部に、正極合剤12及びリチウム負極14の上方まで非水電解液15を注入する。さらに、正極缶11のビード部26に載置したガスケット23上に、封口板22、及び負極端子21を配置して、正極缶11の開口端部にカール及び絞り加工を施すことにより、正極缶11を封口する(封口工程)。これにより、図1のリチウム電池10が完成する。   Next, the gasket 23 is placed above the bead portion 26 of the positive electrode can 11, and the sealing plate 22 is connected to the lead portion 27 a of the negative electrode current collector 27 by spot welding. Thereafter, the nonaqueous electrolytic solution 15 is injected into the positive electrode can 11 to above the positive electrode mixture 12 and the lithium negative electrode 14. Further, the sealing plate 22 and the negative electrode terminal 21 are disposed on the gasket 23 placed on the bead portion 26 of the positive electrode can 11, and the opening end portion of the positive electrode can 11 is subjected to curling and drawing processing. 11 is sealed (sealing step). Thereby, the lithium battery 10 of FIG. 1 is completed.

以下、実施例について説明する。ここでは、仕様の異なる正極缶11を用いて上記構成のリチウム電池10を数種類試作した。ここで用いた正極缶11の仕様(ナンバー1〜8の8種類の仕様)を表1に示している。なお、ナンバー8のサンプルは、現在製品化されている現行品と同じ仕様である。

Figure 2013073804
Examples will be described below. Here, several types of lithium batteries 10 having the above-described configuration were manufactured using positive electrode cans 11 having different specifications. Table 1 shows the specifications of the positive electrode can 11 used here (eight types of numbers 1 to 8). Note that the number 8 sample has the same specifications as the current product that is currently commercialized.
Figure 2013073804

表1に示されるように、各サンプルでは、胴部17の厚み(板厚T2)を全て0.25mmとし、開口部16の厚み(板厚T1)を0.10mm〜0.25mmに設定している。具体的には、開口部16の板厚T1を、ナンバー1のサンプルでは0.1mm、ナンバー2のサンプルでは0.12mm、ナンバー3,4のサンプルでは0.15mm、ナンバー5,6のサンプルでは0.2mmとし、胴部17よりも薄くしている。また、ナンバー7のサンプル及びナンバー8のサンプルでは、開口部16の板厚T1を、胴部17の板厚T2と同じ0.25mmとしている。   As shown in Table 1, in each sample, the thickness of the body portion 17 (plate thickness T2) is set to 0.25 mm, and the thickness of the opening portion 16 (plate thickness T1) is set to 0.10 mm to 0.25 mm. ing. Specifically, the plate thickness T1 of the opening 16 is set to 0.1 mm for the number 1 sample, 0.12 mm for the number 2 sample, 0.15 mm for the number 3 and 4 samples, and to the number 5 and 6 samples. The thickness is 0.2 mm, which is thinner than the body portion 17. In the number 7 sample and the number 8 sample, the plate thickness T1 of the opening 16 is set to 0.25 mm, which is the same as the plate thickness T2 of the trunk portion 17.

さらに、ナンバー8のサンプルでは、従来技術と同様の熱処理(1010℃〜1150℃の温度範囲、0.5時間〜2時間程度)を実施した正極缶11を用い、他のナンバー1〜7のサンプルでは、熱処理を実施してない正極缶11を用いた。ナンバー1〜7のサンプルでは、プレス加工の加工硬化によって正極缶11のビッカース硬度Hvは300〜400程度となっていた。これに対して、ナンバー8のサンプルでは、熱処理を行うことで正極缶11の加工硬化が緩和され、ビッカース硬度Hvは200となっていた。この硬度は、プレス加工前のステンレス鋼材とほぼ同じ硬度である。   Furthermore, in the sample of No. 8, the positive electrode can 11 which has been subjected to the same heat treatment as the prior art (temperature range of 1010 ° C. to 1150 ° C., about 0.5 hours to 2 hours) is used. Then, the positive electrode can 11 which was not heat-processed was used. In the samples of Nos. 1 to 7, the Vickers hardness Hv of the positive electrode can 11 was about 300 to 400 by work hardening of press working. On the other hand, in the sample of No. 8, the work hardening of the positive electrode can 11 was relaxed by performing the heat treatment, and the Vickers hardness Hv was 200. This hardness is almost the same as that of the stainless steel material before press working.

そして、各サンプルについて、封口加工性、高温保存漏液性、封口耐圧値、放電性能をそれぞれ評価した。その結果を表2に示す。

Figure 2013073804
Each sample was evaluated for sealing processability, high-temperature storage leakage, sealing pressure resistance, and discharge performance. The results are shown in Table 2.
Figure 2013073804

表2に示されるように、ナンバー1のサンプルでは、開口部16の板厚T1が0.1mmと薄いため、波状に加工されてしまう。このため、封口加工を確実に行うことができなくなる。また、ナンバー7のサンプルでは、硬度が大きく、開口部16の板厚T1が0.25mmと厚いため、封口加工を行うことができなかった。これに対して、ナンバー2〜6のサンプルでは、硬度は大きいが、開口部16の板厚T1が薄いため、封口加工に適した強度となり、十分な封口加工性を得ることができた。なお、ナンバー8のサンプルでは、開口部16の板厚T1が0.25mmと厚いが、熱処理によって硬度が小さくなっているため、十分な封口加工性が得られた。   As shown in Table 2, the sample No. 1 is processed into a wave shape because the plate thickness T1 of the opening 16 is as thin as 0.1 mm. For this reason, it becomes impossible to perform sealing processing reliably. Further, in the sample of No. 7, since the hardness was large and the plate thickness T1 of the opening 16 was as thick as 0.25 mm, the sealing process could not be performed. On the other hand, the samples Nos. 2 to 6 have high hardness, but the plate thickness T1 of the opening 16 is thin, so that the strength is suitable for the sealing process, and sufficient sealing processability can be obtained. In the sample of No. 8, although the plate thickness T1 of the opening 16 was as thick as 0.25 mm, the hardness was reduced by the heat treatment, so that sufficient sealing workability was obtained.

高温保存漏液性、封口耐圧値、放電性能については、封口加工を行うことができたナンバー2〜6,8のサンプルを評価した。ここで、高温保存漏液性は、70℃の恒温槽内でリチウム電池10(試験サンプル数30)を100日間保存し、漏液の有無を確認した。ナンバー2〜6,8のサンプルでは、30個の全てのリチウム電池10で漏液が確認されなかった。   Regarding the high temperature storage liquid leakage, the sealing pressure resistance value, and the discharge performance, the samples of Nos. 2 to 6 and 8 that could be sealed were evaluated. Here, the high-temperature storage leakage property was confirmed by storing the lithium battery 10 (30 test samples) in a constant temperature bath at 70 ° C. for 100 days to check for leakage. In the samples Nos. 2 to 6 and 8, no leakage was confirmed in all 30 lithium batteries 10.

