JP3631792B2 - Square battery - Google Patents

Square battery Download PDF

Info

Publication number
JP3631792B2
JP3631792B2 JP04971195A JP4971195A JP3631792B2 JP 3631792 B2 JP3631792 B2 JP 3631792B2 JP 04971195 A JP04971195 A JP 04971195A JP 4971195 A JP4971195 A JP 4971195A JP 3631792 B2 JP3631792 B2 JP 3631792B2
Authority
JP
Japan
Prior art keywords
container
opening
vickers hardness
battery
rectangular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04971195A
Other languages
Japanese (ja)
Other versions
JPH08250078A (en
Inventor
英明 小澤
秀明 北爪
裕 都賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP04971195A priority Critical patent/JP3631792B2/en
Publication of JPH08250078A publication Critical patent/JPH08250078A/en
Application granted granted Critical
Publication of JP3631792B2 publication Critical patent/JP3631792B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【産業上の利用分野】
本発明は有底矩形筒状の容器内の折曲部と段部とにより囲まれた位置に封口部材が絶縁ガスケットを介してかしめ固定された構造を有する角形電池に関するものである。
【0002】
【従来の技術】
近年、機器の小型軽量化にともない、体積効率の高い角形電池の開発が行われている。前記角形電池としては、例えば、角形ニッケルカドミウム二次電池や角形ニッケル水素二次電池などの角形アルカリ二次電池、角形リチウム二次電池が角形リチウム電池が知られている。このような角形電池は、過充電状態にされたり、あるいは放電時に誤使用や前記電池を使用する機器の故障等により大電流が流されると、電池内にガスが発生して内圧が上昇してしまう。電池内圧が過度に上昇すると前記角形電池が破裂するおそれがあるため、前記角形電池には防爆機能が設けられている。
【0003】
防爆機能を有する角形電池は、例えば、次のような方法により製造される。上部に矩形枠状の開口部と前記開口部の下方に形成された内方に突出した形状の段部とを有する有底矩形筒状の容器を用意する。前記容器内に正極と負極との間にセパレータを介して作製された電極群を収納した後、電解液を収容する。底部に穴を有する有底矩形筒状の絶縁ガスケット内に防爆機構を持つ封口部材を収納する。この絶縁ガスケットを前記容器内の段部に載置する。前記容器の前記開口部を縮径した後、前記開口部の上端を内方に折り曲げて折曲部を形成することにより前記角形電池を製造する。前記角形電池において、前記絶縁ガスケットは前述した方法で形成された折曲部により圧縮されているため、この絶縁ガスケットの反発弾性力によって前記封口部材は前記折曲部と段部とにより囲まれた空間にかしめ固定される。このため、前記角形電池の気密性が保たれる。なお、前記封口部材は、ガス抜き孔を有する封口板と、前記封口板にそのガス抜き孔を囲むように載置され、ガス通過孔を有する帽子形の端子キャップと、前記封口板と前記端子キャップとの間に前記ガス抜き孔を覆うように配置された合成ゴム製の弾性弁体とから構成される。
【0004】
このような構成の角形電池においてガスが発生し、所望の値のガス圧力が前記封口板のガス抜き孔を通して前記弾性弁体に加わると、前記弁体は変形して持ち上げられるため、前記封口板と前記弁体との間に隙間が生じる。その結果、前記ガスは前記隙間,前記端子キャップのガス通過孔を通して外部へ逃散するため、破裂が防止される。
【0005】
ところで、前記角形電池の容器は、従来より厚さが均一な容器が用いられている。このような容器は、例えば、金属板に深絞り成形を施すことにより作製される。この深絞り成形により容器を作製すると、加工硬化が生じて側面部分のビッカース硬度が上昇し、結果として側面部分のビッカース硬度が底部に比べて高い容器が得られる。しかしながら、側面部分のビッカース硬度が均一な容器は、優れた加工性と高い強度という相反する性質を兼ね備えることが困難であるという問題点があった。
【0006】
すなわち、前記角形電池において、例えば過充電等により前記容器内にガスが発生してガス圧力が上昇すると、前記容器が膨脹される。この膨脹により前記容器の側面が外方へ湾曲するが、この湾曲度合いは長辺側の面が短辺側の面に比べて著しく大きい。封口部の長辺側の面が外側に向かって膨出すると、前記絶縁ガスケットの圧縮率が低下するため、前記角形電池の気密性が低下するという問題点があった。このようなことからガス発生時の封口部の膨脹を防止するために前記容器開口部の厚さを厚くして強度を向上すると、前記容器開口部の加工性が低下する。その結果、前述した角形電池の製造工程において、前記容器の開口部上端を内方に折り曲げ難くなるため、折り曲げ度合いが不十分になる。従って、前記折曲部による前記絶縁ガスケットの圧縮度合いが低下するため、前記電池の気密性が低下する。なお、この角形電池の気密性を向上するために前記開口部に過度に押圧力を加えて前記開口部の上端を十分に折り曲げようとすると、前記容器の胴部に過剰な力が加わるため、前記容器の胴部や底部に凹みや歪みなどの変形が生じるという問題点があった。
【0007】
【発明が解決しようとする課題】
本発明の目的は、ガス発生に伴って開口部の長辺側の面が外方に湾曲するのを防止でき、かつ開口部の加工性が優れ、更にかしめ固定工程時に胴部が変形するのを防止することが可能な容器を備えた角形電池を提供しようとするものである。
【0008】
【課題を解決するための手段】
本発明は、上部に矩形枠状の開口部と前記開口部の下方に形成された内方に突出した形状の段部とを有する有底矩形筒状の容器と、前記容器内に収納され、正極と負極との間にセパレータを介して作製された電極群と、前記容器内に収容された電解液と、前記容器内の段部に載置されて前記開口部の上端を内方に折り曲げることにより前記段部と折曲部とにより囲まれた空間に圧縮状態で配置された底部に穴を有する有底矩形筒状の絶縁ガスケットと、前記絶縁ガスケット内に配置され、前記ガスケットの圧縮下においてかしめ固定される防爆機能を持つ封口部材とを具備した角形電池であって、前記容器は、前記開口部のうちコーナに位置する箇所のビッカース硬度をH1とし、前記開口部のうち長辺中央に位置する箇所のビッカース硬度をH2とし、前記開口部を除く容器側面部分のビッカース硬度をH3とした時に、H1<H2<H3を満たす構造を有し、
前記ビッカース硬度H 1 を80Hv〜120Hvにし、前記ビッカース硬度H 2 を100Hv〜140Hvにし、かつ前記ビッカース硬度H 3 を140Hvを超え、200Hv以下にすることを特徴とするものである。
【0009】
前記容器の前記開口部のうち短辺側の面のビッカース硬度H は、前記ビッカース硬度H と同程度か、もしくは前記ビッカース硬度H に比べて小さくすることが好ましい。このような容器は、前記開口部の加工性を更に向上することができる。
【0010】
前記容器を形成する材料としては、例えば、ニッケルメッキが施された鉄、鉄等を挙げることができる。
前記容器をニッケルメッキが施された鉄か、もしくは鉄から形成する場合、前記容器は、前記ビッカース硬度H を120Hv以下にし、前記ビッカース硬度H を100Hv〜140Hvにし、かつ前記ビッカース硬度H を140Hvを越える値にすることが好ましい。これは次のような理由によるものである。前記ビッカース硬度H が120Hvを越えると、前記開口部の加工性が低下する恐れがあるため、前記電池の製造工程において前記開口部の上端を内方に折り曲げる際に前記容器に過度な押圧力が加わって歪みや凹み等の変形が生じる恐れがある。また、ビッカース硬度が80Hv未満である容器は、現在の技術では作製することが困難であるため、前記ビッカース硬度H の下限値は80Hvにすることが好ましい。一方、前記ビッカース硬度H を100Hv未満にすると、前記電池においてガスが発生した際に前記開口部の長辺側の面が外側に湾曲する恐れがある。前記ビッカース硬度H が140Hvを越えると、前記開口部の加工性が低下する恐れがあるため、前記電池の製造工程において前記開口部の上端を内方に折り曲げる際に前記容器に過度な押圧力が加わって歪みや凹み等の変形が生じる恐れがある。また、前記ビッカース硬度H を140Hv以下にすると、前記開口部を除く容器部分の強度が低下する恐れがあるため、前記電池の製造工程において前記開口部の上端を内方に折り曲げる際に前記容器部分に歪みや凹み等の変形が生じる恐れがある。また、200Hvを越えるビッカース硬度を有する容器は現在の技術では作製することが困難であるため、前記ビッカース硬度H の上限は200Hvにすることが好ましい。
【0011】
前記容器は、例えば次の(1)〜(3)に示す方法により作製することができる。
(1)鋼板を深絞り成形して角形容器を作製した後、ニッケルメッキを施す。この容器の開口部短辺側の外側の面を両方とも加熱する。このとき、開口部を除く容器部分は加熱しない。開口部をこのように加熱すると、短辺側の外側の面の温度が最も高くなり、そこから長辺中央に向かって温度が徐々に低下して長辺中央に位置する箇所の温度が最も低くなるため、ビッカース硬度が前述した関係を満たす容器を作製することができる。
【0012】
(2)ニッケルメッキが施された鋼板を深絞り成形して角形容器を作製した後、この容器の開口部短辺側の外側の面を両方とも加熱する。このとき、開口部を除く容器部分は加熱しない。開口部をこのように加熱すると、短辺側の外側の面の温度が最も高くなり、そこから長辺中央に向かって温度が徐々に低下して長辺中央に位置する箇所の温度が最も低くなるため、ビッカース硬度が前述した関係を満たす容器を作製することができる。
【0013】
(3)鋼板を深絞り成形して角形容器を作製した後、この容器の開口部短辺側の外側の面を両方とも加熱する。このとき、開口部を除く容器部分は加熱しない。開口部をこのように加熱すると、短辺側の外側の面の温度が最も高くなり、そこから長辺中央に向かって温度が徐々に低下して長辺中央に位置する箇所の温度が最も低くなるため、ビッカース硬度が前述した関係を満たす容器を作製することができる。この後、必要に応じてニッケルメッキを施す。
【0014】
前記容器の作製において、開口部を加熱する方法としては、例えば、高周波加熱、赤外線加熱などを挙げることができる。なお、前記加熱は、スラッジ、つまり容器表面への酸化鉄などを含む煤状物質の付着を防止するために例えば窒素ガスやアルゴンガス等の不活性ガス雰囲気下で行うことが好ましい。
【0015】
【作用】
本発明の角形電池によれば、上部に矩形枠状の開口部と前記開口部の下方に形成された内方に突出した形状の段部とを有する有底矩形筒状の容器を備える。前記容器は、前記開口部のうちコーナに位置する箇所のビッカース硬度をH とし、かつ前記開口部のうち長辺中央に位置する箇所のビッカース硬度をH とし、更に前記開口部を除く容器側面部分、つまり胴部側面のビッカース硬度をH とした時に、H <H <H を満たす構造を有する。このような容器は、開口部の強度が前記胴部の強度に比較して小さく、かつ最も加工し難い開口部コーナの強度が開口部の長辺中央部分に比べて小さいため、胴部の強度を高く保持したまま前記開口部の加工性を向上することができる。その結果、前記容器の前記開口部の上端を十分に、かつ容易に内方に折り曲げることができるため、これにより形成された折曲部で絶縁ガスケットを十分に圧縮することができる。このため、前記絶縁ガスケット内に配置された防爆機能付き封口部材を前記絶縁ガスケットの反発弾性力により気密性良くかしめ固定することができる。また、前記容器に過度な押圧力を加えることなく前記開口部の上端を内方に折り曲げることができ、かつ前記容器の胴部の強度が高いため、この折り曲げの際に前記容器の胴部に凹みや歪みなどの変形が生じるのを防止することができる。
【0016】
前記容器の前記開口部において長辺中央に位置する箇所の強度がコーナに比べて高いことから長辺側の面は撓み難く、かつ前記角形電池は前述したように気密性良く封口がなされているため、前記電池において例えば過充電や放電時の誤使用等によりガスが発生した際に、ガス圧力により前記開口部の長辺側の面が外方へ湾曲するのを防止することができる。従って、ガス発生後においても絶縁ガスケットの圧縮率を高い値に維持することができるため、前記電池の気密性を向上することができる。このため、前記電池の信頼性を向上することが可能になる。
【0017】
【実施例】
以下、本発明の実施例を図面を参照して詳細に説明する。
実施例1
図1に示すように、本発明に係る角形電池は、一方極(例えば負極)端子を兼ねる容器1を備える。前記容器1は、例えばニッケルメッキが施された鉄から形成されている。前記容器1は、図2に示すように有底矩形筒状で、上部に矩形枠状の開口部2を有する。前記容器の角筒部(胴部)寸法は例えば、長辺側の幅が16.4mmで、短辺側の幅が5.5mmで、高さが46.6mmで、厚さが0.4mmである。前記容器1のビッカース硬度は例えば、開口部2のうち長辺中央部に位置する箇所H が130Hvで、かつ開口部2のうち短辺側の面H が100Hvである。また、開口部2のうちコーナに位置する箇所のビッカース硬度H は100Hvである。更に、前記開口部2を除く容器側面部分、つまり胴部側面のビッカース硬度H は例えば、160Hvである。従って、前記容器1はH <H <H を満たす構造を有する。前記容器1の前記開口部2の上端は内方に折り曲げられて折曲部3が形成されている。前記容器1の開口部2の下方には、例えば0.2mm内方に突出した形状の段部4が形成されている。電極群5は、一方極(例えば負極)6と、セパレータ7で包まれた他方極(例えば正極)8とを交互に重ね合わせて形成されている。前記電極群5は、前記容器1の内周面と前記負極6が接触するように前記容器1内に収納されている。電解液は前記容器1内に収容されている。合成樹脂製の絶縁ガスケット9は、底部に矩形の穴9aが開口された有底矩形筒状である。前記絶縁ガスケット9は、前記容器1内の前記折曲部3と前記段部4とにより囲まれた位置に目的とする圧縮状態で配置されている。防爆機能及び他方極(例えば正極)端子を兼ねる封口部材10は、前記絶縁ガスケット9内に配置され、前記絶縁ガスケット9の反発弾性力により強固にかしめ固定されている。前記封口部材10は、中央にガス抜き孔11を有する矩形状の封口板12と、例えば合成ゴムからなる弾性弁体13と、ガス通過孔(図示しない)を有する帽子形の端子キャップ14とから構成されている。前記弾性弁体13は前記封口板12にそのガス抜き孔11を覆うように載置されている。前記端子キャップ14は前記弾性弁体13を包囲するように配置され、溶接により前記封口板12に固定されている。他方極(例えば正極)リード15は、一端が前記正極8に接続され、他端が前記封口板12の下面と接続されている。
【0018】
この角形電池の防爆機構の動作を説明する。前記角形電池においてガスが発生し、所望の値のガス圧力が前記封口板12のガス抜き孔11を通して前記弾性弁体13に加わると、前記弁体13は変形して持ち上げられるため、前記封口板12と前記弁体13との間に隙間が生じる。その結果、前記ガスは前記隙間,前記端子キャップ14のガス通過孔を通して外部へ逃散するため、破裂が防止される。
【0019】
このような構成の角形電池によれば、ビッカース硬度がH <H <H を満たす構造を有する容器1を備える。このような容器1は、開口部2の強度が前記胴部の強度に比較して小さく、かつ加工性が最も劣る開口部コーナの強度が開口部の長辺中央部分に比べて小さいため、胴部の強度を高く保持したまま前記開口部2の加工性を向上することができる。その結果、前述した図1に示すように前記容器1の前記開口部2の上端に所望の形状を持つ折曲部3を形成することができるため、前記折曲部3により絶縁ガスケット9を十分に圧縮することができる。このため、封口部材10を前記絶縁ガスケット9の反発弾性力によって前記容器1の前記折曲部3と前記段部4とにより囲まれた空間内にかしめ固定することができる。また、前記容器1の開口部2上端を折り曲げる工程において、前記容器1に過度な押圧力を加えることなく前記開口部2上端を内方に折り曲げることができ、かつ前記容器1の胴部の強度が高いため、前記胴部に凹みや歪みなどの変形が生じるのを防止することができる。
【0020】
前記容器1の前記開口部2において長辺中央に位置する箇所の強度がコーナに比べて高いことから長辺側の面は撓み難く、かつ前記角形電池は前述したように気密性良く封口がなされているため、前記電池において例えば過充電や放電時の誤使用等によりガスが発生した際に、ガス圧力により前記開口部2の長辺側の面が外方へ湾曲するのを防止することができる。その結果、ガス発生後においても絶縁ガスケット9の圧縮率を高い値に維持することができるため、前記電池の気密性を向上することができる。このため、前記電池の信頼性を向上することが可能になる。
【0021】
本発明に係わる角形電池の優れた特性は以下に示す実験により確認された。
比較例1
側面全体のビッカース硬度が160Hvである容器を用いた以外は実施例1と同様な構成で前述した図1に示す構造を有する角形電池を製造した。
比較例2
開口部全体のビッカース硬度が130Hvで、かつ胴部側面のビッカース硬度が160Hvである容器を用いた以外は実施例1と同様な構成で前述した図1に示す構造を有する角形電池を製造した。
比較例3
開口部全体のビッカース硬度が100Hvで、かつ胴部側面のビッカース硬度が160Hvである容器を用いた以外は実施例1と同様な構成で前述した図1に示す構造を有する角形電池を製造した。
【0022】
実施例1及び比較例1〜3の角形電池の容器の下部側面に孔を設け、この孔から前記容器内にガスを送りこみ、開口部の長辺側の面が外側に向かって湾曲し、前記開口部の長辺側の内面と絶縁ガスケットの長辺側の側壁との間に隙間が生じてこの隙間からガス漏れが生じた時の前記容器内の圧力を測定した。その結果を下記表1に示す。
【0023】
【表1】

Figure 0003631792
【0024】
表1から明らかなように、ビッカース硬度が前記式H <H <H を満たす構造を有する容器を備えた実施例1の角形電池は、開口部の上端に所望の形状を有する折曲部が形成され、容器に変形がなく、ガス漏れ圧力が13〜16kgf/cm と高く、封口耐圧が高いことがわかる。これに対し、開口部及び胴部側面のビッカース硬度が160Hvである容器を備えた比較例1の角形電池は、封口時に変形を生じ、また開口端が内方に軽度しか屈曲されず、ガス漏れ圧力が格段に低いことがわかる。開口部のビッカース硬度が130Hvで、胴部側面のビッカース硬度が160Hvである容器を備えた比較例2の角形電池は、かしめ固定の工程において前記開口部の上端を内方に折り曲げる際に前記容器の底部に凹みが生じ、かつガス漏れ圧力が8〜10kgf/cm と低かった。また、開口部のビッカース硬度が100Hvで、胴部側面のビッカース硬度が160Hvである容器を備えた比較例2の角形電池は、かしめ固定の工程において前記開口部の上端が十分に折り曲げられ、この時に前記容器の底部に変形が生じなかったものの、ガス漏れ圧力が10〜13kgf/cm と低かった。
【0025】
なお、前記実施例では安全弁として前述した図1に示す弾性弁体からなり、弁作動後に再び封口板のガス抜き孔を密閉する復帰式のものを用いたが、安全弁としては前記封口板と前記端子キャップとの間に前記封口板のガス抜き孔を覆うように介装された弁膜(例えば可撓性薄膜から形成される)からなる非復帰式のものを用いることができる。前記非復帰式の安全弁を備えた電池では、前記電池内のガスが前記封口板の前記ガス抜き孔を通して前記弁膜に圧力を加え、これを破断する。従って、前記ガスは前記弁膜の破断箇所及び前記端子キャップの前記ガス抜き孔から外部に逃散し、前記電池の破裂が防止される。
【0026】
【発明の効果】
以上詳述したように本発明の角形電池によれば、容器に封口部材を気密性良くかしめ固定することができ、かしめ固定の際に容器が変形するのを防止することができ、例えば過充電や誤使用等により電池内にガスが発生した際に前記開口部の長辺側の面が外方に湾曲するのを抑制することができ、前記ガス発生時に絶縁ガスケットの圧縮率が低下するのを防止することができ、前記電池の気密性を向上することができるという顕著な効果を奏する。
【図面の簡単な説明】
【図1】本発明に係る角形電池を示す断面図。
【図2】図1の容器を示す斜視図。
【符号の説明】
1…容器、2…開口部、3…折曲部、4…段部、5…電極群、9…絶縁ガスケット、10…防爆機能及び端子を兼ねる封口部材、12…封口板。[0001]
[Industrial application fields]
The present invention relates to a prismatic battery having a structure in which a sealing member is caulked and fixed via an insulating gasket at a position surrounded by a bent part and a step part in a bottomed rectangular cylindrical container.
[0002]
[Prior art]
In recent years, along with the reduction in size and weight of devices, development of rectangular batteries with high volumetric efficiency has been performed. As the prismatic battery, for example, prismatic alkaline secondary batteries such as prismatic nickel cadmium secondary batteries and prismatic nickel metal hydride secondary batteries, and prismatic lithium secondary batteries are known as prismatic lithium batteries. When such a prismatic battery is overcharged, or when a large current is caused to flow due to misuse or failure of equipment using the battery, gas is generated in the battery and the internal pressure increases. End up. Since the prismatic battery may burst if the battery internal pressure rises excessively, the prismatic battery is provided with an explosion-proof function.
[0003]
A square battery having an explosion-proof function is manufactured, for example, by the following method. A bottomed rectangular tube-shaped container having a rectangular frame-shaped opening at the top and an inwardly projecting step formed below the opening is prepared. After accommodating the electrode group produced via the separator between the positive electrode and the negative electrode in the container, the electrolytic solution is accommodated. A sealing member having an explosion-proof mechanism is housed in a bottomed rectangular cylindrical insulating gasket having a hole at the bottom. This insulating gasket is placed on the step in the container. After reducing the diameter of the opening of the container, the rectangular battery is manufactured by bending the upper end of the opening inward to form a bent portion. In the rectangular battery, since the insulating gasket is compressed by the bent portion formed by the above-described method, the sealing member is surrounded by the bent portion and the stepped portion by the repulsive elastic force of the insulating gasket. It is caulked and fixed in space. For this reason, the airtightness of the square battery is maintained. The sealing member includes a sealing plate having a gas venting hole, a cap-shaped terminal cap that is placed on the sealing plate so as to surround the gas venting hole, and has a gas passage hole, the sealing plate, and the terminal. It is comprised from the elastic valve body made from a synthetic rubber arrange | positioned so that the said gas vent hole may be covered between caps.
[0004]
When the gas is generated in the rectangular battery having such a configuration and a gas pressure of a desired value is applied to the elastic valve body through the vent hole of the sealing plate, the valve body is deformed and lifted. And a gap between the valve body and the valve body. As a result, the gas escapes to the outside through the gap and the gas passage hole of the terminal cap, thereby preventing rupture.
[0005]
By the way, the container of the said square battery has used the container with uniform thickness conventionally. Such a container is produced, for example, by subjecting a metal plate to deep drawing. When a container is produced by this deep drawing, work hardening occurs and the Vickers hardness of the side surface portion increases, and as a result, a container having a higher Vickers hardness of the side surface portion than that of the bottom portion is obtained. However, a container having a uniform Vickers hardness at the side surface has a problem that it is difficult to combine the contradictory properties of excellent workability and high strength.
[0006]
That is, in the rectangular battery, for example, when gas is generated in the container due to overcharging or the like and the gas pressure is increased, the container is expanded. Due to this expansion, the side surface of the container is curved outward, but the degree of curvature is significantly greater on the long side surface than on the short side surface. When the long side surface of the sealing portion bulges outward, the compression rate of the insulating gasket is lowered, and thus the airtightness of the rectangular battery is lowered. For this reason, if the thickness of the container opening is increased to improve the strength in order to prevent expansion of the sealing part when gas is generated, the workability of the container opening is lowered. As a result, in the above-described rectangular battery manufacturing process, the upper end of the opening of the container is difficult to be bent inward, so that the degree of bending becomes insufficient. Accordingly, since the degree of compression of the insulating gasket by the bent portion is reduced, the airtightness of the battery is reduced. In order to improve the airtightness of the prismatic battery, if excessive pressure is applied to the opening and the upper end of the opening is sufficiently bent, an excessive force is applied to the body of the container. There has been a problem that deformation such as dents and distortion occurs in the body and bottom of the container.
[0007]
[Problems to be solved by the invention]
The object of the present invention is to prevent the long side surface of the opening from being bent outwardly with the generation of gas, and to be excellent in workability of the opening, and further, the barrel is deformed during the caulking and fixing process. It is an object of the present invention to provide a prismatic battery including a container capable of preventing the above.
[0008]
[Means for Solving the Problems]
The present invention is a container with a bottomed rectangular tube having a rectangular frame-shaped opening at the top and a stepped portion formed inwardly and formed below the opening, and is housed in the container. An electrode group produced via a separator between a positive electrode and a negative electrode, an electrolyte solution contained in the container, and placed on a step in the container to bend the upper end of the opening inward Accordingly, a bottomed rectangular cylindrical insulating gasket having a hole in the bottom portion disposed in a compressed state in a space surrounded by the stepped portion and the bent portion, and disposed in the insulating gasket, and under compression of the gasket And a sealing member having an explosion-proof function that is caulked and fixed in the container, wherein the container has a Vickers hardness of a portion located in a corner of the opening as H 1, and a long side of the opening Vickers hardness at the center And H 2, the Vickers hardness of the container side portions excluding the opening when the H 3, have a structure that satisfies H 1 <H 2 <H 3 ,
The Vickers hardness H 1 is 80 Hv to 120 Hv, the Vickers hardness H 2 is 100 Hv to 140 Hv, and the Vickers hardness H 3 is more than 140 Hv and 200 Hv or less .
[0009]
The Vickers hardness H 4 face the short side of the opening of the container, the Vickers hardness H 1 and equal to or, or is preferably made smaller than the Vickers hardness H 1. Such a container can further improve the workability of the opening.
[0010]
Examples of the material for forming the container include iron and iron plated with nickel.
In the case where the container is made of nickel-plated iron or iron, the container has the Vickers hardness H 1 of 120 Hv or less, the Vickers hardness H 2 of 100 Hv to 140 Hv, and the Vickers hardness H 3. Is preferably set to a value exceeding 140 Hv. This is due to the following reason. When the Vickers hardness H 1 exceeds 120 Hv, the processability of the opening may be decreased, excessive pressure in the container when folding the upper end of the opening inwardly in the manufacturing process of the battery May cause deformation such as distortion and dent. The container Vickers hardness is less than 80Hv, since it is difficult to manufacture in the current technology, the lower limit of the Vickers hardness H 1 is preferably set to 80Hv. On the other hand, when the Vickers hardness H 2 to less than 100 Hv, the surface of the long sides of the opening when the gas is generated in the battery may be outwardly curved. When the Vickers hardness H 2 exceeds 140Hv, since the workability of the opening may be decreased, excessive pressure in the container when folding the upper end of the opening inwardly in the manufacturing process of the battery May cause deformation such as distortion and dent. Further, when the Vickers hardness H 3 below 140Hv, the strength of the container portion except for the opening may be lowered, the container when folding the upper end of the opening inwardly in the manufacturing process of the battery There is a risk of deformation such as distortion or dent in the portion. Moreover, since it is difficult to produce a container having a Vickers hardness exceeding 200 Hv with the current technology, the upper limit of the Vickers hardness H 3 is preferably 200 Hv.
[0011]
The said container can be produced, for example by the method shown to following (1)-(3).
(1) After the steel sheet is deep-drawn to produce a rectangular container, nickel plating is applied. Both the outer surfaces on the short side of the opening of the container are heated. At this time, the container portion excluding the opening is not heated. When the opening is heated in this way, the temperature of the outer surface on the short side becomes the highest, and the temperature gradually decreases from there to the center of the long side, so that the temperature at the position located at the center of the long side is the lowest. Therefore, a container having Vickers hardness satisfying the relationship described above can be produced.
[0012]
(2) After deep drawing the steel plate on which nickel plating has been applied to produce a rectangular container, both the outer surfaces on the short side of the opening of the container are heated. At this time, the container portion excluding the opening is not heated. When the opening is heated in this way, the temperature of the outer surface on the short side becomes the highest, and the temperature gradually decreases from there to the center of the long side, so that the temperature at the position located at the center of the long side is the lowest. Therefore, a container having Vickers hardness satisfying the relationship described above can be produced.
[0013]
(3) After the steel plate is deep-drawn to produce a rectangular container, both the outer surfaces on the short side of the opening of the container are heated. At this time, the container portion excluding the opening is not heated. When the opening is heated in this way, the temperature of the outer surface on the short side becomes the highest, and the temperature gradually decreases from there to the center of the long side, so that the temperature at the position located at the center of the long side is the lowest. Therefore, a container having Vickers hardness satisfying the relationship described above can be produced. Thereafter, nickel plating is applied as necessary.
[0014]
In the preparation of the container, examples of the method for heating the opening include high-frequency heating and infrared heating. In addition, it is preferable to perform the said heating in inert gas atmosphere, such as nitrogen gas and argon gas, in order to prevent adhesion of the sludge, ie, the soot-like substance containing iron oxide etc., to the container surface.
[0015]
[Action]
According to the prismatic battery of the present invention, the rectangular battery having the bottom is provided with a rectangular frame-shaped opening and an inwardly projecting step formed below the opening. Said container, the Vickers hardness of a portion located at a corner of the opening and H 1, and the Vickers hardness of a portion located in the long side center of the opening and H 2, the container further excluding the opening side portion, i.e. a Vickers hardness of the body side when the H 3, having a structure satisfying H 1 <H 2 <H 3 . In such a container, the strength of the trunk is low because the strength of the opening is small compared to the strength of the trunk and the strength of the opening corner that is the most difficult to process is small compared to the central portion of the long side of the opening. The workability of the opening can be improved while maintaining a high value. As a result, the upper end of the opening of the container can be bent sufficiently and easily inward, and the insulating gasket can be sufficiently compressed by the bent portion formed thereby. For this reason, the sealing member with an explosion-proof function disposed in the insulating gasket can be caulked and fixed with good airtightness by the repulsive elastic force of the insulating gasket. Further, the upper end of the opening can be folded inward without applying excessive pressing force to the container, and the strength of the body of the container is high. It is possible to prevent deformation such as dents and distortion.
[0016]
In the opening of the container, the strength of the portion located at the center of the long side is higher than that of the corner, so the surface on the long side is difficult to bend, and the rectangular battery is sealed with good airtightness as described above. Therefore, when gas is generated in the battery due to, for example, overuse or misuse during discharge, it is possible to prevent the surface on the long side of the opening from being bent outward due to gas pressure. Accordingly, the compressibility of the insulating gasket can be maintained at a high value even after gas is generated, so that the airtightness of the battery can be improved. For this reason, it becomes possible to improve the reliability of the battery.
[0017]
【Example】
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
Example 1
As shown in FIG. 1, the prismatic battery according to the present invention includes a container 1 that also serves as a unipolar (eg, negative electrode) terminal. The container 1 is made of, for example, iron plated with nickel. As shown in FIG. 2, the container 1 has a rectangular tube shape with a bottom, and has an opening 2 having a rectangular frame shape at the top. The rectangular tube (body) dimensions of the container are, for example, a long side width of 16.4 mm, a short side width of 5.5 mm, a height of 46.6 mm, and a thickness of 0.4 mm. It is. Vickers hardness of the container 1, for example, at a point H 2 located on the long side central portion of the opening portion 2 is 130Hv, and the surface H 4 of the opening 2 the short side is 100 Hv. Moreover, the Vickers hardness H1 of the location located in a corner among the opening parts 2 is 100 Hv. Further, the container side portions excluding the opening 2, i.e. Vickers hardness H 3 of the body portion side, for example, is 160Hv. Therefore, the container 1 has a structure satisfying H 1 <H 2 <H 3 . The upper end of the opening 2 of the container 1 is bent inward to form a bent portion 3. Below the opening 2 of the container 1, for example, a step 4 having a shape protruding inward by 0.2 mm is formed. The electrode group 5 is formed by alternately superposing one electrode (for example, a negative electrode) 6 and the other electrode (for example, a positive electrode) 8 wrapped with a separator 7. The electrode group 5 is housed in the container 1 so that the inner peripheral surface of the container 1 and the negative electrode 6 are in contact with each other. The electrolytic solution is accommodated in the container 1. The insulating gasket 9 made of synthetic resin has a bottomed rectangular tube shape in which a rectangular hole 9a is opened at the bottom. The insulating gasket 9 is disposed in a target compressed state at a position surrounded by the bent portion 3 and the step portion 4 in the container 1. A sealing member 10 serving both as an explosion-proof function and the other electrode (for example, positive electrode) is disposed in the insulating gasket 9 and is firmly caulked and fixed by a repulsive elastic force of the insulating gasket 9. The sealing member 10 includes a rectangular sealing plate 12 having a gas vent hole 11 in the center, an elastic valve body 13 made of, for example, synthetic rubber, and a hat-shaped terminal cap 14 having a gas passage hole (not shown). It is configured. The elastic valve body 13 is placed on the sealing plate 12 so as to cover the gas vent hole 11. The terminal cap 14 is disposed so as to surround the elastic valve body 13 and is fixed to the sealing plate 12 by welding. The other electrode (for example, positive electrode) lead 15 has one end connected to the positive electrode 8 and the other end connected to the lower surface of the sealing plate 12.
[0018]
The operation of the explosion-proof mechanism for the rectangular battery will be described. When gas is generated in the rectangular battery and a gas pressure having a desired value is applied to the elastic valve body 13 through the gas vent hole 11 of the sealing plate 12, the valve body 13 is deformed and lifted, so that the sealing plate A gap is formed between the valve body 13 and the valve body 13. As a result, the gas escapes to the outside through the gap and the gas passage hole of the terminal cap 14, so that the burst is prevented.
[0019]
According to the prismatic battery having such a configuration, the container 1 having a structure in which Vickers hardness satisfies H 1 <H 2 <H 3 is provided. In such a container 1, the strength of the opening 2 is small compared to the strength of the barrel, and the strength of the opening corner having the lowest workability is small compared to the central portion of the long side of the opening. The workability of the opening 2 can be improved while keeping the strength of the portion high. As a result, the bent portion 3 having a desired shape can be formed at the upper end of the opening 2 of the container 1 as shown in FIG. Can be compressed. Therefore, the sealing member 10 can be caulked and fixed in the space surrounded by the bent portion 3 and the step portion 4 of the container 1 by the repulsive elastic force of the insulating gasket 9. Further, in the step of bending the upper end of the opening 2 of the container 1, the upper end of the opening 2 can be bent inward without applying excessive pressing force to the container 1, and the strength of the trunk of the container 1 Therefore, it is possible to prevent the body portion from being deformed such as a dent or distortion.
[0020]
In the opening 2 of the container 1, the strength of the portion located at the center of the long side is higher than that of the corner, so that the surface on the long side is difficult to bend, and the rectangular battery is sealed with good airtightness as described above. Therefore, when gas is generated in the battery due to, for example, overuse or misuse at the time of discharge, it is possible to prevent the long side surface of the opening 2 from being bent outward due to gas pressure. it can. As a result, the compressibility of the insulating gasket 9 can be maintained at a high value even after gas is generated, so that the airtightness of the battery can be improved. For this reason, it becomes possible to improve the reliability of the battery.
[0021]
The excellent characteristics of the prismatic battery according to the present invention were confirmed by the following experiment.
Comparative Example 1
A rectangular battery having the structure shown in FIG. 1 was manufactured in the same configuration as in Example 1 except that a container having a Vickers hardness of 160 Hv on the entire side surface was used.
Comparative Example 2
A rectangular battery having the structure shown in FIG. 1 was manufactured in the same manner as in Example 1 except that a container having a Vickers hardness of 130 Hv in the entire opening and a Vickers hardness of 160 Hv on the side surface of the trunk was used.
Comparative Example 3
A rectangular battery having the structure shown in FIG. 1 was manufactured in the same manner as in Example 1 except that a container having a Vickers hardness of 100 Hv in the entire opening and a Vickers hardness of 160 Hv on the side surface of the trunk was used.
[0022]
A hole is formed in the lower side surface of the rectangular battery container of Example 1 and Comparative Examples 1 to 3, gas is fed into the container from this hole, and the long side surface of the opening is curved outward. A gap was formed between the inner surface on the long side of the opening and the side wall on the long side of the insulating gasket, and the pressure in the container when gas leaked from the gap was measured. The results are shown in Table 1 below.
[0023]
[Table 1]
Figure 0003631792
[0024]
As is clear from Table 1, the prismatic battery of Example 1 having a container having a structure with Vickers hardness satisfying the formula H 1 <H 2 <H 3 is a bent battery having a desired shape at the upper end of the opening. A part is formed, the container is not deformed, the gas leakage pressure is as high as 13 to 16 kgf / cm 2 , and the sealing pressure resistance is high. On the other hand, the prismatic battery of Comparative Example 1 provided with a container having a Vickers hardness of 160 Hv on the side of the opening and the body part is deformed when sealed, and the opening end is bent only slightly inward, causing gas leakage. It can be seen that the pressure is much lower. The prismatic battery of Comparative Example 2 having a container having a Vickers hardness of 130 Hv at the opening and a Vickers hardness of 160 Hv at the side of the trunk is the container when the upper end of the opening is folded inward in the caulking and fixing process. And a gas leak pressure was as low as 8 to 10 kgf / cm 2 . Further, in the prismatic battery of Comparative Example 2 including a container having a Vickers hardness of 100 Hv at the opening and a Vickers hardness of 160 Hv at the side of the trunk, the upper end of the opening is sufficiently bent in the caulking and fixing process. Although sometimes the bottom of the container did not deform, the gas leak pressure was as low as 10-13 kgf / cm 2 .
[0025]
In addition, in the said Example, it consisted of the elastic valve body shown in FIG. 1 mentioned above as a safety valve, and used the resettable thing which seals the gas vent hole of a sealing plate again after valve operation, but as said safety valve, the said sealing plate and the said A non-returnable type made of a valve membrane (for example, formed of a flexible thin film) interposed so as to cover the gas vent hole of the sealing plate between the terminal cap and the terminal cap can be used. In a battery equipped with the non-returnable safety valve, the gas in the battery applies pressure to the valve membrane through the vent hole of the sealing plate and breaks it. Therefore, the gas escapes to the outside from the breakage point of the valve membrane and the vent hole of the terminal cap, and the battery is prevented from being ruptured.
[0026]
【The invention's effect】
As described above in detail, according to the prismatic battery of the present invention, the sealing member can be caulked and fixed with good airtightness, and the container can be prevented from being deformed during caulking, for example, overcharging. When the gas is generated in the battery due to misuse or the like, the long side surface of the opening can be prevented from bending outward, and the compression rate of the insulating gasket decreases when the gas is generated. Can be prevented, and the airtightness of the battery can be improved.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a prismatic battery according to the present invention.
FIG. 2 is a perspective view showing the container of FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Container, 2 ... Opening part, 3 ... Bending part, 4 ... Step part, 5 ... Electrode group, 9 ... Insulating gasket, 10 ... Sealing member which serves as an explosion-proof function and a terminal, 12 ... Sealing board.

Claims (1)

上部に矩形枠状の開口部と前記開口部の下方に形成された内方に突出した形状の段部とを有する有底矩形筒状の容器と、前記容器内に収納され、正極と負極との間にセパレータを介して作製された電極群と、前記容器内に収容された電解液と、前記容器内の段部に載置されて前記開口部の上端を内方に折り曲げることにより前記段部と折曲部とにより囲まれた空間に圧縮状態で配置された底部に穴を有する有底矩形筒状の絶縁ガスケットと、前記絶縁ガスケット内に配置され、前記ガスケットの圧縮下においてかしめ固定される防爆機能を持つ封口部材とを具備した角形電池において、
前記容器は、前記開口部のうちコーナに位置する箇所のビッカース硬度をH1とし、前記開口部のうち長辺中央に位置する箇所のビッカース硬度をH2とし、前記開口部を除く容器側面部分のビッカース硬度をH3とした時に、H1<H2<H3を満たす構造を有し、
前記ビッカース硬度H 1 を80Hv〜120Hvにし、前記ビッカース硬度H 2 を100Hv〜140Hvにし、かつ前記ビッカース硬度H 3 を140Hvを超え、200Hv以下にすることを特徴とする角形電池。
A rectangular tube-shaped container having a rectangular frame-shaped opening at the top and a stepped portion formed inwardly and formed below the opening; and housed in the container; a positive electrode and a negative electrode; An electrode group produced via a separator, an electrolytic solution accommodated in the container, and placed on the step in the container, and the upper end of the opening is bent inward to form the step. A bottomed rectangular cylindrical insulating gasket having a hole in the bottom portion disposed in a compressed state in a space surrounded by a bent portion and a bent portion, and disposed in the insulating gasket and fixed by caulking under compression of the gasket. In a rectangular battery comprising a sealing member having an explosion-proof function,
The container has a Vickers hardness of a portion located in the corner of the opening as H 1 , a Vickers hardness of a portion located in the center of the long side of the opening as H 2, and a side surface portion of the container excluding the opening the Vickers hardness when a H 3, have a structure that satisfies H 1 <H 2 <H 3 ,
A rectangular battery characterized in that the Vickers hardness H 1 is 80 Hv to 120 Hv, the Vickers hardness H 2 is 100 Hv to 140 Hv, and the Vickers hardness H 3 is more than 140 Hv and 200 Hv or less .
JP04971195A 1995-03-09 1995-03-09 Square battery Expired - Fee Related JP3631792B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04971195A JP3631792B2 (en) 1995-03-09 1995-03-09 Square battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04971195A JP3631792B2 (en) 1995-03-09 1995-03-09 Square battery

Publications (2)

Publication Number Publication Date
JPH08250078A JPH08250078A (en) 1996-09-27
JP3631792B2 true JP3631792B2 (en) 2005-03-23

Family

ID=12838779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04971195A Expired - Fee Related JP3631792B2 (en) 1995-03-09 1995-03-09 Square battery

Country Status (1)

Country Link
JP (1) JP3631792B2 (en)

Also Published As

Publication number Publication date
JPH08250078A (en) 1996-09-27

Similar Documents

Publication Publication Date Title
US6670073B2 (en) Battery constructions having increased internal volume for active components
US6300004B1 (en) Battery constructions having reduced collector assembly volume
USRE38518E1 (en) Battery constructions having increased internal volume for active components
US20060068273A1 (en) Cap assembly having a vent plate and rechargeable battery with same
US8268468B2 (en) Battery can having off-center vent
US6410186B1 (en) Battery construction having double seam cover closure
CN113661603B (en) Gasket for cylindrical battery for preventing corrosion of battery case and cylindrical battery including the same
US6265096B1 (en) Electrochemical cell having collector electrically insulated from cover
US6632558B1 (en) Battery construction having pressure release mechanism
KR101017909B1 (en) Cylindrical Battery Can for Preparation of Battery and Process of Fabricating the Same
KR20170087325A (en) Cylindrical battery can, secondary battery comprising the same and fabricating methods thereof
JP3631792B2 (en) Square battery
JP3654947B2 (en) Square battery
JP3109913B2 (en) Prismatic nickel-metal hydride battery
US6294283B1 (en) Electrochemical cell having low profile seal assembly
JP3599391B2 (en) Method of manufacturing prismatic battery
JP3662615B2 (en) Square battery
EP1648043A1 (en) Battery and method of producing the same
JP2003045395A (en) Hermetically sealed storage battery
JPH06267514A (en) Manufacture of rectangular sealed battery
JP2003045393A (en) Hermetically sealed storage battery
JPH0778602A (en) Metallic case for square sealed battery
JPH07176321A (en) Manufacture of rectangular sealed battery
KR20230167656A (en) Secondary battery
JP4112854B2 (en) Square battery and manufacturing method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041220

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees