JP3625608B2 - Sealing method of sealed battery - Google Patents

Sealing method of sealed battery Download PDF

Info

Publication number
JP3625608B2
JP3625608B2 JP08532397A JP8532397A JP3625608B2 JP 3625608 B2 JP3625608 B2 JP 3625608B2 JP 08532397 A JP08532397 A JP 08532397A JP 8532397 A JP8532397 A JP 8532397A JP 3625608 B2 JP3625608 B2 JP 3625608B2
Authority
JP
Japan
Prior art keywords
sealing
caulking
mold
die
sealed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08532397A
Other languages
Japanese (ja)
Other versions
JPH10284023A (en
Inventor
悟 福岡
啓一 辻奥
哲理 廣田
完二 漆原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP08532397A priority Critical patent/JP3625608B2/en
Publication of JPH10284023A publication Critical patent/JPH10284023A/en
Application granted granted Critical
Publication of JP3625608B2 publication Critical patent/JP3625608B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、密閉電池の封口方法の改良に関し、とくに、かしめた部分から漏液しない密閉電池の封口方法に関する。
【0002】
【従来の技術】
密閉電池は、外装缶の内部に、電極や電解液を入れた後、開口部を封口板で気密に密閉して製造される。外装缶の開口部は、外装缶をかしめ、かしめられた外装缶と封口板とで、ガスケットを挟着して気密に封口される。外装缶をかしめて気密に密閉する封口方法は、たとえば、封口板の周縁を外装缶の開口部にレーザー溶接する封口方法に比較すると、能率よく外装缶を封口できる特長がある。
【0003】
かしめによる封口方法は、外装缶と封口板で、確実に気密に密閉して漏液しない構造とすることが大切である。このため、シール剤を選択し、ガスケットの形状を改良する等、種々の検討改良がなされているが、理想的な耐漏液性は得られていないのが実情である。耐漏液性を十分に得るために、封口形状を高精度化する等種々の改良が行われている。ただ、この方法によっても、十分に満足できる耐漏液性は実現されていない。
【0004】
とくに、外装缶をかしめて封口する方法は、封口金型で押圧して変形された外装缶のスプリングバックで、漏液性が悪くなる性質がある。スプリングバックを考慮して、封口金型で強く外装缶を変形させると、ガスケットに余分な衝撃を与える弊害が発生する。外装缶をかしめて封口する方法は、外装缶と封口板との間にガスケットを挟着して、気密に封口するので、ガスケットの損傷は耐漏液性を悪化させる。
【0005】
このような欠点を改良する方法として、封口金型が、2回以上外装缶を押圧してかしめる方法が開発されている(特開昭59−224046号公報)。この公報に記載される封口方法は、外装缶のスプリングバックを考慮して、2回以上封口金型で外装缶を押圧してかしめている。
【0006】
【発明が解決しようとする課題】
封口金型が複数回に外装缶をかしめてスプリングバックを少なくする封口方法は、封口金型が1回で外装缶をかしめる方法に比較すると、耐漏液性を改善できる。しかしながら、この封口方法は、封口金型を複数回ストロークさせて、外装缶をかしめるので、能率よく多量生産するのが難しくなり、生産性が低下する欠点がある。
【0007】
本発明は、きわめて簡単な方法で、耐漏液性を改善することに成功したもので、本発明の重要な目的は、耐漏液性を改善できることに加えて、短時間で能率よく封口できる密閉電池の封口方法を提供することにある。
【0008】
【課題を解決するための手段】
本発明の封口方法は、金属板の外装缶1をかしめて、封口板6と外装缶1でガスケット7を挟着し、封口板6で外装缶1の開口部を気密に密閉する方法を改良したものである。本発明の封口方法は、複数回にかしめ作業をするのではなくて、封口作業の時に、封口金型8のかしめ金型12が外装缶1を最も薄く押し潰している位置で、0.1秒以上保持することを特徴とする。
【0009】
さらに、本発明の請求項2の封口方法は、封口金型8が外装缶1をかしめる封口作業において、かしめ金型12が外装缶1をかしめながら降下する移動速度を、20mm/秒よりも遅くする。
【0010】
【発明の実施の形態】
以下、本発明の実施例を図面に基づいて説明する。ただし、以下に示す実施例は、本発明の技術思想を具体化するための封口方法を例示するものであって、本発明は封口方法を下記のものに特定しない。
【0011】
さらに、この明細書は、特許請求の範囲を理解しやすいように、実施例に示される部材に対応する番号を、「特許請求の範囲の欄」、および「課題を解決するための手段の欄」に示される部材に付記している。ただ、特許請求の範囲に示される部材を、実施例の部材に特定するものでは決してない。
【0012】
図1は、本発明の封口方法で封口される密閉電池であるボタン電池を示す。この密閉電池は、外装缶1に、正極板2と負極板3の間にセパレータ4を配設してなる電極群5と、電解液を入れた後、封口板6で外装缶1の開口部を気密に密閉している。
【0013】
外装缶1と封口板6は金属板で、外装缶1がかしめられて、外装缶1と封口板6とでガスケット7を挟着して、開口部を気密に密閉している。ガスケット7は、外装缶1と封口板6に挟着されて弾性変形し、外装缶1と封口板6に気密に密着して封口される。さらに、ガスケット7は、正極である外装缶1と、負極である封口板6を絶縁する働きもしている。
【0014】
図1に示す密閉電池は、図2ないし図5に示す封口金型8で、外装缶1をかしめて封口される。この図の封口金型8は、下金型8Aと上金型8Bとからなる。下金型8Aは固定金型9と、この固定金型9の周囲に上下方向に移動できるように配設される周壁金型10とからなる。周壁金型10は、バネ13で弾性的に押し上げられている。上金型8Bは、封口板6の上面を押圧する中心金型11と、この中心金型11の周囲に配設されるかしめ金型12とからなる。中心金型11は、バネ14を介してかしめ金型12に上下方向に移動できるように連結されている。かしめ金型12は、シリンダーに連結されており、シリンダーで押し下げられる。かしめ金型12は、外装缶1の上端縁を内側に折曲して、かしめることができるように、下端部の内面に、湾曲するかしめ面12Aを有する。かしめ面12Aの内側に中心金型11を配設している。
【0015】
これらの図に示す金型は下記の工程で、外装缶をかしめて封口する。
(1) 図2に示すように、下金型8Aの周壁金型10が、バネ13で押し上げられて、固定金型9よりも高く位置し、周壁金型10の内側にできる凹部に外装缶1をセットする。外装缶1には、電極群5と電解液とガスケット7とが入れられ、ガスケット7の上の定位置には、封口板6が載せられている。
【0016】
(2) 図3に示すように、かしめ金型12が、シリンダーに押されて降下を始めると、かしめ金型12に押されて、下金型8Aの周壁金型10が降下する。中心金型11はかしめ金型12にバネ14で連結されているので、かしめ金型12が降下すると、中心金型11も降下する。中心金型11は、封口板6の上面を押圧する位置まで降下すると降下しなくなる。ただ、中心金型11は、かしめ金型12にバネ14で連結されているので、かしめ金型12が降下すると、封口板6の上面を弾性的に押圧するようになる。したがって、かしめ金型12が降下すると、中心金型11は封口板6の上面を押圧するようになる。押圧される封口板6は、ガスケット7の下面を外装缶1の底面に弾性的に押圧して、ガスケット7と外装缶1底面とを気密に密着させる。
【0017】
(3) 図4に示すように、さらにかしめ金型12が降下されると、外装缶1の上端縁は、かしめ金型12のかしめ面12Aに沿って内側に折曲される。降下するかしめ金型12は、周壁金型10を降下させながら、次第に降下して、外装缶1の上端縁を内側にかしめ面12Aで折曲してかしめる。この状態になると、封口板6の中心が、かしめられた外装缶1の上端縁よりも突出するようになるので、中心金型11の下面は、かしめ面12Aよりも上方に押し上げられる。
【0018】
(4) 図5に示すように、外装缶1の開口部がかしめられた後、上金型8Bを上昇させて、封口された密閉電池を下金型8Aから取り出す。
【0019】
以上の工程で降下される上金型8Bの降下速度を図6に示す。かしめ金型12が降下されるとき、中心金型11が封口板6の上面を押圧するまで、あるいは、かしめ金型12のかしめ面12Aが、外装缶1の上端部を折曲し始めるまでは、ほとんど負荷がかからない。このため、かしめ金型12は、この位置まで、図6においてaからbまでは速い速度で降下される。中心金型11が封口板6の上面を押圧し、さらに、かしめ金型12が外装缶1の上端部を内側に折曲するようになると、かしめ金型12の降下速度を遅くする。このときの、降下速度が、外装缶1のかしめ状態に影響を与えるからである。図6において、bからcまでは、かしめ金型12の降下速度を遅くする。
【0020】
図7は、かしめ金型12が、外装缶1をかしめながら降下する速度、すなわち、かしめ金型12が、図6においてbからcに降下するまでの降下速度に対する封口寸法を表示している。ただし、封口寸法は、図1の矢印Dで示すように、外装缶1の底面からかしめられた外装缶1の上端迄の寸法である。外装缶1のスプリングバックが大きくなると、封口寸法は大きくなるので、封口寸法が小さいとスプリングバックが小さく、より確実に封口されたことを示す。この図の封口寸法は、かしめ金型がもっとも降下して、外装缶を最も薄く押し潰している時間を0.2秒として測定した。この図は、かしめ金型の降下速度を、20mm/秒よりも遅くすると、封口寸法が小さくなって確実に封口できることを明示する。したがって、かしめ金型12は、好ましくは20mm/秒よりも遅く、さらに好ましくは10mm/秒よりも遅い速度で降下させる。
【0021】
さらに、図8はかしめ金型12が、外装缶1を最も薄く押し潰している位置で保持する時間、図6においてcからdまでの時間を長くすると、封口寸法が小さくなって、より確実に封口できることを示す。ただし、この図は、かしめ金型が外装缶をかしめながら降下する速度を10mm/秒として測定した。この図は、かしめ金型が、外装缶を最も薄く押し潰している位置に保持される時間を、0.1秒よりも長くすると、封口寸法が小さくなって、外装缶がより確実に封口されることを示す。したがって、本発明の封口方法は、かしめ金型12で、外装缶1を最も薄く押し潰している時間を0.1秒よりも長く、さらに好ましくは、0.2秒よりも長くする。
【0022】
【実施例】
[実施例]
下記の条件で図1に示す構造の密閉電池を300個試作した。ただし、試作電池は、図6において、かしめ金型の降下速度と、保持時間を下記のように設定して製作した。
a−b間のかしめ金型の降下速度…60mm/秒
b−c間のかしめ金型の降下速度…5mm/秒
c−d間のかしめ金型の保持時間…0.3秒
d−e間のかしめ金型の上昇速度…60mm/秒
【0023】
[比較例1]
下記の条件で図1に示す構造の密閉電池を300個試作した。ただし、試作電池は、図6において、かしめ金型の降下速度と、保持時間を下記のように設定して製作した。
a−b間のかしめ金型の降下速度…60mm/秒
b−c間のかしめ金型の降下速度…60mm/秒
c−d間のかしめ金型の保持時間…0秒
d−e間のかしめ金型の上昇速度…60mm/秒
【0024】
[比較例2]
さらに、比較例1の封口方法と同じかしめ方法であるが、かしめ回数を2回として、300個の比較電池を試作した。
【0025】
以上の方法で封口した電池の耐漏液試験を、下記の(1)と(2)の条件で測定した。
(1) 60℃で200日放置した後の漏液電池の個数
(2) 毎日1サイクルの周期で、60℃〜−20℃のサイクル試験を100日間 した後の漏液電池の個数
【0026】
耐漏液試験の結果、実施例と、比較例1、2の電池で漏液した個数は下記のようになった。
実施例の電池の(1)の試験の漏液個数…………0/300個
実施例の電池の(2)の試験の漏液個数…………0/300個
【0027】
比較例1の電池の(1)の試験の漏液個数………1/300個
比較例1の電池の(2)の試験の漏液個数………3/300個
【0028】
比較例2の電池の(1)の試験の漏液個数………0/300個
比較例2の電池の(2)の試験の漏液個数………2/300個
【0029】
以上のように、本発明の封口方法で密閉された電池は、300個試作して、(1)と(2)の環境で、漏液したものは皆無であった。これに対して、比較例1の電池、すなわち、かしめ金型を外装缶を最も薄く押し潰した位置で保持しない方法で試作した電池は、(1)の試験では300個で1個が漏液し、(2)の試験では300個で3個が漏液した。さらに、比較例2の電池、すなわち、外装缶を2回かしめて封口した電池は、(1)の試験では300個とも漏液しなかったが、(2)の試験では300個で2個が漏液した。
【0030】
【発明の効果】
本発明の密閉電池の封口方法は、極めて簡単な方法で、製造された電池の漏液を極減できる特長がある。さらに、この特長に加えて、本発明の封口方法は、短時間で能率よく外装缶を封口できる特長も実現される。それは、本発明の封口方法が、従来のように、複数回に繰り返し、封口金型で外装缶をかしめ作業する必要がなく、1回のかしめ作業で確実に封口できるからである。とくに、本発明の封口方法は、封口金型で外装缶を最も薄く押し潰す時間を、わずかに0.1秒長くするという、極めて簡単な方法で、漏液特性を著しく改善できる卓効が実現される。このため、1個の外装缶を封口する時間をほとんど延長することなく、外装缶を理想的な状態で封口できる特長が実現される。
さらに、本発明の請求項2の封口方法によって、封口金型が外装缶を押圧しながら挟着する移動速度を20mm/秒よりも遅くすることより、さらに優れた漏液特性を実現できる特長がある。
【図面の簡単な説明】
【図1】本発明の実施例の封口方法で封口される密閉電池の断面図
【図2】外装缶をかしめて密閉電池を封口する工程を示す断面図
【図3】外装缶をかしめて密閉電池を封口する工程を示す断面図
【図4】外装缶をかしめて密閉電池を封口する工程を示す断面図
【図5】外装缶をかしめて密閉電池を封口する工程を示す断面図
【図6】図2ないし図5に示す工程で封口金型の位置と経過時間との関係を示すグラフ
【図7】封口金型の降下速度と封口寸法との関係を示すグラフ
【図8】封口金型が外装缶を最も薄く押し潰している状態での保持時間と封口寸法との関係を示すグラフ
【符号の説明】
1…外装缶
2…正極板
3…負極板
4…セパレータ
5…電極群
6…封口板
7…ガスケット
8…封口金型 8A…下金型 8B…上金型
9…固定金型
10…周壁金型
11…中心金型
12…かしめ金型 12A…かしめ面
13…バネ
14…バネ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improvement in a sealing method for a sealed battery, and more particularly to a sealing method for a sealed battery that does not leak from a caulked portion.
[0002]
[Prior art]
The sealed battery is manufactured by putting an electrode or an electrolyte in an outer can and then hermetically sealing the opening with a sealing plate. The opening of the outer can is caulked with the outer can and the sealed can and the sealing plate, and a gasket is sandwiched between the outer can and the outer can. The sealing method in which the outer can is caulked and hermetically sealed, for example, has an advantage that the outer can can be efficiently sealed as compared with a sealing method in which the periphery of the sealing plate is laser-welded to the opening of the outer can.
[0003]
It is important for the sealing method by caulking to have a structure in which the outer can and the sealing plate are hermetically sealed to prevent leakage. For this reason, various investigations and improvements have been made, such as selecting a sealant and improving the shape of the gasket, but the actual situation is that ideal leakage resistance is not obtained. In order to obtain sufficient liquid leakage resistance, various improvements have been made, such as increasing the accuracy of the sealing shape. However, even with this method, sufficiently satisfactory leakage resistance is not realized.
[0004]
In particular, the method of caulking and sealing the outer can is a spring back of the outer can that has been deformed by being pressed by a sealing mold, and has a property that the liquid leakage property is deteriorated. Considering the spring back, if the outer can is strongly deformed with the sealing mold, there is a problem that an extra impact is applied to the gasket. In the method of caulking and sealing the outer can, the gasket is sandwiched between the outer can and the sealing plate to seal it hermetically, so that damage to the gasket deteriorates leakage resistance.
[0005]
As a method for improving such defects, a method has been developed in which a sealing mold presses and crimps an outer can twice or more (Japanese Patent Laid-Open No. 59-224046). The sealing method described in this publication takes into account the spring back of the outer can and presses and crimps the outer can with a sealing mold twice or more.
[0006]
[Problems to be solved by the invention]
The sealing method in which the sealing mold caulks the outer can multiple times to reduce the spring back can improve the leakage resistance compared to the method in which the sealing mold caulks the outer can once. However, this sealing method has a drawback in that it is difficult to efficiently mass-produce and the productivity is lowered because the outer can is caulked by stroking the sealing mold a plurality of times.
[0007]
The present invention has succeeded in improving the leakage resistance in a very simple manner, and an important object of the present invention is to improve the leakage resistance, and in addition, the sealed battery can be sealed efficiently in a short time. It is to provide a sealing method.
[0008]
[Means for Solving the Problems]
The sealing method of the present invention is an improvement of a method in which a metal plate outer can 1 is caulked, a gasket 7 is sandwiched between the sealing plate 6 and the outer can 1, and the opening of the outer can 1 is hermetically sealed with the sealing plate 6. It is a thing. In the sealing method of the present invention, the caulking operation is not performed a plurality of times, but at the position where the caulking die 12 of the sealing die 8 is crushing the outer can 1 most thinly during the sealing operation, It is characterized by holding for at least 2 seconds.
[0009]
Furthermore, in the sealing method of claim 2 of the present invention, in the sealing operation in which the sealing die 8 caulks the outer can 1, the moving speed at which the caulking die 12 descends while caulking the outer can 1 is more than 20 mm / second. Slow down.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. However, the examples shown below exemplify the sealing method for embodying the technical idea of the present invention, and the present invention does not specify the sealing method as described below.
[0011]
Further, in this specification, in order to facilitate understanding of the scope of claims, the numbers corresponding to the members shown in the examples are referred to as “the scope of claims” and “the means for solving the problems”. It is added to the member shown by. However, the members shown in the claims are not limited to the members in the embodiments.
[0012]
FIG. 1 shows a button battery which is a sealed battery sealed by the sealing method of the present invention. In this sealed battery, an electrode group 5 in which a separator 4 is disposed between a positive electrode plate 2 and a negative electrode plate 3 and an electrolytic solution are placed in an outer can 1, and an opening of the outer can 1 is then sealed with a sealing plate 6. Is hermetically sealed.
[0013]
The outer can 1 and the sealing plate 6 are metal plates, and the outer can 1 is caulked, and the gasket 7 is sandwiched between the outer can 1 and the sealing plate 6 to hermetically seal the opening. The gasket 7 is sandwiched between the outer can 1 and the sealing plate 6 and elastically deformed, and is hermetically sealed and sealed to the outer can 1 and the sealing plate 6. Further, the gasket 7 also functions to insulate the outer can 1 as a positive electrode from the sealing plate 6 as a negative electrode.
[0014]
The sealed battery shown in FIG. 1 is sealed by caulking the outer can 1 with a sealing mold 8 shown in FIGS. The sealing mold 8 in this figure includes a lower mold 8A and an upper mold 8B. The lower mold 8A includes a fixed mold 9 and a peripheral wall mold 10 disposed around the fixed mold 9 so as to be movable in the vertical direction. The peripheral wall mold 10 is elastically pushed up by a spring 13. The upper mold 8 </ b> B includes a central mold 11 that presses the upper surface of the sealing plate 6, and a crimping mold 12 that is disposed around the central mold 11. The central mold 11 is connected to the caulking mold 12 via a spring 14 so as to be movable in the vertical direction. The caulking die 12 is connected to a cylinder and is pushed down by the cylinder. The caulking die 12 has a caulking surface 12A that is curved on the inner surface of the lower end so that the upper end edge of the outer can 1 can be bent inward. The central mold 11 is disposed inside the caulking surface 12A.
[0015]
The mold shown in these figures is sealed by caulking the outer can in the following steps.
(1) As shown in FIG. 2, the peripheral wall mold 10 of the lower mold 8 </ b> A is pushed up by a spring 13 and is positioned higher than the fixed mold 9. Set 1 In the outer can 1, an electrode group 5, an electrolytic solution, and a gasket 7 are placed, and a sealing plate 6 is placed at a fixed position on the gasket 7.
[0016]
(2) As shown in FIG. 3, when the caulking die 12 is pushed by the cylinder and starts to descend, the caulking die 12 is pushed and the peripheral wall die 10 of the lower die 8A is lowered. Since the central mold 11 is connected to the caulking mold 12 by a spring 14, when the caulking mold 12 is lowered, the central mold 11 is also lowered. When the center mold 11 is lowered to a position where the upper surface of the sealing plate 6 is pressed, the center mold 11 does not descend. However, since the center die 11 is connected to the caulking die 12 by the spring 14, the upper surface of the sealing plate 6 is elastically pressed when the caulking die 12 is lowered. Therefore, when the caulking die 12 is lowered, the center die 11 presses the upper surface of the sealing plate 6. The sealing plate 6 to be pressed elastically presses the lower surface of the gasket 7 against the bottom surface of the outer can 1 so that the gasket 7 and the bottom surface of the outer can 1 are tightly adhered.
[0017]
(3) As shown in FIG. 4, when the caulking die 12 is further lowered, the upper edge of the outer can 1 is bent inward along the caulking surface 12 </ b> A of the caulking die 12. The descending caulking die 12 is gradually lowered while lowering the peripheral wall die 10, and the upper end edge of the outer can 1 is bent and caulked by the caulking surface 12A. If it will be in this state, since the center of the sealing board 6 will protrude rather than the upper end edge of the crimped exterior can 1, the lower surface of the center metal mold | die 11 is pushed up rather than the crimping surface 12A.
[0018]
(4) As shown in FIG. 5, after the opening of the outer can 1 is caulked, the upper mold 8B is raised, and the sealed sealed battery is taken out from the lower mold 8A.
[0019]
FIG. 6 shows the lowering speed of the upper mold 8B that is lowered in the above process. When the caulking die 12 is lowered, until the center die 11 presses the upper surface of the sealing plate 6 or until the caulking surface 12A of the caulking die 12 starts to bend the upper end portion of the outer can 1. Almost no load. For this reason, the caulking die 12 is lowered to this position at a high speed from a to b in FIG. When the center mold 11 presses the upper surface of the sealing plate 6 and the caulking mold 12 bends the upper end of the outer can 1 inward, the lowering speed of the caulking mold 12 is reduced. This is because the descending speed at this time affects the caulking state of the outer can 1. In FIG. 6, the descending speed of the caulking die 12 is decreased from b to c.
[0020]
FIG. 7 shows the sealing dimension with respect to the speed at which the caulking mold 12 descends while caulking the outer can 1, that is, the descending speed until the caulking mold 12 descends from b to c in FIG. 6. However, the sealing dimension is a dimension from the bottom surface of the outer can 1 to the upper end of the outer can 1 as shown by an arrow D in FIG. When the spring back of the outer can 1 is increased, the sealing dimension is increased. Therefore, when the sealing dimension is small, the spring back is small, which indicates that the sealing is more reliably performed. The sealing dimension in this figure was measured with 0.2 seconds as the time during which the caulking mold descended most and the outer can was crushed most thinly. This figure clearly shows that when the lowering speed of the caulking mold is made slower than 20 mm / second, the sealing dimension is reduced and the sealing can be surely performed. Accordingly, the caulking die 12 is lowered at a speed that is preferably slower than 20 mm / second, more preferably slower than 10 mm / second.
[0021]
Further, FIG. 8 shows that when the caulking die 12 holds the outer can 1 in the position where the outer can 1 is most thinly crushed, if the time from c to d in FIG. 6 is increased, the sealing dimension becomes smaller and more reliably. Indicates that it can be sealed. In this figure, however, the speed at which the caulking mold descends while caulking the outer can was measured as 10 mm / sec. This figure shows that when the caulking die is held at the position where the outer can is most thinly crushed for longer than 0.1 seconds, the sealing size becomes smaller and the outer can is more reliably sealed. Indicates that Therefore, in the sealing method of the present invention, the time during which the outer can 1 is crushed most thinly with the caulking die 12 is longer than 0.1 seconds, more preferably longer than 0.2 seconds.
[0022]
【Example】
[Example]
300 sealed batteries having the structure shown in FIG. 1 were manufactured under the following conditions. However, the prototype battery was manufactured by setting the descent speed of the caulking mold and the holding time as follows in FIG.
Caulking mold lowering speed between a and b ... 60 mm / sec. Caching mold lowering speed between b and c ... Caching mold holding time between 5 mm / sec and cd ... 0.3 sec de Ascending speed of crimping die ... 60mm / sec. [0023]
[Comparative Example 1]
300 sealed batteries having the structure shown in FIG. 1 were manufactured under the following conditions. However, the prototype battery was manufactured by setting the descent speed of the caulking mold and the holding time as follows in FIG.
Descent speed of caulking mold between a and b ... 60 mm / sec. descent speed of caulking mold between b and c ... Retention time of caulking mold between 60 mm / sec and cd ... Caching between 0 sec and d Mold ascending speed: 60 mm / sec. [0024]
[Comparative Example 2]
Furthermore, although the same caulking method as the sealing method of Comparative Example 1 was used, 300 comparative batteries were prototyped with the caulking frequency set to two.
[0025]
The leakage resistance test of the battery sealed by the above method was measured under the following conditions (1) and (2).
(1) Number of leaking batteries after being left at 60 ° C. for 200 days (2) Number of leaking batteries after a cycle test of 60 ° C. to −20 ° C. for 100 days in one cycle every day
As a result of the liquid leakage resistance test, the number of liquid leaks in the batteries of Examples and Comparative Examples 1 and 2 was as follows.
Number of leaks in the test of the battery of the example (1) ………… 0/300 pieces Number of leaks of the test in the battery of the example (2) ………… 0/300
Number of liquid leaks in test (1) of battery of Comparative Example 1 ... 1/300 pieces Number of liquid leaks in test (2) of battery of Comparative Example 1 ... 3/300 pieces
Number of leaks in test (1) of battery of comparative example 2 ... 0/300 Number of leaks of test in battery of comparative example 2 (2) ... 2/300
As described above, 300 batteries sealed by the sealing method of the present invention were produced on a trial basis, and none of the batteries leaked in the environments (1) and (2). On the other hand, the battery of Comparative Example 1, that is, the battery prototyped by the method in which the caulking mold is not held at the position where the outer can is crushed thinnest, is 300 in the test of (1), and one is leaked. However, in the test of (2), three of the 300 leaked. Furthermore, the battery of Comparative Example 2, that is, the battery in which the outer can was crimped twice and sealed, did not leak in 300 pieces in the test of (1), but in the test of (2), 2 pieces of 300 pieces were leaked. Leaked.
[0030]
【The invention's effect】
The sealing method of the sealed battery of the present invention has an advantage that the leakage of the manufactured battery can be extremely reduced by an extremely simple method. Furthermore, in addition to this feature, the sealing method of the present invention also realizes a feature that can efficiently seal the outer can in a short time. This is because the sealing method of the present invention does not need to be caulked by a sealing mold repeatedly in a plurality of times as in the prior art, and can be reliably sealed by a single caulking operation. In particular, the sealing method of the present invention realizes the performance that can significantly improve the liquid leakage characteristics by a very simple method of extending the thinnest crushing time of the outer can with a sealing mold by only 0.1 seconds. Is done. For this reason, the feature which can seal an exterior can in an ideal state is realized, extending the time which seals one exterior can almost.
Furthermore, according to the sealing method of claim 2 of the present invention, since the moving speed at which the sealing die is clamped while pressing the outer can is made slower than 20 mm / second, a further excellent liquid leakage characteristic can be realized. is there.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a sealed battery that is sealed by a sealing method according to an embodiment of the present invention. FIG. 2 is a cross-sectional view showing a process for sealing a sealed battery by caulking an outer can. FIG. FIG. 4 is a cross-sectional view showing the process of sealing the sealed battery by caulking the outer can. FIG. 5 is a cross-sectional view showing the process of sealing the sealed battery by caulking the outer can. FIG. 7 is a graph showing the relationship between the position of the sealing mold and the elapsed time in the steps shown in FIG. 2 to FIG. 5. FIG. 7 is a graph showing the relationship between the descent speed of the sealing mold and the sealing dimension. Graph showing the relationship between retention time and sealing dimensions when the outer can is crushed thinnest
DESCRIPTION OF SYMBOLS 1 ... Exterior can 2 ... Positive electrode plate 3 ... Negative electrode plate 4 ... Separator 5 ... Electrode group 6 ... Sealing plate 7 ... Gasket 8 ... Sealing die 8A ... Lower die 8B ... Upper die 9 ... Fixed die 10 ... Perimeter wall die Mold 11 ... Center mold 12 ... Caulking mold 12A ... Caulking surface 13 ... Spring 14 ... Spring

Claims (2)

金属板の外装缶(1)を封口金型 (8) のかしめ金型 (12)でかしめて、封口板(6)と外装缶(1)でガスケット(7)を挟着し、封口板(6)で外装缶(1)の開口部を気密に密閉する密閉電池の封口方法であって、かしめ金型 (12) のかしめ面 (12A) で外装缶 (1) の上端縁を内側に折曲してかしめる封口方法において、
封口作業時に、封口金型(8)が外装缶(1)を最も薄く押し潰している位置で、0.1秒以上保持して外装缶 (1) のスプリングバックを少なくすることを特徴とする密閉電池の封口方法。
The metal plate outer can (1) is caulked with the sealing die (8) caulking die (12 ), and the gasket (7) is sandwiched between the sealing plate (6) and the outer can (1), and the sealing plate ( 6) Sealing the sealed battery in which the opening of the outer can (1) is hermetically sealed , and the upper edge of the outer can (1) is folded inward at the caulking surface (12A) of the caulking mold (12). In the sealing method to bend and squeeze ,
During the sealing operation, the sealing mold (8) is held at the position where the outer can (1) is most thinly crushed, and is held for 0.1 second or longer to reduce the spring back of the outer can (1). Sealing method for sealed battery.
封口金型(8)が、外装缶(1)をかしめる封口作業において、
かしめ金型 (12) が外装缶 (1) をかしめながら降下する移動速度を20mm/秒よりも遅くして、外装缶 (1) のスプリングバックを少なくすることを特徴とする請求項1に記載される密閉電池の封口方法。
In the sealing work in which the sealing mold (8) caulks the outer can (1),
2. The spring back of the outer can (1) is reduced by reducing the moving speed of the caulking mold (12) descending while caulking the outer can (1) to be lower than 20 mm / second. Sealing method for sealed battery.
JP08532397A 1997-04-03 1997-04-03 Sealing method of sealed battery Expired - Fee Related JP3625608B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08532397A JP3625608B2 (en) 1997-04-03 1997-04-03 Sealing method of sealed battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08532397A JP3625608B2 (en) 1997-04-03 1997-04-03 Sealing method of sealed battery

Publications (2)

Publication Number Publication Date
JPH10284023A JPH10284023A (en) 1998-10-23
JP3625608B2 true JP3625608B2 (en) 2005-03-02

Family

ID=13855424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08532397A Expired - Fee Related JP3625608B2 (en) 1997-04-03 1997-04-03 Sealing method of sealed battery

Country Status (1)

Country Link
JP (1) JP3625608B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5272456B2 (en) * 2008-03-12 2013-08-28 パナソニック株式会社 Method and apparatus for manufacturing flat battery

Also Published As

Publication number Publication date
JPH10284023A (en) 1998-10-23

Similar Documents

Publication Publication Date Title
JP2000090963A (en) Cap assembly for secondary battery
JP4064813B2 (en) Battery structure having covering assembly and method of assembling the same
JP3625608B2 (en) Sealing method of sealed battery
US4240197A (en) Method for sealing a primary cell
KR20170087325A (en) Cylindrical battery can, secondary battery comprising the same and fabricating methods thereof
JP3222969B2 (en) Manufacturing method of prismatic sealed battery
JP2916236B2 (en) Manufacturing method of cylindrical battery
JP2755751B2 (en) Manufacturing method of sealed battery
JP2863591B2 (en) Manufacturing method of cylindrical sealed battery
JP3253161B2 (en) Manufacturing method of prismatic sealed battery
JP3532110B2 (en) Sealing structure of cylindrical alkaline battery
JP2018018575A (en) Method for manufacturing sealed battery, and sealed battery
JP3760427B2 (en) Battery case manufacturing method and battery
JP3230883B2 (en) Manufacturing method of prismatic sealed battery
JP2004228035A (en) Method of manufacturing sealed battery, and sealed battery
JP3582306B2 (en) Manufacturing method of cylindrical battery
JPH03283258A (en) Sealed battery
JP3599391B2 (en) Method of manufacturing prismatic battery
JP3631792B2 (en) Square battery
JP3654947B2 (en) Square battery
JP3253159B2 (en) Manufacturing method of prismatic sealed battery
JPH0831393A (en) Sealing method for cylindrical battery
JPH0778602A (en) Metallic case for square sealed battery
JPH09259845A (en) Cylindrical sealed battery, and manufacture thereof
JPH07176321A (en) Manufacture of rectangular sealed battery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041130

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees