JPH0540011A - Gauge interferometer - Google Patents

Gauge interferometer

Info

Publication number
JPH0540011A
JPH0540011A JP19657491A JP19657491A JPH0540011A JP H0540011 A JPH0540011 A JP H0540011A JP 19657491 A JP19657491 A JP 19657491A JP 19657491 A JP19657491 A JP 19657491A JP H0540011 A JPH0540011 A JP H0540011A
Authority
JP
Japan
Prior art keywords
light
reflected
mirror
optical system
pbs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP19657491A
Other languages
Japanese (ja)
Inventor
Arinori Tokuhashi
有紀 徳橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP19657491A priority Critical patent/JPH0540011A/en
Publication of JPH0540011A publication Critical patent/JPH0540011A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)

Abstract

PURPOSE:To reduce the number of parts used for a gauge interferometer and make the constitution of the interferometer compact by photoelectrically detecting two luminous fluxes split through a polarization beam splitter after the fluxes are reflected by an x- and y-axis movable mirrors and respectively superimposed upon reference light through beam splitters. CONSTITUTION:The p-polarized component 14 made incident to an interference optical system 1 advances toward an x-axis movable mirror 2 after the component 14 passes through a polarization beam splitter(PBS) 5 and its plane of vibration is rotated by 45 deg. by means of a pi/4 rotator 7. The luminous flux reflected by the mirror 2 is again reflected by a mirror M after passing through PBSs 5 and 6 and advances toward a signal detecting optical system 4. Another luminous flux reflected by a y-axis movable mirror 3 is made incident to a corner cube 11 after it is transformed into p- polarized light and passed through the PBS 6. The reflected luminous flux again advances toward the mirror 3 and the returned luminous flux advances toward the optical system 4 after it is reflected by the PBSs 6 and 5. On the other hand, the s-polarized light component 15 advances as reference light and its reflected light is superimposed upon object light from the mirror through a pi/4 rotator 8. As a result, a buffer signal is detected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,測定顕微鏡や座標測定
器等に使用されるxyステージ等の対象物の移動量を測
定する干渉測長器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an interferometer, which is used for measuring microscopes, coordinate measuring machines and the like, for measuring the amount of movement of an object such as an xy stage.

【0002】[0002]

【従来の技術】従来、xyステージの二軸方向の移動量
を測定する器具としては、図(5)に示されるようなも
のがある。xyステージ(23)はテーブル(25)上
をx、y方向に移動できるようになっており、その可動
範囲は、図示された如く点線で囲まれた範囲である。ス
テージ(23)には移動ミラー(34)、(41)が設
置されている。この測長器は、レーザー光源(30)、
ハーフミラー(31)、x軸測長部(47)、y軸測長
部(48)で構成される。各測長部は偏光ビームスプリ
ッタ(以後PBSと略す)(32)、(39)、λ/4
板(33)、(40)、信号検出器(37)、(44)
及び、入射光の方向如何を問わず入射方向と平行に反射
する光学素子であるコーナーキューブ(35)、(3
6)、(42)、(43)から構成されている。
2. Description of the Related Art Conventionally, as an instrument for measuring the amount of movement of an xy stage in the two axial directions, there is an instrument as shown in FIG. The xy stage (23) can move on the table (25) in the x and y directions, and its movable range is a range surrounded by a dotted line as illustrated. Moving mirrors (34) and (41) are installed on the stage (23). This length measuring device is a laser light source (30),
It is composed of a half mirror (31), an x-axis length measuring unit (47), and a y-axis length measuring unit (48). Each length measuring unit includes a polarization beam splitter (hereinafter abbreviated as PBS) (32), (39), λ / 4.
Plates (33), (40), signal detectors (37), (44)
And corner cubes (35), (3) that are optical elements that reflect parallel to the incident direction regardless of the direction of the incident light.
6), (42) and (43).

【0003】光源(30)から発せられた光束はハーフ
ミラー(31)により、反射する光束(45)と透過す
る光束(46)に二分割される。光束(45)は前記P
BS(32)に入射し、その入射光の中のp偏光成分
は、PBS(32)とλ/4板(33)を透過して円偏
光に変換され、更に進んで移動ミラー(34)により反
射され、その光束は再びλ/4板(33)によりs偏光
に変換され、更にコーナーキューブ(35)とPBS
(32)により反射して、再び移動ミラー(34)へ向
かうことになる。そしてこの移動ミラー(34)で反射
された光束はλ/4板(33)によりp偏光に戻り、P
BS(32)を透過して信号検出器(37)に入射す
る。
The luminous flux emitted from the light source (30) is divided into two by a half mirror (31) into a luminous flux (45) to be reflected and a luminous flux (46) to be transmitted. The luminous flux (45) is P
The p-polarized light component incident on the BS (32) is transmitted through the PBS (32) and the λ / 4 plate (33) to be converted into circularly polarized light, which is further advanced by the moving mirror (34). The reflected light beam is again converted into s-polarized light by the λ / 4 plate (33), and then the corner cube (35) and PBS are used.
It is reflected by (32) and again travels to the moving mirror (34). Then, the light flux reflected by the moving mirror (34) returns to p-polarized light by the λ / 4 plate (33), and P
It passes through the BS (32) and enters the signal detector (37).

【0004】一方、光束(45)の内s偏光成分はPB
S(32)で反射して参照用のコーナーキューブ(3
6)へと向かい、ここで反射された光束はPBS(3
2)で再度反射するが、この時、前記移動ミラー(3
4)からの光束と重なり合って信号検出器(37)へ向
かい、ここで干渉信号が検出されることになる。以上の
過程でx軸方向の測長がなされる。
On the other hand, the s-polarized component of the light beam (45) is PB.
The corner cube for reference (3
6), and the light flux reflected here is PBS (3
It is reflected again at 2), but at this time, the moving mirror (3
4) The light flux from 4) is overlapped and travels to the signal detector 37, where an interference signal is detected. In the above process, the length measurement in the x-axis direction is performed.

【0005】前記ハーフミラー(31)で二分されたも
う一方の光束(46)はミラー(38)で反射されPB
S(39)に入射し、入射光の内s偏光成分はPBS
(39)で反射してλ/4板(40)を透過して円偏光
に変換され、移動ミラー(41)で反射した後、λ/4
板(33)を通過してp偏光に変換され、PBS(3
9)を透過してコーナーキューブ(43)に入射する。
コーナーキューブ(43)で反射した光束は再び移動ミ
ラー(41)へ向かい、戻ってきた光はλ/4板(4
0)を透過してs偏光に戻り、PBS(39)で反射し
て信号検出器(44)に入射する。
The other light beam (46) split into two by the half mirror (31) is reflected by the mirror (38) to generate PB.
The s-polarized light component of the incident light that is incident on S (39) is PBS
After being reflected by (39), transmitted through the λ / 4 plate (40), converted into circularly polarized light, and reflected by the moving mirror (41), λ / 4
It passes through the plate (33) and is converted into p-polarized light.
After passing through 9), it enters the corner cube (43).
The light beam reflected by the corner cube (43) again travels to the moving mirror (41), and the returned light is reflected by the λ / 4 plate (4).
0) to be returned to s-polarized light, reflected by the PBS (39) and incident on the signal detector (44).

【0006】更に光束(46)のうちp偏光成分は、P
BS(39)を透過してコーナーキューブ(42)で反
射した後、PBS(39)で移動ミラー(41)からの
光束と重なり合い、信号検出器(44)において干渉信
号が検出されることで、y軸方向の測長がなされる。
Further, the p-polarized component of the light beam (46) is P
After passing through the BS (39) and being reflected by the corner cube (42), the PBS (39) overlaps the light flux from the moving mirror (41), and the interference signal is detected by the signal detector (44). The length measurement in the y-axis direction is performed.

【発明が解決しようとする課題】然し従来のこの様な測
長方法では、x軸、y軸の測長をそれぞれ別個に行うた
めに、少なくとも二組の干渉部と2組の信号検出部(3
7、44)が必要となり、このため部品点数が増加し、
スペースを広くとる必要があった。本発明は上記従来の
欠点を解消し、部品点数が少なくて済み、テーブルの構
成をコンパクトにすることが出来るxyステージ用の二
軸干渉測長器を提供することを目的とする。
However, in such a conventional length measuring method, in order to measure the x-axis and the y-axis separately, at least two sets of interference sections and two sets of signal detection sections ( Three
7, 44) are required, which increases the number of parts,
I needed to take up a lot of space. SUMMARY OF THE INVENTION It is an object of the present invention to provide a biaxial interferometer for an xy stage that solves the above-mentioned drawbacks of the related art, requires a small number of parts, and has a compact table structure.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、本発明による干渉測長器は、x、yの二軸方向に移
動可能な対象物の移動距離を測定する干渉測長器におい
て、前記対象物に取り付けたx方向およびy方向を向い
た反射部材と、レーザー光源と、該レーザー光源からの
光を第一、第二の光束に二分割するビームスプリッタ
と、前記第一の光束を第一、第二の偏光成分に分け、第
一、第二の偏光成分をそれぞれx方向、y方向を向いた
反射部材に向ける偏光ビームスプリッタと、前記第二の
光束の一部と第一の偏光成分とを干渉させる干渉光路
と、前記第二の光束の他の一部と第二の偏光成分とを干
渉させる干渉光路とを備えた干渉光学系、および前記両
干渉バターンを受け干渉信号を検出する干渉信号検出部
とよりなることを特徴とするものである。
In order to achieve the above object, an interferometric length measuring instrument according to the present invention is an interferometric length measuring instrument for measuring a moving distance of an object movable in two axial directions of x and y. A reflection member attached to the object and oriented in the x and y directions, a laser light source, a beam splitter that splits the light from the laser light source into first and second light fluxes, and the first light flux. A polarization beam splitter that divides the first and second polarized light components into the first and second polarized light components and directs the first and second polarized light components to the reflecting member in the x direction and the y direction, respectively, and a part of the second light flux and the first polarized light component. An interference optical system that includes an interference optical path that interferes with a polarized component and an interference optical path that interferes with the second polarized component with another part of the second light flux, and an interference signal that receives both interference patterns and outputs an interference signal. And an interference signal detection unit for detecting Is shall.

【0008】[0008]

【作用】偏光ビームスプリッタで分割された二光束がそ
れぞれx、y軸方向移動ミラーで反射され、ビームスプ
リッタで別々に前記参照光と重ね合わせられた後、各々
前記干渉信号検出部を通して光電検出される。
The two light beams split by the polarization beam splitter are reflected by the x- and y-axis direction moving mirrors, respectively, superposed on the reference light separately by the beam splitter, and photoelectrically detected by the respective interference signal detecting portions. It

【0009】[0009]

【実施例】以下図面に基づき本発明の構成を詳説する。
図1は、x軸、y軸の二軸方向の測長を、一組の干渉計
と信号検出部とで同時に行うことのできる本発明による
干渉測長器の一実施例の概略を示す平面図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The construction of the present invention will be described in detail below with reference to the drawings.
FIG. 1 is a plan view showing an outline of an embodiment of an interferometer according to the present invention, which is capable of simultaneously measuring the lengths of the x-axis and the y-axis in two axial directions by a set of interferometers and a signal detector. It is a figure.

【0010】本干渉測長器は、干渉光学系(1)、x軸
移動ミラー(2)、y軸移動ミラー(3)、信号検出光
学系(4)から構成され、x軸、y軸の両方向に移動可
能なステージ(対象物)に対して応用されるものであ
る。
This interferometer is composed of an interference optical system (1), an x-axis moving mirror (2), a y-axis moving mirror (3) and a signal detecting optical system (4). It is applied to a stage (object) that can move in both directions.

【0011】更に、上記干渉光学系(1)は偏光ビーム
スプリッタ(5)、(6)とπ/4ローテータ(7)、
(8)とλ/4板(9)、(10)とコーナーキューブ
(11)、(12)及び光路補正光学系(13)とから
構成される。
Further, the interference optical system (1) includes polarization beam splitters (5), (6) and a π / 4 rotator (7).
(8), λ / 4 plates (9) and (10), corner cubes (11) and (12), and an optical path correcting optical system (13).

【0012】先ず、図示しない光源から発せられた可干
渉性の直線偏光(14)は干渉光学系(1)に入射す
る。この入射光のうちp偏光成分(14)は偏光ビーム
スプッタ(以後PBSと略す)(5)を透過し、π/4
ローテータ(7)により振動面の向きが45°回転す
る。π/4ローテータ(7)を透過して振動面の向きが
回転した光束(14)のうちp偏光成分(14b)は、
PBS(6)を透過してλ/4板(9)を通り、円偏光
に変換され、x軸方向に移動するミラー(2)へ向か
う。x軸移動ミラー(2)で反射した光束は再びλ/4
板(9)を透過してs偏光に変換され、PBS(6)で
反射後コーナーキューブ(11)に入射する。コーナー
キューブ(11)で反射した光束はPBS(6)で反射
し、再度x軸移動ミラー(2)との間を往復する。戻っ
てきた光束はλ/4板(9)でp偏光に戻り、PBS
(6)、PBS(5)を透過しミラーMで反射され信号
検出光学系(4)へと向かう。
First, the coherent linearly polarized light (14) emitted from a light source (not shown) enters the interference optical system (1). Of this incident light, the p-polarized component (14) is transmitted through a polarized beam sputter (hereinafter abbreviated as PBS) (5) and becomes π / 4.
The rotator (7) rotates the direction of the vibrating surface by 45 °. The p-polarized component (14b) of the light beam (14) that has passed through the π / 4 rotator (7) and has its vibrating surface rotated is
The light passes through the PBS (6), passes through the λ / 4 plate (9), is converted into circularly polarized light, and travels toward the mirror (2) that moves in the x-axis direction. The light beam reflected by the x-axis moving mirror (2) is again λ / 4.
The light is transmitted through the plate (9), converted into s-polarized light, reflected by the PBS (6), and then enters the corner cube (11). The light flux reflected by the corner cube (11) is reflected by the PBS (6) and reciprocates between the mirror and the x-axis moving mirror (2). The returned luminous flux is returned to p-polarized light by the λ / 4 plate (9) and
(6), transmitted through the PBS (5) and reflected by the mirror M toward the signal detection optical system (4).

【0013】光束(14)のうち他方のs偏光成分(1
4a)は、PBS(6)で反射して光路補正光学系(1
3)、λ/4板(10)を透過し、円偏光となってy軸
移動ミラー(3)へ向かう。ここで、光路補正光学系
(13)は、光束(14a)がy軸移動ミラー(3)の
適当な位置に、y軸に平行に入射するように光束の方向
を変える働きをするものであって、本実施例ではウエツ
ジ基板を使用している。
The other s-polarized light component (1
4a) is reflected by the PBS (6) and is reflected by the optical path correction optical system (1
3), the light passes through the λ / 4 plate (10) and becomes circularly polarized light toward the y-axis moving mirror (3). Here, the optical path correction optical system (13) functions to change the direction of the light beam (14a) so that it enters the y-axis moving mirror (3) at an appropriate position in parallel with the y-axis. In this embodiment,
The board is used.

【0014】y軸移動ミラー(3)で反射した光束はλ
/4板(10)でp偏光に変換され、光路補正光学系
(13)、PBS(6)を透過してコーナーキューブ
(11)に入射する。コーナーキューブ(11)で反射
した光束は再度y軸移動ミラー(3)へ向かい、戻って
きた光束はs偏光となってPBS(6)、PBS(5)
で反射され信号検出光学系(4)へ向かう。
The luminous flux reflected by the y-axis moving mirror (3) is λ
It is converted into p-polarized light by the / 4 plate (10), passes through the optical path correcting optical system (13) and PBS (6), and enters the corner cube (11). The light flux reflected by the corner cube (11) again travels to the y-axis moving mirror (3), and the returned light flux becomes s-polarized light, PBS (6), PBS (5).
It is reflected by and goes to the signal detection optical system (4).

【0015】一方、前記干渉光学系(1)に入射した光
束のうちのs偏光成分(15)はPBS(5)で反射し
て、参照光としてコーナーキューブ(12)に向かう。
コーナーキューブ(12)で反射した光はπ/4ローテ
ータ(8)により振動面の向きが45°回転し、PBS
(5)で二分されてs偏光成分はx軸移動ミラー(2)
からの物体光と重ね合わせられ、干渉信号が検出され
る。
On the other hand, the s-polarized component (15) of the light beam incident on the interference optical system (1) is reflected by the PBS (5) and goes to the corner cube (12) as reference light.
The light reflected by the corner cube (12) is rotated by 45 ° by the π / 4 rotator (8), and the PBS vibrates.
The s-polarized light component is divided into two by (5) and the x-axis moving mirror (2)
And the interfering signal is detected by superimposing it on the object light from.

【0016】同様に、p偏光成分はy軸移動ミラー
(3)からの物体光と重ね合わせられ、干渉信号が検出
される。
Similarly, the p-polarized component is superimposed on the object light from the y-axis moving mirror (3), and the interference signal is detected.

【0017】以下、本実施例の信号検出方法を説明す
る。信号検出光学系(4)は、λ/4板(16)、ビー
ムスプリッタ(BSと略す)(17)、π/4ローテー
タ(18)、PBS(19)、(20)、フォトデイ テ
クタ(PD)(21a)〜(21h)から構成される。
The signal detection method of this embodiment will be described below. The signal detection optical system (4) includes a λ / 4 plate (16), a beam splitter (abbreviated as BS) (17), a π / 4 rotator (18), PBSs (19) and (20), a photodetector (PD). ) (21a) to (21h).

【0018】参照光のs偏光成分とx軸移動ミラー
(2)からの物体光はPBS(5)で重ね合わせられた
後、ミラー(M)で反射し、λ/4板(16)を透過し
て互いに逆回りの円偏光に変換され、BS(17)で二
分割される。このうちBS(17)で反射された光束は
更に、PBS(20)でs偏光成分とp偏光成分に分け
られ、それぞれPD(21d),(21g)に入射して
干渉信号S4及びS7 が検出される。PD(21d)、
(21g)ヘの入射光は各々の振動面の向きが90°違
うため、S4 =1+Sin ( ψx −ψγ) とすれば、S7
=1−Sin ( ψx −ψγ) となり、干渉信号S4 とS7
の位相差はπになる。尚、ここでψx はx軸移動ミラー
(2)からの光の位相、ψγは参照光の位相である。
The s-polarized component of the reference light and the object light from the x-axis moving mirror (2) are superposed by the PBS (5), reflected by the mirror (M), and transmitted through the λ / 4 plate (16). Then, they are converted into circularly polarized lights having mutually opposite rotations, and divided into two by the BS (17). Of these, the light flux reflected by the BS (17) is further divided by the PBS (20) into an s-polarized component and a p-polarized component, which are respectively incident on PDs (21d) and (21g) to detect interference signals S4 and S7. To be done. PD (21d),
The incident light on (21g) has different vibrating planes by 90 °, so if S4 = 1 + Sin (ψ x −ψγ), then S7
= 1-Sin (ψ x −ψγ), and the interference signals S4 and S7
Has a phase difference of π. Here, ψ x is the phase of the light from the x-axis moving mirror (2), and ψ γ is the phase of the reference light.

【0019】一方、BS(17)を透過した光束はπ/
4ローテータ(18)を透過してPBS(19)でp偏
光成分とs偏光成分に分けられ、夫々PD(21b)、
(21e)に入射して干渉信号S2 及びS5 が検出され
る。これはPBS(19)をの回りに45°回転させて
信号検出したと考えても良い。従ってPD(21d)へ
の入射光に対してPD(21b)への入射光は振動面の
向きが45°ずれているのと同じことになり、干渉信号
S2 =1+Cos(ψx −ψγ) 、S5 =1−Cos(ψx −ψ
γ) となるので、干渉信号S4 とS2 の位相差はπ/2
となる。ここで干渉信号S5 とS2 の位相差はπである
から、結局0,π/2,π、3π/2の4個の信号が得
られる。更に干渉信号S2 −S5 、干渉信号S4 −S7
を検出すれば、DC成分の無い二相信号が得られ、移動
の向きを含めたx軸方向の測長が可能になる。
On the other hand, the luminous flux transmitted through the BS (17) is π /
After passing through the 4 rotator (18), it is divided into a p-polarized component and an s-polarized component by the PBS (19), and the PD (21b),
The interference signals S2 and S5 are detected by being incident on (21e). It may be considered that the signal is detected by rotating the PBS (19) around 45 °. Therefore, the incident light on the PD (21b) is the same as the incident light on the PD (21b) with the direction of the vibrating surface being shifted by 45 °, and the interference signal S2 = 1 + Cos (ψ x −ψγ), S5 = 1-Cos (ψ x −ψ
γ), the phase difference between the interference signals S4 and S2 is π / 2.
Becomes Since the phase difference between the interference signals S5 and S2 is π, four signals of 0, π / 2, π and 3π / 2 are finally obtained. Further, interference signals S2-S5 and interference signals S4-S7
By detecting, a two-phase signal with no DC component can be obtained, and length measurement in the x-axis direction including the direction of movement is possible.

【0020】y軸移動ミラー(3)からの物体光と参照
光のp偏光成分もPBS(5)で重ね合わせられた後、
同様にして干渉信号S1 、S3 、S6 、S8 が検出さ
れ、y方向の測長が可能になる。y軸方向に関しては、
干渉信号S1 =1+Cos(ψy −ψγ) 、S3 =1+Sin
y −ψγ) 、S6 =1−Cos(ψy −ψγ) 、S8 =
1−Sin(ψy −ψγ) となる。ここでψy はy軸移動ミ
ラー(3)からの光の位相である。
After the p-polarized components of the object light and the reference light from the y-axis moving mirror (3) are also superposed by the PBS (5),
Similarly, the interference signals S1, S3, S6 and S8 are detected, and the length measurement in the y direction becomes possible. Regarding the y-axis direction,
The interference signal S1 = 1 + Cos (ψ y -ψγ), S3 = 1 + Sin
(ψ y -ψγ), S6 = 1-Cos (ψ y -ψγ), S8 =
It becomes 1-Sin (ψ y -ψγ) . Where ψ y is the phase of the light from the y-axis moving mirror (3).

【0021】図(2)は干渉測長器(22)を用いてx
yステージ(23)の移動両を測定する場合の様子を示
したものである。図において、試料台(24)はxyス
テージ(23)と一体的に移動可能なようにxyステー
ジ(23)の上に乗っており、x軸移動ミラー(2)、
y軸移動ミラー(3)はこのxyステージ(23)に設
置されている。またxyステージ(23)はテーブル
(25)の上をxy方向に移動可能になっている。測長
器(22)はテーブル(25)の内側にx、y軸の測定
光軸の延長が視野の中央を通って夫々の移動ミラー
(2)、(3)に当たるように配置、固定されている。
xyステージ(23)としては、xy方向の何れの方向
にも移動可能な機構とする必要は無く、単にxまたはy
の一方向にのみ移動可能なステージを二段重ね合わて、
その上にミラーを設置した試料台(24)を重ねたもの
であってもよい。またx、yの二段に分かれたステージ
の移動を直接測定することも勿論可能である。
FIG. 2B shows x using the interferometer length measuring device 22.
It shows a situation in which both movements of the y stage (23) are measured. In the figure, a sample stage (24) is mounted on an xy stage (23) so as to be movable integrally with the xy stage (23), and an x-axis moving mirror (2),
The y-axis moving mirror (3) is installed on this xy stage (23). The xy stage (23) is movable on the table (25) in the xy directions. The length measuring instrument (22) is arranged and fixed inside the table (25) so that the extension of the measurement optical axes of the x and y axes passes through the center of the visual field and hits the respective moving mirrors (2) and (3). There is.
The xy stage (23) does not need to be a mechanism that can move in any of the xy directions, and can be simply x or y.
By stacking two stages that can move only in one direction,
A sample table (24) having a mirror installed thereon may be stacked. It is of course possible to directly measure the movement of the stage divided into two stages of x and y.

【0022】図(3)、図(4)に第二の実施例を示
す。この実施例では横方向(平面)のスペースを出来る
だけ省略すべく、干渉光学系(1)や信号検出光学系
(4)を縦型に構成し、入射光を下方から採り入れるよ
うにしたもので、構成は第一実施例の場合と略同様であ
るがxステージ(26)、yステージ(27)はそれぞ
れx軸、y軸方向にのみ移動可能なステージを使用し、
光路補正光学系(13)にはx軸、y軸方向それぞれに
直角プリズム(13a)、(13b)を用いている。
A second embodiment is shown in FIGS. (3) and (4). In this embodiment, the interference optical system (1) and the signal detection optical system (4) are constructed vertically so that the space in the horizontal direction (plane) is omitted as much as possible, and the incident light is taken in from below. The structure is almost the same as that of the first embodiment, but the x stage (26) and the y stage (27) use stages movable only in the x-axis and y-axis directions, respectively.
Right-angle prisms (13a) and (13b) are used in the x-axis and y-axis directions, respectively, in the optical path correcting optical system (13).

【0023】以上の第一、第二実施例において、コーナ
ーキューブ(11)、(12)はキャッツアイに置き換
えることも可能であり、またステージが安定していて上
下方向の振れが少ない場合は、直角プリズムを使用して
もよい。尚π/4ローテータ(7)、(8)は、λ/2
板またはλ/4板を使用することも可能である。
In the above first and second embodiments, the corner cubes (11) and (12) can be replaced with cat's eyes, and when the stage is stable and the vertical swing is small, Right angle prisms may be used. The π / 4 rotators (7) and (8) are λ / 2.
It is also possible to use plates or λ / 4 plates.

【0024】また、本実施例では、ミラー移動方向を検
出するために偏光を利用して位相をπ/2ずらせた信号
を得ている。このため必然的に干渉光学系1の構成部品
に偏光ビームスプリッタを使用しているが、信号検出方
法としてのヘテロダイン法などを用いることも可能であ
る。その場合には偏光用でなく普通のビームスプリッタ
を使用することができ、これにより偏光の変換素子も不
必要となり、π/4ローテータ(7)、(8)は不要と
なる。
Further, in this embodiment, in order to detect the moving direction of the mirror, polarized light is used to obtain a signal whose phase is shifted by π / 2. For this reason, the polarization beam splitter is inevitably used as a component of the interference optical system 1, but it is also possible to use the heterodyne method or the like as a signal detecting method. In that case, an ordinary beam splitter can be used instead of the polarized light, so that the polarization conversion element is unnecessary and the π / 4 rotators (7) and (8) are unnecessary.

【0025】[0025]

【発明の効果】入射光を分割してx軸、y軸方向の測長
器を一組の干渉光学系と信号検出光学系とで行うため
に、素子数を逓減でき、スペースを可及的に小さくする
ことができる。
Since the incident light is divided and the length measuring device in the x-axis and y-axis directions is performed by the set of the interference optical system and the signal detecting optical system, the number of elements can be gradually reduced and the space can be reduced as much as possible. Can be made smaller.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明によるxyステージ移動量を測定する干
渉測長器の概略平面図である。
FIG. 1 is a schematic plan view of an interferometer, which measures an xy stage movement amount according to the present invention.

【図2】同上ステージと測長部との関係位置を示す斜視
図である。
FIG. 2 is a perspective view showing a relational position between the same stage and the length measuring unit.

【図3】第二実施例による干渉測長器の要部斜視図であ
る。
FIG. 3 is a perspective view of a main part of an interferometer according to a second embodiment.

【図4】第二実施例によるステージと測長部の相対位置
を示す斜視図である。
FIG. 4 is a perspective view showing relative positions of a stage and a length measuring unit according to a second embodiment.

【図5】本発明を使用しない従来のステージ移動量測定
装置の構成を示す平面概略図である。
FIG. 5 is a schematic plan view showing the configuration of a conventional stage movement amount measuring device that does not use the present invention.

【符号の説明】[Explanation of symbols]

1 干渉光学系 2 x軸移動ミラー 3 y軸移動ミラー 4 信号検出光学系 5 偏光ビームスプリッタ(PBS) 6 偏光ビームスプリッタ(PBS) 7 π/4ローテータ 8 π/4ローテータ 9 λ/4板 10 λ/4板 11 コーナーキューブ 12 コーナーキューブ 13 光路補正光学系 14 光束(14a、14b) 15 光束 16 λ/4板 17 ビームスプリッタ(BS) 18 π/4ローテータ 19 偏光ビームスプリッタ(PBS) 20 偏光ビームスプリッタ(PBS) 21 フォトデイ テクタ(21a〜21h) 22 測長器 23 ステージ 24 試料台 25 テーブル 26 xステージ 27 yステージ M ミラー S 干渉信号(S1 〜S8 ) 1 Interference Optical System 2 x-axis Moving Mirror 3 y-axis Moving Mirror 4 Signal Detection Optical System 5 Polarizing Beam Splitter (PBS) 6 Polarizing Beam Splitter (PBS) 7 π / 4 Rotator 8 π / 4 Rotator 9 λ / 4 Plate 10 λ / 4 plate 11 corner cube 12 corner cube 13 optical path correction optical system 14 luminous flux (14a, 14b) 15 luminous flux 16 λ / 4 plate 17 beam splitter (BS) 18 π / 4 rotator 19 polarizing beam splitter (PBS) 20 polarizing beam splitter (PBS) 21 Photo detectors (21a to 21h) 22 Length measuring device 23 Stage 24 Sample stage 25 Table 26 x stage 27 y stage M Mirror S Interference signal (S1 to S8)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 x、yの二軸方向に移動可能な対象物の
移動距離を測定する干渉測長器において、前記対象物に
取り付けたx方向およびy方向を向いた反射部材と、レ
ーザー光源と、該レーザー光源からの光を第一、第二の
光束に二分割するビームスプリッタと、前記第一の光束
を第一、第二の偏光成分に分け、第一、第二の偏光成分
をそれぞれx方向、y方向を向いた反射部材に向ける偏
光ビームスプリッタと、前記第二の光束の一部と第一の
偏光成分とを干渉させる干渉光路と、前記第二の光束の
他の一部と第二の偏光成分とを干渉させる干渉光路とを
備えた干渉光学系、および前記両干渉バターンを受け干
渉信号を検出する干渉信号検出部とよりなることを特徴
とする干渉測長器。
1. An interferometer, which measures a moving distance of an object movable in two axial directions of x and y, wherein a reflection member attached to the object and oriented in the x and y directions, and a laser light source. A beam splitter that divides the light from the laser light source into first and second luminous fluxes, and divides the first luminous flux into first and second polarized light components, and divides the first and second polarized light components into A polarization beam splitter directed to the reflecting member respectively facing the x direction and the y direction, an interference optical path for causing a part of the second light flux and the first polarization component to interfere with each other, and another part of the second light flux. And an interference optical path including an interference optical path that causes the second polarized component to interfere with each other, and an interference signal detector that receives the interference patterns and detects an interference signal.
JP19657491A 1991-08-06 1991-08-06 Gauge interferometer Withdrawn JPH0540011A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19657491A JPH0540011A (en) 1991-08-06 1991-08-06 Gauge interferometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19657491A JPH0540011A (en) 1991-08-06 1991-08-06 Gauge interferometer

Publications (1)

Publication Number Publication Date
JPH0540011A true JPH0540011A (en) 1993-02-19

Family

ID=16360008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19657491A Withdrawn JPH0540011A (en) 1991-08-06 1991-08-06 Gauge interferometer

Country Status (1)

Country Link
JP (1) JPH0540011A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006060229A (en) * 2004-08-23 2006-03-02 Asml Netherlands Bv Polarized light beam splitter apparatus, interferometer module, lithographic apparatus, and device manufacturing method
US7443511B2 (en) 2003-11-25 2008-10-28 Asml Netherlands B.V. Integrated plane mirror and differential plane mirror interferometer system
JP2009023011A (en) * 2007-07-17 2009-02-05 Canon Inc Positioning device
JP2010151572A (en) * 2008-12-25 2010-07-08 Ojima Shisaku Kenkyusho:Kk Polarization splitting section of polarization-split interferometer, the polarization-split interferometer, and polarization-split interferometer type length measuring device
JP2010149265A (en) * 2008-12-26 2010-07-08 Canon Inc Positioning device
US7880894B2 (en) * 2007-02-16 2011-02-01 Sony Corporation Vibration detection device and vibration detector

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7443511B2 (en) 2003-11-25 2008-10-28 Asml Netherlands B.V. Integrated plane mirror and differential plane mirror interferometer system
US7474409B2 (en) 2003-11-25 2009-01-06 Asml Netherlands B.V. Lithographic interferometer system with an absolute measurement subsystem and differential measurement subsystem and method thereof
JP2006060229A (en) * 2004-08-23 2006-03-02 Asml Netherlands Bv Polarized light beam splitter apparatus, interferometer module, lithographic apparatus, and device manufacturing method
US7880894B2 (en) * 2007-02-16 2011-02-01 Sony Corporation Vibration detection device and vibration detector
JP2009023011A (en) * 2007-07-17 2009-02-05 Canon Inc Positioning device
JP2010151572A (en) * 2008-12-25 2010-07-08 Ojima Shisaku Kenkyusho:Kk Polarization splitting section of polarization-split interferometer, the polarization-split interferometer, and polarization-split interferometer type length measuring device
JP2010149265A (en) * 2008-12-26 2010-07-08 Canon Inc Positioning device

Similar Documents

Publication Publication Date Title
US7355719B2 (en) Interferometer for measuring perpendicular translations
JP4028427B2 (en) Interferometer that eliminates beam walk-off using beam retrace
JP3143663B2 (en) Interferometer
US3790284A (en) Interferometer system for measuring straightness and roll
WO2003064977A2 (en) Multiple degree of freedom interferometer
JP2005338075A (en) Heterodyne laser interferometer for measuring parallel displacement of wafer stage
US7542149B2 (en) Optics system for an interferometer that uses a measuring mirror, a reference mirror and a beam deflector
US9127924B2 (en) Interferometer
US7362447B2 (en) Low walk-off interferometer
US7379187B2 (en) Detector configuration for interferometric distance measurement
JPH07101166B2 (en) Interferometer
JPH045922B2 (en)
US7268886B2 (en) Method and apparatus for simultaneously measuring displacement and angular variations
JPH07120213A (en) Tracking type laser interferometer
JPH0540011A (en) Gauge interferometer
JP2000329535A (en) Simiultaneous measuring apparatus for phase-shifting interference fringes
JP7497122B2 (en) Optical Displacement Sensor
EP0461773A2 (en) Linear pitch, and yaw displacement measuring interferometer
JP4028428B2 (en) Compact beam retrace optics for eliminating beam walk-off in interferometers
US11598629B2 (en) Optical displacement sensor
JPH02298804A (en) Interferometer
JP6169420B2 (en) Optical interferometer
JP2779497B2 (en) Interferometer
JPH05203408A (en) Phase difference detector
JPH0599612A (en) Laser interferometer

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19981112