また、封口耐圧値は、次のような方法で測定した。すなわち、電池内容物(正極合剤12、リチウム負極14、非水電解液15など)を正極缶11内に収容しない状態で開口部16を封口加工する。その後、底部18等に形成した試験用貫通孔(図示略)を介して正極缶11内に圧力を加えることで封口耐圧値を測定した。なお、試験サンプル数は10個であり、10個の平均値として封口耐圧値を求めている。ナンバー8のサンプルの封口耐圧値を100とした場合、ナンバー2〜6のサンプルで95〜97の耐圧値であった。このように、ナンバー2〜6のサンプルにおいて、封口耐圧値は、ナンバー8のサンプル(現行品)とほぼ同じ耐圧値であり、封口部分の信頼性は十分に確保されていることが確認された。   Further, the sealing pressure resistance value was measured by the following method. That is, the opening 16 is sealed in a state where the battery contents (the positive electrode mixture 12, the lithium negative electrode 14, the nonaqueous electrolytic solution 15, etc.) are not accommodated in the positive electrode can 11. Then, the sealing pressure | voltage resistance value was measured by applying a pressure in the positive electrode can 11 through the test through-hole (illustration omitted) formed in the bottom part 18 grade | etc.,. The number of test samples is 10, and the sealing pressure resistance value is obtained as an average value of the 10 samples. When the sealing pressure resistance value of the number 8 sample was 100, the number 2 to 6 samples had a pressure resistance value of 95 to 97. Thus, in the samples of Nos. 2 to 6, the sealing pressure resistance value was almost the same as that of the number 8 sample (current product), and it was confirmed that the reliability of the sealing portion was sufficiently ensured. .

放電性能の評価では、試験温度:20℃のもと、各サンプルのリチウム電池10に1KΩの抵抗を接続して連続放電を行い、電池電圧が初期値の3Vから所定電圧2V以下に低下するまでの放電時間を測定した。ここで、ナンバー8のサンプル(現行品)の放電時間を100とした場合、ナンバー2〜6のサンプルは、同じ放電時間であり、十分な放電性能が確保されていた。   In the evaluation of the discharge performance, under the test temperature of 20 ° C., a 1 KΩ resistor is connected to the lithium battery 10 of each sample and continuous discharge is performed until the battery voltage drops from the initial value of 3 V to a predetermined voltage of 2 V or less. The discharge time of was measured. Here, when the discharge time of the sample of No. 8 (current product) is 100, the samples of No. 2 to 6 have the same discharge time, and sufficient discharge performance was ensured.

以上の結果により、開口部16の板厚T1を0.12mm以上0.20mm以下(胴部17の板厚T2の0.5倍以上0.8倍以下)に設定することが、好適であることがわかった。   Based on the above results, it is preferable to set the plate thickness T1 of the opening 16 to 0.12 mm or more and 0.20 mm or less (0.5 to 0.8 times the plate thickness T2 of the body portion 17). I understood it.

従って、本実施の形態によれば以下の効果を得ることができる。   Therefore, according to the present embodiment, the following effects can be obtained.

(1)本実施の形態のリチウム電池10では、胴部17の板厚T2を0.25mmとし、開口部16の板厚T1を0.12mm以上0.20mm以下(胴部17の板厚T2の0.5倍以上0.8倍以下)としている。このように、正極缶11において胴部17よりも開口部16を薄く形成すると、熱処理をしなくても開口部16が適度な強度となるため、正極缶11の封口加工を行うことができる。また、開口部16を薄くしても、加工硬化によって強度が増しているため、封口加工後における封口部分の強度を十分に確保することができる。   (1) In the lithium battery 10 of the present embodiment, the plate thickness T2 of the trunk portion 17 is set to 0.25 mm, and the plate thickness T1 of the opening 16 is set to 0.12 mm to 0.20 mm (plate thickness T2 of the barrel portion 17). 0.5 times or more and 0.8 times or less). Thus, if the opening part 16 is formed thinner than the trunk | drum 17 in the positive electrode can 11, since the opening part 16 becomes moderate intensity | strength without heat processing, the sealing process of the positive electrode can 11 can be performed. Moreover, even if the opening 16 is made thinner, the strength is increased by work hardening, so that the strength of the sealing portion after the sealing processing can be sufficiently ensured.

(2)本実施の形態のリチウム電池10の製造方法では、正極缶11の製缶工程後において従来技術のような熱処理を行っていない。このため、熱処理の処理コストや設備コストを低減することができ、正極缶11及びリチウム電池10を低コストで製造することができる。また、熱処理を行わないため、正極缶11の寸法バラツキや強度バラツキを低減することができる。従って、寸法バラツキや強度バラツキが少ない正極缶11を用いてリチウム電池10を製造することにより、リチウム電池10の生産歩留まりが向上する。この結果、リチウム電池10の製造コストを低く抑えることができる。   (2) In the manufacturing method of the lithium battery 10 of the present embodiment, the heat treatment as in the prior art is not performed after the can manufacturing process of the positive electrode can 11. For this reason, the processing cost and equipment cost of heat processing can be reduced, and the positive electrode can 11 and the lithium battery 10 can be manufactured at low cost. In addition, since no heat treatment is performed, the dimensional variation and strength variation of the positive electrode can 11 can be reduced. Therefore, the production yield of the lithium battery 10 is improved by manufacturing the lithium battery 10 using the positive electrode can 11 with less dimensional variation and strength variation. As a result, the manufacturing cost of the lithium battery 10 can be kept low.

(3)本実施の形態の正極缶11では、開口部16の内径D1のほうが胴部17の内径D2よりも大きいので、開口部16側から正極缶11内に正極合剤12や封口体24等を挿入し易くなり、リチウム電池10を容易に製造することができる。   (3) In the positive electrode can 11 of the present embodiment, since the inner diameter D1 of the opening 16 is larger than the inner diameter D2 of the body portion 17, the positive electrode mixture 12 and the sealing body 24 are inserted into the positive electrode can 11 from the opening 16 side. Etc., and the lithium battery 10 can be easily manufactured.

なお、本発明の実施の形態は以下のように変更してもよい。   In addition, you may change embodiment of this invention as follows.

・本実施の形態の正極缶11では、開口部16と胴部17との境界部分において、内面側及び外面側に傾斜面28a,28bを形成して、胴部17の板厚T2よりも開口部16の板厚T1を薄くしていたが、これに限定されるものではない。例えば、開口部16と胴部17との境界部分において、内面側のみを傾斜させて胴部17の板厚T2よりも開口部16の板厚T1を薄くしてもよいし、外面側のみを傾斜させて胴部17の板厚T2よりも開口部16の板厚T1を薄くしてもよい。   In the positive electrode can 11 of the present embodiment, inclined surfaces 28 a and 28 b are formed on the inner surface side and the outer surface side at the boundary portion between the opening portion 16 and the trunk portion 17, and the opening is larger than the plate thickness T <b> 2 of the trunk portion 17. Although the plate thickness T1 of the portion 16 has been reduced, the present invention is not limited to this. For example, at the boundary portion between the opening 16 and the body portion 17, only the inner surface side may be inclined to make the plate thickness T1 of the opening portion 16 thinner than the plate thickness T2 of the body portion 17, or only the outer surface side. The plate thickness T1 of the opening 16 may be made thinner than the plate thickness T2 of the body portion 17 by being inclined.

・上記実施の形態において、リチウム電池10は一次電池であったが、リチウム二次電池に本発明を適用させてもよい。   In the above embodiment, the lithium battery 10 is a primary battery, but the present invention may be applied to a lithium secondary battery.

次に、特許請求の範囲に記載された技術的思想のほかに、前述した実施の形態によって把握される技術的思想を以下に列挙する。   Next, in addition to the technical ideas described in the claims, the technical ideas grasped by the embodiments described above are listed below.

(1)手段1乃至3のいずれか1項において、プレス加工による製缶後のビッカース硬度Hvが300〜400であることを特徴とするリチウム電池用正極缶。   (1) The positive electrode can for a lithium battery according to any one of the means 1 to 3, wherein the Vickers hardness Hv after canning by pressing is 300 to 400.

(2)手段1乃至3のいずれか1項において、前記開口部の板厚は、0.12mm以上0.2mm以下であることを特徴とするリチウム電池用正極缶。   (2) The positive electrode can for a lithium battery according to any one of the means 1 to 3, wherein a thickness of the opening is 0.12 mm or more and 0.2 mm or less.

(3)手段1乃至3のいずれか1項において、前記開口部には、その開口部を塞ぐ封口体を載置するためのビード部が形成されることを特徴とするリチウム電池用正極缶。   (3) The positive electrode can for a lithium battery according to any one of the means 1 to 3, wherein a bead portion for mounting a sealing body for closing the opening portion is formed in the opening portion.

(4)手段1乃至3のいずれか1項において、前記開口部の内径よりも前記胴部の内径のほうが小さいことを特徴とするリチウム電池用正極缶。   (4) The positive electrode can for a lithium battery according to any one of the means 1 to 3, wherein an inner diameter of the body is smaller than an inner diameter of the opening.

(5)手段1乃至3のいずれか1項において、深絞り加工によって製造されたことを特徴とするリチウム電池用正極缶。   (5) The positive electrode can for a lithium battery according to any one of the means 1 to 3, which is manufactured by deep drawing.

10…リチウム電池
11…リチウム電池用正極缶としての正極缶
16…開口部
17…胴部
24…封口体
T1…開口部の板厚
T2…胴部の板厚
DESCRIPTION OF SYMBOLS 10 ... Lithium battery 11 ... Positive electrode can as a positive electrode can for lithium batteries 16 ... Opening part 17 ... Trunk part 24 ... Sealing body T1 ... Thickness of opening part T2 ... Thickness of trunk | drum part

Claims (5)

ステンレス鋼材をプレス加工して、開口部、胴部及び底部を有する筒状に成形したプレス加工品であり、前記開口部に封口体が装着されるリチウム電池用正極缶であって、
前記開口部の板厚は、前記胴部の板厚よりも薄いことを特徴とするリチウム電池用正極缶。
A stainless steel material is press-processed and formed into a cylindrical shape having an opening, a body and a bottom, and is a positive electrode can for a lithium battery in which a sealing body is attached to the opening,
The positive electrode can for a lithium battery, wherein a thickness of the opening is thinner than a thickness of the barrel.
前記開口部の板厚は、前記胴部の板厚の0.5倍以上0.8倍以下であることを特徴とする請求項1に記載のリチウム電池用正極缶。   2. The positive electrode can for a lithium battery according to claim 1, wherein a thickness of the opening is not less than 0.5 times and not more than 0.8 times a thickness of the body portion. プレス加工による製缶後のビッカース硬度Hvが250以上であることを特徴とする請求項1または2に記載のリチウム電池用正極缶。   The positive electrode can for a lithium battery according to claim 1 or 2, wherein the Vickers hardness Hv after making the can by press working is 250 or more. 請求項1乃至3のいずれか1項に記載の正極缶を備えたことを特徴とするリチウム電池。   A lithium battery comprising the positive electrode can according to any one of claims 1 to 3. 請求項4に記載のリチウム電池の製造方法であって、
ステンレス鋼材を用いてプレス加工を行って、開口部、胴部及び底部を有し前記胴部の板厚よりも前記開口部の板厚のほうが薄い筒状の正極缶を製造する製缶工程と、
前記製缶工程の後工程として、熱処理を行わずに前記開口部に封口体を配置してその開口部を封口加工する封口工程と
を含むことを特徴とするリチウム電池の製造方法。
It is a manufacturing method of the lithium battery according to claim 4,
A can-making process for producing a cylindrical positive electrode can which is pressed using a stainless steel material and has an opening, a body and a bottom, and the plate thickness of the opening is thinner than the plate thickness of the body. ,
A method for manufacturing a lithium battery, comprising: a sealing step in which a sealing body is disposed in the opening without sealing and the opening is sealed as a subsequent step of the can making step.
JP2011212393A 2011-09-28 2011-09-28 Positive electrode can for lithium battery, lithium battery and method for producing the same Expired - Fee Related JP5851177B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011212393A JP5851177B2 (en) 2011-09-28 2011-09-28 Positive electrode can for lithium battery, lithium battery and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011212393A JP5851177B2 (en) 2011-09-28 2011-09-28 Positive electrode can for lithium battery, lithium battery and method for producing the same

Publications (2)

Publication Number Publication Date
JP2013073804A true JP2013073804A (en) 2013-04-22
JP5851177B2 JP5851177B2 (en) 2016-02-03

Family

ID=48478148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011212393A Expired - Fee Related JP5851177B2 (en) 2011-09-28 2011-09-28 Positive electrode can for lithium battery, lithium battery and method for producing the same

Country Status (1)

Country Link
JP (1) JP5851177B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020004135A1 (en) * 2018-06-28 2020-01-02 三洋電機株式会社 Nonaqueous electrolyte secondary battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0696748A (en) * 1992-09-11 1994-04-08 Matsushita Electric Ind Co Ltd Elliptical sealed battery
JP2006221988A (en) * 2005-02-10 2006-08-24 Fdk Energy Co Ltd Gasket for cylindrical sealed battery, the battery, and manufacturing method therefor
JP2009113059A (en) * 2007-11-02 2009-05-28 Advan Eng Kk Method and apparatus for forming prismatic container made of ferritic stainless steel, and prismatic container

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0696748A (en) * 1992-09-11 1994-04-08 Matsushita Electric Ind Co Ltd Elliptical sealed battery
JP2006221988A (en) * 2005-02-10 2006-08-24 Fdk Energy Co Ltd Gasket for cylindrical sealed battery, the battery, and manufacturing method therefor
JP2009113059A (en) * 2007-11-02 2009-05-28 Advan Eng Kk Method and apparatus for forming prismatic container made of ferritic stainless steel, and prismatic container

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020004135A1 (en) * 2018-06-28 2020-01-02 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JPWO2020004135A1 (en) * 2018-06-28 2021-08-02 三洋電機株式会社 Non-aqueous electrolyte secondary battery
JP7461878B2 (en) 2018-06-28 2024-04-04 パナソニックエナジー株式会社 Non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP5851177B2 (en) 2016-02-03

Similar Documents

Publication Publication Date Title
JP4119612B2 (en) Square battery can and manufacturing method thereof
EP2367219A2 (en) Cylindrical secondary battery and method of manufacturing the same
CN112335100A (en) Battery with a battery cell
JP5110958B2 (en) Sealed battery
US10305077B2 (en) Cylindrical lithium-ion secondary battery
KR101416520B1 (en) Cap plate for secondary batteries having vent structure and manufacturing mathod of it
JP5355012B2 (en) Battery cans and alkaline batteries
JP2009230991A (en) Cylindrical cell and manufacturing method of cylindrical cell
JP5159076B2 (en) Cylindrical storage battery and manufacturing method thereof
JP5851177B2 (en) Positive electrode can for lithium battery, lithium battery and method for producing the same
JP5279341B2 (en) Cylindrical non-aqueous electrolyte battery
JP2011054380A (en) Cylindrical battery
US20220231357A1 (en) Cylindrical battery
EP4131592A1 (en) Cylindrical battery
JP2743636B2 (en) Manufacturing method of button type air battery
US11621450B2 (en) Battery can and cylindrical battery
JP2007242510A (en) Battery safety device
JP6156109B2 (en) Temporary sealing plug for power storage device
JP5677868B2 (en) Battery can for cylindrical alkaline battery and cylindrical alkaline battery
US9614195B2 (en) Energy storage device and manufacturing method of the same
JP6688029B2 (en) battery
JP5366489B2 (en) Battery cans and cylindrical batteries
EP4080648A1 (en) Cylindrical battery
JP2005203169A (en) Oblong nonaqueous electrolyte battery
JP6889011B2 (en) Battery can, manufacturing method of this battery can, and battery equipped with this battery can

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151202

R150 Certificate of patent or registration of utility model

Ref document number: 5851177

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees