JP5260261B2 - Polarization separation interferometer and polarization separation interferometer type length measuring device - Google Patents

Polarization separation interferometer and polarization separation interferometer type length measuring device Download PDF

Info

Publication number
JP5260261B2
JP5260261B2 JP2008329047A JP2008329047A JP5260261B2 JP 5260261 B2 JP5260261 B2 JP 5260261B2 JP 2008329047 A JP2008329047 A JP 2008329047A JP 2008329047 A JP2008329047 A JP 2008329047A JP 5260261 B2 JP5260261 B2 JP 5260261B2
Authority
JP
Japan
Prior art keywords
light
beam splitter
polarization
reflected
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008329047A
Other languages
Japanese (ja)
Other versions
JP2010151572A (en
Inventor
進 町田
圭一 平野
Original Assignee
株式会社雄島試作研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社雄島試作研究所 filed Critical 株式会社雄島試作研究所
Priority to JP2008329047A priority Critical patent/JP5260261B2/en
Publication of JP2010151572A publication Critical patent/JP2010151572A/en
Application granted granted Critical
Publication of JP5260261B2 publication Critical patent/JP5260261B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce cost, and simplify adjustment by reducing the optical components of a polarization-split interferometer. <P>SOLUTION: In the polarization-split interferometer which branches light emitted from a light source 102 into measuring light and reference light, performs polarization splitting of light acquired by reflecting the measuring light with a reflection mirror and the reference light by a first polarization beam splitter 105 and makes them interfere; a second polarization beam splitter 106 for performing polarization splitting of transmitted light of the measuring light and reflected light of the reference light, is arranged with its reflection surface directed to a direction to be indicated when rotated by 45 degrees around an incident light axis from a reference position; a third polarization beam splitter 107 for performing polarization splitting of the reflected light of the measuring light and transmitted light of the reference light, is arranged with its reflection surface directed to a direction to be indicated when rotated by 45 degrees around its incident light axis from a reference position; and the outputs of the second and third polarization beam splitters, each of which is interference light between the measuring light and the reference light, are optically detected. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、高分解能の変位計測等に応用される偏光分離型干渉計に関するものである。   The present invention relates to a polarization separation interferometer applied to high-resolution displacement measurement and the like.

変位計測において高分解能が要求される測定器等に応用される干渉計としては、レーザ光源の出射光を測定光と基準光とに分岐し、測定対象に設置した反射器で反射させた測定光をλ/4板(1/4波長板)を透過させた光と、基準光とをそれぞれ第1の偏光ビームスプリッタで透過光と反射光とに偏光分離し、その後段に設置する第2、第3の偏光ビームスプリッタで、測定光と基準光との干渉光を光検出する構成等が知られている。
ここで、第1の偏光ビームスプリッタで透過または反射される測定光と基準光の各成分は、互いに直交する偏光成分からなる。このため、第1の偏光ビームスプリッタの透過光または反射光から、第2、第3の偏光ビームスプリッタで干渉信号を抽出するためには、第2、第3の偏光ビームスプリッタの入射側にそれぞれの光軸に対して22.5度回転させたλ/2板(1/2波長板)を挿入し、測定光と基準光の各成分の偏光状態を共に45度回転させ、第2、第3の偏光ビームスプリッタで測定光と基準光の各成分を等分すると共に、偏光状態を一致させる必要があった(例えば特許文献1参照)。
As an interferometer applied to a measuring instrument that requires high resolution in displacement measurement, the measurement light reflected by a reflector installed on the measurement object is split into measurement light and reference light. The light transmitted through the λ / 4 plate (1/4 wavelength plate) and the reference light are polarized and separated into transmitted light and reflected light by the first polarization beam splitter, respectively, and the second, A configuration in which interference light between measurement light and reference light is detected by a third polarization beam splitter is known.
Here, each component of the measurement light and the reference light transmitted or reflected by the first polarization beam splitter is composed of polarization components orthogonal to each other. For this reason, in order to extract the interference signal from the transmitted light or reflected light of the first polarizing beam splitter by the second and third polarizing beam splitters, on the incident side of the second and third polarizing beam splitters, respectively. A λ / 2 plate (1/2 wavelength plate) rotated by 22.5 degrees with respect to the optical axis of the optical axis is inserted, and the polarization state of each component of the measurement light and the reference light is rotated by 45 degrees. It was necessary to equally divide each component of the measurement light and the reference light by the polarization beam splitter 3 and to make the polarization states coincide (for example, see Patent Document 1).

特開平7−253303号公報JP-A-7-253303

しかしながら、従来の偏光分離型の干渉計は多数の高額な光学部品から構成されるため高価であり、また、光学部品を光軸に対して正確に配置すると共に、λ/2板の回転角の調整が必要であり、さらに、構造も大きいものであった。
よって、より安価で調整が容易で小型化した構成とするために、少しでも部品点数を減らすことが要求されていた。
However, the conventional polarization separation type interferometer is expensive because it is composed of a large number of expensive optical components, and the optical components are accurately arranged with respect to the optical axis, and the rotation angle of the λ / 2 plate is Adjustment was necessary and the structure was large.
Therefore, in order to obtain a configuration that is cheaper, easy to adjust, and downsized, it has been required to reduce the number of components as much as possible.

本発明は前記事情に鑑み案出されたものであって、本発明の目的は、光部品点数を削減することにより、安価で調整が容易で小型化することが可能な偏光分離型干渉計及び偏光分離型干渉方式による測長器を提供することにある。   The present invention has been devised in view of the above circumstances, and an object of the present invention is to provide a polarization separation type interferometer that can be easily adjusted and reduced in size, by reducing the number of optical components, and An object of the present invention is to provide a length measuring device using a polarization separation type interference method.

本発明は上記目的を達成するため、光源からの出射光を測定光と基準光に分岐し、前記測定光を反射ミラーで反射させた光と前記基準光との互いに直交する偏光成分を第1の偏光ビームスプリッタでそれぞれ透過光と反射光とに偏光分離して干渉させ、それぞれ干渉した光を検出する偏光分離型干渉計であって、前記偏光分離型干渉計は、前記第1のビームスプリッタにおける前記測定光の透過光と前記基準光の反射光を偏光分離する第2の偏光ビームスプリッタと、前記第1のビームスプリッタにおける前記測定光の反射光と前記基準光の透過光を偏光分離する第3の偏光ビームスプリッタとを有し、前記第2の偏光ビームスプリッタは、入射光の反射方向が前記基準光の第1の偏光ビームスプリッタでの反射光のみを反射する基準方向に対して、前記入射光の光軸を中心に左右どちらかに45度回転させて配置され、前記第3の偏光ビームスプリッタは、入射光の反射方向が前記測定光の第1の偏光ビームスプリッタでの反射光のみを反射する基準方向に対して、前記入射光の光軸を中心に左右どちらかに45度回転させて配置され、前記光源からの出射光を測定光と基準光に分岐する無偏光ビームスプリッタを有し、前記測定光を前記反射ミラーで反射させλ/4板で透過させた測定光と前記基準光とを、前記第1の偏光ビームスプリッタに入射し、前記測定光と前記基準光の互いに直交する偏光成分を、前記第1の偏光ビームスプリッタでそれぞれ透過光と反射光とに偏光分離し、前記測定光と前記基準光との干渉光である、前記第2の偏光ビームスプリッタ及び第3の偏光ビームスプリッタの、透過光か反射光の少なくともいずれか一方の光を検出する光検出器を有することを特徴とするIn order to achieve the above-mentioned object, the present invention splits outgoing light from a light source into measurement light and reference light, and first sets polarization components orthogonal to each other of light obtained by reflecting the measurement light on a reflection mirror and the reference light. A polarization separation type interferometer that separates and interferes with the transmitted light and the reflected light by the polarization beam splitter, and detects the interfered light, respectively, wherein the polarization separation type interferometer is the first beam splitter. The second polarization beam splitter that polarizes and separates the transmitted light of the measurement light and the reflected light of the reference light, and the polarized light of the reflected light of the measurement light and the transmitted light of the reference light in the first beam splitter. A third polarization beam splitter, wherein the second polarization beam splitter has a reflection direction of incident light in a reference direction that reflects only the reflected light of the reference light at the first polarization beam splitter. The third polarization beam splitter is arranged so as to be rotated 45 degrees to the left or right about the optical axis of the incident light, and the reflection direction of the incident light is the first polarization beam splitter of the measurement light. With respect to a reference direction that reflects only the reflected light of the incident light, it is arranged by being rotated 45 degrees to the left or right about the optical axis of the incident light, and the light emitted from the light source is split into measurement light and reference light. A polarization beam splitter, and the measurement light reflected by the reflection mirror and transmitted by the λ / 4 plate and the reference light are incident on the first polarization beam splitter, and the measurement light and the Polarized components of the reference light that are orthogonal to each other are polarized and separated into transmitted light and reflected light by the first polarizing beam splitter, respectively, and the second polarized beam that is interference light between the measurement light and the reference light Splitter and third polarization It has a photodetector for detecting at least one of transmitted light and reflected light of the beam splitter .

また、本発明は、光源からの出射光を測定光と基準光に分岐し、前記測定光を反射ミラーで反射させた光と前記基準光との互いに直交する偏光成分を第1の偏光ビームスプリッタでそれぞれ透過光と反射光とに偏光分離して干渉させ、それぞれ干渉した光を検出する偏光分離型干渉計であって、前記偏光分離型干渉計は、前記第1のビームスプリッタにおける前記測定光の透過光と前記基準光の反射光を偏光分離する第2の偏光ビームスプリッタと、前記第1のビームスプリッタにおける前記測定光の反射光と前記基準光の透過光を偏光分離する第3の偏光ビームスプリッタとを有し、前記第2の偏光ビームスプリッタは、入射光の反射方向が前記基準光の第1の偏光ビームスプリッタでの反射光のみを反射する基準方向に対して、前記入射光の光軸を中心に左右どちらかに45度回転させて配置され、前記第3の偏光ビームスプリッタは、入射光の反射方向が前記測定光の第1の偏光ビームスプリッタでの反射光のみを反射する基準方向に対して、前記入射光の光軸を中心に左右どちらかに45度回転させて配置され、前記光源からの出射光を測定光と基準光に分岐する第4の偏光ビームスプリッタを有し、前記測定光を前記反射ミラーで反射させλ/2板で透過させた測定光と、前記基準光をλ/4板で透過させた光とを、前記第1の偏光ビームスプリッタに入射し、前記測定光と前記基準光の互いに直交する偏光成分を、前記第1の偏光ビームスプリッタでそれぞれ透過光と反射光とに偏光分離し、前記測定光と前記基準光との干渉光である、前記第2の偏光ビームスプリッタ及び第3の偏光ビームスプリッタの、透過光か反射光の少なくともいずれか一方の光を検出する光検出器を有することを特徴とする。 Further, according to the present invention, the light emitted from the light source is branched into measurement light and reference light, and polarized light components of the light obtained by reflecting the measurement light by a reflection mirror and the reference light are orthogonal to each other. A polarization separation type interferometer that detects the light that has interfered with each other by separating the transmitted light and the reflected light, and the polarization separation type interferometer detects the measurement light in the first beam splitter. A second polarization beam splitter that polarization-separates the transmitted light of the reference light and the reflected light of the reference light, and a third polarization that polarization-separates the reflected light of the measurement light and the transmitted light of the reference light in the first beam splitter The second polarization beam splitter has a reflection direction of incident light with respect to a reference direction in which only the reflected light of the reference light reflected by the first polarization beam splitter is reflected. The third polarizing beam splitter is arranged so that the reflected direction of the incident light reflects only the reflected light from the first polarizing beam splitter of the measurement light. A fourth polarization beam splitter arranged to rotate 45 degrees to the left or right about the optical axis of the incident light with respect to the reference direction to divide the emitted light from the light source into measurement light and reference light. The measurement light reflected by the reflection mirror and transmitted by the λ / 2 plate and the light transmitted by the reference light by the λ / 4 plate are incident on the first polarization beam splitter. The polarization components of the measurement light and the reference light that are orthogonal to each other are polarized and separated into transmitted light and reflected light by the first polarization beam splitter, respectively, and are interference light between the measurement light and the reference light. The second polarizing beam splitter Beauty third polarization beam splitter, and having a photodetector for detecting at least one of the light of the transmitted light or the reflected light.

また、本発明は、光源からの出射光を測定光と基準光に分岐し、前記測定光を測定対象物に固定した反射ミラーで反射させた光と、前記基準光の互いに直交する偏光成分とを、第1の偏光ビームスプリッタでそれぞれ透過光と反射光とに偏光分離して干渉させ、その干渉光の光検波出力に基づいて前記測定対象物の変位量を測定する偏光分離干渉計型測長器であって、前記偏光分離干渉計型測長器は、前記第1のビームスプリッタにおける前記測定光の透過光と前記基準光の反射光を偏光分離する第2の偏光ビームスプリッタと、前記第1のビームスプリッタにおける前記測定光の反射光と前記基準光の透過光を偏光分離する第3の偏光ビームスプリッタとを有し、前記第2の偏光ビームスプリッタは、入射光の反射方向が前記基準光の第1の偏光ビームスプリッタでの反射光のみを反射する基準方向に対して、前記入射光の光軸を中心に左右どちらかに45度回転させて配置され、前記第3の偏光ビームスプリッタは、入射光の反射方向が前記測定光の第1の偏光ビームスプリッタでの反射光のみを反射する基準方向に対して、前記入射光の光軸を中心に左右どちらかに45度回転させて配置され、前記光源からの出射光を測定光と基準光に分岐する無偏光ビームスプリッタを有し、前記測定光を前記反射ミラーで反射させλ/4板で透過させた測定光と前記基準光とを、前記第1の偏光ビームスプリッタに入射し、前記測定光と前記基準光の互いに直交する偏光成分を、前記第1の偏光ビームスプリッタでそれぞれ透過光と反射光とに偏光分離し、前記測定光と前記基準光との干渉光である、前記第2の偏光ビームスプリッタ及び前記第3の偏光ビームスプリッタの出力を光検出して、その検出出力を演算処理することにより、前記測定対象物の変位量を得ることを特徴とする。
また本発明は、光源からの出射光を測定光と基準光に分岐し、前記測定光を測定対象物に固定した反射ミラーで反射させた光と、前記基準光の互いに直交する偏光成分とを、第1の偏光ビームスプリッタでそれぞれ透過光と反射光とに偏光分離して干渉させ、その干渉光の光検波出力に基づいて前記測定対象物の変位量を測定する偏光分離干渉計型測長器であって、前記偏光分離干渉計型測長器は、前記第1のビームスプリッタにおける前記測定光の透過光と前記基準光の反射光を偏光分離する第2の偏光ビームスプリッタと、前記第1のビームスプリッタにおける前記測定光の反射光と前記基準光の透過光を偏光分離する第3の偏光ビームスプリッタとを有し、前記第2の偏光ビームスプリッタは、入射光の反射方向が前記基準光の第1の偏光ビームスプリッタでの反射光のみを反射する基準方向に対して、前記入射光の光軸を中心に左右どちらかに45度回転させて配置され、前記第3の偏光ビームスプリッタは、入射光の反射方向が前記測定光の第1の偏光ビームスプリッタでの反射光のみを反射する基準方向に対して、前記入射光の光軸を中心に左右どちらかに45度回転させて配置され、前記光源からの出射光を測定光と基準光に分岐する第4の偏光ビームスプリッタを有し、前記測定光を前記反射ミラーで反射させλ/2板で透過させた測定光と、前記基準光をλ/4板で透過させた光とを、前記第1の偏光ビームスプリッタに入射し、前記測定光と前記基準光の互いに直交する偏光成分を、前記第1の偏光ビームスプリッタでそれぞれ透過光と反射光とに偏光分離し、前記測定光と前記基準光との干渉光である、前記第2の偏光ビームスプリッタ及び前記第3の偏光ビームスプリッタの出力を光検出して、その検出出力を演算処理することにより、前記測定対象物の変位量を得ることを特徴とする。
Further, according to the present invention, light emitted from a light source is branched into measurement light and reference light, and the measurement light is reflected by a reflection mirror fixed to a measurement object, and polarization components of the reference light that are orthogonal to each other. Is polarized and separated into transmitted light and reflected light by the first polarizing beam splitter, respectively, and the amount of displacement of the measurement object is measured based on the optical detection output of the interference light. The polarization separation interferometer-type length measuring device includes: a second polarization beam splitter that polarization-separates the transmitted light of the measurement light and the reflected light of the reference light in the first beam splitter; A third polarization beam splitter that polarization-separates the reflected light of the measurement light and the transmitted light of the reference light in the first beam splitter, and the second polarization beam splitter has a reflection direction of incident light that is First reference light With respect to a reference direction that reflects only the light reflected by the polarizing beam splitter, the optical axis of the incident light is arranged to be rotated 45 degrees to the left or right, and the third polarizing beam splitter is The light source is arranged to be rotated 45 degrees to the left or right around the optical axis of the incident light with respect to a reference direction in which only the reflected light of the measurement light from the first polarization beam splitter is reflected. A non-polarizing beam splitter that branches the output light from the measurement light into the measurement light and the reference light, and the measurement light reflected by the reflection mirror and transmitted through the λ / 4 plate and the reference light, The polarization components of the measurement light and the reference light that are orthogonal to each other are separated into transmitted light and reflected light by the first polarization beam splitter, respectively, and the measurement light and the reference light are separated. Dried with light The output of the second polarizing beam splitter and the third polarizing beam splitter, which are interference lights, is detected by light and the detected output is processed to obtain a displacement amount of the measurement object. And
Further, according to the present invention, the light emitted from the light source is branched into measurement light and reference light, and the light reflected by the reflection mirror fixed to the measurement object and the polarization components of the reference light that are orthogonal to each other. Polarization separation interferometer type length measurement that measures the displacement of the object to be measured based on the optical detection output of the interference light by polarization separation into transmitted light and reflected light by the first polarization beam splitter, respectively. The polarization separation interferometer-type length measuring device includes: a second polarization beam splitter that polarization-separates transmitted light of the measurement light and reflected light of the reference light in the first beam splitter; And a third polarizing beam splitter that polarization-separates the reflected light of the measurement light and the transmitted light of the reference light in one beam splitter, and the second polarizing beam splitter has a reflection direction of incident light that is the reference light The first of light The third polarization beam splitter is arranged to be rotated 45 degrees to the left or right around the optical axis of the incident light with respect to a reference direction that reflects only the reflected light from the light beam splitter. The light source is arranged to be rotated 45 degrees to the left or right around the optical axis of the incident light with respect to a reference direction in which only the reflected light of the measurement light from the first polarization beam splitter is reflected. A fourth polarizing beam splitter that branches the output light from the measurement light into the reference light, the measurement light reflected by the reflection mirror and transmitted through the λ / 2 plate, and the reference light as λ The light transmitted through the / 4 plate is incident on the first polarization beam splitter, and polarized light components of the measurement light and the reference light that are orthogonal to each other are transmitted and reflected by the first polarization beam splitter, respectively. Polarized and separated into light, The measurement object is obtained by optically detecting the outputs of the second polarization beam splitter and the third polarization beam splitter, which are interference lights between the measurement light and the reference light, and processing the detected outputs. It is characterized by obtaining the amount of displacement of an object.

本発明によれば、測定光と基準光とを、第1の偏光ビームスプリッタで互いに直交する偏光成分毎にそれぞれ透過光と反射光とに偏光分離した光から、測定光と基準光との干渉光を抽出するために、従来、第2、第3の偏光ビームスプリッタの前段に光軸に対して22.5度回転させて挿入していたλ/2板が不要となる。
すなわち、2枚必要であったλ/2板の部品を削減することができるため、コストの削減ができる。さらに、第1の偏光ビームスプリッタの2つの出力面に接したV形の溝などに第2、第3の偏光ビームスプリッタを設置すれば、λ/2板、第1、第2及び第3の偏光ビームスプリッタに対する位置調整と、λ/2板の回転角の調整が不要となることにより調整工程の簡易化と、部品点数の削減による小型化が可能になる。
According to the present invention, interference between the measurement light and the reference light from the light obtained by polarization-separating the measurement light and the reference light into transmitted light and reflected light for each of the polarization components orthogonal to each other by the first polarizing beam splitter. In order to extract the light, a λ / 2 plate that has been conventionally rotated by 22.5 degrees with respect to the optical axis before the second and third polarizing beam splitters is not required.
That is, since it is possible to reduce the number of λ / 2 plate components that were required, it is possible to reduce costs. Further, if the second and third polarizing beam splitters are installed in a V-shaped groove in contact with the two output surfaces of the first polarizing beam splitter, the λ / 2 plate, the first, second and third Since the position adjustment with respect to the polarization beam splitter and the adjustment of the rotation angle of the λ / 2 plate are not required, the adjustment process can be simplified and the size can be reduced by reducing the number of parts.

(実施例1)
図1は、本発明の第1の実施形態に係る偏光分離型干渉計の構成を示した図である。
偏光分離型干渉計100は、例えば、測定対象200における入射光または反射光の光軸方向の変位を測定する際などに用いられる。
偏光分離型干渉計100は、筐体101及び筐体101に配設された光源102と、無偏光ビームスプリッタ103、λ/4板104、第1の偏光ビームスプリッタ105、第2の偏光ビームスプリッタ106、第3の偏光ビームスプリッタ107及び光検出器108乃至111等を含んで構成されている。
測定対象200は、偏光分離型干渉計100と離れた位置に配置され、測定対象200には反射ミラー201が設置されている。
Example 1
FIG. 1 is a diagram showing a configuration of a polarization separation type interferometer according to the first embodiment of the present invention.
The polarization separation type interferometer 100 is used, for example, when measuring the displacement in the optical axis direction of incident light or reflected light in the measurement target 200.
The polarization separation interferometer 100 includes a housing 101 and a light source 102 disposed in the housing 101, a non-polarizing beam splitter 103, a λ / 4 plate 104, a first polarizing beam splitter 105, and a second polarizing beam splitter. 106, a third polarizing beam splitter 107, photodetectors 108 to 111, and the like.
The measurement target 200 is disposed at a position away from the polarization separation type interferometer 100, and a reflection mirror 201 is installed on the measurement target 200.

光源102には例えば干渉性の良いレーザ光源を用いる。高分解能で安定した測定精度を確保するためには、発振周波数を安定化したヘリウムネオンレーザ等が適している。
無偏光ビームスプリッタ103は、入射光の偏光状態に依存せずに2方向に等しい光強度で分岐するものである。
反射ミラー201は、開き角を90度とした2枚の反射部を備えた折りかえし形のミラーから構成されており、反射光を入射方向と平行かつ逆方向に出射するものである。反射ミラー201は、機能的に同等なコーナープリズム等でもよい。
λ/4板104は直線偏光を円偏光に変換するものである。すなわち、λ/4板104の透過光は互いに直交する偏光成分間で90度(π/2)の位相差を持つ状態となる。
第1、第2、第3の偏光ビームスプリッタ105、106、107は互いに直交するH偏光成分とV偏光成分とに分岐するものである。偏光ビームスプリッタ105、106、107は、H偏光成分を透過し、V偏光成分を反射するものとする。図1において、偏光ビームスプリッタ105は正立方体の一面を真上から見た形状を示し、偏光ビームスプリッタ106および107は正立方体の隣り合う2面の間の一辺を臨む方向から見た形状を示す。
光検出器108乃至111は入射した光を光電変換するもので、フォトダイオード(PD)等を用いる。図1において、光検出器108及び110は円筒形の光検出器を横方向から見た形状を示し、光検出器109及び111は上方向45度から見た形状を示す。
As the light source 102, for example, a laser light source with good coherence is used. In order to ensure stable measurement accuracy with high resolution, a helium neon laser with a stabilized oscillation frequency is suitable.
The non-polarizing beam splitter 103 branches at the same light intensity in two directions without depending on the polarization state of incident light.
The reflection mirror 201 is composed of a folding mirror having two reflection portions with an opening angle of 90 degrees, and emits reflected light in a direction parallel to and opposite to the incident direction. The reflection mirror 201 may be a functionally equivalent corner prism or the like.
The λ / 4 plate 104 converts linearly polarized light into circularly polarized light. That is, the light transmitted through the λ / 4 plate 104 has a phase difference of 90 degrees (π / 2) between polarization components orthogonal to each other.
The first, second, and third polarization beam splitters 105, 106, and 107 branch into an H-polarization component and a V-polarization component that are orthogonal to each other. The polarization beam splitters 105, 106, and 107 transmit the H polarization component and reflect the V polarization component. In FIG. 1, a polarizing beam splitter 105 shows a shape of one face of a regular cube viewed from directly above, and polarizing beam splitters 106 and 107 show a shape viewed from a direction facing one side between two adjacent faces of the regular cube. .
The photodetectors 108 to 111 photoelectrically convert incident light and use a photodiode (PD) or the like. In FIG. 1, photodetectors 108 and 110 show a shape of a cylindrical photodetector viewed from the lateral direction, and photodetectors 109 and 111 show a shape seen from an upper direction of 45 degrees.

次に、第1の実施の形態における偏光分離型干渉計100の動作について図2を用いて説明する。
光源102から出射した光Lは無偏光ビームスプリッタ103の反射面に対して45度の直線偏光に配置する。この状態では振幅が等しく互いに直交するH偏光成分(L1H)とV偏光成分(L1V)からなる(図3における数式1)。
ここで、図3におけるE1は光の電界強度、ωは光の角周波数である。
光L1は無偏光ビームスプリッタ103で透過成分Lと反射成分Lとに等分岐される。分岐されたそれぞれの成分は45度の直線偏光であり、振幅が等しく互いに直交するH偏光成分とV偏光成分からなる。ビームスプリッタは光の電力を等分(1/2)するので、電界強度Eは図3における数式2のとおりになる。
Next, the operation of the polarization separation type interferometer 100 in the first embodiment will be described with reference to FIG.
The light L 1 emitted from the light source 102 is arranged at 45 degrees linearly polarized light with respect to the reflection surface of the non-polarizing beam splitter 103. In this state, it consists of an H-polarized component (L 1H ) and a V-polarized component (L 1V ) that are equal in amplitude and orthogonal to each other (Formula 1 in FIG. 3).
Here, E 1 in FIG. 3 is the electric field intensity of light, and ω is the angular frequency of light.
Light L1 is equal branch to the transmitted component L 2 by the non-polarizing beam splitter 103 and the reflection component L 4. Each of the branched components is 45-degree linearly polarized light, and is composed of an H-polarized component and a V-polarized component that are equal in amplitude and orthogonal to each other. Since the beam splitter power of light bisects (1/2), the field strength E 2 becomes as Equation 2 in FIG.

無偏光ビームスプリッタ103を透過した光Lは測定光として、反射ミラー201で反射し、λ/4板104に入射する(同数式3)。測定光Lはλ/4板で45度の直線偏光から円偏光の光Lに変換され、第1の偏光ビームスプリッタ105に入射する(同数式4)。
一方、無偏光ビームスプリッタ103で反射した光Lは、基準光として第1の偏光ビームスプリッタ105に入射する(同数式5)。
ここで、光LのH偏光成分L4H及びV偏光成分L4VがSinになっているのは無偏光ビームスプリッタ103で反射した光が(−π/2)の位相シフトが加わるためである。
また、数式3及び数式4のCosおよびSinの位相項Δθは、測定光が無偏光ビームスプリッタ103の分岐点Aから反射ミラー201を経由して第1の偏光ビームスプリッタ105の合波点Bとの間の光路長と、基準光が前記A点から前記B点に至る光路長との差による位相差(Δθ)を表したものである。したがって、基準光を表す数式5では位相項を0とした。
Light L 2 passing through the non-polarizing beam splitter 103 is used as a measuring light reflected by the reflection mirror 201, and enters the lambda / 4 plate 104 (the formula 3). The measurement light L 2 is converted from 45-degree linearly polarized light into circularly polarized light L 3 by a λ / 4 plate, and is incident on the first polarization beam splitter 105 (Formula 4).
On the other hand, the light L 4 reflected by the non-polarizing beam splitter 103 is incident on the first polarizing beam splitter 105 as reference light (Formula 5).
Here, the H-polarized component of the light L 4 L 4H and V-polarized component L 4V is in Sin is because light reflected by the non-polarizing beam splitter 103 is added phase shift of (- [pi] / 2) .
In addition, the phase terms Δθ of Cos and Sin in Expression 3 and Expression 4 are the same as the combining point B of the first polarization beam splitter 105 from the branch point A of the non-polarization beam splitter 103 via the reflection mirror 201. And the phase difference (Δθ) due to the difference between the optical path length between the point A and the optical path length from the point A to the point B. Therefore, in Equation 5 representing the reference light, the phase term is set to zero.

第1の偏光ビームスプリッタ105に入射した測定光LのH偏光成分L3Hは第2の偏光ビームスプリッタ106側に透過し、V偏光成分L3Vは第3の偏光ビームスプリッタ107側に(−π/2)の位相シフトが加わって反射される。
一方、第1の偏光ビームスプリッタ105に入射した基準光LのH偏光成分L4Hは第3の偏光ビームスプリッタ107側に透過し、V偏光成分L4Vは第2の偏光ビームスプリッタ106側に(−π/2)の位相シフトが加わって反射される。
すなわち、第2のビームスプリッタ106の入射光Lは、測定光のH偏光成分L3Hと、基準光のL4Vに(−π/2)の位相シフトが加わったV偏光成分からなるものである。また、第3のビームスプリッタ107の入射光Lは測定光L3Vに(−π/2)の位相シフトが加わったV偏光成分と、基準光のH偏光成分L4Hからなるものである(同数式7、8)。
The H polarization component L 3H of the measurement light L 3 incident on the first polarization beam splitter 105 is transmitted to the second polarization beam splitter 106 side, and the V polarization component L 3V is (− Reflected with a phase shift of π / 2).
On the other hand, the H polarization component L 4H of the reference light L 4 incident on the first polarization beam splitter 105 is transmitted to the third polarization beam splitter 107 side, and the V polarization component L 4V is transmitted to the second polarization beam splitter 106 side. Reflected with a phase shift of (−π / 2).
That is, the incident light L 5 of the second beam splitter 106 is made of a V-polarized light component is phase shift applied in the H-polarized component L 3H of the measuring light, the reference light L 4V (-π / 2) is there. The incident light L 6 of the third beam splitter 107 is composed of a V-polarized component obtained by adding a phase shift of (−π / 2) to the measuring light L 3V and an H-polarized component L 4H of the reference light ( Equations 7 and 8).

ここで、第1のビームスプリッタ105の2つの出射光L5H、L5Vは互いに直交するH偏光成分とV偏光成分であるため、第2のビームスプリッタ106をH偏光成分かV偏光成分のいずれか一方のみを透過するような、通常の紙面対して平行な方向に配置した場合には、各偏光成分がそのまま分岐されるだけで、干渉信号を得ることができない。
第1のビームスプリッタ105の2つの出射光L6H、L6Vについても同様である。
Here, since the two outgoing lights L 5H and L 5V of the first beam splitter 105 are an H-polarized component and a V-polarized component orthogonal to each other, the second beam splitter 106 is set to either the H-polarized component or the V-polarized component. In the case where it is arranged in a direction parallel to a normal paper surface that transmits only one of them, each polarization component is simply branched and an interference signal cannot be obtained.
The same applies to the two outgoing lights L 6H and L 6V of the first beam splitter 105.

そこで、本実施の形態においては、第2ビームスプリッタ106を、V偏光成分のみを反射する方向、すなわち、図1及び図2において、反射光軸が紙面に平行で上下方向から、紙面に平行で左右方向の光L5の入射光軸を中心に45度回転させた方向に配置し、第3ビームスプリッタ107を、V偏光成分のみを反射する方向、すなわち、反射光軸が紙面に平行で左右方向から、紙面に平行で上下方向の光L6の入射光軸を中心に45度回転させた方向に配置している。
図4、図5に第2、第3の偏光ビームスプリッタの配置方向を示す。図4は図2の第2の偏光ビームスプリッタ106を入射光の進行方向と逆方向(図面の右方向)から見た図であり、図5は図2の第3の偏光ビームスプリッタ107を入射光の進行方向と逆方向(図面の上方向)から見た図である。
したがって、光源102からの出射光の光軸方向をO1で示すと、L及びLの光軸O2,O3は紙面に垂直で、裏面から表面に向かっている。
ここで、光検出器108及び110の円形の表示は円筒形の光検出器を背後から見た形状、光検出器109及び111の方形の表示は光検出器を側面から見た形状を表している。
Therefore, in the present embodiment, the second beam splitter 106 is configured to reflect only the V-polarized light component, that is, in FIGS. 1 and 2, the reflected optical axis is parallel to the paper surface and from the vertical direction to the paper surface. Arranged in a direction rotated 45 degrees around the incident optical axis of the light L5 in the left-right direction, and the third beam splitter 107 reflects only the V-polarized component, that is, the reflected optical axis is parallel to the paper surface and left-right direction. Are arranged in a direction rotated 45 degrees around the incident optical axis of the light L6 in the vertical direction parallel to the paper surface.
4 and 5 show the arrangement directions of the second and third polarizing beam splitters. 4 is a view of the second polarizing beam splitter 106 of FIG. 2 as viewed from the direction opposite to the traveling direction of incident light (the right direction of the drawing), and FIG. 5 is incident on the third polarizing beam splitter 107 of FIG. It is the figure seen from the reverse direction (upward direction of drawing) with the advancing direction of light.
Therefore, when showing the direction of the optical axis of the light emitted from the light source 102 at O1, the optical axis O2, O3 of L 5 and L 6 are perpendicular to the paper surface and toward the surface from the back surface.
Here, the circular display of the photodetectors 108 and 110 represents the shape of the cylindrical photodetector viewed from behind, and the square display of the photodetectors 109 and 111 represents the shape of the photodetector viewed from the side. Yes.

すなわち、図4に示すように、第2の偏光ビームスプリッタ106は、その反射面が、基準光L4の第1の偏光ビームスプリッタ105での反射光のみを反射する基準位置(図4に想像線イで示す)に対して、入射光軸O2を中心に45度回転させた方向に向けて配置されている。
このように配置することで、第1の偏光ビームスプリッタ105の出射光Lの基準光成分及び測定光成分は、第2の偏光ビームスプリッタ106に対して45度の角度を持って入射する。
ここで、第2の偏光ビームスプリッタ106が45度回転後に入射するLの測定光成分及び基準光成分を、H偏光成分(L5MH、L5RH)とV偏光成分(L5MV、L5RV)に分解して表示する(同数式9、10)。したがって、第2の偏光ビームスプリッタ106の光軸O2側に透過する成分はL5MH、L5RHに、光軸O4側に反射する成分はL5MV、L5RVになる。
なお、各偏光成分の添え字Mは測定光成分を、Rは基準光成分を表し、45度回転後の各成分の位相シフトは測定光のH偏光成分(L5MH)を基準にした。
That is, as shown in FIG. 4, the second polarization beam splitter 106 has a reference surface that reflects only the reflected light of the reference light L4 from the first polarization beam splitter 105 (imaginary line in FIG. 4). (Shown in (b)) with respect to the direction rotated 45 degrees around the incident optical axis O2.
With this arrangement, the reference light component and the measurement light component of the outgoing light L 5 of the first polarization beam splitter 105 is incident at an angle of 45 degrees with respect to the second polarizing beam splitter 106.
Here, the measurement light component and the reference light component L 5 of the second polarization beam splitter 106 is incident after rotating 45 °, H-polarized component (L 5MH, L 5RH) and V-polarization component (L 5MV, L 5RV) Are disassembled and displayed (Formulas 9 and 10). Thus, component transmitted to the optical axis O2 of the second polarizing beam splitter 106 is L 5MH, the L 5 RH, component reflected to the optical axis O4 side becomes L 5 MV, L 5RV.
The subscript M of each polarization component represents the measurement light component, R represents the reference light component, and the phase shift of each component after 45 ° rotation was based on the H polarization component (L 5MH ) of the measurement light.

同様に、図5に示すように、第3の偏光ビームスプリッタ107は、その反射面が、測定光L3の第1の偏光ビームスプリッタ105での反射光のみを反射する基準位置(図5に想像線ロで示す)に対して、入射光軸O3を中心に45度回転させた方向に向けて配置されている。
このように配置することで、第1の偏光ビームスプリッタ105の出射光Lの基準光成分及び測定光成分は、第3の偏光ビームスプリッタ107に対して45度の角度を持って入射する。
ここで、第3の偏光ビームスプリッタ107が45度回転後に入射するLの測定光成分及び基準光成分を、H偏光成分(L6RH、L6MH)とV偏光成分(L6RV、L6MV)に分解して表示する(同数式11、12)。したがって、第3の偏光ビームスプリッタ107の光軸O3側に透過する成分はL6RH、L6MHに、光軸O5側に反射する成分はL6RV、L6MVになる。
なお、45度回転後の各成分の位相シフトは基準光のH偏光成分(L6RH)を基準にし、数式7乃至12のEは、数式2のEと同様ビームスプリッタでの等分によるものである(同数式6)。
Similarly, as shown in FIG. 5, the third polarization beam splitter 107 has a reference surface (imagine in FIG. 5) whose reflection surface reflects only the reflected light of the measurement light L3 from the first polarization beam splitter 105. With respect to the incident optical axis O3.
By arranging in this way, the reference light component and the measurement light component of the outgoing light L 6 of the first polarizing beam splitter 105 are incident on the third polarizing beam splitter 107 at an angle of 45 degrees.
Here, the measurement light component and the reference light component L 6 of the third polarization beam splitter 107 is incident after rotating 45 °, H-polarized component (L 6RH, L 6MH) and V-polarization component (L 6RV, L 6MV) Are disassembled and displayed (Formulas 11 and 12). Thus, component transmitted to the optical axis O3 of the third polarization beam splitter 107 is L 6RH, the L 6MH, component reflected to the optical axis O5 side becomes L 6RV, L 6MV.
The phase shift of each component after rotation by 45 degrees is based on the H polarization component (L 6RH ) of the reference light, and E 3 in Equations 7 to 12 is equally divided by the beam splitter as E 2 in Equation 2. (Formula 6).

第2、第3の偏光ビームスプリッタ106、107を45度回転させたことにより、第2の偏光ビームスプリッタ106は、入射光成分のH偏光成分(L7M、L7R)を透過し(同数式14、15)、偏光方向が一致して干渉効果による光検出が可能な光Lになり(同数式16)、V偏光成分(L8M、L8R)を反射して(同数式17、18)、同様に光Lになる(同数式19)。
同様に、第3の偏光ビームスプリッタ107は、入射光成分のH偏光成分(L9M、L9R)を透過し(同数式20、21)、V偏光成分(L10M、L10R)を反射して(同数式23、24)、偏光方向が一致して干渉効果による光検出が可能なL、L10になる(同数式22、25)。
ここで、数式14乃至25のE4は、数式2のEと同様ビームスプリッタでの等分によるものである(同数式13)。
By rotating the second and third polarizing beam splitters 106 and 107 by 45 degrees, the second polarizing beam splitter 106 transmits the H-polarized component (L 7M , L 7R ) of the incident light component (same formula) 14, 15), the light direction becomes the light L 7 that can be detected by the interference effect because the polarization directions coincide (formula 16), and reflects the V-polarized components (L 8M , L 8R ) (formulas 17 and 18). ) And light L 8 in the same manner (Formula 19).
Similarly, the third polarization beam splitter 107 transmits the H polarization component (L 9M , L 9R ) of the incident light component (Formulas 20 and 21) and reflects the V polarization component (L 10M , L 10R ). (Formulas 23 and 24), the polarization directions coincide and L 9 and L 10 that can be detected by the interference effect are obtained (Formulas 22 and 25).
Here, E 4 in Expressions 14 to 25 is obtained by dividing the beam splitter equally by E 2 in Expression 2 (Expression 13).

光検出器108、109に入射するそれぞれの干渉光信号L及びLは、光検出器で2乗検波して、出力信号301、302になる(図6における数式26、27)。ここで、数式26乃至28におけるkは光電変換係数であり、D7M、D7R、D8M、D8Rは第2の偏光ビームスプリッタ106を通過した測定光および基準光の直接検波成分で、その振幅は全て等しいとした(同数式28)。
光検出器108、109の出力信号301、302は減算回路305に入力され、これらの差の信号307が得られる(同数式29)。すなわち、干渉光Lの測定光と基準光との位相差に起因するCos(Δθ)の成分が得られる。数式29の係数Ioは数式30に示すように、光源102の出力電力Poに比例する電流成分を表し、Cos(2ωt+Δθ)の項は光の周波数が2倍の成分なので省略した。
同様に、光検出器110、111の出力信号303、304は減算回路306に入力され、これらの差の信号308が得られる。すなわち、干渉光Lの測定光と基準光との位相差に起因するSin(Δθ)の成分が得られる(同数式31乃至34)。
これら2つの減算回路305、306出力信号から、演算回路309における演算処理により、例えば、測定対象200の変位量等が算出されることとなる。
この結果は、従来の2枚のλ/2板を用いる構成と全く同一である。
The interference light signals L 7 and L 8 incident on the photodetectors 108 and 109 are square-detected by the photodetector to become output signals 301 and 302 (Equations 26 and 27 in FIG. 6). Here, k in Equations 26 to 28 is a photoelectric conversion coefficient, and D 7M , D 7R , D 8M , and D 8R are direct detection components of the measurement light and the reference light that have passed through the second polarization beam splitter 106. The amplitudes were all equal (Formula 28).
The output signals 301 and 302 of the photodetectors 108 and 109 are input to the subtraction circuit 305, and a signal 307 of these differences is obtained (formula 29). That is, a component of Cos (Δθ) resulting from the phase difference between the measurement light of the interference light L 5 and the reference light is obtained. The coefficient Io in Expression 29 represents a current component proportional to the output power Po of the light source 102 as shown in Expression 30, and the term Cos (2ωt + Δθ) is omitted because the frequency of light is twice.
Similarly, output signals 303 and 304 of the photodetectors 110 and 111 are input to a subtraction circuit 306, and a signal 308 of these differences is obtained. That is, a component of Sin (Δθ) resulting from the phase difference between the measurement light of the interference light L 6 and the reference light is obtained (Formulas 31 to 34).
From the output signals of these two subtraction circuits 305 and 306, for example, the displacement amount of the measuring object 200 is calculated by the arithmetic processing in the arithmetic circuit 309.
This result is exactly the same as the conventional configuration using two λ / 2 plates.

本実施の形態では、干渉光のH偏光成分L、Lの検出信号及び、V偏光成分L、L10の検出信号をそれぞれ減算する処理を行っているが、この減算処理は光源201の振幅雑音を抑圧し、最良の信号対雑音比(S/N)で動作させるためである。なお、構成を簡略化するためには、干渉光のH偏光成分L、Lの内のいずれか一方と、V偏光成分L、L10の内のいずれか一方の検出信号をそのまま演算回路309に入力する構成でもよい。 In the present embodiment, processing for subtracting the detection signals of the H polarization components L 7 and L 8 and the detection signals of the V polarization components L 9 and L 10 of the interference light is performed. This is to suppress the amplitude noise of the signal and operate with the best signal-to-noise ratio (S / N). In order to simplify the configuration, one of the H polarization components L 7 and L 8 of the interference light and the detection signal of one of the V polarization components L 9 and L 10 are directly calculated. A configuration in which the signal is input to the circuit 309 may be used.

上述したように、本実施の形態によれば、第2の偏光ビームスプリッタ106を、その反射面が、基準光Lの第1の偏光ビームスプリッタ105での反射光のみを反射する基準位置に対して、反射面に入射される入射光軸O2を中心に45度回転させた方向に向けて配置し、また、第3の偏光ビームスプリッタ107を、その反射面が、測定光Lの第1の偏光ビームスプリッタ105での反射光のみを反射する基準位置に対して、反射面に入射される入射光軸O3を中心に45度回転させた方向に向けて配置することで、測定光と基準光の干渉信号を得ることができる。
すなわち、従来、測定光と基準光の干渉信号を得るために、第2、第3の偏光ビームスプリッタの前段にλ/2板を配置していたが、この2枚のλ/2板を削減することが可能となる。これにより、干渉計としてのコストが削減でき、また、第1の偏光ビームスプリッタの2つの出力面に接したV形の溝などに第2、第3の偏光ビームスプリッタを設置すれば、λ/2板、第1、第2、第3の偏光ビームスプリッタに対する位置調整と、λ/2板の回転角の調整が不要となることにより調整工程が簡易化でき、さらに、部品点数の削減により小型化が可能となる。
As described above, according to this embodiment, the second polarizing beam splitter 106, the reflecting surface is, the reference position that reflects only light reflected by the first polarization beam splitter 105 of the reference light L 4 in contrast, towards rotated 45 degrees around the incident light axis O2 which is incident on the reflecting surface direction is arranged, also, the third polarization beam splitter 107, is the reflecting surface, of the measurement light L 3 third With respect to the reference position that reflects only the reflected light from one polarization beam splitter 105, the measurement light and the measurement light are arranged in a direction rotated 45 degrees around the incident optical axis O3 incident on the reflecting surface. An interference signal of reference light can be obtained.
That is, in the past, a λ / 2 plate was placed in front of the second and third polarization beam splitters in order to obtain an interference signal between the measurement light and the reference light, but the two λ / 2 plates were reduced. It becomes possible to do. As a result, the cost as an interferometer can be reduced, and if the second and third polarizing beam splitters are installed in V-shaped grooves in contact with the two output surfaces of the first polarizing beam splitter, λ / The adjustment process can be simplified by eliminating the need for position adjustment with respect to the two plates, the first, second, and third polarizing beam splitters, and the adjustment of the rotation angle of the λ / 2 plate. Can be realized.

なお、本実施の形態では、最初に無偏光ビームスプリッタで測定光と基準光に分岐し、測定対象で反射させ、λ/4板を透過させた測定光と、基準光とを第1の偏光ビームスプリッタで偏光分離したが、無偏光ビームスプリッタ、偏光ビームスプリッタ、λ/4板等の構成は本実施の形態に限られるものではない。例えば、測定光の光路に配置したλ/4板は、光源を測定光と基準光に分離する無偏光ビームスプリッタと第1の偏光ビームスプリッタとの間の基準光の光路に配置しても良い。また、光源から無偏光ビームスプリッタへの入射光軸は、基準光の光軸としても良い。さらに、レーザ出射光を第4の偏光ビームスプリッタで分離した測定光を測定対象に反射させλ/2板を透過させ、基準光をλ/4板を透過させたものを、第1の偏光ビームスプリッタで偏光分離する構成など、別異の構成でもよい。   In the present embodiment, first, the measurement light and the reference light branched by the non-polarizing beam splitter, reflected by the measurement object, and transmitted through the λ / 4 plate, and the reference light are converted into the first polarized light. Although the polarization separation is performed by the beam splitter, the configuration of the non-polarization beam splitter, the polarization beam splitter, the λ / 4 plate, and the like is not limited to this embodiment. For example, the λ / 4 plate disposed in the optical path of the measurement light may be disposed in the optical path of the reference light between the non-polarization beam splitter that separates the light source into the measurement light and the reference light and the first polarization beam splitter. . Further, the incident optical axis from the light source to the non-polarizing beam splitter may be the optical axis of the reference light. Further, the measurement light obtained by separating the laser emission light by the fourth polarizing beam splitter is reflected on the measurement object, transmitted through the λ / 2 plate, and the reference light transmitted through the λ / 4 plate is used as the first polarized beam. Different configurations such as a configuration in which polarization is separated by a splitter may be used.

また、本実施の形態では、測定対象に反射ミラーを配置させ、測定光を反射ミラーで反射させることによって測定対象の変位量を測定する構成としたが、本発明の偏光分離型干渉計の用途はこれに限られるものではなく、測定対象の屈折率変化の測定など、多種多様な用途に利用されるものである。   In the present embodiment, a reflection mirror is arranged on the measurement target, and the amount of displacement of the measurement target is measured by reflecting the measurement light by the reflection mirror. However, the application of the polarization separation type interferometer of the present invention is used. However, the present invention is not limited to this, and is used for a wide variety of applications such as measurement of a change in refractive index of a measurement object.

本発明の実施の形態における偏光分離型干渉計の構成を示すブロック図である。It is a block diagram which shows the structure of the polarization separation type interferometer in embodiment of this invention. 本発明の実施の形態における偏光分離型干渉計の光路を示す説明用図である。It is explanatory drawing which shows the optical path of the polarization separation type interferometer in embodiment of this invention. 本発明の実施の形態における偏光分離型干渉計の第1の偏光ビームスプリッタ出力までの各光路の偏光成分の数式を示す図である。It is a figure which shows the numerical formula of the polarization component of each optical path to the 1st polarization beam splitter output of the polarization-separation type interferometer in the embodiment of the present invention. 本発明の実施の形態における第2の偏光ビームスプリッタの配置方向を示す説明用図である。It is explanatory drawing which shows the arrangement direction of the 2nd polarizing beam splitter in embodiment of this invention. 本発明の実施の形態における第3の偏光ビームスプリッタの配置方向を示す説明用図である。It is explanatory drawing which shows the arrangement direction of the 3rd polarizing beam splitter in embodiment of this invention. 本発明の実施の形態における偏光分離型干渉計の第1の偏光ビームスプリッタ出力以後の各光路の偏光成分の数式を示す図である。It is a figure which shows the numerical formula of the polarization component of each optical path after the 1st polarizing beam splitter output of the polarization-separation type interferometer in an embodiment of the present invention.

符号の説明Explanation of symbols

102……光源、103……無偏光ビームスプリッタ、104……λ/4板、105〜107……偏光ビームスプリッタ、108〜111……光検出器、201……反射ミラー、300……演算処理部。   DESCRIPTION OF SYMBOLS 102 ... Light source, 103 ... Non-polarization beam splitter, 104 ... (lambda) / 4 board, 105-107 ... Polarization beam splitter, 108-111 ... Photo detector, 201 ... Reflection mirror, 300 ... Arithmetic processing Department.

Claims (6)

光源からの出射光を測定光と基準光に分岐し、前記測定光を反射ミラーで反射させた光と前記基準光との互いに直交する偏光成分を第1の偏光ビームスプリッタでそれぞれ透過光と反射光とに偏光分離して干渉させ、それぞれ干渉した光を検出する偏光分離型干渉計であって、
前記偏光分離型干渉計は、前記第1のビームスプリッタにおける前記測定光の透過光と前記基準光の反射光を偏光分離する第2の偏光ビームスプリッタと、前記第1のビームスプリッタにおける前記測定光の反射光と前記基準光の透過光を偏光分離する第3の偏光ビームスプリッタとを有し、
前記第2の偏光ビームスプリッタは、入射光の反射方向が前記基準光の第1の偏光ビームスプリッタでの反射光のみを反射する基準方向に対して、前記入射光の光軸を中心に左右どちらかに45度回転させて配置され、
前記第3の偏光ビームスプリッタは、入射光の反射方向が前記測定光の第1の偏光ビームスプリッタでの反射光のみを反射する基準方向に対して、前記入射光の光軸を中心に左右どちらかに45度回転させて配置され、
前記光源からの出射光を測定光と基準光に分岐する無偏光ビームスプリッタを有し、
前記測定光を前記反射ミラーで反射させλ/4板で透過させた測定光と前記基準光とを、前記第1の偏光ビームスプリッタに入射し、前記測定光と前記基準光の互いに直交する偏光成分を、前記第1の偏光ビームスプリッタでそれぞれ透過光と反射光とに偏光分離し、
前記測定光と前記基準光との干渉光である、前記第2の偏光ビームスプリッタ及び第3の偏光ビームスプリッタの、透過光か反射光の少なくともいずれか一方の光を検出する光検出器を有する、
ことを特徴とする偏光分離型干渉計。
The light emitted from the light source is branched into measurement light and reference light, and polarized light components of the measurement light reflected from the reflection mirror and the reference light that are orthogonal to each other are transmitted and reflected by the first polarization beam splitter, respectively. A polarization-separation type interferometer that separates and interferes with light to detect the interference light,
The polarization separation type interferometer includes a second polarization beam splitter that polarization-separates the transmitted light of the measurement light and the reflected light of the reference light in the first beam splitter, and the measurement light in the first beam splitter. And a third polarization beam splitter for polarizing and separating the reflected light of the reference light and the transmitted light of the reference light,
The second polarizing beam splitter is configured such that a reflection direction of incident light is either left or right around the optical axis of the incident light with respect to a reference direction that reflects only the reflected light of the reference light from the first polarizing beam splitter. The crab is rotated 45 degrees,
The third polarization beam splitter is configured so that the incident light is reflected in the left or right direction around the optical axis of the incident light with respect to a reference direction in which only the reflected light of the measurement light reflected by the first polarization beam splitter is reflected. The crab is rotated 45 degrees,
A non-polarizing beam splitter that branches the light emitted from the light source into measurement light and reference light;
The measurement light reflected by the reflection mirror and transmitted through the λ / 4 plate and the reference light are incident on the first polarization beam splitter, and the measurement light and the reference light are orthogonally polarized. The components are polarized and separated into transmitted light and reflected light by the first polarization beam splitter, respectively.
A photodetector for detecting at least one of transmitted light and reflected light of the second polarizing beam splitter and the third polarizing beam splitter, which is interference light between the measurement light and the reference light; ,
A polarization separation type interferometer characterized by the above.
光源からの出射光を測定光と基準光に分岐し、前記測定光を反射ミラーで反射させた光と前記基準光との互いに直交する偏光成分を第1の偏光ビームスプリッタでそれぞれ透過光と反射光とに偏光分離して干渉させ、それぞれ干渉した光を検出する偏光分離型干渉計であって、  The light emitted from the light source is branched into measurement light and reference light, and polarized light components of the measurement light reflected from the reflection mirror and the reference light that are orthogonal to each other are transmitted and reflected by the first polarization beam splitter, respectively. A polarization-separation type interferometer that separates and interferes with light to detect the interference light,
前記偏光分離型干渉計は、前記第1のビームスプリッタにおける前記測定光の透過光と前記基準光の反射光を偏光分離する第2の偏光ビームスプリッタと、前記第1のビームスプリッタにおける前記測定光の反射光と前記基準光の透過光を偏光分離する第3の偏光ビームスプリッタとを有し、  The polarization separation type interferometer includes a second polarization beam splitter that polarization-separates the transmitted light of the measurement light and the reflected light of the reference light in the first beam splitter, and the measurement light in the first beam splitter. And a third polarization beam splitter for polarizing and separating the reflected light of the reference light and the transmitted light of the reference light,
前記第2の偏光ビームスプリッタは、入射光の反射方向が前記基準光の第1の偏光ビームスプリッタでの反射光のみを反射する基準方向に対して、前記入射光の光軸を中心に左右どちらかに45度回転させて配置され、  The second polarizing beam splitter is configured such that a reflection direction of incident light is either left or right around the optical axis of the incident light with respect to a reference direction that reflects only the reflected light of the reference light from the first polarizing beam splitter. The crab is rotated 45 degrees,
前記第3の偏光ビームスプリッタは、入射光の反射方向が前記測定光の第1の偏光ビームスプリッタでの反射光のみを反射する基準方向に対して、前記入射光の光軸を中心に左右どちらかに45度回転させて配置され、  The third polarization beam splitter is configured so that the incident light is reflected in the left or right direction around the optical axis of the incident light with respect to a reference direction in which only the reflected light of the measurement light reflected by the first polarization beam splitter is reflected. The crab is rotated 45 degrees,
前記光源からの出射光を測定光と基準光に分岐する第4の偏光ビームスプリッタを有し、  A fourth polarization beam splitter for branching the emitted light from the light source into measurement light and reference light;
前記測定光を前記反射ミラーで反射させλ/2板で透過させた測定光と、前記基準光をλ/4板で透過させた光とを、前記第1の偏光ビームスプリッタに入射し、前記測定光と前記基準光の互いに直交する偏光成分を、前記第1の偏光ビームスプリッタでそれぞれ透過光と反射光とに偏光分離し、  The measurement light reflected by the reflection mirror and transmitted by the λ / 2 plate and the light transmitted by the reference light by the λ / 4 plate are incident on the first polarization beam splitter, and The polarization components of the measurement light and the reference light that are orthogonal to each other are polarized and separated into transmitted light and reflected light by the first polarization beam splitter, respectively.
前記測定光と前記基準光との干渉光である、前記第2の偏光ビームスプリッタ及び第3の偏光ビームスプリッタの、透過光か反射光の少なくともいずれか一方の光を検出する光検出器を有する、  A photodetector for detecting at least one of transmitted light and reflected light of the second polarizing beam splitter and the third polarizing beam splitter, which is interference light between the measurement light and the reference light; ,
ことを特徴とする偏光分離型干渉計。  A polarization separation type interferometer characterized by the above.
光源からの出射光を測定光と基準光に分岐し、前記測定光を測定対象物に固定した反射ミラーで反射させた光と、前記基準光の互いに直交する偏光成分とを、第1の偏光ビームスプリッタでそれぞれ透過光と反射光とに偏光分離して干渉させ、その干渉光の光検波出力に基づいて前記測定対象物の変位量を測定する偏光分離干渉計型測長器であって、
前記偏光分離干渉計型測長器は、前記第1のビームスプリッタにおける前記測定光の透過光と前記基準光の反射光を偏光分離する第2の偏光ビームスプリッタと、前記第1のビームスプリッタにおける前記測定光の反射光と前記基準光の透過光を偏光分離する第3の偏光ビームスプリッタとを有し、
前記第2の偏光ビームスプリッタは、入射光の反射方向が前記基準光の第1の偏光ビームスプリッタでの反射光のみを反射する基準方向に対して、前記入射光の光軸を中心に左右どちらかに45度回転させて配置され、
前記第3の偏光ビームスプリッタは、入射光の反射方向が前記測定光の第1の偏光ビームスプリッタでの反射光のみを反射する基準方向に対して、前記入射光の光軸を中心に左右どちらかに45度回転させて配置され、
前記光源からの出射光を測定光と基準光に分岐する無偏光ビームスプリッタを有し、
前記測定光を前記反射ミラーで反射させλ/4板で透過させた測定光と前記基準光とを、前記第1の偏光ビームスプリッタに入射し、前記測定光と前記基準光の互いに直交する偏光成分を、前記第1の偏光ビームスプリッタでそれぞれ透過光と反射光とに偏光分離し、
前記測定光と前記基準光との干渉光である、前記第2の偏光ビームスプリッタ及び前記第3の偏光ビームスプリッタの出力を光検出して、その検出出力を演算処理することにより、前記測定対象物の変位量を得る、
ことを特徴とする偏光分離干渉計型測長器。
The light emitted from the light source is branched into measurement light and reference light, and the light reflected by the reflection mirror fixed to the measurement object and the polarization components orthogonal to each other of the reference light are converted into the first polarized light. A polarization separation interferometer type length measuring device that causes polarized light to be separated into transmitted light and reflected light by a beam splitter, interferes with each other, and measures the amount of displacement of the measurement object based on the optical detection output of the interference light,
The polarization separation interferometer type length measuring device includes: a second polarization beam splitter that polarizes and separates the transmitted light of the measurement light and the reflected light of the reference light in the first beam splitter; and the first beam splitter. A third polarization beam splitter that polarization-separates the reflected light of the measurement light and the transmitted light of the reference light;
The second polarizing beam splitter is configured such that a reflection direction of incident light is either left or right around the optical axis of the incident light with respect to a reference direction that reflects only the reflected light of the reference light from the first polarizing beam splitter. The crab is rotated 45 degrees,
The third polarization beam splitter is configured so that the incident light is reflected in the left or right direction around the optical axis of the incident light with respect to a reference direction in which only the reflected light of the measurement light reflected by the first polarization beam splitter is reflected. The crab is rotated 45 degrees,
A non-polarizing beam splitter that branches the light emitted from the light source into measurement light and reference light;
The measurement light reflected by the reflection mirror and transmitted through the λ / 4 plate and the reference light are incident on the first polarization beam splitter, and the measurement light and the reference light are orthogonally polarized. The components are polarized and separated into transmitted light and reflected light by the first polarization beam splitter, respectively.
By detecting the outputs of the second polarization beam splitter and the third polarization beam splitter, which are interference lights between the measurement light and the reference light, and calculating the detection outputs, the measurement object Get the displacement of the object,
A polarization separation interferometer type length measuring device characterized by the above.
光源からの出射光を測定光と基準光に分岐し、前記測定光を測定対象物に固定した反射ミラーで反射させた光と、前記基準光の互いに直交する偏光成分とを、第1の偏光ビームスプリッタでそれぞれ透過光と反射光とに偏光分離して干渉させ、その干渉光の光検波出力に基づいて前記測定対象物の変位量を測定する偏光分離干渉計型測長器であって、  The light emitted from the light source is branched into measurement light and reference light, and the light reflected by the reflection mirror fixed to the measurement object and the polarization components orthogonal to each other of the reference light are converted into the first polarized light. A polarization separation interferometer type length measuring device that causes polarized light to be separated into transmitted light and reflected light by a beam splitter, interferes with each other, and measures the amount of displacement of the measurement object based on the optical detection output of the interference light,
前記偏光分離干渉計型測長器は、前記第1のビームスプリッタにおける前記測定光の透過光と前記基準光の反射光を偏光分離する第2の偏光ビームスプリッタと、前記第1のビームスプリッタにおける前記測定光の反射光と前記基準光の透過光を偏光分離する第3の偏光ビームスプリッタとを有し、  The polarization separation interferometer type length measuring device includes: a second polarization beam splitter that polarizes and separates the transmitted light of the measurement light and the reflected light of the reference light in the first beam splitter; and the first beam splitter. A third polarization beam splitter that polarization-separates the reflected light of the measurement light and the transmitted light of the reference light;
前記第2の偏光ビームスプリッタは、入射光の反射方向が前記基準光の第1の偏光ビームスプリッタでの反射光のみを反射する基準方向に対して、前記入射光の光軸を中心に左右どちらかに45度回転させて配置され、  The second polarizing beam splitter is configured such that a reflection direction of incident light is either left or right around the optical axis of the incident light with respect to a reference direction that reflects only the reflected light of the reference light from the first polarizing beam splitter. The crab is rotated 45 degrees,
前記第3の偏光ビームスプリッタは、入射光の反射方向が前記測定光の第1の偏光ビームスプリッタでの反射光のみを反射する基準方向に対して、前記入射光の光軸を中心に左右どちらかに45度回転させて配置され、  The third polarization beam splitter is configured so that the incident light is reflected in the left or right direction around the optical axis of the incident light with respect to a reference direction in which only the reflected light of the measurement light reflected by the first polarization beam splitter is reflected. The crab is rotated 45 degrees,
前記光源からの出射光を測定光と基準光に分岐する第4の偏光ビームスプリッタを有し、  A fourth polarization beam splitter for branching the emitted light from the light source into measurement light and reference light;
前記測定光を前記反射ミラーで反射させλ/2板で透過させた測定光と、前記基準光をλ/4板で透過させた光とを、前記第1の偏光ビームスプリッタに入射し、前記測定光と前記基準光の互いに直交する偏光成分を、前記第1の偏光ビームスプリッタでそれぞれ透過光と反射光とに偏光分離し、  The measurement light reflected by the reflection mirror and transmitted by the λ / 2 plate and the light transmitted by the reference light by the λ / 4 plate are incident on the first polarization beam splitter, and The polarization components of the measurement light and the reference light that are orthogonal to each other are polarized and separated into transmitted light and reflected light by the first polarization beam splitter, respectively.
前記測定光と前記基準光との干渉光である、前記第2の偏光ビームスプリッタ及び前記第3の偏光ビームスプリッタの出力を光検出して、その検出出力を演算処理することにより、前記測定対象物の変位量を得る、  By detecting the outputs of the second polarization beam splitter and the third polarization beam splitter, which are interference lights between the measurement light and the reference light, and calculating the detection outputs, the measurement object Get the displacement of the object,
ことを特徴とする偏光分離干渉計型測長器。  A polarization separation interferometer type length measuring device characterized by the above.
前記光源はレーザ光源であって、振幅が等しく互いに直交するH偏光成分とV偏光成分からなる、45度の直線偏光で出射する、
ことを特徴とする請求項1記載の偏光分離型干渉計または請求項2記載の偏光分離型干渉計または請求項3記載の偏光分離干渉計型測長器または請求項4記載の偏光分離干渉計型測長器
The light source is a laser light source, which emits 45-degree linearly polarized light composed of an H-polarized component and a V-polarized component having equal amplitude and orthogonal to each other.
A polarization separation interferometer according to claim 1, a polarization separation interferometer according to claim 2, a polarization separation interferometer type length measuring device according to claim 3, or a polarization separation interferometer according to claim 4. Type length measuring instrument .
前記第1の偏光ビームスプリッタは、その反射面が、前記測定光のH偏光成分のみを前記第2の偏光ビームスプリッタの方向へ透過すると共にV偏光成分のみを前記第3の偏光ビームスプリッタの方向へ反射し、前記基準光のH偏光成分のみを前記第3の偏光ビームスプリッタの方向へ透過すると共にV偏光成分のみを前記第2の偏光ビームスプリッタの方向へ反射する方向に向くように配置される、
ことを特徴とする請求項1記載の偏光分離型干渉計または請求項2記載の偏光分離型干渉計または請求項3記載の偏光分離干渉計型測長器または請求項4記載の偏光分離干渉計型測長器
The reflection surface of the first polarization beam splitter transmits only the H polarization component of the measurement light in the direction of the second polarization beam splitter and only the V polarization component in the direction of the third polarization beam splitter. And only the H-polarized component of the reference light is transmitted in the direction of the third polarizing beam splitter, and only the V-polarized component is disposed in the direction of reflecting toward the second polarizing beam splitter. The
A polarization separation interferometer according to claim 1, a polarization separation interferometer according to claim 2, a polarization separation interferometer type length measuring device according to claim 3, or a polarization separation interferometer according to claim 4. Type length measuring instrument .
JP2008329047A 2008-12-25 2008-12-25 Polarization separation interferometer and polarization separation interferometer type length measuring device Expired - Fee Related JP5260261B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008329047A JP5260261B2 (en) 2008-12-25 2008-12-25 Polarization separation interferometer and polarization separation interferometer type length measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008329047A JP5260261B2 (en) 2008-12-25 2008-12-25 Polarization separation interferometer and polarization separation interferometer type length measuring device

Publications (2)

Publication Number Publication Date
JP2010151572A JP2010151572A (en) 2010-07-08
JP5260261B2 true JP5260261B2 (en) 2013-08-14

Family

ID=42570847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008329047A Expired - Fee Related JP5260261B2 (en) 2008-12-25 2008-12-25 Polarization separation interferometer and polarization separation interferometer type length measuring device

Country Status (1)

Country Link
JP (1) JP5260261B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7284741B2 (en) 2020-12-21 2023-05-31 横河電機株式会社 Interferometers and optics

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58225301A (en) * 1982-06-24 1983-12-27 Yokogawa Hokushin Electric Corp Optical type displacement measuring apparatus
JPS58225302A (en) * 1982-06-24 1983-12-27 Yokogawa Hokushin Electric Corp Optical type mechanical quantity measuring apparatus
JP2572111B2 (en) * 1988-07-11 1997-01-16 株式会社東京精密 Laser interferometer
JPH02298804A (en) * 1989-05-12 1990-12-11 Canon Inc Interferometer
JPH0540011A (en) * 1991-08-06 1993-02-19 Olympus Optical Co Ltd Gauge interferometer

Also Published As

Publication number Publication date
JP2010151572A (en) 2010-07-08

Similar Documents

Publication Publication Date Title
US10895477B2 (en) Sine-cosine optical frequency encoder devices based on optical polarization properties
US7333214B2 (en) Detector for interferometric distance measurement
US9097511B2 (en) Displacement detecting device with a polarization change to a twice-diffracted beam
US11802757B2 (en) Heterodyne grating interferometric method and system for two-degree-of-freedom with high alignment tolerance
US4702603A (en) Optical phase decoder for interferometers
CH659131A5 (en) INTERFEROMETRIC DETECTOR WITH FIBER OPTIC SENSOR.
KR101910084B1 (en) A novel optical device outputting two parallel beams and an interferometer using the optical device
KR101298990B1 (en) Heterodyne interferometer using AOM
US20070103694A1 (en) Interferometry system
JP2018009896A (en) Optical fiber sensor
JP5260261B2 (en) Polarization separation interferometer and polarization separation interferometer type length measuring device
JP3413945B2 (en) Fringe counting displacement interferometer
KR101235274B1 (en) Long-term stabilized heterodyne interferometer and readout sensor for biochemical fluidic channel using the interferometer
US11365989B2 (en) Method and system for contactless detection of rotational movement
KR101754161B1 (en) Quadrature homodyne detecter by using 2 photo detecters
JP2020051782A (en) Optical angle sensor
Usuda et al. Development of laser interferometer for a sine-approximation method
JP2992829B2 (en) Laser length gauge
JP6169420B2 (en) Optical interferometer
RU2069839C1 (en) Device determining lateral displacements
JP2016170160A (en) Laser interferometer
JPH07167606A (en) Interference measuring device
JP2020046311A (en) Optical angle sensor
JPH08285690A (en) Depolarization device and light power measuring device using the depolarization device
JP2981927B2 (en) Multi-phase splitting optical system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130425

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5260261

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees