JP5266832B2 - Catalyst layer for polymer electrolyte fuel cell, catalyst layer transfer sheet, catalyst layer-electrolyte membrane laminate, and polymer electrolyte fuel cell - Google Patents

Catalyst layer for polymer electrolyte fuel cell, catalyst layer transfer sheet, catalyst layer-electrolyte membrane laminate, and polymer electrolyte fuel cell Download PDF

Info

Publication number
JP5266832B2
JP5266832B2 JP2008082677A JP2008082677A JP5266832B2 JP 5266832 B2 JP5266832 B2 JP 5266832B2 JP 2008082677 A JP2008082677 A JP 2008082677A JP 2008082677 A JP2008082677 A JP 2008082677A JP 5266832 B2 JP5266832 B2 JP 5266832B2
Authority
JP
Japan
Prior art keywords
catalyst layer
catalyst
polymer electrolyte
fuel cell
electrolyte fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008082677A
Other languages
Japanese (ja)
Other versions
JP2009238556A (en
Inventor
浩宣 西村
礼 弘光
美和 長田
悦之 菰田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2008082677A priority Critical patent/JP5266832B2/en
Publication of JP2009238556A publication Critical patent/JP2009238556A/en
Application granted granted Critical
Publication of JP5266832B2 publication Critical patent/JP5266832B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new catalyst layer for a polymer electrolyte fuel cell and a transfer sheet. <P>SOLUTION: The catalyst layer for the polymer electrolyte fuel cell is composed of an agglomerate containing catalyst-carried carbon particles and a hydrogen ion conductive polymer electrolyte, and in the agglomerate, a porosity of pores having a pore size of 10-500 nm is 4 to 15%, that of pores having a pore size of 1-50 &mu;m is 7 to 25%, an active surface area per unit weight of catalyst is 450 to 600 cm<SP>2</SP>/mg, and the average particle diameter of the agglomerate is 50 to 200 nm. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、新規な固体高分子形燃料電池用触媒層、触媒層転写シート、触媒層−電解質膜積層体及び燃料電池に関する。   The present invention relates to a novel catalyst layer for a polymer electrolyte fuel cell, a catalyst layer transfer sheet, a catalyst layer-electrolyte membrane laminate, and a fuel cell.

燃料電池は、水素と酸素との電気化学反応により発電するシステムであり、次世代のクリーンエネルギーシステムとして注目されている。燃料電池の一種として固体高分子形燃料電池がある。   A fuel cell is a system that generates electric power through an electrochemical reaction between hydrogen and oxygen, and has attracted attention as a next-generation clean energy system. One type of fuel cell is a polymer electrolyte fuel cell.

固体高分子形燃料電池は、電解質膜として水素イオン伝導性高分子電解質膜を用いるものであって、当該膜の両面に触媒層、電極基材及びセパレータが順次積層された構造を採用する。   The polymer electrolyte fuel cell uses a hydrogen ion conductive polymer electrolyte membrane as an electrolyte membrane, and employs a structure in which a catalyst layer, an electrode base material, and a separator are sequentially laminated on both surfaces of the membrane.

この構造の中でも、触媒層は化学反応による発電が行われているため、発電性能に大きく影響するものである。したがって、発電性能を良好にするため、触媒層の構造の研究・開発が盛んに行われている。   Among these structures, the catalyst layer generates power by a chemical reaction, and thus greatly affects power generation performance. Therefore, in order to improve the power generation performance, research and development of the structure of the catalyst layer has been actively conducted.

例えば、特許文献1に、少なくとも固体高分子電解質と貴金属触媒を担持した炭素粉末とからなる触媒層を、ガス拡散層の片面に形成した電極であって、前記触媒層における直径0.04〜1.0μmの細孔の比容積が0.04cm/g以上である固体高分子形燃料電池用電極が開示されている。 For example, Patent Document 1 discloses an electrode in which a catalyst layer made of at least a solid polymer electrolyte and a carbon powder supporting a noble metal catalyst is formed on one side of a gas diffusion layer, the diameter of the catalyst layer being 0.04 to 1 An electrode for a polymer electrolyte fuel cell having a specific volume of 0.0 μm pores of 0.04 cm 3 / g or more is disclosed.

しかしながら、特許文献1には、触媒層の具体的な構造について全く教示されていない。
特開平9−92293号公報
However, Patent Document 1 does not teach any specific structure of the catalyst layer.
JP 9-92293 A

本発明は、固体高分子形燃料電池を構成する新規な触媒層及びそれを具備した転写シートを提供することを目的とする。   An object of this invention is to provide the novel catalyst layer which comprises a solid polymer fuel cell, and the transfer sheet provided with the same.

本発明者らは、上記従来技術に鑑み、鋭意研究を重ねた結果、特定の構造を有する触媒層を採用することにより、優れた電池性能を有することを見出すに至った。   As a result of intensive studies in view of the above-described conventional techniques, the present inventors have found that the battery layer has excellent battery performance by employing a catalyst layer having a specific structure.

すなわち、本発明は、下記の固体高分子形燃料電池用触媒層及び触媒層転写シート等にかかる。   That is, the present invention relates to the following polymer polymer fuel cell catalyst layer, catalyst layer transfer sheet and the like.

項1.(1)触媒担持炭素粒子及び水素イオン伝導性高分子電解質を含む凝集物から構成され、
(2)細孔径10nm〜500nmの空隙が占める空隙率が10%であり、
(3)細孔径1μm〜50μmの空隙が占める空隙率が7〜25%である、
固体高分子形燃料電池用触媒層。
Item 1. (1) Consists of an agglomerate containing catalyst-supporting carbon particles and a hydrogen ion conductive polymer electrolyte,
(2) The void ratio occupied by voids having a pore diameter of 10 nm to 500 nm is 8 to 10 %,
(3) The void ratio occupied by voids having a pore diameter of 1 μm to 50 μm is 7 to 25%.
Catalyst layer for polymer electrolyte fuel cell.

項2.触媒担持炭素粒子及び水素イオン伝導性高分子電解質を含む凝集物の平均粒径が50〜200nmである項1に記載の触媒層。   Item 2. Item 2. The catalyst layer according to Item 1, wherein the average particle size of the aggregate comprising the catalyst-supporting carbon particles and the hydrogen ion conductive polymer electrolyte is 50 to 200 nm.

項3.触媒担持炭素粒子中の触媒の単位重量当たりの活性表面積が450〜600cm/mgである項1又は2に記載の触媒層。 Item 3. Item 3. The catalyst layer according to Item 1 or 2, wherein the active surface area per unit weight of the catalyst in the catalyst-supporting carbon particles is 450 to 600 cm 2 / mg.

項4.項1〜3のいずれかに記載の触媒層が転写基材上に形成されてなる触媒層転写シート。   Item 4. Item 4. A catalyst layer transfer sheet, wherein the catalyst layer according to any one of Items 1 to 3 is formed on a transfer substrate.

項5.項4に記載の触媒層転写シートを電解質膜に転写することにより得られる、触媒層−電解質膜積層体。   Item 5. Item 5. A catalyst layer-electrolyte membrane laminate obtained by transferring the catalyst layer transfer sheet according to Item 4 to an electrolyte membrane.

項6.項5に記載の触媒層−電解質膜積層体を具備する、固体高分子形燃料電池。   Item 6. Item 6. A polymer electrolyte fuel cell comprising the catalyst layer-electrolyte membrane laminate according to Item 5.

本発明の触媒層は、(1)当該触媒層が、触媒担持炭素粒子及び水素イオン伝導性高分子電解質を含む凝集物から構成され、(2)細孔径10nm〜500nmの空隙が占める空隙率が4〜15%であり、(3)細孔径1μm〜50μmの空隙が占める空隙率が7〜25%である、固体高分子形燃料電池用触媒層に関する。   The catalyst layer of the present invention is (1) the catalyst layer is composed of an agglomerate containing catalyst-supporting carbon particles and a hydrogen ion conductive polymer electrolyte, and (2) the porosity occupied by voids having a pore diameter of 10 nm to 500 nm. The catalyst layer for a polymer electrolyte fuel cell is 4 to 15%, and (3) the porosity of the pores having a pore diameter of 1 μm to 50 μm is 7 to 25%.

触媒担持炭素粒子
触媒担持炭素粒子は、炭素粒子に触媒材が担持したものであり、公知又は市販のものを使用することができる。
Catalyst-supporting carbon particles The catalyst-supporting carbon particles are those in which a catalyst material is supported on carbon particles, and known or commercially available ones can be used.

触媒担持炭素粒子の平均粒子径は、通常10〜100nm程度、好ましくは20〜80nm程度、最も好ましくは40〜50nm程度である。   The average particle size of the catalyst-supporting carbon particles is usually about 10 to 100 nm, preferably about 20 to 80 nm, and most preferably about 40 to 50 nm.

本発明の触媒層に含まれる触媒担持炭素粒子中の触媒の単位重量当たりの活性表面積は、450〜600cm/mgが好ましく、500〜580cm/mgがより好ましい。この範囲の活性表面積を有することにより、本発明の触媒層は、反応性が良好となり、優れた電流電圧特性、ひいては優れた電池特性を発揮することができる。 Active surface area per unit weight of the catalyst in the catalyst supporting carbon particles contained in the catalyst layer of the present invention is preferably 450~600cm 2 / mg, 500~580cm 2 / mg is more preferable. By having an active surface area in this range, the catalyst layer of the present invention has good reactivity, and can exhibit excellent current-voltage characteristics, and thus excellent battery characteristics.

本発明において、触媒担持炭素粒子中の触媒の単位重量当たりの活性表面積は、サイクリックボルタンメトリー(CV:Cyclic−Voltammetry)法によって測定することができる。例えば、触媒として白金を使用した場合について簡便に記載する。測定したい電極側(以降、電極Aと記載)に窒素を、もう一方の電極(以降、電極Bと記載)に水素を充分に加湿した状態で流し、電極Bを基準電極とする。電極電位を、例えば、0.07Vから1.00V(vs RHE)の範囲で電位走査することにより、クリーニング処理を行う。その後、0.1V/sの走査速度で、0.07Vから0.60V(vs RHE)の範囲で電位走査を行うことにより得られるCV曲線から水素の吸脱着電気量を求める。白金1原子に水素1原子が吸着すると仮定して、多結晶白金表面の単位面積あたりの電気量(210μC/cm)から白金の活性表面積を算出する。このようにして得られた白金の活性表面積を、触媒層に含まれる白金触媒の重量で割ることにより、重量当たりの活性表面積を算出できる。 In the present invention, the active surface area per unit weight of the catalyst in the catalyst-supported carbon particles can be measured by a cyclic voltammetry (CV) method. For example, the case where platinum is used as a catalyst will be simply described. Nitrogen is passed to the electrode side (hereinafter referred to as electrode A) to be measured and hydrogen is sufficiently humidified to flow through the other electrode (hereinafter referred to as electrode B), and electrode B is used as a reference electrode. The cleaning process is performed by scanning the potential of the electrode in the range of 0.07 V to 1.00 V (vs RHE), for example. Thereafter, the amount of hydrogen adsorption / desorption is determined from a CV curve obtained by performing potential scanning in the range of 0.07 V to 0.60 V (vs RHE) at a scanning speed of 0.1 V / s. Assuming that one hydrogen atom is adsorbed on one platinum atom, the active surface area of platinum is calculated from the amount of electricity per unit area (210 μC / cm 2 ) on the surface of the polycrystalline platinum. The active surface area per weight can be calculated by dividing the platinum active surface area thus obtained by the weight of the platinum catalyst contained in the catalyst layer.

触媒担持炭素粒子を構成する炭素粒子は、特に制限されず、例えば、チャンネルブラック、ファーネスブラック、ケッチェンブラック、アセチレンブラック、ランプブラックなどのカーボンブラック、黒鉛、活性炭、カーボン繊維、カーボンナノチューブ等が挙げられる。これらは1種単独又は2種以上で用いることができる。   The carbon particles constituting the catalyst-supported carbon particles are not particularly limited, and examples thereof include carbon black such as channel black, furnace black, ketjen black, acetylene black, and lamp black, graphite, activated carbon, carbon fiber, and carbon nanotube. It is done. These can be used alone or in combination of two or more.

炭素粒子に担持する触媒材としては、燃料電池の燃料極又は空気極における燃料電池反応を起こさせるものであれば特に限定されない。例えば白金、白金合金、白金化合物等が挙げられる。白金合金としては、例えば、ルテニウム、パラジウム、ニッケル、モリブデン、イリジウム、鉄等からなる群から選ばれる少なくとも1種の金属と白金との合金等が挙げられる。一般的に、空気極触媒層として用いられる場合の触媒材は白金、燃料極触媒層として用いられる場合の触媒材は上述した合金である。   The catalyst material supported on the carbon particles is not particularly limited as long as it causes a fuel cell reaction in the fuel electrode or air electrode of the fuel cell. For example, platinum, a platinum alloy, a platinum compound, etc. are mentioned. Examples of the platinum alloy include an alloy of platinum and at least one metal selected from the group consisting of ruthenium, palladium, nickel, molybdenum, iridium, iron and the like. Generally, the catalyst material when used as the air electrode catalyst layer is platinum, and the catalyst material when used as the fuel electrode catalyst layer is the alloy described above.

上記触媒担持炭素粒子の含量は、触媒層中、通常10〜90重量%程度、好ましくは40〜80重量%程度とすればよい。   The content of the catalyst-supporting carbon particles in the catalyst layer is usually about 10 to 90% by weight, preferably about 40 to 80% by weight.

水素イオン伝導性高分子電解質
水素イオン伝導性高分子電解質は限定的でなく、公知又は市販のものを使用できる。例えば、パーフルオロスルホン酸系のフッ素イオン交換樹脂等が挙げられる。また、電気陰性度の高いフッ素原子を導入することにより、化学的に非常に安定し、スルホン酸基の乖離度が高く、高い水素イオン伝導性が実現できる。このような水素イオン伝導性高分子電解質の具体例としては、例えば、デュポン社製の「Nafion」、旭硝子(株)製の「Flemion」、旭化成(株)製の「Aciplex」、ゴア(Gore)社製の「Gore Select」等が挙げられる。
Hydrogen ion conductive polymer electrolyte The hydrogen ion conductive polymer electrolyte is not limited, and a known or commercially available one can be used. Examples thereof include perfluorosulfonic acid-based fluorine ion exchange resins. Further, by introducing a fluorine atom having a high electronegativity, it is chemically very stable, the degree of sulfonic acid group dissociation is high, and high hydrogen ion conductivity can be realized. Specific examples of such a hydrogen ion conductive polymer electrolyte include, for example, “Nafion” manufactured by DuPont, “Flemion” manufactured by Asahi Glass Co., Ltd., “Aciplex” manufactured by Asahi Kasei Co., Ltd., and Gore. “Gore Select” manufactured by the company can be used.

上記電解質の含量は、触媒層中、通常10〜90重量%程度、好ましくは20〜60重量%程度とすればよい。   The content of the electrolyte in the catalyst layer is usually about 10 to 90% by weight, preferably about 20 to 60% by weight.

凝集物
本発明の凝集物は、触媒担持炭素粒子及び水素イオン伝導性高分子電解質を含むものであり、実質的に触媒担持炭素粒子及び水素イオン伝導性高分子電解質からなることが好ましい。具体的には、凝集物は、触媒担持炭素粒子が複数集合(凝集)した集合物の表面上に、水素イオン伝導性高分子電解質が形成(又は一部被覆)された構造等を有する。この本発明の凝集物の概念図を図1に示す。
Aggregate The aggregate of the present invention contains catalyst-supporting carbon particles and a hydrogen ion conductive polymer electrolyte, and preferably substantially comprises catalyst support carbon particles and a hydrogen ion conductive polymer electrolyte. Specifically, the aggregate has a structure in which a hydrogen ion conductive polymer electrolyte is formed (or partially covered) on the surface of an aggregate in which a plurality of catalyst-carrying carbon particles are aggregated (aggregated). A conceptual diagram of the aggregate of the present invention is shown in FIG.

ここで、触媒担持炭素粒子と水素イオン伝導性電解質は、それぞれ電子と水素イオンの伝導経路としての役割を担う。電極反応により生成・消費される電子と水素イオンとを効率よく輸送することが、高い電池性能を発現するために要求されるので、触媒担持炭素粒子と水素イオン伝導性電解質とを含むペースト組成物の攪拌において、両者の分散が不足又は過剰であると、電子と水素イオンの伝導経路が分断され、電池性能に有効に活用されなくなる。   Here, the catalyst-supporting carbon particles and the hydrogen ion conductive electrolyte serve as a conduction path for electrons and hydrogen ions, respectively. Since it is required to express high battery performance to efficiently transport electrons and hydrogen ions generated and consumed by electrode reaction, a paste composition containing catalyst-supporting carbon particles and a hydrogen ion conductive electrolyte If the dispersion of both is insufficient or excessive in the agitation, the conduction path of electrons and hydrogen ions is cut off and cannot be effectively used for battery performance.

本発明の凝集物の平均粒径は限定的でないが、好ましくは50〜200nm程度であり、より好ましくは100〜150nm程度である。この範囲とすることにより、導電性を向上させるとともに、触媒活性を効率的に発揮できるため、発電効率が向上する。   The average particle size of the aggregate of the present invention is not limited, but is preferably about 50 to 200 nm, and more preferably about 100 to 150 nm. By setting it as this range, while improving electroconductivity, since catalyst activity can be exhibited efficiently, electric power generation efficiency improves.

なお、本発明の凝集物の平均粒径は、任意に選んだ凝集物100個を走査型電子顕微鏡(SEM)(倍率30000倍程度)で観察してその凝集物の各粒径を測定した場合の平均値をいう。   In addition, the average particle diameter of the aggregate of the present invention is the case where 100 arbitrarily selected aggregates are observed with a scanning electron microscope (SEM) (magnification of about 30000 times) and the particle diameters of the aggregates are measured. The average value of

触媒層
本発明の触媒層は、上記凝集物から構成される。すなわち、本発明の触媒層は、実質的に触媒担持炭素粒子及び水素イオン伝導性高分子電解質を含む凝集物が、複数集合して形成されるものである。
Catalyst layer The catalyst layer of this invention is comprised from the said aggregate. That is, the catalyst layer of the present invention is formed by aggregating a plurality of aggregates substantially including catalyst-carrying carbon particles and hydrogen ion conductive polymer electrolyte.

特に、本発明の触媒層は、細孔径10nm〜500nmの空隙が占める空隙率が4〜15%であり、且つ、細孔径1μm〜50μmの空隙が占める空隙率が7〜25%であることを特徴とする。このような構造を有することにより、本発明の触媒層は、ガス拡散性及び反応性が良好となり、優れた電流電圧特性、ひいては優れた電池性能を発揮することができる。   In particular, the catalyst layer of the present invention has a porosity of 4 to 15% occupied by voids having a pore diameter of 10 nm to 500 nm, and a porosity of 7 to 25% occupied by voids having a pore diameter of 1 μm to 50 μm. Features. By having such a structure, the catalyst layer of the present invention has good gas diffusibility and reactivity, and can exhibit excellent current-voltage characteristics and thus excellent battery performance.

細孔径10nm〜500nmの空隙が占める空隙率、すなわち細孔径が10nm〜500nmの範囲にある空隙の総空隙率は、触媒層全体に対して、4〜15%程度であり、好ましくは5〜10%程度である。   The void ratio occupied by voids having a pore diameter of 10 nm to 500 nm, that is, the total void ratio of voids having a pore diameter in the range of 10 nm to 500 nm is about 4 to 15%, preferably 5 to 10%. %.

細孔径1μm〜50μmの空隙が占める空隙率、すなわち細孔径が1μm〜50μmの範囲にある空隙の総空隙率は、触媒層全体に対して、7〜25%程度であり、好ましくは10〜20%程度であり、より好ましくは11〜18%程度である。   The void ratio occupied by voids having a pore diameter of 1 μm to 50 μm, that is, the total void ratio of pores having a pore diameter in the range of 1 μm to 50 μm is about 7 to 25%, preferably 10 to 20% with respect to the entire catalyst layer. %, More preferably about 11 to 18%.

本発明において、上記細孔径の空隙の空隙率は、水銀ポロシメーター((株)島津製作所製、「AutoPore9500」)によって測定されるものである。   In the present invention, the porosity of the pores having the above pore diameter is measured by a mercury porosimeter (manufactured by Shimadzu Corporation, “AutoPore 9500”).

触媒層の白金の含有量は限定的でないが、通常0.1mg/cm〜1.3mg/cm程度とすればよい。これにより、より一層高い出力密度を達成することができる。 The content of platinum in the catalyst layer is not limited and may be usually 0.1mg / cm 2 ~1.3mg / cm 2 approximately. Thereby, an even higher power density can be achieved.

本発明の触媒層の表面形状は、線粗さが、1000μmの範囲において、1.5μm〜3.0μm程度であることが好ましく、より好ましくは1.8μm〜2.5μm程度である。この範囲とすることにより、より優れた電流電圧特性を発揮することができる。なお、本発明における線粗さは、レーザー変位計(「LT−9010M+KS−1100」、Keyence社製)を用いて測定されるものである。   The surface shape of the catalyst layer of the present invention is preferably about 1.5 μm to 3.0 μm, more preferably about 1.8 μm to 2.5 μm, when the line roughness is in the range of 1000 μm. By setting this range, more excellent current-voltage characteristics can be exhibited. The line roughness in the present invention is measured using a laser displacement meter (“LT-9010M + KS-1100”, manufactured by Keyence).

触媒層の表面粗さは、50μm×50μmの範囲において、0.2μm〜1.0μm程度であることが好ましく、より好ましくは0.4μm〜0.8μm程度である。本発明の表面粗さは、レーザー顕微鏡(「VK−8500」、Keyence社製)を用いて測定されるものである。   The surface roughness of the catalyst layer is preferably about 0.2 μm to 1.0 μm, more preferably about 0.4 μm to 0.8 μm in the range of 50 μm × 50 μm. The surface roughness of the present invention is measured using a laser microscope (“VK-8500”, manufactured by Keyence).

触媒層の厚さは限定的でないが、通常5〜200μm程度、好ましくは10〜150μm程度である。   The thickness of the catalyst layer is not limited, but is usually about 5 to 200 μm, preferably about 10 to 150 μm.

なお、触媒層には、上記凝集物以外にも、本発明の効果を阻害しない程度に、第三成分を含有していてもよい。   In addition, the catalyst layer may contain a third component to the extent that the effects of the present invention are not impaired, in addition to the aggregate.

触媒層転写シート
本発明の触媒層転写シートは、上記触媒層が転写基材上に積層されてなる。
Catalyst Layer Transfer Sheet The catalyst layer transfer sheet of the present invention is formed by laminating the catalyst layer on a transfer substrate.

転写基材は特に限定されず、例えば、ポリイミド、ポリエチレンテレフタレート、ポリパラバン酸アラミド、ポリアミド(ナイロン等)、ポリサルホン、ポリエーテルサルホン、ポリフェニレンサルファイド、ポリエーテル・エーテルケトン、ポリエーテルイミド、ポリアリレート、ポリエチレンナフタレート、ポリプロピレン等の高分子フィルムを挙げることができる。また、エチレンテトラフルオロエチレン共重合体(ETFE)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、ポリテトラフルオロエチレン(PTFE)等の耐熱性フッ素樹脂を用いることもできる。更に、基材は、高分子フィルム以外に、アート紙、コート紙、軽量コート紙等の塗工紙、ノート用紙、コピー用紙等の非塗工紙等の紙であってもよい。これらの中でも、安価で入手が容易な高分子フィルムが好ましく、ポリエチレンテレフタレート等がより好ましい。   The transfer substrate is not particularly limited. For example, polyimide, polyethylene terephthalate, polyparabanic acid aramid, polyamide (nylon, etc.), polysulfone, polyethersulfone, polyphenylene sulfide, polyether ether ketone, polyetherimide, polyarylate, polyethylene Examples thereof include polymer films such as naphthalate and polypropylene. In addition, ethylene tetrafluoroethylene copolymer (ETFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), polytetrafluoroethylene (PTFE), etc. It is also possible to use a heat-resistant fluororesin. Further, the base material may be paper such as art paper, coated paper, light coated paper, and other non-coated paper such as notebook paper and copy paper, in addition to the polymer film. Among these, an inexpensive and easily available polymer film is preferable, and polyethylene terephthalate or the like is more preferable.

転写基材の厚さは、取り扱い性及び経済性の観点から、通常6μm〜100μm程度、好ましくは10μm〜60μm程度とするのがよい。   The thickness of the transfer substrate is usually about 6 μm to 100 μm, preferably about 10 μm to 60 μm, from the viewpoints of handleability and economy.

また、転写基材には、離型層が積層されていてもよい。離型層としては、例えば、公知のワックスから構成されたもの、公知のフッ素系樹脂でコーティングされたプラスチックフィルムが挙げられる。   Further, a release layer may be laminated on the transfer substrate. Examples of the release layer include those composed of known waxes and plastic films coated with known fluororesins.

電解質膜
本発明で使用される電解質膜は水素イオン伝導性のものであれば限定的でなく、公知又は市販のものを使用できる。電解質膜の具体例としては、デュポン社製の「Nafion」膜、旭硝子(株)製の「Flemion」膜、旭化成(株)製の「Aciplex」膜、ゴア(Gore)社製の「Gore Select」膜等が挙げられる。電解質膜の膜厚は、通常20〜250μm程度、好ましくは20〜80μm程度である。
Electrolyte Membrane The electrolyte membrane used in the present invention is not limited as long as it is hydrogen ion conductive, and a known or commercially available membrane can be used. Specific examples of the electrolyte membrane include “Nafion” membrane manufactured by DuPont, “Flemion” membrane manufactured by Asahi Glass Co., Ltd., “Aciplex” membrane manufactured by Asahi Kasei Co., Ltd., and “Gore Select” manufactured by Gore. Examples include membranes. The thickness of the electrolyte membrane is usually about 20 to 250 μm, preferably about 20 to 80 μm.

製造方法
本発明の触媒層は、例えば、(1)触媒担持炭素粒子、(2)水素イオン伝導性高分子電解質、及び(3)粘度調整用溶剤を混合して得られる触媒層形成用ペースト組成物(触媒インキ)を転写基材に塗布及び乾燥することにより、製造することができる。
Production Method The catalyst layer of the present invention is, for example, a catalyst layer forming paste composition obtained by mixing (1) catalyst-supporting carbon particles, (2) a hydrogen ion conductive polymer electrolyte, and (3) a viscosity adjusting solvent. It can be produced by applying an object (catalyst ink) to a transfer substrate and drying.

触媒担持炭素粒子、水素イオン伝導性高分子電解質及び転写基材は上述したものである。   The catalyst-supporting carbon particles, the hydrogen ion conductive polymer electrolyte, and the transfer substrate are as described above.

溶剤としては、例えば、各種アルコール、各種エーテル、各種ジアルキルスルホキシド、水又はこれらの混合物等が挙げられる。アルコールとしては、例えば、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、2−ブタノール、イソブタノール、t−ブタノール等の炭素数1〜4の一価アルコール、プロピレングリコール、エチレングリコール、ジエチレングリコール、グリセリン等の多価アルコール等が挙げられる。これらの溶剤は1種単独で用いてもよいし、2種以上を混合して用いてもよい。   Examples of the solvent include various alcohols, various ethers, various dialkyl sulfoxides, water, or a mixture thereof. Examples of the alcohol include monohydric alcohols having 1 to 4 carbon atoms such as methanol, ethanol, n-propanol, isopropanol, n-butanol, 2-butanol, isobutanol, and t-butanol, propylene glycol, ethylene glycol, diethylene glycol, Examples include polyhydric alcohols such as glycerin. These solvents may be used alone or in a combination of two or more.

本発明の触媒層形成用ペースト組成物中に含まれる上記(1)〜(3)成分の割合は、限定されるものではなく、広い範囲内で適宜選択され得る。   The proportion of the above components (1) to (3) contained in the catalyst layer forming paste composition of the present invention is not limited and can be appropriately selected within a wide range.

例えば、(1)の触媒担持炭素粒子1重量部に対して、(2)成分が0.1〜5重量部(好ましくは0.15〜3重量部)、(3)成分が5〜50重量部程度(好ましくは10〜25重量部)含まれているのがよく、残りが水等である。水の割合は、通常、触媒担持炭素粒子に対して、等重量〜10倍重量である。   For example, the component (2) is 0.1 to 5 parts by weight (preferably 0.15 to 3 parts by weight) and the component (3) is 5 to 50 parts by weight with respect to 1 part by weight of the catalyst-supported carbon particles of (1). About 10 parts by weight (preferably 10 to 25 parts by weight) should be contained, with the remainder being water. The ratio of water is usually from 10 to 10 times the weight of the catalyst-supporting carbon particles.

触媒層形成用ペースト組成物は、上記(1)〜(3)成分を混合することにより、製造される。(1)〜(3)成分の混合順序は、特に制限されない。例えば、(1)成分、(2)成分、及び(3)成分を順次又は同時に混合し、触媒担持炭素粒子を分散させることにより、触媒層形成用ペースト組成物を調製できる。   The catalyst layer forming paste composition is produced by mixing the components (1) to (3). The order of mixing the components (1) to (3) is not particularly limited. For example, the paste composition for forming a catalyst layer can be prepared by mixing the component (1), the component (2), and the component (3) sequentially or simultaneously to disperse the catalyst-supporting carbon particles.

特に、本発明では、上記分散過程において、分散に要する時間(攪拌時間)を通常よりも大幅に長くすることが重要である。このように分散時間を長くすることにより得られたペースト組成物を塗工することにより、所望の触媒層を得ることができる。分散時間は、分散機(攪拌機)、分散方法等により適宜選択されるが、通常10分以上、好ましくは35〜460分程度、より好ましくは50〜450分程度である。   In particular, in the present invention, it is important that the time required for dispersion (stirring time) is significantly longer than usual in the dispersion process. Thus, a desired catalyst layer can be obtained by applying the paste composition obtained by extending the dispersion time. The dispersion time is appropriately selected depending on the disperser (stirrer), the dispersion method, and the like, but is usually 10 minutes or longer, preferably about 35 to 460 minutes, more preferably about 50 to 450 minutes.

分散方法は常法に従って行えばよく、ペースト組成物をマグネットスターラーで攪拌する方法、超音波振動させる方法、これらの方法を併用する方法等が挙げられる。本発明では、特に、超音波振動を行わずに、マグネットスターラーで攪拌する方法が好ましい。   The dispersion method may be carried out according to a conventional method, and examples thereof include a method of stirring the paste composition with a magnetic stirrer, a method of ultrasonically vibrating, a method of using these methods in combination. In the present invention, a method of stirring with a magnetic stirrer without performing ultrasonic vibration is particularly preferable.

本発明では、特に、分散後のペースト組成物の粘度が、剪断速度が10〜10000S−1の範囲において、0.05〜10Pa・S(特に0.1〜8Pa・S)とすることが好ましい。より具体的には、剪断速度が10S−1である場合に粘度が1〜10Pa・S程度であり、かつ剪断速度が10000S−1である場合に粘度が0.05〜0.1Pa・S程度あることが好ましい。より好ましくは、剪断速度が10S−1である場合に粘度が1〜8Pa・S程度であり、かつ剪断速度が10000S−1である場合に粘度が0.1〜0.5Pa・S程度である。本発明の粘度は、25℃において、応力制御型粘度計(「SR−5」、Pheometric Scientific社製)で測定されるものである。 In the present invention, in particular, the viscosity of the paste composition after dispersion is preferably 0.05 to 10 Pa · S (particularly 0.1 to 8 Pa · S) when the shear rate is in the range of 10 to 10,000 S −1. . More specifically, the viscosity is about 1 to 10 Pa · S when the shear rate is 10 S −1 , and the viscosity is about 0.05 to 0.1 Pa · S when the shear rate is 10000 S −1. Preferably there is. More preferably, the viscosity is about 1 to 8 Pa · S when the shear rate is 10 S −1 , and the viscosity is about 0.1 to 0.5 Pa · S when the shear rate is 10000 S −1. . The viscosity of the present invention is measured with a stress-controlled viscometer (“SR-5”, manufactured by Pheometric Scientific) at 25 ° C.

ペースト組成物の塗工方法としては、特に限定されるものではなく、例えば、ブレードコーター、ナイフコーター、バーコーター、スプレー、ディップコーター、スピンコーター、ロールコーター、ダイコーター、カーテンコーター、スクリーン印刷等の一般的な方法を適用できる。   The coating method of the paste composition is not particularly limited, and examples thereof include blade coaters, knife coaters, bar coaters, sprayers, dip coaters, spin coaters, roll coaters, die coaters, curtain coaters, screen printing, and the like. General methods can be applied.

斯かるペースト組成物を塗布した後、乾燥することにより、触媒層が形成される。乾燥方法は、熱乾燥及び減圧乾燥のいずれであってもよい。熱乾燥を採用する場合では、乾燥温度は、通常40〜100℃程度、好ましくは60〜80℃程度とすればよく、乾燥時間は、乾燥温度等に応じて適宜選択されるが、通常5分〜2時間程度、好ましくは30分〜1時間程度とすればよい。減圧乾燥を採用する場合は、乾燥圧力は、30〜74hPa、好ましくは40〜57hPa程度であり、乾燥時間は乾燥圧力等に応じて適宜選択されるが、通常10分〜180分程度、好ましくは30分〜150分程度とすればよい。   After applying such a paste composition, the catalyst layer is formed by drying. The drying method may be either heat drying or vacuum drying. In the case of employing heat drying, the drying temperature is usually about 40 to 100 ° C., preferably about 60 to 80 ° C., and the drying time is appropriately selected according to the drying temperature and the like, but usually 5 minutes About 2 hours, preferably about 30 minutes to 1 hour. When vacuum drying is employed, the drying pressure is 30 to 74 hPa, preferably about 40 to 57 hPa, and the drying time is appropriately selected according to the drying pressure and the like, but is usually about 10 minutes to 180 minutes, preferably What is necessary is just about 30 minutes-150 minutes.

転写基材上に本発明の触媒層が形成された触媒層転写シートを、電解質膜の両面又は片面に転写することにより、電解質膜の両面又は片面に触媒層を積層させて、本発明の触媒層−電解質膜積層体を得ることができる。   The catalyst layer transfer sheet in which the catalyst layer of the present invention is formed on the transfer substrate is transferred to both surfaces or one surface of the electrolyte membrane, so that the catalyst layers are laminated on both surfaces or one surface of the electrolyte membrane. A layer-electrolyte membrane laminate can be obtained.

転写の際の加圧レベルは、転写不良を避けるために、通常0.5〜20MPa程度、好ましくは1〜10MPa程度、より好ましくは1〜5MPa程度がよい。また、この加圧の際に、転写不良を避けるために、加圧面を加熱するのが好ましい。加熱温度は、電解質膜の破損、変性等を避けるために、通常80〜200℃程度、好ましくは135〜150℃程度とすればよい。   The pressure level at the time of transfer is usually about 0.5 to 20 MPa, preferably about 1 to 10 MPa, more preferably about 1 to 5 MPa in order to avoid transfer failure. In addition, it is preferable to heat the pressure surface during the pressurization in order to avoid transfer defects. The heating temperature is usually about 80 to 200 ° C., preferably about 135 to 150 ° C., in order to avoid breakage or modification of the electrolyte membrane.

この得られた触媒層−電解質膜積層体の両面に順次公知の電極基材(例えば、カーボンペーパー、カーボンクロス等)及びセパレータを積層させることにより、本発明の固体高分子形燃料電池が得られる。   By sequentially laminating a known electrode substrate (for example, carbon paper, carbon cloth, etc.) and a separator on both sides of the obtained catalyst layer-electrolyte membrane laminate, the solid polymer fuel cell of the present invention is obtained. .

本発明の触媒層によれば、優れた電流電圧特性、ひいては優れた電池性能を発揮できる固体高分子形燃料電池を製造することができる。   According to the catalyst layer of the present invention, it is possible to produce a polymer electrolyte fuel cell that can exhibit excellent current-voltage characteristics, and thus excellent battery performance.

以下に実施例及び比較例を挙げて、本発明をさらに詳細に説明する。なお、本発明は、以下の実施例に限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. The present invention is not limited to the following examples.

なお、実施例及び比較例で測定した表面粗さ及び線粗さは、以下の測定方法で測定したものである。   In addition, the surface roughness and line roughness measured by the Example and the comparative example are measured with the following measuring methods.

表面粗さの測定方法
触媒層をガラス基板に両面テープを介して貼り付けた後、レーザー顕微鏡(「LT−9010M+KS−100」、Keyence社製)を用いて、クラックのない箇所を選択し、触媒層表面50μm×50μmの解析領域において約0.15μm間隔で精度0.02μmで表面高さを測定した。測定箇所は3箇所とし、各箇所において3回ずつ測定を行い、計9回の表面高さの平均値を本発明における表面粗さとした。
Method for measuring surface roughness After a catalyst layer is attached to a glass substrate via a double-sided tape, a laser-free microscope ("LT-9010M + KS-100", manufactured by Keyence) is used to select a crack-free portion, and the catalyst The surface height was measured with an accuracy of 0.02 μm at intervals of about 0.15 μm in the analysis region of the layer surface 50 μm × 50 μm. The number of measurement locations was three, and measurement was performed three times at each location, and the average value of the total surface height of nine times was defined as the surface roughness in the present invention.

線粗さの測定方法
触媒層をガラス基板に両面テープを介して貼り付けた後、レーザー顕微鏡(「VK−8500」、Keyence社製)を用いて、触媒層表面を1000μmに渡って2μm間隔で計500点の表面高さを精度0.01μmで測定した。測定箇所は、各触媒層について、塗布方向上流から下流にかけて3箇所とした。各箇所において3回ずつ測定を行い、計9回の線粗さの平均値を本実施例における線粗さとした。なお、測定時に、ガラス基板及び両面テープによるうねりを補正するため、区間80μm毎にカットオフ処理を行った。
Method for Measuring Line Roughness After a catalyst layer is attached to a glass substrate via a double-sided tape, the surface of the catalyst layer is spread over 2 μm over 1000 μm using a laser microscope (“VK-8500”, manufactured by Keyence). A total of 500 surface heights were measured with an accuracy of 0.01 μm. The number of measurement points was three for each catalyst layer from upstream to downstream in the coating direction. The measurement was performed three times at each location, and the average value of the total line roughness of 9 times was defined as the line roughness in this example. At the time of measurement, in order to correct waviness caused by the glass substrate and the double-sided tape, a cut-off process was performed every 80 μm.

凝集物の平均粒径
凝集物の平均粒径は、触媒層の表面を、走査型電子顕微鏡(SEM)(日本電子(株)製、FE−SEM168F)を用いて撮影したSEM画像から求めた。なお、SEM画像(倍率30000倍程度)から任意に選んだ凝集物100個の粒径を測定した場合の平均値を平均粒径とした。
Average particle sizes of agglomerates of aggregates, the surface of the catalyst layer, a scanning electron microscope (SEM) (JEOL Ltd., FE-SEM168F) was determined from SEM images were taken using. In addition, the average value when the particle size of 100 aggregates arbitrarily selected from the SEM image (magnification of about 30000 times) was measured was defined as the average particle size.

白金の単位重量当たりの活性表面積
白金の単位重量当たりの活性表面積は、電気化学アナライザー(ALS社製、model611A/680)を用いて測定したCV曲線から得た水素の吸脱着電気量から算出した活性表面積を、触媒膜に含まれる白金重量で割ることより得た。
Active surface area per unit weight of platinum The active surface area per unit weight of platinum is the activity calculated from the amount of electricity absorbed and desorbed from hydrogen obtained from the CV curve measured using an electrochemical analyzer (model 611A / 680, manufactured by ALS). The surface area was obtained by dividing by the weight of platinum contained in the catalyst membrane.

実施例1
白金担持炭素粒子(Pt:40重量%)(Johnson Matthey(株)製)0.8重量部及び5重量%電解質溶液(Aldrich社製、5wt%Nafion溶液、製品番号274704、水:1−プロパノール:2−プロパノール=1:1.5:2(重量比))4重量部を、イソプロパノール1.5重量部加え、スターラーによる攪拌を240分間行い、触媒層形成用ペースト組成物を調製した。調製したペースト組成物の粘度は、せん断速度が10〜10000S−1の範囲において、0.075〜10Pa・Sであった。
Example 1
Platinum supported carbon particles (Pt: 40% by weight) (manufactured by Johnson Matthey) 0.8 parts by weight and 5% by weight electrolyte solution (manufactured by Aldrich, 5 wt% Nafion solution, product number 274704, water: 1-propanol: 4 parts by weight of 2-propanol = 1: 1.5: 2 (weight ratio) was added to 1.5 parts by weight of isopropanol, and stirring with a stirrer was performed for 240 minutes to prepare a paste composition for forming a catalyst layer. The viscosity of the prepared paste composition was 0.075 to 10 Pa · S when the shear rate was in the range of 10 to 10,000 S −1 .

転写基材(テフロン(登録商標)シート、厚さ50μm、ニチアス(株)製)の一方面上に、触媒層形成用ペースト組成物をブレードコーターにて乾燥前の厚さが100μmになるように塗布した。乾燥後の膜厚は6μmであった。減圧乾燥の乾燥条件は57hPaで30分乾燥を行い、その後圧力が安定するまで減圧を行い乾燥させた。   On one side of a transfer substrate (Teflon (registered trademark) sheet, thickness 50 μm, manufactured by Nichias Co., Ltd.), the paste composition for forming a catalyst layer is 100 μm before drying with a blade coater. Applied. The film thickness after drying was 6 μm. The drying conditions for vacuum drying were drying at 57 hPa for 30 minutes, and then drying under reduced pressure until the pressure stabilized.

得られた実施例1の触媒層の空隙率を水銀ポロシメーター((株)島津製作所製、「AutoPore9500」)を用いて測定した。細孔径10nm〜500nmの空隙が占める空隙率は8.0%、細孔径1μm〜50μmの空隙が占める空隙率は8.0%であった。また、表面粗さは0.5μm、線粗さは2.1μm、凝集物の平均粒径は約120μm、白金の単位重量当たりの活性表面積は571cm−Pt/mg−Ptであった。なお、実施例1において、凝集物の平均粒径を測定する際に観察したSEMを図2に示す。 The porosity of the obtained catalyst layer of Example 1 was measured using a mercury porosimeter (manufactured by Shimadzu Corporation, “AutoPore 9500”). The void ratio occupied by voids having a pore diameter of 10 nm to 500 nm was 8.0%, and the void ratio occupied by voids having a pore diameter of 1 μm to 50 μm was 8.0%. The surface roughness was 0.5 μm, the line roughness was 2.1 μm, the average particle size of the aggregate was about 120 μm, and the active surface area per unit weight of platinum was 571 cm 2 -Pt / mg-Pt. In addition, in Example 1, SEM observed when measuring the average particle diameter of an aggregate is shown in FIG.

実施例2
攪拌時間を120分にて行う以外は実施例1と同様にして、触媒層形成用ペースト組成物を調製した。調製したペースト組成物の粘度は、せん断速度が10〜10000S−1の範囲において、0.075〜10Pa・Sであった。
Example 2
A paste composition for forming a catalyst layer was prepared in the same manner as in Example 1 except that the stirring time was 120 minutes. The viscosity of the prepared paste composition was 0.075 to 10 Pa · S when the shear rate was in the range of 10 to 10,000 S −1 .

次いで、調製したペースト組成物を用いる以外は実施例1と同様にして、触媒層を形成した。得られた実施例2の触媒層の細孔径10nm〜500nmの空隙が占める空隙率は9.3%、細孔径1μm〜50μmの空隙が占める空隙率は14.0%であった。また、表面粗さは0.5μm、線粗さは2.2μm、凝集物の平均粒径は約110μm、白金の単位重量当たりの活性表面積は514cm−Pt/mg−Ptであった。なお、実施例2において、凝集物の平均粒径を測定する際に観察したSEMを図3に示す。 Next, a catalyst layer was formed in the same manner as in Example 1 except that the prepared paste composition was used. In the obtained catalyst layer of Example 2, the porosity of pores having a pore diameter of 10 nm to 500 nm was 9.3%, and the porosity of pores having a pore diameter of 1 μm to 50 μm was 14.0%. Further, the surface roughness was 0.5 μm, the line roughness was 2.2 μm, the average particle size of the aggregate was about 110 μm, and the active surface area per unit weight of platinum was 514 cm 2 -Pt / mg-Pt. In addition, in Example 2, SEM observed when measuring the average particle diameter of an aggregate is shown in FIG.

実施例3
攪拌時間を60分にて行う以外は実施例1と同様にして、触媒層形成用ペースト組成物を調製した。調製したペースト組成物の粘度は、せん断速度が10〜10000S−1の範囲において、0.075〜5Pa・Sであった。
Example 3
A paste composition for forming a catalyst layer was prepared in the same manner as in Example 1 except that the stirring time was 60 minutes. The viscosity of the prepared paste composition was 0.075 to 5 Pa · S when the shear rate was 10 to 10,000 S −1 .

次いで、調製したペースト組成物を用いる以外は実施例1と同様にして、触媒層を形成した。得られた実施例3の触媒層の細孔径10nm〜500nmの空隙が占める空隙率は10%、細孔径1μm〜50μmの空隙が占める空隙率は23%であった。また、表面粗さは0.5μm、線粗さは2.0μm、凝集物の平均粒径は約120μm、白金の単位重量当たりの活性表面積は501cm−Pt/mg−Ptであった。なお、実施例3において、凝集物の平均粒径を測定する際に観察したSEMを図4に示す。 Next, a catalyst layer was formed in the same manner as in Example 1 except that the prepared paste composition was used. In the obtained catalyst layer of Example 3, the porosity of pores with a pore diameter of 10 nm to 500 nm was 10%, and the porosity of pores with a pore diameter of 1 μm to 50 μm was 23%. Further, the surface roughness was 0.5 μm, the line roughness was 2.0 μm, the average particle size of the aggregate was about 120 μm, and the active surface area per unit weight of platinum was 501 cm 2 -Pt / mg-Pt. In addition, in Example 3, SEM observed when measuring the average particle diameter of an aggregate is shown in FIG.

比較例1
攪拌時間を12時間にて行う以外は実施例1と同様にして、触媒層形成用ペースト組成物を調製した。調製したペースト組成物の粘度は、せん断速度が10〜10000S−1の範囲において、0.075〜5Pa・Sであった。
Comparative Example 1
A paste composition for forming a catalyst layer was prepared in the same manner as in Example 1 except that the stirring time was 12 hours. The viscosity of the prepared paste composition was 0.075 to 5 Pa · S when the shear rate was 10 to 10,000 S −1 .

次いで、調製したペースト組成物を用いる以外は実施例1と同様にして、触媒層を形成した。得られた比較例1の触媒層の細孔径10nm〜500nmの空隙が占める空隙率は9.4%、細孔径1μm〜50μmの空隙が占める空隙率は6.1%であった。また、表面粗さは0.5μm、線粗さは2.0μm、凝集物の平均粒径は約110μm、白金の単位重量当たりの活性表面積は492cm−Pt/mg−Ptであった。なお、比較例1において、凝集物の平均粒径を測定する際に観察したSEMを図5に示す。 Next, a catalyst layer was formed in the same manner as in Example 1 except that the prepared paste composition was used. In the obtained catalyst layer of Comparative Example 1, the porosity of pores having a pore diameter of 10 nm to 500 nm was 9.4%, and the porosity of pores having a pore diameter of 1 μm to 50 μm was 6.1%. The surface roughness was 0.5 μm, the line roughness was 2.0 μm, the average particle size of the aggregate was about 110 μm, and the active surface area per unit weight of platinum was 492 cm 2 -Pt / mg-Pt. In addition, in Comparative Example 1, SEM observed when measuring the average particle diameter of the aggregate is shown in FIG.

比較例2
攪拌時間を30分にて行う以外は実施例1と同様にして、触媒層形成用ペースト組成物を調製した。調製したペースト組成物の粘度は、せん断速度が10〜10000S−1の範囲において、0.075〜5Pa・Sであった。
Comparative Example 2
A paste composition for forming a catalyst layer was prepared in the same manner as in Example 1 except that the stirring time was 30 minutes. The viscosity of the prepared paste composition was 0.075 to 5 Pa · S when the shear rate was 10 to 10,000 S −1 .

次いで、調製したペースト組成物を用いる以外は実施例1と同様にして、触媒層を形成した。得られた比較例2の触媒層の細孔径10nm〜500nmの空隙が占める空隙率は10%、細孔径1μm〜50μmの空隙が占める空隙率は30%であった。また、表面粗さは0.5μm、線粗さは2.0μm、凝集物の平均粒径は約120μm、白金の単位重量当たりの活性表面積は465cm−Pt/mg−Ptであった。なお、比較例2において、凝集物の平均粒径を測定する際に観察したSEMを図6に示す。 Next, a catalyst layer was formed in the same manner as in Example 1 except that the prepared paste composition was used. In the obtained catalyst layer of Comparative Example 2, the porosity of pores having a pore diameter of 10 nm to 500 nm was 10%, and the porosity of pores having a pore diameter of 1 μm to 50 μm was 30%. The surface roughness was 0.5 μm, the line roughness was 2.0 μm, the average particle size of the aggregate was about 120 μm, and the active surface area per unit weight of platinum was 465 cm 2 -Pt / mg-Pt. In addition, in Comparative Example 2, the SEM observed when measuring the average particle size of the aggregate is shown in FIG.

比較例3
攪拌時間を24時間にて行う以外は実施例1と同様にして、触媒層形成用ペースト組成物を調製した。調製したペースト組成物の粘度は、せん断速度が10〜10000S−1の範囲において、0.075〜10Pa・Sであった。
Comparative Example 3
A paste composition for forming a catalyst layer was prepared in the same manner as in Example 1 except that the stirring time was 24 hours. The viscosity of the prepared paste composition was 0.075 to 10 Pa · S when the shear rate was in the range of 10 to 10,000 S −1 .

次いで、調製したペースト組成物を用いる以外は実施例1と同様にして、触媒層を形成した。得られた比較例3の触媒層の細孔径10nm〜500nmの空隙が占める空隙率は8.9%、細孔径1μm〜50μmの空隙が占める空隙率は5.6%であった。また、表面粗さは0.5μm、線粗さは2.0μm、凝集物の平均粒径は約110μm、白金の単位重量当たりの活性表面積は486cm−Pt/mg−Ptであった。なお、比較例3において、凝集物の平均粒径を測定する際に観察したSEMを図7に示す。 Next, a catalyst layer was formed in the same manner as in Example 1 except that the prepared paste composition was used. In the catalyst layer of Comparative Example 3, the porosity of pores having a pore diameter of 10 nm to 500 nm was 8.9%, and the porosity of pores having a pore diameter of 1 μm to 50 μm was 5.6%. The surface roughness was 0.5 μm, the line roughness was 2.0 μm, the average particle size of the aggregate was about 110 μm, and the active surface area per unit weight of platinum was 486 cm 2 -Pt / mg-Pt. In addition, in Comparative Example 3, SEM observed when measuring the average particle diameter of the aggregate is shown in FIG.

比較例4
攪拌時間を8時間にて行う以外は実施例1と同様にして、触媒層形成用ペースト組成物を調製した。調製したペースト組成物の粘度は、せん断速度が10〜10000S−1の範囲において、0.075〜10Pa・Sであった。
Comparative Example 4
A paste composition for forming a catalyst layer was prepared in the same manner as in Example 1 except that the stirring time was 8 hours. The viscosity of the prepared paste composition was 0.075 to 10 Pa · S when the shear rate was in the range of 10 to 10,000 S −1 .

次いで、調製したペースト組成物を用いる以外は実施例1と同様にして、触媒層を形成した。得られた比較例1の触媒層の細孔径10nm〜500nmの空隙が占める空隙率は8.3%、細孔径1μm〜50μmの空隙が占める空隙率は6.0%であった。また、表面粗さは0.5μm、線粗さは2.2μm、凝集物の平均粒径は約110μm、白金の単位重量当たりの活性表面積は469cm−Pt/mg−Ptであった。なお、比較例4において、凝集物の平均粒径を測定する際に観察したSEMを図8に示す。 Next, a catalyst layer was formed in the same manner as in Example 1 except that the prepared paste composition was used. In the obtained catalyst layer of Comparative Example 1, the porosity of pores having a pore diameter of 10 nm to 500 nm was 8.3%, and the porosity of pores having a pore diameter of 1 μm to 50 μm was 6.0%. Further, the surface roughness was 0.5 μm, the line roughness was 2.2 μm, the average particle size of the aggregate was about 110 μm, and the active surface area per unit weight of platinum was 469 cm 2 -Pt / mg-Pt. In Comparative Example 4, the SEM observed when measuring the average particle size of the aggregate is shown in FIG.

試験例
実施例1〜3及び比較例1〜4で製造した触媒転写シートを固体高分子電解質膜(「ナフィオン112」Dupont社製)の両側に転写し、次いで、電極基材(カーボンペーパー)及びセパレータを順次挟持させることにより、実施例1〜3及び比較例1〜4の固体高分子形燃料電池を製造した。これらの各燃料電池について、電流電圧特性を測定した。測定結果を図9に示す。
Test Examples The catalyst transfer sheets produced in Examples 1 to 3 and Comparative Examples 1 to 4 were transferred to both sides of a solid polymer electrolyte membrane (“Nafion 112” manufactured by Dupont), and then an electrode substrate (carbon paper) and The polymer electrolyte fuel cells of Examples 1 to 3 and Comparative Examples 1 to 4 were manufactured by sequentially sandwiching the separator. The current-voltage characteristics were measured for each of these fuel cells. The measurement results are shown in FIG.

図1は、本発明の触媒層を構成する凝集物の概念図である。FIG. 1 is a conceptual diagram of aggregates constituting the catalyst layer of the present invention. 図2は、実施例1の触媒層のSEM写真である。FIG. 2 is an SEM photograph of the catalyst layer of Example 1. 図3は、実施例2の触媒層のSEM写真である。FIG. 3 is a SEM photograph of the catalyst layer of Example 2. 図4は、実施例3の触媒層のSEM写真である。FIG. 4 is a SEM photograph of the catalyst layer of Example 3. 図5は、比較例1の触媒層のSEM写真である。FIG. 5 is an SEM photograph of the catalyst layer of Comparative Example 1. 図6は、比較例2の触媒層のSEM写真である。FIG. 6 is an SEM photograph of the catalyst layer of Comparative Example 2. 図7は、比較例3の触媒層のSEM写真である。FIG. 7 is an SEM photograph of the catalyst layer of Comparative Example 3. 図8は、比較例4の触媒層のSEM写真である。FIG. 8 is an SEM photograph of the catalyst layer of Comparative Example 4. 図9は、実施例1〜3及び比較例1〜4で得られる燃料電池の電流と電圧との関係を示すグラフである。FIG. 9 is a graph showing the relationship between the current and voltage of the fuel cells obtained in Examples 1-3 and Comparative Examples 1-4.

Claims (6)

(1)触媒担持炭素粒子及び水素イオン伝導性高分子電解質を含む凝集物から構成され、
(2)細孔径10nm〜500nmの空隙が占める空隙率が10%であり、
(3)細孔径1μm〜50μmの空隙が占める空隙率が7〜25%である、
固体高分子形燃料電池用触媒層。
(1) Consists of an agglomerate containing catalyst-supporting carbon particles and a hydrogen ion conductive polymer electrolyte,
(2) The void ratio occupied by voids having a pore diameter of 10 nm to 500 nm is 8 to 10 %,
(3) The void ratio occupied by voids having a pore diameter of 1 μm to 50 μm is 7 to 25%.
Catalyst layer for polymer electrolyte fuel cell.
触媒担持炭素粒子及び水素イオン伝導性高分子電解質を含む凝集物の平均粒径が50〜200nmである請求項1に記載の触媒層。 2. The catalyst layer according to claim 1, wherein an average particle diameter of the aggregate containing the catalyst-supporting carbon particles and the hydrogen ion conductive polymer electrolyte is 50 to 200 nm. 触媒担持炭素粒子中の触媒の単位重量当たりの活性表面積が450〜600cm/mgである請求項1又は2に記載の触媒層。 The catalyst layer according to claim 1 or 2 active surface area per unit weight of the catalyst in the catalyst-carrying carbon particles are 450~600cm 2 / mg. 請求項1〜3のいずれかに記載の触媒層が転写基材上に形成されてなる触媒層転写シート。 A catalyst layer transfer sheet, wherein the catalyst layer according to claim 1 is formed on a transfer substrate. 請求項4に記載の触媒層転写シートを電解質膜に転写することにより得られる、触媒層−電解質膜積層体。 A catalyst layer-electrolyte membrane laminate obtained by transferring the catalyst layer transfer sheet according to claim 4 to an electrolyte membrane. 請求項5に記載の触媒層−電解質膜積層体を具備する、固体高分子形燃料電池。 A polymer electrolyte fuel cell comprising the catalyst layer-electrolyte membrane laminate according to claim 5.
JP2008082677A 2008-03-27 2008-03-27 Catalyst layer for polymer electrolyte fuel cell, catalyst layer transfer sheet, catalyst layer-electrolyte membrane laminate, and polymer electrolyte fuel cell Expired - Fee Related JP5266832B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008082677A JP5266832B2 (en) 2008-03-27 2008-03-27 Catalyst layer for polymer electrolyte fuel cell, catalyst layer transfer sheet, catalyst layer-electrolyte membrane laminate, and polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008082677A JP5266832B2 (en) 2008-03-27 2008-03-27 Catalyst layer for polymer electrolyte fuel cell, catalyst layer transfer sheet, catalyst layer-electrolyte membrane laminate, and polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2009238556A JP2009238556A (en) 2009-10-15
JP5266832B2 true JP5266832B2 (en) 2013-08-21

Family

ID=41252253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008082677A Expired - Fee Related JP5266832B2 (en) 2008-03-27 2008-03-27 Catalyst layer for polymer electrolyte fuel cell, catalyst layer transfer sheet, catalyst layer-electrolyte membrane laminate, and polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP5266832B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5619052B2 (en) * 2012-03-01 2014-11-05 東芝燃料電池システム株式会社 Fuel cell
EP3944383A4 (en) * 2019-03-22 2022-05-18 Toppan Printing Co., Ltd. Catalyst layer for solid polymer fuel cells, membrane electrode assembly, and solid polymer fuel cell

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3884313B2 (en) * 2001-03-28 2007-02-21 株式会社東芝 Catalyst for carbon fiber synthesis and method for producing carbon fiber
JP4207116B2 (en) * 2001-12-28 2009-01-14 株式会社ジーエス・ユアサコーポレーション Electrode production material, method for producing the electrode production material, and method for producing an electrode for a fuel cell using the electrode production material.
JP4472943B2 (en) * 2003-05-16 2010-06-02 株式会社キャタラー Membrane electrode assembly
JP2004349076A (en) * 2003-05-21 2004-12-09 Matsushita Electric Ind Co Ltd Electrode material for polymer electrolyte fuel cell, and manufacturing method of the same
JP2005302324A (en) * 2004-04-06 2005-10-27 Japan Storage Battery Co Ltd Manufacturing method of electrode for solid polymer type fuel cell and solid polymer type fuel cell equipped with it
KR100658675B1 (en) * 2004-11-26 2006-12-15 삼성에스디아이 주식회사 Electrode for fuel cell, fuel cell comprising the same, and method for preparing the smme
JP2007080694A (en) * 2005-09-14 2007-03-29 Nissan Motor Co Ltd Electrocatalyst layer for fuel cell, and fuel cell using this
JP2007123253A (en) * 2005-09-27 2007-05-17 Dainippon Printing Co Ltd Paste composition for catalyst layer formation, transfer sheet for manufacturing catalyst layer-electrolyte membrane laminate, and catalyst layer-electrolyte membrane laminate
JP4826190B2 (en) * 2005-09-27 2011-11-30 大日本印刷株式会社 Catalyst layer forming paste composition, catalyst layer-electrolyte membrane laminate transfer sheet, and catalyst layer-electrolyte membrane laminate
JP5196717B2 (en) * 2005-09-30 2013-05-15 大日本印刷株式会社 Catalyst layer transfer sheet, method for producing catalyst layer-electrolyte membrane laminate, method for producing electrode-electrolyte membrane assembly, and method for producing fuel cell
JP2007165075A (en) * 2005-12-13 2007-06-28 Toppan Printing Co Ltd Manufacturing method of catalyst electrode for fuel cell, polymer electrolyte membrane for fuel cell, and mancufaturing method of electrode assembly, and manufacturing method of fuel cell
JP2007194197A (en) * 2005-12-22 2007-08-02 Canon Inc Catalyst electrode and its manufacturing method, and polymer electrolyte fuel cell
JP2007323824A (en) * 2006-05-30 2007-12-13 Toyota Motor Corp Manufacturing method of electrode for fuel cell and electrode for fuel cell
JP2008016338A (en) * 2006-07-06 2008-01-24 Toyota Motor Corp Fuel cell, porous platinum sheet, and manufacturing method of fuel cell
JP2008027799A (en) * 2006-07-24 2008-02-07 Toyota Motor Corp Assembly for fuel cell, fuel cell, and manufacturing method of fuel cell

Also Published As

Publication number Publication date
JP2009238556A (en) 2009-10-15

Similar Documents

Publication Publication Date Title
JP5458503B2 (en) Method for producing electrolyte membrane-electrode assembly
JP5219350B2 (en) Catalyst layer for polymer electrolyte fuel cell and method for producing the same
JP2006012832A (en) Electrode for fuel cell, membrane for fuel cell-electrode assembly including this, fuel cell, and manufacturing method of electrode for fuel cell
JP5266794B2 (en) Catalyst layer for polymer electrolyte fuel cell and method for producing the same
JP2008186798A (en) Electrolyte membrane-electrode assembly
JP2015162309A (en) Method for manufacturing film electrode assembly, film electrode assembly, and solid polymer fuel cell
JP5233075B2 (en) Catalyst layer-electrolyte membrane laminate and method for producing the same
US9843051B2 (en) Catalyst particles, catalyst ink, electrode catalyst layer for fuel cells, membrane electrode assembly, polymer electrolyte fuel cell, method for producing catalyst particles and method for producing catalyst ink
JP2012074280A (en) Gas diffusion layer for fuel cell
JP2009266774A (en) Method for manufacturing membrane-electrode assembly, membrane-electrode assembly, and polymer electrolyte fuel cell
JP2007123253A (en) Paste composition for catalyst layer formation, transfer sheet for manufacturing catalyst layer-electrolyte membrane laminate, and catalyst layer-electrolyte membrane laminate
US10985381B2 (en) Nanostructured electrode for polymer electrolyte membrane fuel cell, and manufacturing method therefor
JP5266832B2 (en) Catalyst layer for polymer electrolyte fuel cell, catalyst layer transfer sheet, catalyst layer-electrolyte membrane laminate, and polymer electrolyte fuel cell
JP2014007099A (en) Electrode catalyst layer for fuel cell, and method of manufacturing the same
JP6819688B2 (en) Method for manufacturing membrane-electrode assembly, membrane-electrode assembly manufactured from now on, and fuel cell containing this
JP5396730B2 (en) Membrane electrode assembly
JP2004273257A (en) Electrode catalyst layer for fuel cell
JP2015191704A (en) Method for manufacturing membrane-electrode assembly, membrane-electrode assembly and solid polymer fuel cell having membrane-electrode assembly
JP6252065B2 (en) Membrane electrode assembly manufacturing method, membrane electrode assembly, and polymer electrolyte fuel cell
JP5303979B2 (en) Catalyst layer transfer film for polymer electrolyte fuel cells
JP5634013B2 (en) Method for producing catalyst layer for fuel cell, catalyst layer transfer sheet, and catalyst layer-electrolyte membrane laminate
JP2017117751A (en) Method for manufacturing membrane-electrode assembly, membrane-electrode assembly, and solid polymer fuel cell
JP6862827B2 (en) Electrode catalyst layer for fuel cells and its manufacturing method
JP2020533750A (en) Method for manufacturing catalyst layer, catalyst layer, membrane-electrode assembly containing it, and fuel cell
JP2006236927A (en) Membrane electrode junction for solid polymer fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130422

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees