JP5262793B2 - Power semiconductor device and manufacturing method thereof - Google Patents

Power semiconductor device and manufacturing method thereof Download PDF

Info

Publication number
JP5262793B2
JP5262793B2 JP2009031529A JP2009031529A JP5262793B2 JP 5262793 B2 JP5262793 B2 JP 5262793B2 JP 2009031529 A JP2009031529 A JP 2009031529A JP 2009031529 A JP2009031529 A JP 2009031529A JP 5262793 B2 JP5262793 B2 JP 5262793B2
Authority
JP
Japan
Prior art keywords
cylindrical electrode
substrate
mold
electrode
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009031529A
Other languages
Japanese (ja)
Other versions
JP2010186953A (en
Inventor
進吾 須藤
規由 新井
泰 中島
博 吉田
建一 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009031529A priority Critical patent/JP5262793B2/en
Priority to DE102009042399.0A priority patent/DE102009042399B4/en
Priority to DE102009061178.9A priority patent/DE102009061178B3/en
Publication of JP2010186953A publication Critical patent/JP2010186953A/en
Application granted granted Critical
Publication of JP5262793B2 publication Critical patent/JP5262793B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/565Moulds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49811Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • H01L2224/48139Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate with an intermediate bond, e.g. continuous wire daisy chain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/4901Structure
    • H01L2224/4903Connectors having different sizes, e.g. different diameters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/4905Shape
    • H01L2224/49051Connectors having different shapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49111Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting two common bonding areas, e.g. Litz or braid wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape

Description

本発明は、樹脂筐体から一部が露出した筒状電極を備える電力用半導体装置とその製造方法に関する。   The present invention relates to a power semiconductor device including a cylindrical electrode partially exposed from a resin casing and a manufacturing method thereof.

電力用半導体装置は回路を構成するパワーMOSFETやIGBT(Insulated Gate Bipolar Transistor)、ダイオードなどの半導体素子を樹脂封止して保護する構成である。樹脂封止は金型内部に樹脂封止されるべきインサート物を搬入し、当該金型内部にモールド樹脂を注入することにより樹脂筐体を形成するトランスファーモールド法によることが多い。ここで、樹脂封止されるべきインサート物とはメタルベース基板および、メタルベース基板が備える回路パターン上に半導体素子および筒状電極が接合された構造物をいう。   The power semiconductor device is configured to protect a semiconductor element such as a power MOSFET, IGBT (Insulated Gate Bipolar Transistor), or diode constituting the circuit by resin sealing. Resin sealing is often performed by a transfer molding method in which an insert to be resin-sealed is carried into a mold and a resin housing is formed by injecting a mold resin into the mold. Here, the insert to be resin-sealed refers to a metal base substrate and a structure in which a semiconductor element and a cylindrical electrode are joined on a circuit pattern provided in the metal base substrate.

筒状電極は樹脂筐体内部で前述の半導体素子と接続されて、半導体素子と外部を接続する部品である。したがって筒状電極は、開放面を有する一端で樹脂筐体外部に露出するように、メタルベース基板に直立して配置されてトランスファーモールドが行われる。トランスファーモールド工程では、下金型と上金型でインサート物を挟んで型締めを行うため筒状電極の一端と上金型の内壁が接した状態で金型内部へモールド樹脂が注入される。   The cylindrical electrode is a component that is connected to the above-described semiconductor element inside the resin housing and connects the semiconductor element to the outside. Therefore, the cylindrical electrode is placed upright on the metal base substrate so as to be exposed to the outside of the resin casing at one end having an open surface, and transfer molding is performed. In the transfer molding process, the mold resin is injected into the mold in a state where one end of the cylindrical electrode is in contact with the inner wall of the upper mold in order to clamp the insert with the lower mold and the upper mold.

電力用半導体装置の信頼性を確保する観点から、トランスファーモールド工程においてはインサート物の厚みと金型内部の高さが一致しており、型締めによってインサート物に過大な力がかからないことが望ましい。特許文献1、2には信頼性を高めた電力用半導体装置の製造方法についての開示がある。   From the viewpoint of ensuring the reliability of the power semiconductor device, it is desirable that the thickness of the insert matches the height of the inside of the mold in the transfer molding process, and that no excessive force is applied to the insert by clamping. Patent Documents 1 and 2 disclose a method for manufacturing a power semiconductor device with improved reliability.

特開2007−184315号公報JP 2007-184315 A 特開平10−116962号公報Japanese Patent Laid-Open No. 10-116962

インサート物の厚みはメタルベース板の厚みのばらつき、筒状電極の高さのばらつきやそれをメタルベース基板と接着するはんだ厚のばらつきなどによってある程度のばらつきを有するものである。そして、インサート物の厚みが金型内部の高さより大きい場合には筒状電極が強い力でメタルベース基板に押し付けられるため、筒状電極やメタルベース基板にダメージを与える問題があった。また、筒状電極のうち樹脂筐体の外部に露出すべき部分が上金型からの力によって歪められ開口の内径が小さくなってしまう結果、筒状電極にピン電極を挿入できなくなる問題があった。   The thickness of the insert has a certain amount of variation due to variations in the thickness of the metal base plate, variations in the height of the cylindrical electrode, and variations in the thickness of the solder that adheres it to the metal base substrate. When the thickness of the insert is larger than the height inside the mold, the cylindrical electrode is pressed against the metal base substrate with a strong force, which causes a problem of damaging the cylindrical electrode and the metal base substrate. In addition, the portion of the cylindrical electrode that should be exposed to the outside of the resin casing is distorted by the force from the upper mold, and the inner diameter of the opening is reduced. As a result, the pin electrode cannot be inserted into the cylindrical electrode. It was.

また、筒状電極がメタルベース基板に対して垂直ではなく傾いて配置された場合や、インサート物の厚みが金型内部の高さよりも小さい場合には筒状電極の内部にまでモールド樹脂が進入してしまう問題もあった。   In addition, when the cylindrical electrode is placed at an angle rather than perpendicular to the metal base substrate, or when the thickness of the insert is smaller than the height inside the mold, the mold resin enters the inside of the cylindrical electrode. There was also a problem.

そこでインサート物の厚みを金型内部の高さと完全一致させようとすると、インサート物を構成する部材を高精度で製造しその組み立ても高精度を要するため製造が高コスト化し工程も複雑化する問題があった。   Therefore, if it is attempted to make the thickness of the insert exactly match the height inside the mold, the members constituting the insert are manufactured with high accuracy, and the assembly requires high accuracy, resulting in high manufacturing costs and complicated processes. was there.

本発明は、上述のような課題を解決するためになされたもので、トランスファーモールドに伴う弊害を抑制し、かつ、電力用半導体装置の信頼性を高めることができる電力用半導体装置とその製造方法を提供することを目的とする。   The present invention has been made in order to solve the above-described problems, and suppresses the negative effects associated with transfer molding and improves the reliability of the power semiconductor device and a method for manufacturing the same. The purpose is to provide.

本願の発明にかかる電力用半導体装置は、表面に回路パターンを有する基板と、該回路パターンに固着された半導体素子と、一端に開放面を有し、他端にて該回路パターンに固着され該基板に対して直立し、一部に他の部分よりも内径が大きく形成された部分を有する筒状電極と、該基板と該半導体素子と該筒状電極を、該基板の裏面および該筒状電極の一端が外部に露出するように覆う樹脂筐体とを備え、該筒状電極の内径が大きく形成された部分は、該筒状電極の一端に配され、かつ、該筒状電極の他の部分より外径と内径の差が小さいことを特徴とする。
本願の発明に係る他の電力用半導体装置は、表面に回路パターンを有する基板と、該回路パターンに固着された半導体素子と、一端に開放面を有し、他端にて該回路パターンに固着されて該基板に対して直立し、絞り加工により形成された内壁部と外壁部が所定間隔離れた二重構造を有する筒状電極と、該基板と該半導体素子と該筒状電極を、該基板の裏面および該筒状電極の一端が外部に露出するように覆う樹脂筐体とを備え、該筒状電極の一端は該絞り加工による折り返し部分であり、該筒状電極の他端は該折り返し部分と反対の部分の該外壁部であることを特徴とする。

A power semiconductor device according to the present invention includes a substrate having a circuit pattern on the surface, a semiconductor element fixed to the circuit pattern, an open surface at one end, and fixed to the circuit pattern at the other end. A cylindrical electrode that is upright with respect to the substrate and has a part formed with a larger inner diameter than the other part, the substrate, the semiconductor element, and the cylindrical electrode, the back surface of the substrate and the cylindrical shape A portion of the cylindrical electrode having a large inner diameter is disposed at one end of the cylindrical electrode, and the other end of the cylindrical electrode. The difference between the outer diameter and the inner diameter is smaller than this part .
Another power semiconductor device according to the present invention includes a substrate having a circuit pattern on the surface, a semiconductor element fixed to the circuit pattern, an open surface at one end, and the circuit pattern at the other end. A cylindrical electrode having a double structure in which an inner wall portion and an outer wall portion formed by drawing are vertically spaced apart from each other by a predetermined distance, the substrate, the semiconductor element, and the cylindrical electrode, A resin casing that covers the back surface of the substrate and one end of the cylindrical electrode so that the one end of the cylindrical electrode is exposed to the outside, and one end of the cylindrical electrode is a folded portion by the drawing process, and the other end of the cylindrical electrode is the The outer wall portion is a portion opposite to the folded portion.

本願の発明にかかる電力用半導体装置の製造方法は、一端に他の部分より内径の大きい部分および開放面を有する筒状電極の他端を基板の表面に固着し、該筒状電極を該基板に対して直立させ、樹脂封止されるべきインサート物を製作する工程と、該インサート物を、金型が該基板の裏面と該筒状電極の一端を挟むように該金型内部に配置する工程と、該筒状電極の一端にたわみを持たせるように該金型の型締めを行う工程と、該型締めを維持して該金型内部にモールド樹脂を注入する工程とを備えることを特徴とする。   In the method for manufacturing a power semiconductor device according to the invention of the present application, a cylindrical electrode having a part having an inner diameter larger than the other part and an open surface at one end is fixed to the surface of the substrate, and the cylindrical electrode is attached to the substrate. A step of producing an insert to be resin-sealed, and the insert is disposed inside the mold so that the mold sandwiches the back surface of the substrate and one end of the cylindrical electrode. And a step of clamping the mold so that one end of the cylindrical electrode is bent, and a step of injecting a mold resin into the mold while maintaining the clamping. Features.

本発明により弊害なく信頼性の高い電力用半導体装置を製造できる。   According to the present invention, a highly reliable power semiconductor device can be manufactured without harm.

実施形態1の電力用半導体装置を説明する図である。1 is a diagram illustrating a power semiconductor device according to a first embodiment. 図1のI−I断面矢示図である。It is an II sectional view taken on the line of FIG. 電力用半導体装置の製造方法を説明するフローチャートである。It is a flowchart explaining the manufacturing method of the semiconductor device for electric power. インサート物の構成を説明する図である。It is a figure explaining the structure of an insert thing. 金型を用いた樹脂封止について説明する図である。It is a figure explaining the resin sealing using a metal mold | die. ピン電極が接続された電力用半導体装置を説明する図である。It is a figure explaining the semiconductor device for electric power to which the pin electrode was connected. 一端において略垂直に曲げられた筒状電極を説明する図である。It is a figure explaining the cylindrical electrode bent substantially perpendicularly at one end. 筒状電極の一端に他の部分より内径の大きい部分を有すものの例を説明する図である。It is a figure explaining the example of what has a part with a larger internal diameter than the other part in the end of a cylindrical electrode. 筒状電極がその一端において薄く形成された電力用半導体装置を説明する図である。It is a figure explaining the semiconductor device for electric power in which the cylindrical electrode was thinly formed in the end. 実施形態2の電力用半導体装置を説明する図である。It is a figure explaining the semiconductor device for electric power of Embodiment 2. FIG. 実施形態3の電力用半導体装置を説明する図である。It is a figure explaining the semiconductor device for electric power of Embodiment 3. FIG. 実施形態4の電力用半導体装置を説明する図である。It is a figure explaining the semiconductor device for electric power of Embodiment 4. FIG. 図12の一部を拡大しピン電極を付加した図である。It is the figure which expanded a part of FIG. 12, and added the pin electrode.

実施の形態1
本実施形態は図1〜9を参照して説明する。なお、同一材料または同一、対応する構成要素には同一の符号を付して複数回の説明を省略する場合がある。他の実施形態についても同様である。
Embodiment 1
This embodiment will be described with reference to FIGS. In some cases, the same material or the same and corresponding components are denoted by the same reference numerals, and description thereof is omitted a plurality of times. The same applies to other embodiments.

図1は本実施形態の電力用半導体装置の外観を説明する斜視図である。そして図2は図1のI−I断面矢示図である。図1に示されるように本実施形態の電力用半導体装置は樹脂筐体10の表面に筒状電極12の一部が露出する。さらに樹脂筐体10の表面にはヒートシンクなどの放熱部品を取り付けるための取り付け穴14が形成されている。本実施形態では樹脂筐体10の縦横が76mm×45mm、厚さが8mm程度であるが特にこれに限定されない。   FIG. 1 is a perspective view for explaining the appearance of the power semiconductor device of this embodiment. FIG. 2 is a sectional view taken along the line II in FIG. As shown in FIG. 1, in the power semiconductor device of this embodiment, a part of the cylindrical electrode 12 is exposed on the surface of the resin housing 10. Furthermore, an attachment hole 14 for attaching a heat dissipation component such as a heat sink is formed on the surface of the resin casing 10. In the present embodiment, the length and width of the resin casing 10 are about 76 mm × 45 mm and the thickness is about 8 mm, but the present invention is not particularly limited thereto.

図2に示されるように樹脂筐体10内部に放熱板16が配置される。放熱板16は銅を主材料とした金属からなる。放熱板16は裏面において樹脂筐体10から外部に露出する。放熱板16の表面には熱伝導性絶縁接着層18を介して厚さ0.3mmの銅を主材料とした金属からなる配線パターン20が配置される。メタルベース基板21は縦横が40mm×45mm程度である。なお以後、放熱板16と熱伝導性絶縁接着層18と回路パターン20をまとめてメタルベース基板21と称することがある。   As shown in FIG. 2, the heat radiating plate 16 is disposed inside the resin casing 10. The heat sink 16 is made of a metal whose main material is copper. The heat sink 16 is exposed to the outside from the resin casing 10 on the back surface. A wiring pattern 20 made of a metal having a thickness of 0.3 mm as a main material is disposed on the surface of the heat radiating plate 16 via a heat conductive insulating adhesive layer 18. The metal base substrate 21 is about 40 mm × 45 mm in length and width. Hereinafter, the heat radiating plate 16, the heat conductive insulating adhesive layer 18, and the circuit pattern 20 may be collectively referred to as a metal base substrate 21.

メタルベース基板21の回路パターン20には、IGBT22の裏面とFWDi(フリーホイールダイオード)24の裏面がはんだ26によりはんだ付けされる。ここで、IGBT22の表面はゲート電極とエミッタ電極が配置され、裏面にはコレクタ電極が配置される。また、FWDi24の表面はアノード電極が配置され、裏面にはカソード電極が配置される。IGBT22とFWDi24は回路パターン20とアルミニウムワイヤ28により所望の回路を構成するように接続される。なお以後、IGBT22とFWDi24をまとめて半導体素子と称することがある。   The back surface of the IGBT 22 and the back surface of the FWDi (free wheel diode) 24 are soldered to the circuit pattern 20 of the metal base substrate 21 with solder 26. Here, a gate electrode and an emitter electrode are disposed on the surface of the IGBT 22, and a collector electrode is disposed on the back surface. An anode electrode is disposed on the front surface of the FWDi 24, and a cathode electrode is disposed on the rear surface. The IGBT 22 and the FWDi 24 are connected by the circuit pattern 20 and the aluminum wire 28 so as to form a desired circuit. Hereinafter, the IGBT 22 and the FWDi 24 may be collectively referred to as a semiconductor element.

さらに本実施形態の電力用半導体装置は筒状電極12を備える。筒状電極12は半導体素子と外部を接続するために設けられる。筒状電極12は基本的に内径0.85mm、外径2.85mmの筒状の形状である。しかし筒状電極12はその一端においては前述した部分より内径が大きく形成されており、かつ、開放面を有する。具体的には筒状電極12の一端は端部に向かうほど内径が大きくなりその端部おいては内径が1.5mm、外径が3.5mmとなっている。換言すれば筒状電極12の一端はラッパ状の形状である。このような筒状電極12の一端は樹脂筐体10から外部に露出している。一方、筒状電極12の他端は回路パターン20にはんだ付けされる。   Furthermore, the power semiconductor device of this embodiment includes a cylindrical electrode 12. The cylindrical electrode 12 is provided to connect the semiconductor element and the outside. The cylindrical electrode 12 basically has a cylindrical shape with an inner diameter of 0.85 mm and an outer diameter of 2.85 mm. However, the cylindrical electrode 12 is formed to have an inner diameter larger than the above-described portion at one end and an open surface. Specifically, the inner diameter of one end of the cylindrical electrode 12 increases toward the end, and the inner diameter is 1.5 mm and the outer diameter is 3.5 mm at the end. In other words, one end of the cylindrical electrode 12 has a trumpet shape. One end of the cylindrical electrode 12 is exposed from the resin housing 10 to the outside. On the other hand, the other end of the cylindrical electrode 12 is soldered to the circuit pattern 20.

本実施形態の電力用半導体装置は上述の構成を備える。以後本実施形態の電力用半導体装置の製造方法について説明する。この説明は図3に示すフローチャートを参照しながら説明する。まず図3に記載のステップ100について説明する。   The power semiconductor device of this embodiment has the above-described configuration. Hereinafter, a method for manufacturing the power semiconductor device of this embodiment will be described. This will be described with reference to the flowchart shown in FIG. First, step 100 shown in FIG. 3 will be described.

ステップ100ではインサート物の製作が行われる。インサート物とはトランスファーモールドによって樹脂封止されるべき構造物である。本実施形態のインサート物は図4に記載されている。図4に記載のとおり筒状電極12は、筒状電極12の他端が回路パターン20にはんだ付けされ、前述した筒状電極12の一端が上向きとなるように直立して配置される。その他、半導体素子の回路パターン20へのはんだ付けや、アルミニウムワイヤ28によるワイヤボンディングが行われてインサート物の製作を終了する。インサート物が製作されるとステップ102へと処理が進められる。   In step 100, an insert is manufactured. The insert is a structure to be resin-sealed by transfer molding. The insert of this embodiment is shown in FIG. As shown in FIG. 4, the cylindrical electrode 12 is arranged upright so that the other end of the cylindrical electrode 12 is soldered to the circuit pattern 20 and one end of the cylindrical electrode 12 described above faces upward. In addition, the soldering of the semiconductor element to the circuit pattern 20 and the wire bonding with the aluminum wire 28 are performed to complete the manufacture of the insert. When the insert is manufactured, the process proceeds to step 102.

ステップ102ではインサート物が金型内部に配置される。ステップ102に続くステップ104では当該金型の型締めが行われる。ステップ102、104については図5を参照して説明する。本実施形態で樹脂筐体の形成に用いる金型は上金型32、下金型34を備える。インサート物は、メタルベース基板21の裏面が下金型34の内壁に接し、かつ、筒状電極12の一端が上金型32の内壁に接するように金型内部であるキャビティ34に配置される。   In step 102, the insert is placed inside the mold. In step 104 following step 102, the mold is clamped. Steps 102 and 104 will be described with reference to FIG. The mold used for forming the resin casing in this embodiment includes an upper mold 32 and a lower mold 34. The insert is disposed in the cavity 34 inside the mold so that the back surface of the metal base substrate 21 is in contact with the inner wall of the lower mold 34 and one end of the cylindrical electrode 12 is in contact with the inner wall of the upper mold 32. .

この状態で型締めが行われると、筒状電極12の一端が上金型32から下方向への押し付け力を受けてたわむ。このたわみによって筒状電極12と上金型32は密着する。型締めが行われるとステップ106へと処理が進められる。   When mold clamping is performed in this state, one end of the cylindrical electrode 12 is bent by receiving a downward pressing force from the upper mold 32. Due to this deflection, the cylindrical electrode 12 and the upper mold 32 are brought into close contact with each other. When mold clamping is performed, the process proceeds to step 106.

ステップ106ではモールド樹脂が金型内部に注入される。本実施形態ではモールド樹脂としてエポキシ樹脂が用いられるが特にこれに限定されない。この工程は既知の技術と同様に加熱されたモールド樹脂を金型内部に加圧注入するものである。モールド樹脂が金型内部に注入されるとステップ108へと処理が進められる。   In step 106, mold resin is injected into the mold. In the present embodiment, an epoxy resin is used as the mold resin, but the present invention is not limited to this. In this step, a heated mold resin is pressurized and injected into the mold as in the known technique. When the mold resin is injected into the mold, the process proceeds to step 108.

ステップ108では樹脂封止が完了した電力用半導体装置が金型から取り出される。その後、たとえば0.64mm角の黄銅などからなるピン電極40が筒状電極12の開放面に挿入される(ステップ110)。ここで、ピン電極40と筒状電極12の接続強化のためにエポキシ系樹脂ベースの導電性接着剤などを用いてもよい。図6にはピン電極40が挿入された電力用半導体装置の外観斜視図を示す。   In step 108, the power semiconductor device whose resin sealing is completed is taken out of the mold. Thereafter, the pin electrode 40 made of, for example, 0.64 mm square brass is inserted into the open surface of the cylindrical electrode 12 (step 110). Here, an epoxy-based resin-based conductive adhesive or the like may be used to strengthen the connection between the pin electrode 40 and the cylindrical electrode 12. FIG. 6 is an external perspective view of the power semiconductor device in which the pin electrode 40 is inserted.

ステップ110を終えると、適宜に電力用半導体装置が180℃程度で熱処理され樹脂筐体10および導電性接着剤を硬化させて電力用半導体装置が完成する。   When step 110 is completed, the power semiconductor device is appropriately heat-treated at about 180 ° C. to cure the resin casing 10 and the conductive adhesive, thereby completing the power semiconductor device.

一般に、インサート物の厚みは、金型内部の高さ(キャビティ高さのことをいう、図5で両方向矢印で示す)と一致することが好ましい。しかしながら、インサート物の厚みは、メタルベース基板21の厚みのばらつき、筒状電極の高さのばらつきやそれをメタルベース基板と接着するはんだ厚のばらつき、筒状電極の傾きなどによってある程度のばらつきを有するものである。   In general, it is preferable that the thickness of the insert matches the height inside the mold (referred to as the cavity height, indicated by a double-headed arrow in FIG. 5). However, the thickness of the insert varies to some extent due to variations in the thickness of the metal base substrate 21, variations in the height of the cylindrical electrode, variations in the thickness of the solder that adheres it to the metal base substrate, inclination of the cylindrical electrode, and the like. I have it.

そして、インサート物の厚みが金型内部の高さより大きい場合には筒状電極が強い力でメタルベース基板に押し付けられるため、筒状電極やメタルベース基板にダメージを与える問題があった。また、筒状電極のうち樹脂筐体の外部に露出すべき部分が上金型からの力によって歪められ開口の内径が小さくなってしまう結果、筒状電極にピン電極を挿入できなくなる問題があった。   When the thickness of the insert is larger than the height inside the mold, the cylindrical electrode is pressed against the metal base substrate with a strong force, which causes a problem of damaging the cylindrical electrode and the metal base substrate. In addition, the portion of the cylindrical electrode that should be exposed to the outside of the resin casing is distorted by the force from the upper mold, and the inner diameter of the opening is reduced. As a result, the pin electrode cannot be inserted into the cylindrical electrode. It was.

また、筒状電極がメタルベース基板に対して垂直ではなく傾いて配置された場合や、インサート物の厚みが金型内部の高さよりも小さい場合には筒状電極の内部にまでモールド樹脂が進入してしまう問題もあった。   In addition, when the cylindrical electrode is placed at an angle rather than perpendicular to the metal base substrate, or when the thickness of the insert is smaller than the height inside the mold, the mold resin enters the inside of the cylindrical electrode. There was also a problem.

そこでインサート物の厚みを金型内部の高さと完全一致させようとすると、インサート物を構成する部材を高精度で製造しその組み立ても高精度を要するため製造が高コスト化し工程も複雑化する問題があった。   Therefore, if it is attempted to make the thickness of the insert exactly match the height inside the mold, the members constituting the insert are manufactured with high accuracy, and the assembly requires high accuracy, resulting in high manufacturing costs and complicated processes. was there.

本実施形態の電力用半導体装置の製造方法によれば上述の問題を解消できる。本実施形態では型締めの際に筒状電極12の一端が上金型32から下方向への押し付け力を受けてたわむ。よって、上金型32から下方向の力が直接筒状電極12とメタルベース基板21の接続部に及ばず筒状電極12のたわみによって緩和される。よって筒状電極やメタルベース基板にダメージを与える問題を解消できる。また、上金型内壁には伸縮性を有する樹脂シートが貼り付けられている場合がある。このような場合でも上金型が樹脂シートを介して筒状電極に対し下方向の力を及ぼす限り本実施形態の構成と同様の効果を得ることができる。   According to the method for manufacturing the power semiconductor device of the present embodiment, the above-described problems can be solved. In the present embodiment, one end of the cylindrical electrode 12 bends by receiving a downward pressing force from the upper mold 32 during mold clamping. Therefore, the downward force from the upper mold 32 does not directly reach the connecting portion between the cylindrical electrode 12 and the metal base substrate 21 and is alleviated by the deflection of the cylindrical electrode 12. Therefore, the problem of damaging the cylindrical electrode and the metal base substrate can be solved. Moreover, the resin sheet which has a stretching property may be affixed on the inner wall of the upper mold. Even in such a case, the same effect as that of the configuration of the present embodiment can be obtained as long as the upper mold exerts a downward force on the cylindrical electrode via the resin sheet.

さらに、型締めの際に筒状電極12の一端がたわむことにより筒状電極12と上金型32との密着度も向上することができる。よって、インサート物の厚みのばらつきがあったり、筒状電極12がメタルベース基板21に対して傾いてはんだ付けされた場合であっても筒状電極12の内部にモールド樹脂が進入してしまう問題を解消できる。これは生産性の向上に寄与する。なお、インサート物を前述とは上下反転させて金型内に設置することも考えられる。その場合、下金型内壁が筒状電極の一端と接し、上金型内壁がメタルベース基板の裏面と接することになるがその場合であっても本発明の効果を失わない。すなわち、メタルベース基板の裏面と筒状電極の一端を挟むように型締めされれば本発明の効果を得ることができる。   Furthermore, the degree of adhesion between the cylindrical electrode 12 and the upper mold 32 can be improved by bending one end of the cylindrical electrode 12 during clamping. Therefore, there is a variation in the thickness of the insert, or even if the cylindrical electrode 12 is soldered while being inclined with respect to the metal base substrate 21, the mold resin enters the inside of the cylindrical electrode 12. Can be eliminated. This contributes to productivity improvement. It is also conceivable that the insert is turned upside down and placed in the mold. In this case, the inner wall of the lower mold is in contact with one end of the cylindrical electrode, and the inner wall of the upper mold is in contact with the back surface of the metal base substrate. Even in this case, the effect of the present invention is not lost. That is, if the mold is clamped so as to sandwich the back surface of the metal base substrate and one end of the cylindrical electrode, the effect of the present invention can be obtained.

さらに、本実施形態の筒状電極12の一端は端部に向かうほど内径が大きくなる形状であるから、金型内部にモールド樹脂を注入する際のモールド樹脂充填圧力は筒状電極12を上金型32の内壁に押し付ける方向に働く。よって筒状電極12と上金型32との密着度をさらに向上させることができる。   Furthermore, since one end of the cylindrical electrode 12 of the present embodiment has a shape in which the inner diameter increases toward the end, the mold resin filling pressure when injecting the mold resin into the mold is such that the cylindrical electrode 12 It works in the direction of pressing against the inner wall of the mold 32. Therefore, the degree of adhesion between the cylindrical electrode 12 and the upper mold 32 can be further improved.

さらに、本実施形態の筒状電極12の一端は端部に向かうほど内径が大きくなる形状であるから、上金型32からの力によって筒状電極12の開口の内径は開く方向であり、これが小さくなってピン電極の挿入を阻害する問題を解消できる。   Furthermore, since one end of the cylindrical electrode 12 of the present embodiment has a shape in which the inner diameter increases toward the end, the inner diameter of the opening of the cylindrical electrode 12 is in a direction to open by the force from the upper mold 32. The problem of obstructing the insertion of the pin electrode by being reduced can be solved.

また、本実施形態の電力用半導体装置によれば、筒状電極12が樹脂筐体10の外部に露出する部分で内径が大きくなっている部分がピン電極の挿入時のガイド役を果たす。よってピン電極の挿入が容易化する。また同様に、ピン電極40と筒状電極12の接続強化のために筒状電極に塗布する導電性接着剤についても塗布位置が多少ばらついても筒状電極内に導電性接着剤が塗布される。   Further, according to the power semiconductor device of the present embodiment, the portion where the cylindrical electrode 12 is exposed to the outside of the resin housing 10 and having a large inner diameter serves as a guide when the pin electrode is inserted. Therefore, the insertion of the pin electrode is facilitated. Similarly, the conductive adhesive is applied to the cylindrical electrode even if the application position varies slightly for the conductive adhesive applied to the cylindrical electrode to strengthen the connection between the pin electrode 40 and the cylindrical electrode 12. .

本実施形態では筒状電極12の一端が端部に向かうほど筒状電極の内径が大きくなることとしたが本発明はこれに限定されない。本実施形態の筒状電極は型締めの際にたわんで自身の開放面が狭くなることを抑制し、かつ、筒状電極とメタルベース基板の接続部に過剰な力を及ぼすことを回避できることを特徴とする。よって、この特徴を失わない限りにおいて様々な変形が可能である。   In the present embodiment, the inner diameter of the cylindrical electrode is increased as one end of the cylindrical electrode 12 approaches the end, but the present invention is not limited to this. The cylindrical electrode of the present embodiment is capable of preventing the open surface of the cylindrical electrode from being narrowed during clamping and avoiding applying excessive force to the connection portion between the cylindrical electrode and the metal base substrate. Features. Therefore, various modifications are possible as long as this feature is not lost.

たとえば筒状電極の形状として図7に記載のように、筒状電極の一端で略垂直に曲げられて他の部分より内径が大きくされていても本発明の効果を得ることができる。この場合、筒状電極の曲げられた部分が上金型からの力によってたわみ、この部分で上金型からの下方向への力を吸収できる。   For example, as shown in FIG. 7 as the shape of the cylindrical electrode, the effect of the present invention can be obtained even when the cylindrical electrode is bent substantially perpendicularly at one end and has a larger inner diameter than other portions. In this case, the bent part of the cylindrical electrode is bent by the force from the upper mold, and the downward force from the upper mold can be absorbed by this part.

たとえば筒状電極の形状として図8に記載のように、筒状電極の一端に他の部分より内径の大きい部分を有すものの筒状電極の一端の端部では内径が最大でない構成であっても本発明の効果を得ることができる。   For example, as shown in FIG. 8 as the shape of the cylindrical electrode, one end of the cylindrical electrode has a portion having a larger inner diameter than the other portion, but the end of one end of the cylindrical electrode has a configuration in which the inner diameter is not maximum. Also, the effects of the present invention can be obtained.

たとえば筒状電極の形状として図9に記載のように、筒状電極の一端であって他の部分より内径が大きく形成された部分は当該他の部分より薄く形成されていると本発明の効果が高まる。すなわち、筒状電極の一端の外径と内径の差を他の部分より小さくなるように形成することで、型締めの際に筒状電極の一端がよりたわみやすくなり上述の効果が高まる。ここで、大電流が流れる主電極用の筒状電極は、特にサイズが大きく、しかも外径と内径の差が大きい(厚い)ため、上述のような構成が有効である。また、筒状電極の長手方向の長さが長く、メタルベース基板に対して傾いてはんだ付けされやすい場合にもこの構成が有効である。ここで、電力用半導体装置が動作温度の高い環境下で使用される場合や、大型である場合には電力用半導体装置の熱変形が大きくなる。この熱変形に伴い、筒状電極の樹脂筐体から露出する部分を起点とする樹脂筐体の剥離や亀裂が懸念される。しかしながら、上述のように筒状電極の一端を他の部分より薄く形成しておくことにより、筒状電極の一端が樹脂筐体の熱変形に追従しやすくなるためこの懸念を解消できる。ところで、半導体素子はSiC基板で形成されると電力用半導体装置の一層の高温化にも対応できる。そして、半導体素子をSiC基板で形成した場合に上述の構成を採用することで電力用半導体装置の高温化に対応でき、かつ、樹脂筐体の剥離や亀裂の懸念を解消できる。また、半導体素子をSiC基板で製造することは電力用半導体装置の高耐圧化や大電流化にも有用である。   For example, as shown in FIG. 9 as the shape of the cylindrical electrode, the effect of the present invention can be obtained when a portion of the cylindrical electrode having a larger inner diameter than the other portion is formed thinner than the other portion. Will increase. That is, by forming the difference between the outer diameter and the inner diameter of one end of the cylindrical electrode to be smaller than that of the other part, the one end of the cylindrical electrode is more easily bent at the time of clamping, and the above-described effect is enhanced. Here, since the cylindrical electrode for the main electrode through which a large current flows is particularly large in size and has a large (thick) difference between the outer diameter and the inner diameter, the above-described configuration is effective. This configuration is also effective when the length of the cylindrical electrode in the longitudinal direction is long and it is easily tilted with respect to the metal base substrate. Here, when the power semiconductor device is used in an environment where the operating temperature is high, or when the power semiconductor device is large, thermal deformation of the power semiconductor device becomes large. Along with this thermal deformation, there is a concern about peeling or cracking of the resin casing starting from the portion of the cylindrical electrode exposed from the resin casing. However, by forming one end of the cylindrical electrode thinner than the other part as described above, it becomes easier for the one end of the cylindrical electrode to follow the thermal deformation of the resin casing. By the way, if the semiconductor element is formed of a SiC substrate, it can cope with higher temperature of the power semiconductor device. And when a semiconductor element is formed with a SiC substrate, it can respond to the high temperature of a power semiconductor device by adopting the above-mentioned composition, and can eliminate the fear of exfoliation and a crack of a resin case. In addition, manufacturing a semiconductor element with a SiC substrate is useful for increasing the breakdown voltage and increasing the current of a power semiconductor device.

たとえば内径が一様な筒状電極に前述の「内径が大きくなる部分」に相当する部品を取り付けて筒状電極が構成されていても本発明の効果を得ることができる。つまり、筒状電極は一体的に構成されておらず複数の部品の組み合わせであってもよい。その場合、内径が一様な筒状電極は電気伝導性や熱伝導性の良好なアルミニウムや銅で形成し、「内径が大きくなる部分」に相当する部品をばね性の高いりん青銅、もしくはやわらかいアルミニウム、はんだなどで形成すると本発明の効果を高めることができる。   For example, the effect of the present invention can be obtained even when a cylindrical electrode is configured by attaching a part corresponding to the above-mentioned “part where the inner diameter increases” to a cylindrical electrode having a uniform inner diameter. That is, the cylindrical electrode is not integrally formed and may be a combination of a plurality of parts. In that case, the cylindrical electrode with a uniform inner diameter is made of aluminum or copper, which has good electrical and thermal conductivity, and the part corresponding to the “part where the inner diameter increases” is made of phosphor bronze with high springiness or soft. The effect of the present invention can be enhanced by forming with aluminum, solder or the like.

たとえば筒状電極は円筒状でなくても良いし、筒状電極がピン電極と接続されるのではなくねじ止めなどの他の手段により外部と接続されても良い。また、筒状電極に対してピン電極を圧入することとしても良いし、筒状電極の寸法も任意である。同様にメタルベース基板21の構成や半導体素子の種類なども任意である。   For example, the cylindrical electrode may not be cylindrical, or the cylindrical electrode may be connected to the outside by other means such as screwing instead of being connected to the pin electrode. Moreover, it is good also as pressing-in a pin electrode with respect to a cylindrical electrode, and the dimension of a cylindrical electrode is also arbitrary. Similarly, the configuration of the metal base substrate 21 and the type of semiconductor element are arbitrary.

実施の形態2
本実施形態は図10を参照して説明する。図10は本実施形態の電力用半導体装置の断面図である。本実施形態は実施形態1と筒状電極の構成が異なる。本実施形態の筒状電極60は回路パターン20と接続される部分(他端)において端部に向かうほど内径が大きくなる形状である。筒状電極60の他端と回路パターン20ははんだ付けにより接合される。なお、筒状電極60は樹脂筐体10から露出すべき一端においては実施形態1と同様であり「他の部分より内径の大きい」部分を有する。
Embodiment 2
This embodiment will be described with reference to FIG. FIG. 10 is a cross-sectional view of the power semiconductor device of this embodiment. This embodiment differs from Embodiment 1 in the configuration of the cylindrical electrode. The cylindrical electrode 60 of the present embodiment has a shape in which the inner diameter increases toward the end portion at the portion (the other end) connected to the circuit pattern 20. The other end of the cylindrical electrode 60 and the circuit pattern 20 are joined by soldering. The cylindrical electrode 60 is similar to the first embodiment at one end to be exposed from the resin casing 10 and has a portion having a “larger inner diameter than other portions”.

本実施形態の電力用半導体装置も図3のフローチャートと同様の工程で製造される。上述した筒状電極60はインサート物の製作を行う工程で回路パターン20にはんだ付けされる。ここで、筒状電極60の他端は端部に向かうほど内径が大きくなる形状であるため回路パターン20に対して直立させることが容易である。特に筒状電極の高さが高くなるとはんだの供給ばらつきやはんだ付け治具の寸法精度のばらつきによって直立させることができない問題があったが本実施形態ではそれを解消できる。   The power semiconductor device of this embodiment is also manufactured by the same process as the flowchart of FIG. The cylindrical electrode 60 described above is soldered to the circuit pattern 20 in the process of manufacturing the insert. Here, since the other end of the cylindrical electrode 60 has a shape in which the inner diameter increases toward the end, it is easy to stand upright with respect to the circuit pattern 20. In particular, when the height of the cylindrical electrode is increased, there is a problem that it cannot be erected due to variations in the supply of solder and variations in the dimensional accuracy of the soldering jig, but this embodiment can solve this problem.

また、筒状電極の他端と回路パターンの接触面積が狭いと両者の接触部にはんだが十分供給されず両者の接触部に隙間が生じることがあった。この隙間から筒状電極の内部にモールド樹脂が進入し生産性を著しく阻害する問題があった。この問題を解消するためにはんだの供給量を増やすと筒状電極が回路パターンに対して傾きやすくなる問題もあった。ところが本実施形態の筒状電極60は回路パターン20との接触面積が広いため前述の隙間が生じにくくこれらの問題を解消できる。   In addition, if the contact area between the other end of the cylindrical electrode and the circuit pattern is narrow, sufficient solder may not be supplied to the contact portion between the two, and a gap may be formed between the contact portions. There is a problem that the mold resin enters the inside of the cylindrical electrode from this gap and remarkably hinders productivity. When the supply amount of solder is increased in order to solve this problem, there is a problem that the cylindrical electrode is easily inclined with respect to the circuit pattern. However, since the cylindrical electrode 60 of the present embodiment has a large contact area with the circuit pattern 20, the above-described gap is hardly generated and these problems can be solved.

また、本実施形態の構成では筒状電極60と回路パターン20との接触面積が大きいため、温度サイクルで発生する樹脂筐体10の熱変形による応力によって筒状電極60と回路パターン20との接続部が破断しにくい。よって電力用半導体装置の信頼性を高めることができる。   In the configuration of the present embodiment, since the contact area between the cylindrical electrode 60 and the circuit pattern 20 is large, the connection between the cylindrical electrode 60 and the circuit pattern 20 is caused by stress due to thermal deformation of the resin casing 10 that occurs in a temperature cycle. The part is difficult to break. Therefore, the reliability of the power semiconductor device can be improved.

ここで、筒状電極60と回路パターン20との接続部は、筒状電極60に接続されたピン電極などの外部電極からの振動や静的な荷重の印加の影響を受けることが考えられる。しかしながら本実施形態の筒状電極60の他端は回路パターン20と接触面積が大きくしかも樹脂筐体10により筒状電極60が回路パターン20に押さえ込まれる構成であるため、この接続は前述の影響を受けづらく信頼性を向上させることができる。   Here, it is conceivable that the connecting portion between the cylindrical electrode 60 and the circuit pattern 20 is affected by vibration from an external electrode such as a pin electrode connected to the cylindrical electrode 60 or application of a static load. However, since the other end of the cylindrical electrode 60 of the present embodiment has a large contact area with the circuit pattern 20 and the cylindrical electrode 60 is pressed into the circuit pattern 20 by the resin casing 10, this connection has the above-described influence. Reliability that is difficult to receive can be improved.

実施の形態3
本実施形態は図11を参照して説明する。図11は本実施形態の電力用半導体装置の断面図である。本実施形態は実施形態1と筒状電極の構成が異なる。本実施形態の筒状電極62は樹脂筐体10の外部へ露出すべき一端が湾曲させられている。つまり、筒状電極62の一端は端部が折り返された折り返し部分を備え、当該折り返し部分が樹脂筐体10の表面に露出する。そして当該折り返し部分の端部は樹脂筐体10内に埋め込まれている。さらに、筒状電極62は他端においても前述の折り返し部を備える。
Embodiment 3
This embodiment will be described with reference to FIG. FIG. 11 is a cross-sectional view of the power semiconductor device of this embodiment. This embodiment differs from Embodiment 1 in the configuration of the cylindrical electrode. The cylindrical electrode 62 of the present embodiment is curved at one end to be exposed to the outside of the resin casing 10. That is, one end of the cylindrical electrode 62 includes a folded portion whose end is folded back, and the folded portion is exposed on the surface of the resin casing 10. The end of the folded portion is embedded in the resin casing 10. Further, the cylindrical electrode 62 includes the above-described folded portion at the other end.

一般に筒状電極の端部が樹脂筐体の表面に露出する構成であると、温度サイクルなどによる樹脂筐体の熱変形に伴い、前述の端部を起点とする樹脂筐体の剥離や亀裂が懸念される。同様にピン電極などの外部電極からの振動や静的な荷重の印加によっても前述の端部を起点とする樹脂筐体の剥離や亀裂が懸念される。ところが本実施形態では筒状電極62の一端の折り返された端部は樹脂筐体10内に埋め込まれて表面に露出しない。よって前述の懸念を解消でき、信頼性の高い電力用半導体装置を製造できる。   Generally, when the end of the cylindrical electrode is exposed on the surface of the resin casing, the resin casing is peeled off or cracked starting from the aforementioned end due to thermal deformation of the resin casing due to a temperature cycle or the like. Concerned. Similarly, there is a concern about peeling or cracking of the resin casing starting from the aforementioned end also by vibration from an external electrode such as a pin electrode or application of a static load. However, in the present embodiment, the folded end of one end of the cylindrical electrode 62 is embedded in the resin casing 10 and is not exposed to the surface. Therefore, the above-mentioned concerns can be solved and a highly reliable power semiconductor device can be manufactured.

本実施形態の電力用半導体装置も図3のフローチャートと同様の工程で製造される。そして型締めを行う際には筒状電極62の一端の折り返し部分が上金型と接したわむため、実施形態1で説明した効果も得ることができる。これに加えて、筒状電極62の一端の折り返し部分が上金型と接し、当該折り返し部分の端部は上金型と接しないことにより上金型に筒状電極62の電極材料が転写されづらくなる。よって上金型の清掃の実施頻度を抑制することができる。   The power semiconductor device of this embodiment is also manufactured by the same process as the flowchart of FIG. When the mold is clamped, the folded portion at one end of the cylindrical electrode 62 is in contact with the upper mold, so that the effect described in the first embodiment can also be obtained. In addition, the folded portion at one end of the cylindrical electrode 62 is in contact with the upper mold, and the end portion of the folded portion is not in contact with the upper mold, whereby the electrode material of the cylindrical electrode 62 is transferred to the upper mold. It becomes difficult. Therefore, the frequency of cleaning the upper mold can be suppressed.

本実施形態の筒状電極62の一端および他端における折り返し部はたとえばプレス成形により製造されてもよい。プレス成形によれば図11に記載のとおり折り返し部に曲率を持たせる形状とすることが容易である。また、成形時のスプリングバックなどにより折り返し部の弾性力が高まる形状となる。よって、上述の効果を高めることができる。   The folded portion at one end and the other end of the cylindrical electrode 62 of the present embodiment may be manufactured, for example, by press molding. According to the press molding, it is easy to make the folded portion have a curvature as shown in FIG. Moreover, it becomes the shape where the elastic force of a folding | returning part increases by the springback at the time of shaping | molding. Therefore, the above-described effect can be enhanced.

実施の形態4
本実施形態は図12、13を参照して説明する。図12は本実施形態の電力用半導体装置の断面図であり、図13は図12の一部拡大図であって、図12の構成にピン電極72が圧入された状態を表す。本実施形態は実施形態1と筒状電極の構成が異なり、特にピン電極を筒状電極に圧入する電力用半導体装置に好適な構成を提供するものである。
Embodiment 4
This embodiment will be described with reference to FIGS. 12 is a cross-sectional view of the power semiconductor device of the present embodiment, and FIG. 13 is a partially enlarged view of FIG. The present embodiment is different from the first embodiment in the configuration of the cylindrical electrode, and provides a configuration suitable for a power semiconductor device in which a pin electrode is pressed into the cylindrical electrode.

本実施形態の電力用半導体装置は二重構造の筒状電極70を備える。すなわち、図13に示されるように、筒状電極70は内壁部74と外壁部76を備える。内壁部74と外壁部76は一定間隔離間しているが樹脂筐体10に露出する部分において両者を接続する接続部が配置される。本実施形態の筒状電極70は絞り加工により形成されており、前述の接続部は筒状電極の折り返しによってできた部分であるため折り返し部分と称する。図13には折り返し部分75が破線で示されている。   The power semiconductor device of this embodiment includes a cylindrical electrode 70 having a double structure. That is, as shown in FIG. 13, the cylindrical electrode 70 includes an inner wall portion 74 and an outer wall portion 76. Although the inner wall portion 74 and the outer wall portion 76 are spaced apart from each other by a certain distance, a connecting portion that connects the two is disposed at a portion exposed to the resin casing 10. The cylindrical electrode 70 of the present embodiment is formed by drawing, and the above-described connecting portion is a portion formed by folding the cylindrical electrode, and hence is referred to as a folded portion. In FIG. 13, the folded portion 75 is indicated by a broken line.

筒状電極70は折り返し部分75で樹脂筐体10の表面から露出する。一方、筒状電極の折り返し部分75と反対の部分では前述の外壁部76が回路パターン20とはんだ付けされる。ここで、内壁部74は回路パターン20とはんだ付けされず、回路パターン20と接触もしない。しかしながら、内壁部74は外壁部76と一定の間隔を維持して平行に延びる。   The cylindrical electrode 70 is exposed from the surface of the resin casing 10 at the folded portion 75. On the other hand, the outer wall 76 described above is soldered to the circuit pattern 20 at a portion opposite to the folded portion 75 of the cylindrical electrode. Here, the inner wall 74 is not soldered to the circuit pattern 20 and is not in contact with the circuit pattern 20. However, the inner wall portion 74 extends in parallel with the outer wall portion 76 while maintaining a certain distance.

本実施形態の電力用半導体装置も図3のフローチャートと同様の工程で製造される。上述したとおり、筒状電極70の外壁部76が回路パターン20にはんだ付けされてインサート物の製作を終えると、インサート物が金型内部に配置される。インサート物はメタルベース基板21の裏面が下金型内壁に接し、かつ、折り返し部分75が上金型内壁に接するように金型内部へ配置される。   The power semiconductor device of this embodiment is also manufactured by the same process as the flowchart of FIG. As described above, when the outer wall 76 of the cylindrical electrode 70 is soldered to the circuit pattern 20 and the manufacture of the insert is finished, the insert is placed inside the mold. The insert is disposed inside the mold such that the back surface of the metal base substrate 21 is in contact with the inner wall of the lower mold and the folded portion 75 is in contact with the inner wall of the upper mold.

次に前述の折り返し部分75がたわむように型締めが行われる。その後の工程は実施形態1と同様である。   Next, the mold is clamped so that the aforementioned folded portion 75 is bent. Subsequent steps are the same as those in the first embodiment.

筒状電極にピン電極を圧入する構成の電力用半導体装置がある。そして圧入の際には筒状電極が樹脂筐体によって固定されているために、筒状電極がピン電極に対して十分な反発力を及ぼすことができない問題があった。筒状電極の材料自身の反発力や、ピン電極に弾性を持たせることによる弾性力によって前述の反発力を得ることがある。しかしながらこの場合は筒状電極やピン電極を高い寸法精度で形成し、搭載しなければならず製造工程が高コスト化する問題があった。特に100アンペア程度の大電流を扱う電力用半導体装置では電極の本数も多くなるため、多数のピン電極を接続するため工程が煩雑となる問題があった。また、ピン電極が圧入ではなく導電性接着剤やはんだにより筒状電極と接続される場合には、これらを用いた接続の前にピン電極をメタルベース基板に対して直立させる仮留めが必要である。しかしながら、前述の反発力が不十分であるために前述の仮留めでピン電極が直立せず、治具を用いて強制的に直立させる必要があった。   There is a power semiconductor device configured to press-fit a pin electrode into a cylindrical electrode. Further, since the cylindrical electrode is fixed by the resin casing at the time of press-fitting, there is a problem that the cylindrical electrode cannot exert a sufficient repulsive force on the pin electrode. The above-mentioned repulsive force may be obtained by the repulsive force of the cylindrical electrode material itself or the elastic force generated by imparting elasticity to the pin electrode. However, in this case, the cylindrical electrode and the pin electrode must be formed and mounted with high dimensional accuracy, and there is a problem that the manufacturing process is expensive. In particular, in a power semiconductor device that handles a large current of about 100 amperes, the number of electrodes increases, so that there is a problem that the process becomes complicated because many pin electrodes are connected. In addition, when the pin electrode is connected to the cylindrical electrode by a conductive adhesive or solder instead of press-fitting, it is necessary to temporarily fix the pin electrode upright with respect to the metal base substrate before connection using these. is there. However, since the above-mentioned repulsive force is insufficient, the pin electrode does not stand upright by the above-described temporary fastening, and it is necessary to forcibly stand up using a jig.

ところが、本実施形態のように筒状電極70が内壁部74と外壁部76を有する2重構造であれば上述の問題を解決できる。すなわち、ピン電極72を筒状電極70に圧入する際に、樹脂筐体10に覆われずしかも外壁部76と一定間隔離間した内壁部74が外壁部76側に拡がるため十分な反発力を得ることができる。よって高コスト化せずとも圧入によってピン電極が強固に固定された信頼性の高い電力用半導体装置を製造することができる。また、ピン電極が圧入ではなく導電性接着剤やはんだにより筒状電極と接続される場合であっても、導電性接着剤やはんだ塗布前に内壁部74から十分な反発力を得てピン電極をメタルベース基板に対して直立させることができる。よって導電性接着剤やはんだ塗布前の仮留めの段階でピン電極を直立させるための治具を用いる必要がない。その他、上金型により折り返し部分75がたわむように型締めされることの効果は実施形態1に記載したとおりである。   However, if the cylindrical electrode 70 has a double structure having the inner wall portion 74 and the outer wall portion 76 as in the present embodiment, the above-described problem can be solved. That is, when the pin electrode 72 is press-fitted into the cylindrical electrode 70, the inner wall 74 that is not covered by the resin casing 10 and that is spaced apart from the outer wall 76 is expanded toward the outer wall 76, so that a sufficient repulsive force is obtained. be able to. Therefore, it is possible to manufacture a highly reliable power semiconductor device in which the pin electrode is firmly fixed by press-fitting without increasing the cost. In addition, even when the pin electrode is connected to the cylindrical electrode by a conductive adhesive or solder instead of press-fitting, a sufficient repulsive force is obtained from the inner wall 74 before applying the conductive adhesive or solder to the pin electrode. Can stand upright with respect to the metal base substrate. Therefore, it is not necessary to use a jig for erecting the pin electrode at the temporary fixing stage before applying the conductive adhesive or solder. In addition, the effect of clamping the folded portion 75 so as to bend by the upper mold is as described in the first embodiment.

本実施形態で用いる筒状電極70はばね性の高いりん青銅、黄銅などの材料が好ましいが他の材料でもよい。   The cylindrical electrode 70 used in the present embodiment is preferably made of a material having high spring properties such as phosphor bronze or brass, but may be other materials.

また、インサート物を製作する工程において自動搭載機を用いて筒状電極70をメタルベース基板21の表面に搭載させるためには、筒状電極70は円筒状であることが好ましいが特にこれに限定されない。   Further, in order to mount the cylindrical electrode 70 on the surface of the metal base substrate 21 using an automatic mounting machine in the process of manufacturing the insert, the cylindrical electrode 70 is preferably cylindrical, but is particularly limited to this. Not.

本実施形態の筒状電極70の折り返し部分75を形成するためには絞り加工を行うこととしたが、同様の形状を得られる限りにおいて絞り加工に限定されない。   In order to form the folded portion 75 of the cylindrical electrode 70 of the present embodiment, the drawing process is performed. However, the drawing process is not limited to the drawing process as long as a similar shape can be obtained.

ここまでの全ての実施形態におけるメタルベース基板は基板の例示であって他の構成を有する基板であってもよい。すなわち、基板は表面に半導体素子および筒状電極を固着できる限りにおいて特に限定されない。よって例えばセラミック表面にCu、Alなどの金属箔が形成され、当該セラミック裏面には金属箔やはんだなどを介して放熱板が取り付けられる構成の基板を用いても本発明の効果を失わない。   The metal base substrate in all the embodiments so far is an example of the substrate and may be a substrate having another configuration. That is, the substrate is not particularly limited as long as the semiconductor element and the cylindrical electrode can be fixed to the surface. Therefore, for example, even if a metal foil such as Cu or Al is formed on the ceramic surface and a heat sink is attached to the back surface of the ceramic via the metal foil or solder, the effect of the present invention is not lost.

10 樹脂筐体、 12 筒状電極、 21 メタルベース基板、 22 IGBT、 24 FWDi   10 resin housing, 12 cylindrical electrode, 21 metal base substrate, 22 IGBT, 24 FWDi

Claims (6)

表面に回路パターンを有する基板と、
前記回路パターンに固着された半導体素子と、
一端に開放面を有し、他端にて前記回路パターンに固着されて前記基板に対して直立し、一部に他の部分よりも内径が大きく形成された部分を有する筒状電極と、
前記基板と前記半導体素子と前記筒状電極を、前記基板の裏面および前記筒状電極の一端が外部に露出するように覆う樹脂筐体とを備え
前記筒状電極の内径が大きく形成された部分は、前記筒状電極の一端に配され、かつ、前記筒状電極の他の部分より外径と内径の差が小さいことを特徴とする電力用半導体装置。
A substrate having a circuit pattern on the surface;
A semiconductor element fixed to the circuit pattern;
A cylindrical electrode having an open surface at one end, and being fixed to the circuit pattern at the other end and standing upright with respect to the substrate, and having a portion formed with a larger inner diameter than the other portion in part,
A resin housing that covers the substrate, the semiconductor element, and the cylindrical electrode so that the back surface of the substrate and one end of the cylindrical electrode are exposed to the outside ;
The portion where the inner diameter of the cylindrical electrode is formed is disposed at one end of the cylindrical electrode, and the difference between the outer diameter and the inner diameter is smaller than the other portion of the cylindrical electrode . Semiconductor device.
前記筒状電極の一端は端部に向かうほど内径が大きくなることを特徴とする請求項1に記載の電力用半導体装置。   2. The power semiconductor device according to claim 1, wherein an inner diameter of one end of the cylindrical electrode increases toward an end portion. 前記筒状電極の他端は端部に向かうほど内径が大きくなる形状であり、
前記筒状電極の他端は前記基板とはんだ付けにより接合されたことを特徴とする請求項1に記載の電力用半導体装置。
The other end of the cylindrical electrode has a shape in which the inner diameter increases toward the end,
The power semiconductor device according to claim 1, wherein the other end of the cylindrical electrode is joined to the substrate by soldering.
前記筒状電極の一端はその端部が前記基板の方向を向くように湾曲させられた形状であることを特徴とする請求項1に記載の電力用半導体装置。   2. The power semiconductor device according to claim 1, wherein one end of the cylindrical electrode is curved so that an end thereof faces the direction of the substrate. 表面に回路パターンを有する基板と、
前記回路パターンに固着された半導体素子と、
一端に開放面を有し、他端にて前記回路パターンに固着されて前記基板に対して直立し、絞り加工により形成された内壁部と外壁部が所定間隔離れた二重構造を有する筒状電極と、
前記基板と前記半導体素子と前記筒状電極を、前記基板の裏面および前記筒状電極の一端が外部に露出するように覆う樹脂筐体とを備え、
前記筒状電極の一端は前記絞り加工による折り返し部分であり、
前記筒状電極の他端は前記折り返し部分と反対の部分の前記外壁部であることを特徴とする電力用半導体装置。
A substrate having a circuit pattern on the surface;
A semiconductor element fixed to the circuit pattern;
Having an open face at one end, is secured to the circuit pattern at the other end upright with respect to the substrate, the inner wall portion formed by drawing and the outer wall portion is closed a predetermined distance apart a double structure A cylindrical electrode;
A resin housing that covers the substrate, the semiconductor element, and the cylindrical electrode so that the back surface of the substrate and one end of the cylindrical electrode are exposed to the outside;
One end of the cylindrical electrode is a folded portion by the drawing process,
The tubular electrode at the other end the folded portion opposite the portion of the semiconductor device for that power to, wherein a outer wall.
一端に他の部分より内径の大きい部分および開放面を有する筒状電極の他端を基板の表面に固着し、前記筒状電極を前記基板に対して直立させ、樹脂封止されるべきインサート物を製作する工程と、
前記インサート物を、金型が前記基板の裏面と前記筒状電極の一端を挟むように前記金型内部に配置する工程と、
前記筒状電極の一端にたわみを持たせるように前記金型の型締めを行う工程と、
前記型締めを維持して前記金型内部にモールド樹脂を注入する工程とを備えることを特徴とする電力用半導体装置の製造方法。
An insert to be sealed with resin by fixing the cylindrical electrode having a part having an inner diameter larger than the other part at one end and the other end of the cylindrical electrode to the surface of the substrate, and allowing the cylindrical electrode to stand upright with respect to the substrate. And the process of manufacturing
Placing the insert in the mold such that the mold sandwiches the back surface of the substrate and one end of the cylindrical electrode;
A step of clamping the mold so as to have a deflection at one end of the cylindrical electrode;
And a step of injecting a mold resin into the mold while maintaining the mold clamping.
JP2009031529A 2009-02-13 2009-02-13 Power semiconductor device and manufacturing method thereof Active JP5262793B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009031529A JP5262793B2 (en) 2009-02-13 2009-02-13 Power semiconductor device and manufacturing method thereof
DE102009042399.0A DE102009042399B4 (en) 2009-02-13 2009-09-22 Power semiconductor device and manufacturing method therefor
DE102009061178.9A DE102009061178B3 (en) 2009-02-13 2009-09-22 Power semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009031529A JP5262793B2 (en) 2009-02-13 2009-02-13 Power semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2010186953A JP2010186953A (en) 2010-08-26
JP5262793B2 true JP5262793B2 (en) 2013-08-14

Family

ID=42733331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009031529A Active JP5262793B2 (en) 2009-02-13 2009-02-13 Power semiconductor device and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP5262793B2 (en)
DE (2) DE102009042399B4 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103367299A (en) * 2013-07-03 2013-10-23 株洲南车时代电气股份有限公司 Device and method for power interconnection of semiconductor module

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5481680B2 (en) 2010-04-28 2014-04-23 三菱電機株式会社 Semiconductor device and manufacturing method of semiconductor device
EP2779377B1 (en) * 2011-11-09 2018-04-18 Mitsubishi Electric Corporation Rotating electrical machine
JP5854147B2 (en) * 2012-08-24 2016-02-09 三菱電機株式会社 Semiconductor device
CN105027279B (en) * 2013-03-21 2018-02-13 富士电机株式会社 Contact component and semiconductor module
JP6217101B2 (en) 2013-03-22 2017-10-25 富士電機株式会社 Semiconductor device manufacturing method and mounting jig
US10405434B2 (en) 2013-03-22 2019-09-03 Fuji Electric Co., Ltd. Mounting jig for semiconductor device
DE102014211698A1 (en) * 2014-06-18 2015-12-24 Robert Bosch Gmbh Electronic module with a contact sleeve
JP6249892B2 (en) 2014-06-27 2017-12-20 三菱電機株式会社 Manufacturing method of semiconductor device
DE102018111989A1 (en) 2018-05-18 2019-11-21 Rogers Germany Gmbh Electronic module and method for producing the same
DE102018133479A1 (en) 2018-12-21 2020-06-25 Rogers Germany Gmbh Method for manufacturing an electronic module and electronic module
DE102021121797A1 (en) 2021-08-23 2023-02-23 Infineon Technologies Ag POWER SEMICONDUCTOR MODULE WITH SOCKET OR PRESS-FIT PIN AND METHOD OF ITS MANUFACTURE

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3491481B2 (en) 1996-08-20 2004-01-26 株式会社日立製作所 Semiconductor device and manufacturing method thereof
JP4569473B2 (en) * 2006-01-04 2010-10-27 株式会社日立製作所 Resin-encapsulated power semiconductor module
JP2007235004A (en) * 2006-03-03 2007-09-13 Mitsubishi Electric Corp Semiconductor device
DE112008000229B4 (en) * 2007-01-22 2014-10-30 Mitsubishi Electric Corp. Power semiconductor device
US7701054B2 (en) * 2007-02-12 2010-04-20 Infineon Technologies Ag Power semiconductor module and method for its manufacture
DE102008029829B4 (en) * 2008-06-25 2012-10-11 Danfoss Silicon Power Gmbh Vertical upwardly contacting semiconductor and method of making the same
JP4567773B2 (en) * 2008-07-18 2010-10-20 三菱電機株式会社 Power semiconductor device
TWI394258B (en) * 2008-11-11 2013-04-21 Cyntec Co Ltd Chip package structure and fabrication method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103367299A (en) * 2013-07-03 2013-10-23 株洲南车时代电气股份有限公司 Device and method for power interconnection of semiconductor module
CN103367299B (en) * 2013-07-03 2017-02-15 株洲南车时代电气股份有限公司 Device and method for power interconnection of semiconductor module

Also Published As

Publication number Publication date
JP2010186953A (en) 2010-08-26
DE102009042399B4 (en) 2015-08-20
DE102009042399A1 (en) 2010-10-14
DE102009061178B3 (en) 2015-08-20

Similar Documents

Publication Publication Date Title
JP5262793B2 (en) Power semiconductor device and manufacturing method thereof
US9887142B2 (en) Power semiconductor device
KR101186781B1 (en) Power semiconductor circuit device and method for manufacturing the same
JP5071405B2 (en) Power semiconductor device
JP5272768B2 (en) Power semiconductor device and manufacturing method thereof
JP5881860B2 (en) Power module
JP5012772B2 (en) Semiconductor device manufacturing method and semiconductor device
JP5098440B2 (en) Method for manufacturing power semiconductor device
JP4468115B2 (en) Semiconductor device
JP5218442B2 (en) Power semiconductor device
JP5069758B2 (en) Semiconductor device
JP5153684B2 (en) Semiconductor device and manufacturing method of semiconductor device
CN101978491A (en) Semiconductor chip package assembly method and apparatus for countering leadfinger deformation
JP2012134300A (en) Semiconductor device
JP2012238684A (en) Power semiconductor device
US10366933B2 (en) Case having terminal insertion portion for an external connection terminal
JP2011187819A (en) Resin sealed power module and method of manufacturing the same
JP2012248907A (en) Power semiconductor device
JP5972158B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP2019161083A (en) Semiconductor device
JP4293232B2 (en) Manufacturing method of semiconductor device
JP6872953B2 (en) Fixing structure of heat-generating parts and fixing method of heat-generating parts
KR20160051513A (en) Power module and manufacturing method thereof
JP2012227193A (en) Semiconductor device
JP2010021231A (en) Molded package

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130415

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5262793

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250