JP5262430B2 - Thin film manufacturing method and thin film manufacturing apparatus - Google Patents
Thin film manufacturing method and thin film manufacturing apparatus Download PDFInfo
- Publication number
- JP5262430B2 JP5262430B2 JP2008216126A JP2008216126A JP5262430B2 JP 5262430 B2 JP5262430 B2 JP 5262430B2 JP 2008216126 A JP2008216126 A JP 2008216126A JP 2008216126 A JP2008216126 A JP 2008216126A JP 5262430 B2 JP5262430 B2 JP 5262430B2
- Authority
- JP
- Japan
- Prior art keywords
- rod
- shaped
- electron beam
- evaporation source
- supply
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Physical Vapour Deposition (AREA)
- Manufacturing Of Magnetic Record Carriers (AREA)
Abstract
Description
本発明は、薄膜の製造方法及び製造方法に関する。 The present invention relates to a thin film manufacturing method and a manufacturing method.
デバイスの高性能化、小型化に薄膜技術が幅広く展開されている。また、デバイスの薄膜化はユーザーの直接メリットに留まらず、地球資源の保護、消費電力の低減といった環境側面からも重要な役割を果たしている。 Thin film technology is widely deployed to improve the performance and miniaturization of devices. In addition, the thinning of devices is not only a direct merit for users, but also plays an important role in environmental aspects such as protecting earth resources and reducing power consumption.
こうした薄膜技術の進展には、薄膜製造方法の高効率化、安定化、高生産性化、低コスト化といった産業利用面からの要請に応えることが必要不可欠であり、これに向けた努力が続けられている。 To advance the thin film technology, it is indispensable to meet the demands of industrial use such as high efficiency, stabilization, high productivity and low cost of the thin film manufacturing method. It has been.
薄膜の高生産性には、長時間成膜技術が必須であり、真空蒸着法による薄膜製造においては、蒸発源への材料供給が有効である。 For high productivity of a thin film, a long-time film formation technique is essential, and in the production of a thin film by a vacuum deposition method, it is effective to supply a material to an evaporation source.
蒸発源への材料供給は、粉状、粒状、ペレット状その他各種形状の材料を蒸発源に投入する方法、棒状、線状の材料を蒸発源に差し向ける方法、棒状材料を蒸発源の下方から注入する方法、液状の材料を蒸発源に流し込む方法など、各種方法が使用材料、成膜条件などに応じて選択される。蒸発源の温度は、低温の供給材料が加えられることによって変動し、蒸発源温度の変化は蒸発速度の変動を生じやすい。この課題に対して、棒状の材料を供給材料として用い、これを順次溶解した液滴によって材料供給を行う方法があり、蒸発源に対する熱的変動を小さくした供給方法として有効である。 The material supply to the evaporation source includes powder, granule, pellets and other various shapes of material input to the evaporation source, rod-shaped and linear materials directed to the evaporation source, and rod-shaped material from the bottom of the evaporation source. Various methods such as a method of injecting and a method of pouring a liquid material into the evaporation source are selected according to the materials used, film forming conditions, and the like. The temperature of the evaporation source fluctuates due to the addition of a cold feed material, and changes in the evaporation source temperature tend to cause fluctuations in the evaporation rate. In order to solve this problem, there is a method in which a rod-shaped material is used as a supply material, and the material is supplied by droplets obtained by sequentially dissolving the rod-shaped material, which is effective as a supply method in which thermal fluctuations with respect to the evaporation source are reduced.
特許文献1には棒状の蒸発原料を加熱溶融して蒸発原料を容器内に供給するに当たり、溶融しつつある蒸発原料の先端部の位置を光センサにて連続して検出し、その検出信号に基づいて蒸発原料の送り速度を調整することが開示されている。また、特許文献2にはハロゲンと水素との反応火炎中にシランガス等からなるケイ素原料を供給し、出発材にケイ素微粒子を付着させた後にガスで冷却しながら回転引き上げを行う棒状高純度ケイ素の製造方法が開示されている。
In Patent Document 1, when the evaporating raw material is heated and melted and supplied to the container, the position of the tip of the evaporating raw material being melted is continuously detected by an optical sensor, and the detection signal is Based on this, it is disclosed to adjust the feed rate of the evaporating raw material. Further, in
また、特許文献3には蒸発源の2箇所にペレット状の材料を供給する方法が開示されている。また、特許文献4には棒状材料を回転させながら供給する方法が開示されている。また、特許文献5には棒状材料を溶解して供給する方法が開示されている。
棒状供給材料を電子ビームによって先端より順次溶解して供給する供給方法は、蒸発源に与える変動が小さい点で優れた方法であるが、更に長時間の成膜を行う場合、溶解消費して短くなった棒状供給材料から、新しい棒状供給材料への交換を行うことが必要になる。 The supply method in which the rod-shaped supply material is dissolved and supplied sequentially from the tip by an electron beam is an excellent method in that the fluctuation given to the evaporation source is small. It is necessary to replace the old bar-shaped feed material with a new bar-shaped feed material.
棒状供給材料の交換は、現在使用中の棒状供給材料を電子ビームの照射領域から除去し
、これに替わって新しい棒状供給材料の先端部を電子ビームの照射領域に導くことによって行われる。
The rod-shaped feed material is exchanged by removing the rod-shaped feed material currently in use from the irradiation area of the electron beam and, instead, guiding the tip of a new rod-shaped feeding material to the irradiation area of the electron beam.
長時間成膜においては、蒸発材料の補給と共に、蒸発速度の安定化が、膜厚や膜質の安定化の上で重要である。 In long-time film formation, it is important to stabilize the evaporation rate together with the replenishment of the evaporation material in order to stabilize the film thickness and film quality.
棒状供給材料の交換は、現在使用中の棒状供給材料を電子ビームの照射領域から除去し、これに替わって新しい棒状供給材料の先端部を電子ビームの照射領域に導くことが必要であるが、この間、蒸発源への材料供給が停止すると共に、通常は棒状供給材料に照射される電子ビームが蒸発源に直接照射される。 To replace the rod-shaped feed material, it is necessary to remove the rod-shaped feed material currently in use from the irradiation area of the electron beam, and instead to guide the tip of a new rod-shaped feed material to the irradiation area of the electron beam. During this time, the material supply to the evaporation source is stopped, and the electron beam normally irradiated to the rod-shaped supply material is directly irradiated to the evaporation source.
従って、棒状供給材料の交換中には溶液が供給されないため蒸発源の溶湯面の低下が発生すると共に、蒸発源に照射される電子ビームの総量が多くなり、いずれも蒸発源の温度上昇を引き起こす。 Therefore, since the solution is not supplied during the exchange of the rod-shaped feed material, the molten metal surface of the evaporation source is lowered, and the total amount of electron beams irradiated to the evaporation source is increased, both of which cause the temperature of the evaporation source to rise. .
蒸発材料の蒸発速度は蒸発源の湯面温度に強く依存しており、蒸発速度を安定にするには蒸発源の温度変化を出来るだけ小さくすることが必要である。 The evaporation rate of the evaporation material strongly depends on the surface temperature of the evaporation source, and in order to stabilize the evaporation rate, it is necessary to make the temperature change of the evaporation source as small as possible.
本発明の目的は、棒状供給材料を先端より順次溶解して供給する供給方法を、蒸発源温度を安定にして実現することである。 An object of the present invention is to realize a supply method in which a rod-shaped supply material is dissolved and supplied sequentially from the tip, with the evaporation source temperature being stabilized.
上記課題を解決するために本発明の薄膜の製造方法は、
電子ビームが走査された蒸発源から、基板に向かって成膜を行う薄膜の製造方法において、蒸発源の上方に棒状供給材料を差し向け、棒状供給材料に電子ビームを照射することにより蒸発源の材料の溶解供給を行うものであって、かつ棒状供給材料を蒸発源の両側に配し、
電子ビームの走査範囲は棒状供給材料上および蒸発源上であって、蒸発源上の電子ビームの走査範囲は一定であることを特徴とするものである。
In order to solve the above problems, the method for producing a thin film of the present invention comprises:
In a thin film manufacturing method in which a film is formed from an evaporation source scanned with an electron beam toward a substrate, a rod-shaped supply material is directed above the evaporation source, and the rod-shaped supply material is irradiated with an electron beam to thereby evaporate the evaporation source. Dissolving and supplying the material, and arranging the rod-shaped supply material on both sides of the evaporation source,
The scanning range of the electron beam is on the rod-shaped feed material and the evaporation source, and the scanning range of the electron beam on the evaporation source is constant.
つまり、本発明のような制御をしない場合、棒状供給材料の供給が停止した際には、蒸発源上の電子ビームの走査範囲は、消失した棒状供給材料の下部の蒸発源上に広がる。本発明では、このようなことがおきないように、棒状供給材料の供給が停止したときには、全体の電子ビームの走査範囲を変更して、蒸発源上の電子ビームの走査範囲を一定になるように制御する。 That is, when the control as in the present invention is not performed, when the supply of the rod-shaped supply material is stopped, the scanning range of the electron beam on the evaporation source spreads over the evaporation source below the lost rod-shaped supply material. In the present invention, to prevent this from happening, when the supply of the rod-shaped supply material is stopped, the scanning range of the entire electron beam is changed so that the scanning range of the electron beam on the evaporation source becomes constant. To control.
また本発明の薄膜の製造方法は、両側に配した棒状供給材料を各々複数本用意して交換しながら溶解供給し、交換の時期を両側でずらすと共に、電子ビームの走査範囲を、棒状供給材料の交換時に、溶解中の棒状供給材料側に移動することを特徴とするものである。 In addition, the thin film manufacturing method of the present invention provides a plurality of rod-shaped supply materials arranged on both sides, melts and supplies them while exchanging them, shifts the exchange time on both sides, and changes the scanning range of the electron beam to the rod-shaped supply materials. It moves to the rod-shaped feed material side which is melt | dissolving at the time of replacement | exchange.
また本発明の薄膜の製造方法は、棒状供給材料が、軸中心に回転していることを特徴とするものである。 In addition, the thin film manufacturing method of the present invention is characterized in that the rod-shaped supply material rotates about the axis.
また本発明の薄膜の製造方法は、棒状供給材料の断面形状が略円形であることを特徴とするものである。 The thin film manufacturing method of the present invention is characterized in that the cross-sectional shape of the rod-shaped supply material is substantially circular.
さらに上記課題を解決するために本発明の薄膜の製造装置は、
基板上に薄膜を形成するための蒸発材料を保持する蒸発源と、蒸発源の上方に第1及び第2の、棒状供給材料として蒸発材料を送出する材料供給機構と、それらを格納し、排気手段によって排気される真空槽と、蒸発源に電子ビームを照射する電子銃と、電子ビーム
の制御装置を含む薄膜の製造装置であって、第1の棒状の供給材料と第2の棒状供給材料を、電子銃と制御装置によって電子ビームが走査された蒸発源の主たる蒸発領域を挟んで両側に送出し、第1の棒状の供給材料と第2の棒状供給材料の先端部を電子ビームによって溶解かつ蒸発源に滴下し、かつ第1の棒状の供給材料と第2の棒状供給材料がそれぞれ交換用の棒状供給材料と交換する交換機能を有し、さらに制御装置が電子ビームの走査範囲を棒状供給材料の交換の時期に合わせて変更することを特徴とするものである。
Furthermore, in order to solve the above-described problems, the thin-film manufacturing apparatus of the present invention includes:
An evaporation source for holding an evaporation material for forming a thin film on a substrate, a first and a second material supply mechanism for sending the evaporation material as a rod-shaped supply material above the evaporation source, and storing and exhausting them A thin-film manufacturing apparatus including a vacuum chamber evacuated by means, an electron gun for irradiating an evaporation source with an electron beam, and an electron beam control device, wherein the first rod-shaped supply material and the second rod-shaped supply material Are sent to both sides of the main evaporation region of the evaporation source scanned by the electron gun and the control device, and the tip of the first rod-shaped supply material and the second rod-shaped supply material are melted by the electron beam. In addition, it has an exchange function for dropping the evaporation source and exchanging the first rod-shaped feed material and the second rod-shaped feed material with a replacement rod-shaped feed material, respectively, and the control device has a rod-shaped scanning range of the electron beam. In accordance with the timing of the material exchange It is characterized in that to change.
また、本発明の薄膜の製造装置は、棒状供給材料を、軸中心に回転する機構を有することを特徴とするものである。 In addition, the thin film manufacturing apparatus of the present invention is characterized by having a mechanism for rotating a rod-shaped supply material about its axis.
本発明の成膜方法によれば、棒状供給材料の交換時においても、材料の供給量の変動を小さくすると共に、蒸発源に照射する電子ビームの量を一定にすることが出来るので、蒸発源の温度を安定にすることが出来る。これによって蒸発速度を一定にし、成膜厚みや膜質の安定性を向上することが出来る。 According to the film forming method of the present invention, even when the rod-shaped supply material is replaced, the fluctuation of the supply amount of the material can be reduced and the amount of the electron beam applied to the evaporation source can be made constant. The temperature can be stabilized. As a result, the evaporation rate can be kept constant, and the film thickness and film quality stability can be improved.
図1は、本発明の実施形態の一つである材料供給手段の構造を模式的に示す図面である。図1(a)は上面図、図1(b)は側面図(一部縦断面図)である。 FIG. 1 is a drawing schematically showing the structure of a material supply means which is one embodiment of the present invention. FIG. 1A is a top view, and FIG. 1B is a side view (partly longitudinal sectional view).
蒸発源を形成する蒸発用坩堝9の上方には、材料供給装置6から、棒状供給材料32が差し向けられている。蒸発用坩堝9には水冷銅ハース、鉄、ニッケル、モリブデン、タンタル、タングステン等の高融点金属やこれらを含む合金、アルミナ、マグネシア、カルシア等の酸化物や、窒化ボロン、炭素等の各種材料からなる耐火物などを用いることが出来る。蒸発用坩堝は溶融状態の材料を保持しており、溶湯表面から材料が蒸発する。溶湯表面の形状は蒸発用坩堝の形状によって規定され、矩形(図2の(b)に例示、以下同様)、角丸矩形(c)、円形(a)、楕円形(d)、ドーナツ状やそれらの組合せなど、種々の形状が適用できるが、大面積の成膜を行うためには、成膜を行う基板を移動すると共に、基板の幅方向に長い形状を有する溶湯表面から材料を蒸発することが望ましい。
Above the
蒸発用坩堝9の縦断面形状は矩形や台形(図2の(e)、(f)に例示、以下同様)、太鼓形などの形状や、これらに底丸な形を付与した形状((g)、(h))など、種々の形状が適用できるが、逆台形やこれに底丸な形を付与した形状の原料供給領域が均一溶解の点からより望ましい。図2に蒸発用坩堝9の形状例を模式的に示す。なお、図2の(a)と(e)、(b)と(f)、(c)と(g)および(d)と(h)はそれぞれ一の坩堝である。
The vertical cross-sectional shape of the
材料供給装置6は棒状供給材料3を、蒸発用坩堝9の、材料供給領域4の上方に送る。材料供給機構2の送り機構10は、チェーン方式、ベルト方式、押し棒方式、ローラ方式その他適宜選択される。例えば凸部のあるチャックローラ11により、上下から棒状体を挟み込みながら送ることが出来る。挟み込みの圧力は、作成する棒状体の材質、形状、引き出し速度によって異なるが、例えば3〜50kgfである。挟み込みの圧力が小さすぎるとすべりが生じて円滑な引き出しが行われない場合があり、逆に挟み込みの圧力が大きすぎると、棒状体の変形や破壊につながる場合がある。棒状体は完全円柱等の幾何学形状から外れた不定型な側面を持つ場合が多いので、チャックローラの挟み込み状態も安定しにくい。そこでチャックローラの挟み込み機構にバネ等による緩衝機構を設けておくことが望ましい。
The material supply device 6 sends the rod-shaped supply material 3 above the
チャックローラ11の凸部は針状の突起であっても良く、円錐状、角錐状のものであっても良い。凸部の耐久性向上のためには円錐台状や角錐台状の突起が望ましく、歯車状の
チャックローラとすることも耐久性の点から好ましい。円錐台状の突起は例えば上底の半径が0.3〜2mm、下底の半径が0.5〜4mm、高さが0.5〜5mmである。また、チャックローラの径は長さ方向に均一であっても良いが、棒状供給材料を包み込むように、チャック位置でのチャックローラの径を細くしておくことはチャック性の向上と棒状供給材料送り出し方向の蛇行を防止する効果がある。チャックローラの径はチャック位置で例えば10〜70mmである。チャックローラの径が小さすぎるとチャックローラの曲がり等が生じやすい。また、チャックローラの径が大きすぎると設備が大型になり設備コストが増大する。棒状供給材料送り出し方向の蛇行防止にはチャック位置でのチャックローラの径を細くした上で、複数組のチャックローラを用いると更に効果的である。
The convex portion of the
また、押し棒方式ではチャック2によって一端を保持した棒状供給材料を押し棒3によって軸方向に押し、蒸発用坩堝の上方に棒状供給材料を押し進めていくことができる。チェーン方式やベルト方式では、たとえばチェーンやベルトを、直線部分を含む周回形状に周回させ、棒状供給材料の保持治具が直線部分に沿って移動することにより、棒状供給材料を直線移動させて蒸発源上方に差し向けることが出来る。
Further, in the push rod method, the rod-shaped supply material that is held at one end by the
材料供給装置は、回転機構38を備えている。回転機構38によって棒状供給材料3は回転し、かつ送り機構によって送り出される。回転機構38にはローラ式、歯車式などの方式を用いることが出来る。例えば図3(a)に側面模式図、図3(b)に断面模式図を示すように、凸部のある棒状供給材料回転用ローラ39により、上下左右から棒状供給材料32を挟み込みながら回転することが出来る。挟み込みの圧力は、棒状供給材料の材質、形状、送り出し速度によって異なるが、例えば3〜50kgfである。挟み込みの圧力が小さすぎるとすべりが生じて円滑な回転が行われない場合があり、逆に挟み込みの圧力が大きすぎると、棒状供給材料の変形や破壊につながる場合がある。棒状供給材料は完全円柱形状から外れた不定型な側面を持つ場合もあり、棒状供給材料回転用ローラ39の挟み込み状態も安定しにくい。そこで棒状体回転用ローラ39の挟み込み機構にバネ等による緩衝機構を設けておくことが望ましい。歯車状の回転体を棒状供給材料に押し当てることによっても棒状供給材料を回転することが出来る。
The material supply apparatus includes a
棒状供給材料体の回転と送り出しの両立を安定させるために、必要に応じて例えば棒状供給材料の回転運動と送り出しのいずれかを間欠的とし、棒状供給材料にかかるねじれ応力を軽減することが出来、ねじれ応力による棒状供給材料の破損を防止することが出来る。棒状供給材料の回転数は、棒状供給材料の材質、送り出し速度等によって異なるが、例えば送り出し速度0.5〜10cm/minに対して0.2〜4rpmである。 In order to stabilize the balance between the rotation and feeding of the rod-shaped feed material body, for example, either the rotational movement or feeding of the rod-shaped feed material can be made intermittent to reduce the torsional stress applied to the rod-shaped feed material. Further, it is possible to prevent the rod-shaped supply material from being damaged due to the torsional stress. The number of revolutions of the rod-shaped supply material varies depending on the material of the rod-shaped supply material, the delivery speed, and the like, but is 0.2 to 4 rpm for a delivery speed of 0.5 to 10 cm / min, for example.
送り機構10によって送り出された棒状供給材料は、必要に応じて搬送ガイド13に沿って搬送される。搬送ガイドは、ローラ、固定ポスト、固定ガイド等によって構成することが出来る。搬送ガイドを用いることによって、棒状供給材料の蛇行や、チャック機構を支点にした応力による棒状供給材料の折損の防止、送り出し機構の駆動負荷の低減をすることが出来る。搬送ガイドの位置は固定でも良いが、バネ機構33などによって可動型とすることができる。搬送ガイドを可動型とすることによって棒状供給材料の位置変動に対する追随性が向上して、更に搬送を安定化することが出来る。なお、設備形状の制約等で搬送ガイドを設ける余裕が無い場合など、場合によっては搬送ガイド13を省略することも出来る。
The rod-shaped supply material sent out by the
送り機構10によって送り出され、搬送ガイド13に沿って搬送された棒状供給材料は、蒸発用坩堝9の上方に向かう。棒状供給材料の先端部付近には、電子銃15から、供給用電子ビーム16が照射され、棒状供給材料は先端部より液化して、液滴14となって蒸発用坩堝に滴下する。原材料の種類と棒状体の形状及び搬送速度にもよるが、棒状供給材料に照射する供給用電子ビームの電力は5〜100kW程度が好ましい。5kW以下では
棒状供給材料の溶解速度の確保に課題が生じる場合があり、100kW以上では棒状供給材料が蒸発用坩堝上方に至る前に溶解し液滴が滴下する場合がある。
The rod-shaped supply material fed out by the
棒状供給材料を回転しながら送り出すことにより、棒状供給材料の先端に均一に電子ビームが照射され、溶け残りが発生しにくく、また溶解状態の変動が小さい。これらの効果により、蒸発用坩堝に、液滴が安定的に供給されるので、蒸発用坩堝の蒸発状態も安定することが出来る。 By feeding the rod-shaped feed material while rotating it, the tip of the rod-shaped feed material is uniformly irradiated with an electron beam, so that undissolved residue hardly occurs and the fluctuation of the melted state is small. Due to these effects, since the droplets are stably supplied to the evaporation crucible, the evaporation state of the evaporation crucible can be stabilized.
蒸発用坩堝9には、電子銃15から、蒸発用電子ビーム18が照射されており、蒸発材料は蒸発用電子ビームによる加熱でその一部が蒸発しつつある液相状態にある。蒸発材料の種類と蒸発速度にもよるが、電子ビームの加速電圧は−8kV〜−30kV、電力は5〜280kW程度が好ましい。5kW以下では溶解状態の確保に課題が生じる場合があり、280kW以上では蒸発材料の飛散や突沸が生じる場合がある。
The
棒状供給材料の溶解に用いる供給用電子ビーム16および成膜に用いる蒸発用電子ビーム18を単一の電子銃15から発することで、設備を簡素化することが出来、設備コストが軽減できる。
By emitting the
電子銃は直進銃、偏向銃のいずれを使用することも可能であるが、大面積の成膜を行う場合には、高出力で、電子ビームの走査範囲の広いという点で直進銃を用いることが望ましい。ただし、電子銃鏡筒内部の汚染防止等の観点から、ビーム軌道を数度程度屈曲させることは有効かつ蒸発用電子銃への影響も小さいので好ましい。 Either a straight gun or a deflection gun can be used as the electron gun, but when a large area film is formed, a straight gun is used because of its high output and wide scanning range of the electron beam. Is desirable. However, from the viewpoint of preventing contamination inside the electron gun barrel, it is preferable to bend the beam trajectory by several degrees because it is effective and has little influence on the evaporation electron gun.
量産性に優れた、巻き取り式に代表される連続式の真空蒸着においては、図4に示すように、成膜幅35よりも広幅の矩形坩堝を用いることが幅方向の膜厚均一性確保に有効である。供給用電子ビーム照射位置37及び、棒状供給材料の溶解滴下位置は蒸発用電子ビーム走査範囲36の更に外側に設定されている。供給用電子ビームの照射位置及び、棒状供給材料の溶解滴下位置を、蒸発用電子ビームの走査範囲の外側に設定することで、材料供給による湯温の変化や湯面の振動の、成膜に対する影響を小さくすることが出来る。供給用電子ビームの照射位置及び、棒状供給材料の溶解滴下位置を、蒸発用電子ビームの走査範囲から離れた外側に設定することも可能である。
In continuous vacuum deposition, which is excellent in mass production and typified by a winding type, as shown in FIG. 4, using a rectangular crucible wider than the
このような電子ビーム照射位置の制御は電子銃システムの、電子ビーム走査回路により、磁場発生コイル電流の綿密な制御によって具現化される。 Such control of the electron beam irradiation position is realized by fine control of the magnetic field generating coil current by the electron beam scanning circuit of the electron gun system.
図6に示すように、棒状供給材料32を、蒸発用電子ビーム18の走査範囲を挟んで、その両側に配置し、供給用電子ビーム16を用いて溶解滴下供給することで、材料供給による湯温の変化や湯面の振動の、成膜に対する影響を基板幅方向で左右対称とすることが出来るので、幅方向の膜厚均一性を確保するのに有利である。また、長時間成膜において棒状供給材料の長さが不足する等して、棒状供給材料を交換する必要が生じた場合にも、棒状供給材料を、蒸発用電子ビーム走査範囲を挟んで、その両側に配置しておき、棒状供給材料の長さが不足した場合には交互に棒状供給材料を交換することで、材料供給を中断することなく長時間にわたって実施することが出来る。
As shown in FIG. 6, the rod-shaped
図9に示すように棒状供給材料32の交換時に供給用電子ビーム16が、材料交換中直撃ビーム17となって直接蒸発用坩堝の溶湯に照射されると、溶湯温度が急上昇し、蒸発速度の変動が発生しやすい。また、棒状供給材料を、蒸発用電子ビーム走査範囲を挟んで、その両側に配置しておき、棒状供給材料の長さが不足した場合に交互に棒状供給材料を交換する場合においても棒状材料の交換時には材料の供給量が低下する。本発明の方法では以下に述べるように、これらの課題が解決できる。
As shown in FIG. 9, when the
蒸発用坩堝9の両側から棒状供給材料32によって材料供給を行っている場合、蒸発用電子ビーム18の走査範囲の外側に配置された供給用電子ビーム16の走査範囲は、両側でほぼ均等とする。これによって蒸発用坩堝9の両側から均等な材料供給を行うことが出来る。
When the material is supplied from both sides of the
成膜時間の経過に伴って、棒状供給材料32の長さが不足する場合、棒状供給材料交換作業に入る。具体的には片側の棒状供給材料の送り出しを停止し、例えば送り機構の逆回転により引き戻し動作を行い、さらに新たな棒状供給材料との交換と供給準備を行う。その際、図7に示すように、送り出しを停止した側の供給用電子ビーム18の照射を停止する。これによって、直接蒸発用坩堝9の溶湯に照射される材料交換中直撃ビーム17の発生を防ぐことが出来る。従って、溶湯温度が急上昇し蒸発速度の変動が発生することを防止出来る。
When the length of the rod-shaped
また、棒状供給材料交換作業中は送り出しを続けている側の供給用電子ビーム18を強化することが有効である。送り出しを続けている側の供給用電子ビーム18の強化は走査範囲の拡大であっても良く、供給用電子ビーム走査範囲の走査速度を低下させることによる電子ビームの走査長さあたりの投入パワー増加であっても良い。送り出しを続けている側の供給用電子ビーム18の強化は、送り出しを停止した側の供給用電子ビームの照射停止による電子ビーム削減とほぼ同等であることが望ましい。これによって、電子ビームの出力を急激に変化させる必要をなくすことが出来る。電子ビームの出力変化により電子ビームの集束度や蒸発速度が変わることがあるが、本発明のように電子ビームの出力を急激に変化させる必要をなくすことで、蒸発速度の変化を防止することが出来る。
Further, it is effective to strengthen the
棒状供給材料32の交換作業中、送り出しを続けている側の棒状供給材料への供給用電子ビーム18を強化することによって、送り出しを続けている側からの材料供給量を増加することが出来る。これによって、棒状供給材料交換作業中の材料供給量低下と、蒸発用坩堝内の溶湯量減少を防止することが出来るので、これら変動要因による蒸発速度の変動を抑制することが出来る。なお、必要に応じて、棒状供給材料交換作業中は、送り出しを続けている側の棒状供給材料の送り速度を速くすることも有効である。
During the operation of exchanging the rod-shaped
棒状供給材料の交換作業が終了後、再び図8の様に蒸発用坩堝の両側から棒状供給材料によって材料供給を行う。棒状供給材料交換作業開始前と同様、蒸発用電子ビーム走査範囲の外側に配置された供給用電子ビーム走査範囲は、両側でほぼ均等とする。これによって蒸発用坩堝の両側から均等な材料供給を行うことが出来る。 After the exchange operation of the rod-shaped feed material is completed, the material is again fed by the rod-shaped feed material from both sides of the evaporation crucible as shown in FIG. As before the start of the rod-shaped supply material exchange operation, the supply electron beam scanning range arranged outside the evaporation electron beam scanning range is substantially equal on both sides. This makes it possible to supply a uniform material from both sides of the evaporation crucible.
成膜装置全体の構成の一例を、図5に模式的に示す。真空槽22は内部空間を有する耐圧性の容器状部材であり、その内部空間に巻き出しローラ23、搬送ローラ24、キャン25、巻き取りローラ26、蒸発源、材料供給手段、遮蔽板29および原料ガス導入管30を収容する。巻き出しローラ23はキャン25の鉛直方向上方において、軸心回りに回転自在に設けられているローラ状部材であり、その表面に帯状で長尺の基板21が捲回され、最も近接する搬送ローラ24に向けて基板21を供給する。搬送ローラ24は軸心回りに回転自在に設けられているローラ状部材であり、巻き出しローラ23から供給される基板21をキャン25に誘導し、最終的に巻き取りローラ26に導く。キャン25は、軸心回りに回転自在に設けられるローラ状部材であり、その内部には図示しない冷却手段が設けられている。冷却手段には、たとえば、冷却水を循環させることで冷却を行う冷却装置などを使用できる。キャン25の周面を基板21が走行する際に、蒸発源から飛来した材料粒子が、必要に応じて原料ガス導入管30から導入された原料ガスと反応して堆積し、基板21表面に薄膜が形成される。巻き取りローラ26は、キャン25の鉛直方向上方において、図示しない駆動手段によって回転駆動可能に設けられているローラ状部材であ
り、薄膜が形成された基板21を巻き取って保存する。
An example of the configuration of the entire film forming apparatus is schematically shown in FIG. The
蒸発源はキャンの鉛直方向における最下部の鉛直方向下方に設けられて、鉛直方向上部が開口している容器状部材であり、蒸発用坩堝は9がその具体的な一例であり、蒸発用坩堝9の内部には材料が載置される。蒸発源の近傍には電子銃15が設けられ、この電子銃からの電子ビーム18によって、蒸発用坩堝9内部の材料が加熱されて蒸発する。材料の蒸気は鉛直方向上方に向けて移動し、開口31を介して、キャン25の鉛直方向における最下部に到達する。ここで基板21表面に付着して薄膜が形成される。
The evaporation source is a container-like member which is provided in the vertical direction below the lowest in the vertical direction of the can and has an upper opening in the vertical direction. The
遮蔽板29は、蒸発用坩堝9から飛来した材料粒子が基板21と接触する領域を開口31のみに制限している。原料ガス導入管30は、必要に応じて設置されるもので、例えば一端が蒸発用坩堝9の鉛直方向上方に配置され、他端が真空槽22の外部に設けられる図示しない原料ガス供給手段に接続される管状部材であり、材料の蒸気に例えば酸素、窒素などを供給する。これによって、蒸発源から飛来した材料の酸化物、窒化物または酸窒化物を主成分とする薄膜が基板21表面に形成される。原料ガス供給手段には、ガスボンベ、ガス発生装置などがある。排気手段34は真空槽22の外部に設けられて、真空槽22内部を薄膜の形成に適する減圧状態にする。排気手段34には、たとえば、油拡散ポンプやクライオポンプなどの真空ポンプなどを使用できる。
The shielding
蒸発用坩堝9などからなる蒸発源には、棒状供給材料32、回転機構、押し出し機構、搬送ガイド、供給用ビーム16などからなる材料供給手段から材料の供給が行われているので、長時間にわたって安定な薄膜形成が可能である。
Since the material is supplied to the evaporation source including the
以上のように、成膜装置20によれば、巻き出しローラ23から送り出された基板21が、搬送ローラ24を経由してキャン25の周面を走行し、開口31において蒸発源27から飛来した蒸気および必要に応じて酸素、窒素などの供給を受け、基板上に薄膜が形成される。この基板21は、別の搬送ローラ24を経由して巻き取りローラ26に巻き取られる。これによって、薄膜が形成された基板21が得られる。
As described above, according to the
基板上への成膜は、基板が円筒状のキャンに沿っている必要は必ずしも無く、例えば基板が直線状に走行している部分に遮蔽板の開口部を設けることで、斜め入射の成膜を行うことも出来る。斜め入射成膜は、自己陰影効果で微小空間のある薄膜を形成することが出来るので、例えば高C/N磁気テープの形成や、サイクル特性に優れた電池負極の形成等に有効である。 The film formation on the substrate does not necessarily have to be along the cylindrical can. For example, by forming an opening portion of the shielding plate in a portion where the substrate runs in a straight line, the film is formed at an oblique incidence. Can also be done. The oblique incidence film formation can form a thin film having a minute space by the self-shading effect, and is effective for forming a high C / N magnetic tape, a battery negative electrode having excellent cycle characteristics, and the like.
例えば、基板として銅箔を用い、蒸発源からシリコンを蒸発させつつ、蒸発源にシリコンを供給することにより、長尺の電池用極板やキャパシタ用極板を得ることが出来る。 For example, by using copper foil as a substrate and evaporating silicon from the evaporation source and supplying silicon to the evaporation source, a long battery electrode plate and capacitor electrode plate can be obtained.
例えば、直径50mm程度の棒状に鋳造した2本の棒状シリコンの先端に、蒸着用坩堝9の上方で、蒸発と供給兼用の電子銃から合計40kWの電子ビームを照射して合計3g/sの速度で溶解供給するとともに、90kWの電子ビームを蒸発用坩堝内の溶湯に照射することで、長尺のシリコン薄膜を形成することが出来る。
For example, the tip of two rod-shaped silicon cast into a rod shape having a diameter of about 50 mm is irradiated with an electron beam of 40 kW in total from an electron gun for both evaporation and supply above the
また、基板としてポリエチレンテレフタレートを用い、蒸着用坩堝からコバルトを蒸発させつつ、酸素ガスを導入し、更に棒状コバルトの溶解によって蒸発源にコバルトを供給することにより、長尺の磁気テープを得ることが出来る。 Also, by using polyethylene terephthalate as a substrate, evaporating cobalt from the evaporation crucible, introducing oxygen gas, and supplying cobalt to the evaporation source by dissolving the rod-shaped cobalt, a long magnetic tape can be obtained. I can do it.
発明を実施するための最良の形態として上記に具体的に述べたが、本発明はこれに限定されるものではなく、電子ビームが走査された蒸発源から、基板に向かって成膜を行う薄膜の製造方法において、蒸発源の上方に複数の棒状供給材料を差し向け、電子ビームを照
射することにより材料の溶解供給を行う際に棒状供給材料の交換時にも前記蒸発源に照射する前記電子ビームの走査範囲を一定とすることを特徴とする薄膜の製造方法、および排気手段によって排気される真空槽と、真空槽中に配置された蒸発源と、蒸発源に材料を供給するための材料供給手段を具備する成膜装置であって、材料供給手段が棒状供給材料の交換作業を行っている際にも蒸発源溶湯に照射する電子ビーム走査範囲を一定にする機能を有する成膜装置を包含するものである。また、具体的な適用例として、シリコンを用いた電気化学素子用極板及びコバルトを用いた磁気テープについて述べたが、本発明はこれに限定されるものではなく、コンデンサ、各種センサ−、太陽電池、各種光学膜、防湿膜、導電膜、などをはじめとする安定成膜が要求される様々なデバイスに適用可能なことはいうまでもない。
Although the present invention has been specifically described above as the best mode for carrying out the invention, the present invention is not limited to this, and a thin film is formed from an evaporation source scanned with an electron beam toward a substrate. In the manufacturing method of the above, the electron beam that irradiates the evaporation source even when the rod-shaped supply material is exchanged when a plurality of rod-shaped supply materials are directed above the evaporation source and the material is dissolved and supplied by irradiating the electron beam A thin film manufacturing method characterized by having a constant scanning range, a vacuum chamber exhausted by an exhaust means, an evaporation source disposed in the vacuum chamber, and a material supply for supplying the material to the evaporation source Including a film forming apparatus having a function of making the electron beam scanning range irradiated to the evaporation source molten metal constant even when the material supplying means is exchanging the rod-shaped supply material. To do It is. Further, as specific application examples, the electrode plate for electrochemical elements using silicon and the magnetic tape using cobalt have been described. However, the present invention is not limited to this, and capacitors, various sensors, solar Needless to say, the present invention can be applied to various devices that require stable film formation, such as batteries, various optical films, moisture-proof films, and conductive films.
本発明の成膜方法および成膜装置は、棒状の供給材料の溶解供給を連続して行う、低コストな材料供給方式において、供給材料交換時の蒸発安定性確保が可能となるため、長尺成膜における安定性を向上することが出来る。 The film forming method and film forming apparatus of the present invention can ensure evaporative stability at the time of replacement of a feed material in a low-cost material supply system in which a rod-shaped feed material is continuously dissolved and supplied. Stability in film formation can be improved.
特に長時間にわたり、膜厚の大きな成膜が必要であり、かつ供給材料の溶解に用いる供給用電子ビームおよび成膜に用いる蒸発用電子ビームを単一の電子銃から発することで、設備を簡素化する場合などにおいて、本発明は特に効果が大きい。 In particular, it is necessary to form a large film over a long period of time, and the equipment can be simplified by emitting a supply electron beam used for melting the feed material and an evaporation electron beam used for film formation from a single electron gun. For example, the present invention is particularly effective.
2 チャック
3 押し棒
4 材料供給領域
6 材料供給装置
9 蒸発用坩堝
10 送り機構
11 チャックローラ
12 カム機構
13 搬送ガイド
14 液滴
15 電子銃
16 供給用電子ビーム
17 材料交換中直撃ビーム
18 蒸発用電子ビーム
19 遮蔽板
20 成膜装置
21 基板
22 真空槽
23 巻き出しローラ
24 搬送ローラ
25 キャン
26 巻き取りローラ
29 遮蔽板
30 原料ガス導入管
31 開口
32 棒状供給材料
33 バネ機構
34 排気手段
35 成膜幅
36 蒸発用電子ビーム走査範囲
37 供給用電子ビーム照射位置
38 回転機構
39 棒状供給材料回転用ローラ
2 Chuck 3
Claims (5)
前記蒸発源の上方に棒状供給材料を差し向け、前記棒状供給材料に前記電子ビームを照射することにより前記蒸発源の材料の溶解供給を行うものであって、かつ、前記棒状供給材料を前記蒸発源の両側に配し、
前記電子ビームの走査範囲は、前記棒状供給材料上および前記蒸発源上であって、前記蒸発源上の電子ビームの走査範囲は一定であり、
前記両側に配した前記棒状供給材料を各々複数本用意して交換しながら溶解供給し、前記交換の時期を前記両側でずらすと共に、前記電子ビームの走査範囲を、前記棒状供給材料の交換時に、溶解中の前記棒状供給材料側に移動することを特徴とする薄膜の製造方法。 In a thin film manufacturing method in which a film is formed from an evaporation source scanned with an electron beam toward a substrate,
The evaporation source upwards only toward insert the rod-shaped feedstock, there is performed a dissolution feed material of the evaporation source by irradiating the electron beam on the bar feed, and the said rod-shaped feedstock On both sides of the evaporation source,
The scanning range of the electron beam is on the rod-shaped feed material and the evaporation source, and the scanning range of the electron beam on the evaporation source is constant,
While preparing and exchanging a plurality of the rod-shaped supply materials arranged on both sides, supplying the melt, shifting the replacement time on both sides, and changing the scanning range of the electron beam at the time of exchanging the rod-shaped supply materials, A method for producing a thin film, characterized by moving to the rod-shaped feed material side during melting.
前記第2の棒状供給材料を、前記電子銃と前記制御装置によって前記電子ビームが走査された前記蒸発源の主たる蒸発領域を挟んで両側に送出し、前記第1の棒状供給材料と前記第2の棒状供給材料の先端部を前記電子ビームによって溶解かつ前記蒸発源に滴下し、かつ前記第1の棒状供給材料と前記第2の棒状供給材料がそれぞれ交換用の前記棒状供給材料と交換する交換機能を有し、さらに前記制御装置が前記電子ビームの走査範囲を前記棒状供給材料の前記交換の時期に合わせて変更する機能を有することを特徴とする薄膜の製造装置。 An evaporation source that holds an evaporation material for forming a thin film on a substrate, a first and a second material supply mechanism that feeds the evaporation material as a rod-shaped supply material above the evaporation source, and stores them A thin-film manufacturing apparatus including a vacuum chamber evacuated by an evacuation unit, an electron gun for irradiating the evaporation source with an electron beam, and the electron beam control device, wherein the first rod-shaped supply material and the first The two rod-shaped feed materials are sent to both sides across the main evaporation region of the evaporation source scanned with the electron beam by the electron gun and the control device, and the first rod-shaped feed material and the second rod-shaped feed material An exchanging function for melting the tip of the supply material by the electron beam and dropping it on the evaporation source, and for exchanging the first rod-shaped feed material and the second rod-shaped feed material with the rod-shaped feed material for replacement, respectively. And further Thin film manufacturing apparatus characterized by control apparatus has a function of changing the combined scanning range of the electron beam on the timing of the replacement of the bar feed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008216126A JP5262430B2 (en) | 2008-08-26 | 2008-08-26 | Thin film manufacturing method and thin film manufacturing apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008216126A JP5262430B2 (en) | 2008-08-26 | 2008-08-26 | Thin film manufacturing method and thin film manufacturing apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010053366A JP2010053366A (en) | 2010-03-11 |
JP5262430B2 true JP5262430B2 (en) | 2013-08-14 |
Family
ID=42069591
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008216126A Expired - Fee Related JP5262430B2 (en) | 2008-08-26 | 2008-08-26 | Thin film manufacturing method and thin film manufacturing apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5262430B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101980280B1 (en) * | 2013-08-09 | 2019-05-20 | 주식회사 원익아이피에스 | Thin film deposition processing apparatus |
KR102261821B1 (en) | 2018-04-30 | 2021-06-08 | 에스케이씨 주식회사 | Heat shrinkable film and method for reproducing polyester container using same |
CN118497683A (en) * | 2024-07-18 | 2024-08-16 | 蒙城繁枫真空科技有限公司 | Evaporation source and evaporation device provided with same |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63460A (en) * | 1986-06-20 | 1988-01-05 | Nippon Kokan Kk <Nkk> | Evaporating method for ingot |
JPH02137126A (en) * | 1988-11-17 | 1990-05-25 | Matsushita Electric Ind Co Ltd | Production of magnetic recording medium |
JPH04173954A (en) * | 1990-11-06 | 1992-06-22 | Matsushita Electric Ind Co Ltd | Method and device for vapor deposition and magnetic recording medium |
JP2002155354A (en) * | 2000-11-14 | 2002-05-31 | Sony Corp | Evaporator, method of feeding material to it, and device and method for manufacturing magnetic recording medium |
JP2002194532A (en) * | 2000-12-22 | 2002-07-10 | Sony Corp | Method and apparatus for vacuum deposition |
-
2008
- 2008-08-26 JP JP2008216126A patent/JP5262430B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2010053366A (en) | 2010-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4331791B2 (en) | Film forming method and film forming apparatus | |
CN103080366B (en) | Heating apparatus, vacuum-heating method and method for manufacturing thin film | |
CN101889103B (en) | Thin film forming apparatus and thin film forming method | |
JP4806109B2 (en) | Thin film manufacturing apparatus and manufacturing method | |
JP5372243B2 (en) | Raw material supply unit, thin film deposition apparatus and thin film deposition method | |
US20100075036A1 (en) | Deposition apparatus and method for manufacturing film by using deposition apparatus | |
JP2007138193A (en) | Vacuum vapor deposition apparatus operating method, and vacuum vapor deposition apparatus | |
JP5262430B2 (en) | Thin film manufacturing method and thin film manufacturing apparatus | |
US20170320130A1 (en) | Continuous rapid-cooling solidification apparatus | |
WO2012124246A1 (en) | Thin-film production method and production device | |
US20170312814A1 (en) | Rapid-cooling solidification apparatus with independently controllable chamber | |
JP2009179856A (en) | Vacuum deposition system | |
JP2010140643A (en) | Manufacturing method of electrode for lithium-ion secondary battery | |
JP3806834B2 (en) | Method for forming silicon oxynitride | |
JP2008195979A (en) | Film deposition system and film deposition method | |
JP2013008602A (en) | Manufacturing apparatus and manufacturing method of negative electrode for lithium secondary battery | |
CN102471868B (en) | Thin film manufacturing method and silicon material which can be used in the method | |
JP2010189683A (en) | Film-forming method and film-forming apparatus | |
JPH07286266A (en) | Vapor deposition device and vapor deposition method | |
JP2009209438A (en) | Thin film forming apparatus | |
US20210381097A1 (en) | Vapor deposition apparatus and method for coating a substrate in a vacuum chamber | |
JP2011231361A (en) | Vapor deposition apparatus | |
KR101539624B1 (en) | Apparatus For Continuous Evaporation Material Feeding, and Apparatus and In-line Equipment For Anti-fingerprint Coating By Top-down Type Using The Same | |
US20220325402A1 (en) | Thermal evaporation plasma deposition | |
KR20110004511A (en) | Organic material deposition apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110426 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20110512 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120829 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120904 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121101 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121120 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20121214 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121228 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130129 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130214 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130402 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130415 |
|
LAPS | Cancellation because of no payment of annual fees |