JPH05203408A - Phase difference detector - Google Patents

Phase difference detector

Info

Publication number
JPH05203408A
JPH05203408A JP31510992A JP31510992A JPH05203408A JP H05203408 A JPH05203408 A JP H05203408A JP 31510992 A JP31510992 A JP 31510992A JP 31510992 A JP31510992 A JP 31510992A JP H05203408 A JPH05203408 A JP H05203408A
Authority
JP
Japan
Prior art keywords
light
phase difference
photodiode
detector
polarizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP31510992A
Other languages
Japanese (ja)
Inventor
Arinori Tokuhashi
有紀 徳橋
Seiichiro Tabata
誠一郎 田端
Hirohisa Fujimoto
洋久 藤本
Hiroshi Yugawa
浩 湯川
Yukio Eda
幸夫 江田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP31510992A priority Critical patent/JPH05203408A/en
Publication of JPH05203408A publication Critical patent/JPH05203408A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)

Abstract

PURPOSE:To reduce the space occupied by an optical element and photodetector in a phase difference detector so as to simplify the constitution and reduce the size of the detector. CONSTITUTION:The title detector is a phase difference detector which photoelectrically detects a plurality of signals having a prescribed phase difference between them from the output light of an interferometer and is provided with a quarter wave plate 2, polarizing means constituted by arranging a plurality of polarizers 3-6 having polarizing axes which are partially different from each other by prescribed angles so that the light receiving quantities of the polarizers 3-6 can become nearly equal to each other, and photodetectors 7a-7d which are made to correspond to the polarizers 3-6 one to one. The phase difference detector also has such an advantage that alignment can be easily made by utilizing its output signal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光学素子の所要スペー
スを減じ小型化を図った位相差検出器に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a phase difference detector in which the space required for an optical element is reduced and the size is reduced.

【0002】[0002]

【従来の技術】縞計数方式の干渉測長器では、物体の移
動方向の判別や信号の分割のために、一般にsin,c
osの二相の信号を得るような構成になっている。
2. Description of the Related Art In a fringe counting type interferometer, in general, sin, c is used for discriminating a moving direction of an object and dividing a signal.
The configuration is such that an os two-phase signal is obtained.

【0003】図10は、従来例の構成図である。15は
レーザー光源、17,24及び26は偏光ビームスプリ
ッター(PBS)、20は移動コーナーキューブ、21
は固定コーナーキューブ、22は二分の一波長板、23
はビームスプリッター(BS)、25は四分の一波長
板、27〜30はフォトディテクタ(PD)である。
FIG. 10 is a block diagram of a conventional example. 15 is a laser light source, 17, 24 and 26 are polarization beam splitters (PBS), 20 is a moving corner cube, 21
Is a fixed corner cube, 22 is a half-wave plate, and 23
Is a beam splitter (BS), 25 is a quarter-wave plate, and 27 to 30 are photodetectors (PD).

【0004】レーザー光源15より発した光束16はP
BS17に入射し、紙面に平行な方向の偏光成分である
p偏光成分18と、紙面に垂直な方向の偏光成分である
s偏光成分19とに分離される。p偏光成分18は、移
動コーナーキューブ20で反射して測定光となり、再び
PBS17に入射する。s偏光成分19は、固定コーナ
ーキューブ21で反射して参照光となり、PBS17で
測定光と重ね合わされる。PBS17からの光束は、二
分の一波長板22を通り、参照光、測定光ともに偏光の
方向が45°回転したのち、BS23により二分割され
る。BS23を透過した光束は、PBS24で分割さ
れ、PD27でp偏光成分、PD29でs偏光成分がそ
れぞれ検出される。PD27とPD29で得られる干渉
信号は、位相が互いに180°ずれている。
The luminous flux 16 emitted from the laser light source 15 is P
The light enters the BS 17 and is separated into a p-polarized component 18 which is a polarized component parallel to the paper surface and an s-polarized component 19 which is a polarized component perpendicular to the paper surface. The p-polarized component 18 is reflected by the moving corner cube 20 to become measurement light, which then enters the PBS 17 again. The s-polarized component 19 is reflected by the fixed corner cube 21 to become reference light, which is superposed on the measurement light by the PBS 17. The light flux from the PBS 17 passes through the half-wave plate 22 and the polarization directions of both the reference light and the measurement light are rotated by 45 ° and then split into two by the BS 23. The light flux transmitted through the BS 23 is split by the PBS 24, and the PD 27 detects the p-polarized component and the PD 29 detects the s-polarized component. The interference signals obtained at PD 27 and PD 29 are 180 ° out of phase with each other.

【0005】一方、BS23で反射した光束は 四分の
一波長板25を通り、参照光と測定光の間に位相遅れが
生じたのち、PBS26で分割され、p偏光成分がPD
30で、s偏光成分がPD28で検出される。PD28
とPD30で得られる干渉信号は、位相が互いに180
°違い、かつ、PD27,PD29の信号と90°ずれ
た位相を有する。つまり、位相が90°づつ異なる四相
の信号が得られる。更に、位相が180°異なる信号ど
うしを引き算すれば、バイアス成分が相殺されて、振幅
が二倍になった二相信号か得られる。
On the other hand, the light beam reflected by the BS 23 passes through the quarter-wave plate 25 and, after a phase delay occurs between the reference light and the measurement light, is split by the PBS 26 and the p-polarized component is PD.
At 30, the s-polarized component is detected at PD 28. PD28
And the interference signals obtained by the PD 30 are 180 degrees out of phase with each other.
It has a phase difference of 90 ° and a phase difference of 90 ° from the signals of PD27 and PD29. That is, four-phase signals whose phases differ by 90 ° are obtained. Further, when signals having phases different by 180 ° are subtracted from each other, the bias component is canceled and a two-phase signal with doubled amplitude is obtained.

【0006】[0006]

【発明が解決しようとする課題】しかし、このような構
成では、使用する光学素子が大きいスペースを占める。
バイアス成分除去のため、通常は四相の信号を用いる
が、これを得るためには偏光ビームスプリッターと、四
光束それぞれの進行方向に対向してフォトディテクタを
配置するためのスペースが、特に必要になる。光源に半
導体レーザーを用いたり、光ファイバーを利用したりし
て、測長器の小型化をめざす場合、信号検出系の大きさ
は、重要な問題となってくる。この問題に対する一つの
解答として、特開平1ー250803号公報に示された
ものがあるが、回折格子を用いるので、特性のすぐれた
装置を製造すれば、高価格にならざるをえない。
However, in such a structure, the optical element used occupies a large space.
Normally, four-phase signals are used to remove the bias component, but in order to obtain this, a polarization beam splitter and a space for arranging the photodetectors facing each other in the traveling directions of the four light beams are particularly necessary. .. When a semiconductor laser is used as a light source or an optical fiber is used to downsize the length measuring device, the size of the signal detection system becomes an important issue. One solution to this problem is disclosed in Japanese Patent Application Laid-Open No. 1-280803, but since a diffraction grating is used, it is inevitable that the cost will be increased if a device having excellent characteristics is manufactured.

【0007】本発明は、上記の事情に鑑み、光学素子や
フォトディテクタの占めるスペースが少なく、小型で簡
単な構成の位相差検出器の提供を目的としている。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a phase difference detector having a small size and a simple structure, which occupies a small space for optical elements and photodetectors.

【0008】[0008]

【課題を解決するための手段】本発明は、干渉計の出力
光が入射し、該出力光より互いに所定の位相差をもった
複数の信号を光電検出する位相差検出器において、四分
の一波長板と、各々の偏光軸の少なくとも一部が所定の
角度だけ異なるような複数の偏光子を各偏光子が受ける
光量が略等しくなるように配置してなる偏光手段と、該
偏光手段の各偏光子と一対一で対応するフォトディテク
タとを備えたことを特徴としている。
SUMMARY OF THE INVENTION The present invention is a phase difference detector for photoelectrically detecting a plurality of signals having a predetermined phase difference from each other by the output light of an interferometer. One wavelength plate, a polarizing means in which a plurality of polarizers in which at least a part of their respective polarization axes differ by a predetermined angle are arranged so that the amount of light received by each polarizer becomes substantially equal, and the polarizing means of the polarizing means. It is characterized in that it is provided with a photodetector corresponding to each polarizer in a one-to-one correspondence.

【0009】また、上述の構成で、フォトディテクタの
出力を補正する信号を発生する補正手段を配し、干渉計
の出力光の光路中に光分岐手段を設け、該光分岐手段で
分割された一方の光束が偏光手段を経て該フォトディテ
クタに、他方の光束が該補正手段に導かれるようにした
ことを特徴としている。
Further, in the above-described structure, the correction means for generating a signal for correcting the output of the photodetector is arranged, the optical branching means is provided in the optical path of the output light of the interferometer, and one of the light splitting means is used. The light flux of 1 is guided to the photodetector through the polarization means, and the other light flux is guided to the correction means.

【0010】[0010]

【作用】四分の一波長板を透過した光束が偏光手段を透
過することにより、複数の光束に分割されることなく偏
光の方向が異なる複数の部分に区別される。そうして、
各偏光子を透過した部分光により生じた干渉縞が、互い
に所定の位相差をもって対応するフォトディテクタ上に
投影され、光電検出される。このため、光学素子が占め
るスペースが小さくて済み、フォトディテクタも互いに
近接して配置することができるので、高価な素子を用い
なくとも、小型化が容易になる。
The luminous flux transmitted through the quarter-wave plate is transmitted through the polarizing means, so that the luminous flux is not divided into a plurality of luminous fluxes and is divided into a plurality of portions having different polarization directions. And then
The interference fringes generated by the partial light transmitted through each polarizer are projected on the corresponding photodetectors with a predetermined phase difference and photoelectrically detected. For this reason, the space occupied by the optical elements is small, and the photodetectors can be arranged close to each other, so that miniaturization is facilitated without using expensive elements.

【0011】[0011]

【実施例】図1は、本発明の第1実施例を示す。1は干
渉計の出力光である光束で、p偏光の測定光とs偏光の
参照光を含んでいる。2は四分の一波長板、3〜6は偏
光板で、矢印の向き(45°ずつ異なる)に偏光軸がく
るようになっている。7は素子7a〜7dを有する四分
割フォトダイオード(PD)である。
FIG. 1 shows a first embodiment of the present invention. Reference numeral 1 denotes a light beam which is the output light of the interferometer and includes p-polarized measurement light and s-polarized reference light. Reference numeral 2 is a quarter-wave plate, and reference numerals 3 to 6 are polarizing plates, so that the polarization axes come in the directions of the arrows (different by 45 °). Reference numeral 7 is a quadrant photodiode (PD) having elements 7a to 7d.

【0012】光束1は四分の一波長板2を透過し、測定
光成分と参照光成分は、互いに逆回りの円偏光に変換さ
れ、偏光板3〜6を透過する。このとき、偏光板3〜6
の偏光軸の向きが45°ずつ異なるので、位相が90°
ずつずれた四相信号となり、四分割フォトダイオード7
の各素子7a〜7dに入射する。従来例と同様に、位相
が180°異なる信号どうしを引き算すれば、バイアス
成分が相殺され振幅が2倍になった二相信号が得られ
る。
The light beam 1 is transmitted through the quarter-wave plate 2, the measurement light component and the reference light component are converted into circularly polarized lights having opposite rotations and transmitted through the polarizing plates 3 to 6. At this time, the polarizing plates 3 to 6
Since the polarization axes of are different by 45 °, the phase is 90 °.
It becomes a four-phase signal that is shifted by four, and the four-division photodiode 7
Is incident on each of the elements 7a to 7d. Similar to the conventional example, by subtracting signals having phases different by 180 ° from each other, a two-phase signal in which the bias component is canceled and the amplitude is doubled can be obtained.

【0013】図2は、本発明の第2実施例を示す。符号
1〜7は、図1と同じである。8は四分の一波長板2と
偏光板3〜6との間に配設したビームスプリッター(B
S)、9〜12はもう1組の偏光板で、矢印の向き(4
5°ずつ異なる)に偏光軸がくるようになっている。1
3も素子13a〜13dを有するもう1組の四分割フォ
トダイオード(PD)である。
FIG. 2 shows a second embodiment of the present invention. Reference numerals 1 to 7 are the same as those in FIG. 8 is a beam splitter (B) disposed between the quarter-wave plate 2 and the polarizing plates 3 to 6.
S), and 9 to 12 are another pair of polarizing plates, and the direction of the arrow (4
The polarization axis comes to 5 degrees. 1
Reference numeral 3 is another set of four-division photodiodes (PD) having elements 13a to 13d.

【0014】第2実施例では、移動物体の傾きなどによ
り光束の横ずれを生じても、干渉信号振幅の極端な変
化、バイアス成分の増大などを防止できる。いま、四分
割フォトダイオード7の各素子7a〜7dの干渉信号
を、それぞれ下記の(1)〜(4)式で表す。
In the second embodiment, even if the light beam laterally shifts due to the inclination of the moving object, it is possible to prevent an extreme change in the amplitude of the interference signal and an increase in the bias component. Now, the interference signals of the respective elements 7a to 7d of the four-division photodiode 7 are represented by the following equations (1) to (4), respectively.

【0015】 ASa=Ia 〔1+cosφ〕・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・(1)Asa = I a [1 + cos φ] ... (1)

【0016】 ASb=Ib 〔1+cos(φ−π/2)〕・・・・・・・・・・・・・・・・・・・・・・(2)ASb = I b [1 + cos (φ−π / 2)] ... (2)

【0017】 ASc=Ic 〔1+cos(φ−π)〕・・・・・・・・・・・・・・・・・・・・・・・・・・(3)ASc = I c [1 + cos (φ−π)] ... (3)

【0018】 ASd=Id 〔1+cos(φ−3π/2)〕・・・・・・・・・・・・・・・・・・・・(4)ASd = I d [1 + cos (φ−3π / 2)] ... (4)

【0019】ここでIa 〜Id は、各素子7a〜7dへ
の入射量に応じた量で、光束の横ずれに伴って変化する
量である。ビームスプリッターの反射・透過の差、偏光
板での吸収を無視すれば、四分割フォトダイオード13
の各素子13a,13b,13c,13dに入射する光
量は、それぞれIb ,Ia ,Id ,Ic となる。したが
って、四分割フォトダイオード13の各素子13a〜1
3dの各信号強度は、それぞれ下記の(5)〜(8)式
となる。
Here, I a to I d are amounts corresponding to the incident amounts on the respective elements 7a to 7d, and are amounts that change with lateral deviation of the light flux. Neglecting the difference in reflection / transmission of the beam splitter and the absorption in the polarizing plate, the four-division photodiode 13
Each element 13a, the amount of light incident 13b, 13c, to 13d are respectively I b, I a, I d , the I c of. Therefore, each element 13a to 1 of the four-division photodiode 13 is
The signal intensities of 3d are expressed by the following equations (5) to (8).

【0020】 BSa=Ib 〔1+cos(φ−3π/2)〕・・・・・・・・・・・・・・・・・・・・(5)BSa = I b [1 + cos (φ−3π / 2)] ... (5)

【0021】 BSb=Ia 〔1+cos(φ−π)〕・・・・・・・・・・・・・・・・・・・・・・・・・・(6)BSb = I a [1 + cos (φ−π)] ... (6)

【0022】 BSc=Id 〔1+cos(φ−π/2)〕・・・・・・・・・・・・・・・・・・・・・・(7)BSc = I d [1 + cos (φ−π / 2)] ... (7)

【0023】 BSd=Ic 〔1+cosφ〕・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・(8)BSd = I c [1 + cos φ] ... (8)

【0024】二相信号を得るために、下記(9),(1
0)式の演算をする。
In order to obtain a two-phase signal, the following (9), (1
0) is calculated.

【0025】 S1=(ASa+BSd)−(ASc+BSb) =2(Ia +Ic )cosφ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・(9)S1 = (ASa + BSd) − (ASc + BSb) = 2 (I a + I c ) cos φ ... ... (9)

【0026】 S2=(ASb+BSc)−(ASd+BSa) =2(Ib +Id )sinφ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・(10)S2 = (ASb + BSc) − (ASd + BSa) = 2 (I b + I d ) sin φ ...・ (10)

【0027】つまり、四分割フォトダイオード7と四分
割フォトダイオード13で、位相の180°異なる信号
の強度が等しくなるように偏光板を設置し、補正を行っ
ている。このため、(9),(10)式のように、位相
の等しい信号どうしを足し合わせ、該信号と位相が18
0°異なる信号との差をとることで、バイアス成分を除
去できる。また、光束の横ずれによりIa 〜Id の値が
変化するときは、Ia , Ib の変化をIc ,Id が補う
ように変化するので、(9),(10)式が示すよう
に、信号S1,S2の振幅の変化も抑制される。
In other words, the four-division photodiode 7 and the four-division photodiode 13 are provided with polarizing plates so that the intensities of signals whose phases are different by 180 ° are equal to each other and correction is performed. Therefore, as shown in the equations (9) and (10), signals having the same phase are added to each other so that the signal and the phase are 18
The bias component can be removed by taking the difference between the signals that differ by 0 °. Further, when the values of I a to I d change due to the lateral deviation of the light flux, the changes of I a and I b change so as to be complemented by I c and I d, and therefore, the expressions (9) and (10) represent. Thus, changes in the amplitudes of the signals S1 and S2 are also suppressed.

【0028】図3は、第3実施例を示す。第2実施例に
おける偏光板の組み合わせを変えた構成である。すなわ
ち、一方の光路には、偏光軸の方向が互いに90°異な
る偏光板3,5を2枚ずつ、隣接する象限に配置する。
もう一方の光路には、偏光板3,5とは偏光軸方向が4
5°異なる偏光板4,6を、同様に配置する。このと
き、四分割フォトダイオード7の各素子7a〜7dでの
干渉信号は、それぞれ下記の(11)〜(14)式とな
る。
FIG. 3 shows a third embodiment. This is a configuration in which the combination of polarizing plates in the second embodiment is changed. That is, two polarizing plates 3 and 5 whose polarization axes differ from each other by 90 ° are arranged in the adjacent quadrant in one optical path.
In the other optical path, the polarization axis direction is 4
Polarizing plates 4 and 6 different by 5 ° are arranged in the same manner. At this time, the interference signals at the respective elements 7a to 7d of the four-division photodiode 7 are expressed by the following equations (11) to (14).

【0029】 ASa=Ia 〔1+cosφ〕・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・(11)ASA = I a [1 + cos φ] (11)

【0030】 ASb=Ib 〔1+cos(φ−π)〕・・・・・・・・・・・・・・・・・・・・・・・・(12)ASb = I b [1 + cos (φ−π)] ... (12)

【0031】 ASc=Ic 〔1+cosφ〕・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・(13)ASc = I c [1 + cos φ] (13)

【0032】 ASd=Id 〔1+cos(φ−π)〕・・・・・・・・・・・・・・・・・・・・・・・・(14)ASd = I d [1 + cos (φ−π)] ... (14)

【0033】また、四分割フォトダイオード13の各素
子13a〜13dの各信号強度は、それぞれ下記の(1
5)〜(18)式となる。
Further, the signal intensities of the respective elements 13a to 13d of the four-division photodiode 13 are as follows (1)
Expressions 5) to (18) are obtained.

【0034】 BSa=Ib 〔1+cos(φ−π/2)〕・・・・・・・・・・・・・・・・・・・・(15)BSa = I b [1 + cos (φ−π / 2)] ... (15)

【0035】 BSb=Ia 〔1+cos(φ−3π/2)〕・・・・・・・・・・・・・・・・・・(16)BSb = I a [1 + cos (φ−3π / 2)] ... (16)

【0036】 BSc=Id 〔1+cos(φ−π/2)〕・・・・・・・・・・・・・・・・・・・・(17)BSc = I d [1 + cos (φ−π / 2)] ... (17)

【0037】 BSd=Ic 〔1+cos(φ−3π/2)〕・・・・・・・・・・・・・・・・・・(18)BSd = I c [1 + cos (φ−3π / 2)] ... (18)

【0038】ここで、二相信号を得るために、下記(1
9),(20)式の演算をする。その結果、バイアス成
分が残留するが、振幅の等しい二相信号がえられること
が分かる。
Here, in order to obtain a two-phase signal, the following (1
9) and (20) are calculated. As a result, it can be seen that a two-phase signal having the same amplitude can be obtained although the bias component remains.

【0039】 S1=(ASa+ASc)−(ASb+ASd) =(Ia +Ic )−(Ib +Id ) +(Ia +Ic +Ib +Id )cosφ・・・・・・・・・・・・・・・・・・・・(19)S1 = (ASa + ASc) − (ASb + ASd) = (I a + I c ) − (I b + I d ) + (I a + I c + I b + I d ) cos φ ...・ ・ ・ ・ ・ ・ ・ ・ (19)

【0040】 S2=(BSa+BSc)−(BSb+BSd) =(Id +Ib )−(Ic +Ia ) +(Id +Ib +Ic +Ia )sinφ・・・・・・・・・・・・・・・・・・・・(20)S2 = (BSa + BSc) − (BSb + BSd) = (I d + I b ) − (I c + I a ) + (I d + I b + I c + I a ) sin φ ...・ ・ ・ ・ ・ ・ ・ ・ (20)

【0041】図4は、第4実施例を示す。第4実施例
は、光束の強度分布が一様でなく、フォトダイオード各
素子に入射する光量の差が大きいときに、特に有効であ
る。第2実施例と同様、四分の一波長板2と偏光板3〜
6との間に、ビームスプリッター(BS)8を配設して
光束を分割させる。分割した一方の光束はNDフィルタ
ー14を透過し、四分割フォトダイオード(PD)13
に入射して検出される。そうして、四分割フォトダイオ
ード(PD)7の素子7aの信号出力を、四分割フォト
ダイオード(PD)13の素子13bの信号出力で除す
るように、両四分割フォトダイオードの対応する素子の
信号出力を処理すれば、光束の横ずれや強度分布に影響
されない信号出力が得られる。ビームスプリッターの分
岐比は、反射が透過よりも小さい方が効率がよいが、限
定はされない。なお、NDフィルター14は、用いなく
とも差し支えない。
FIG. 4 shows a fourth embodiment. The fourth embodiment is particularly effective when the intensity distribution of the light flux is not uniform and the difference in the amount of light entering the photodiode elements is large. Similar to the second embodiment, the quarter-wave plate 2 and the polarizing plates 3 to
A beam splitter (BS) 8 is provided between the beam splitter 6 and the beam splitter 6 to split the light beam. One of the divided luminous fluxes passes through the ND filter 14 and is divided into a four-division photodiode (PD) 13
Is incident on and detected. Then, the signal output of the element 7a of the four-divided photodiode (PD) 7 is divided by the signal output of the element 13b of the four-divided photodiode (PD) 13, so By processing the signal output, it is possible to obtain a signal output that is not affected by the lateral displacement of the light flux and the intensity distribution. The branching ratio of the beam splitter is more efficient when reflection is smaller than transmission, but is not limited. In addition, the ND filter 14 does not need to be used.

【0042】図5は、第5実施例を示す。第1〜第4実
施例において、偏光板の直後に四分割フォトダイオード
を置く代わりに、イメージガイド40を設けてある。こ
れにより、離れた所、例えばコントローラー内にあるフ
ォトダイオードに、干渉縞の強度分布の像を投影する。
第5実施例では、フォトダイオードや電気回路を検出系
と分離できるので、検出器の一層の小型化が図れる。
FIG. 5 shows a fifth embodiment. In the first to fourth embodiments, an image guide 40 is provided instead of placing the four-division photodiode immediately after the polarizing plate. As a result, an image of the intensity distribution of the interference fringes is projected on a photodiode located in a remote place, for example, in the controller.
In the fifth embodiment, the photodiode and the electric circuit can be separated from the detection system, so that the detector can be further downsized.

【0043】以上の実施例において、各素子の出力をモ
ニターすることで、光束の横ずれ、つまり、移動ミラー
等のアライメントのずれが検出できる。例えば、第2実
施例では、四分割フォトダイオード7の右半分の素子7
aと7d及び四分割フォトダイオード13の左半分の素
子13bと13cの出力の和から、四分割フォトダイオ
ード7の左半分の素子7bと7c及び四分割フォトダイ
オード13の右半分の素子13aと13dの出力の和を
引けば、AC成分を含まない横方向(x方向とする)の
アライメント誤差信号Sdxが得られる。つまり
In the above embodiment, by monitoring the output of each element, the lateral deviation of the light beam, that is, the deviation of the alignment of the moving mirror or the like can be detected. For example, in the second embodiment, the element 7 on the right half of the quadrant photodiode 7 is
a and 7d and the outputs of the elements 13b and 13c on the left half of the four-division photodiode 13, the elements 7b and 7c on the left half of the four-division photodiode 7 and the elements 13a and 13d on the right half of the four-division photodiode 13 are calculated. By subtracting the sum of the outputs of the above, the horizontal alignment error signal S dx that does not include the AC component (assumed to be the x direction) is obtained. That is

【0044】 S dx=(ASa+ASd+BSb+BSc)-(ASb+ASc+BSa+BSd)・・・・・・・・・・・・・・・・・・・(21)S dx = (ASa + ASd + BSb + BSc)-(ASb + ASc + BSa + BSd) ... (21)

【0045】となる。そうして、Sdxが0になるよう
に、アライメントを行えばよい。同様に、各素子の上半
分の和から下半分の和を引いて、縦方向(y方向とす
る)のアライメント誤差信号Sdyが得られる。
It becomes Then, alignment may be performed so that S dx becomes 0. Similarly, the sum of the upper half of each element is subtracted from the sum of the lower half to obtain the alignment error signal Sdy in the vertical direction (y direction).

【0046】 S dy=(ASa+ASb+BSa+BSb)-(ASc+ASd+BSc+BSd)・・・・・・・・・・・・・・・・・・・(22)S dy = (ASa + ASb + BSa + BSb)-(ASc + ASd + BSc + BSd) ... (22)

【0047】第3,第4実施例では、例えば、四分割フ
ォトダイオード13の4個の素子の出力から、下記の演
算により、ずれの有無とその方向を知ることができる。
In the third and fourth embodiments, for example, from the outputs of the four elements of the four-divided photodiode 13, the presence or absence of the deviation and its direction can be known by the following calculation.

【0048】 Sdx=(BSa+BSb)−(BSc+BSd)・・・・・・・・・・・・・・・・(23)S dx = (BSa + BSb) − (BSc + BSd) (23)

【0049】 Sdy=(BSa+BSd)−(BSb+BSc)・・・・・・・・・・・・・・・・(24)S dy = (BSa + BSd)-(BSb + BSc) (24)

【0050】図6は、第6実施例を示す。この実施例で
は、第1〜第4実施例において偏光板の直後に四分割フ
ォトダイオードを置く代わりに、四本の光ファイバー4
1,42,43,44とこれらに夫々対応して配置され
た四個のフォトダイオード45,46,47,48が使
用されている。偏光板4〜6を透過した光は縦横二本ず
つ並べられた光ファイバー41〜44に入射し、伝送後
四個のフォトダイオード45〜48の各受光面に向って
夫々射出する。本実施例では、第5実施例の利点に加え
て比較的入手し易いフォトダイオードや光ファイバーを
使用しているので、安価に構成することができるという
利点がある。
FIG. 6 shows a sixth embodiment. In this embodiment, instead of placing the four-division photodiode immediately after the polarizing plate in the first to fourth embodiments, four optical fibers 4 are used.
1, 42, 43, 44 and four photodiodes 45, 46, 47, 48 arranged corresponding to these are used. The light transmitted through the polarizing plates 4 to 6 is incident on the optical fibers 41 to 44 which are arranged two by two vertically and horizontally, and after transmission, is emitted toward the light receiving surfaces of the four photodiodes 45 to 48, respectively. In addition to the advantages of the fifth embodiment, the present embodiment uses a photodiode and an optical fiber that are relatively easily available, and therefore has the advantage of being inexpensive.

【0051】図7は、第7実施例を示す。この実施例で
は、偏光板とフォトダイオードが一体的に構成されてい
る。即ち、フォトダイオード基板50上に四個の光受光
部50a,50b,50c,50dを製作して、夫々の
光受光部上に偏光方向の異なる偏光板が張り付けられて
いる。各光受光部50a,50b,50c,50dから
の信号はフレキシブル基板51内の導電線を介して回路
基板52へ伝送され、この回路基板からの出力はケーブ
ル53を介して図示しないカウンターへ送られるように
なっている。本実施例では、偏光板とフォトダイオード
と回路基板をユニット化できるため、検出器全体を極め
て小型にすることができるという利点がある。
FIG. 7 shows a seventh embodiment. In this embodiment, the polarizing plate and the photodiode are integrally formed. That is, four light receiving portions 50a, 50b, 50c, 50d are manufactured on the photodiode substrate 50, and polarizing plates having different polarization directions are attached to the respective light receiving portions. Signals from the respective light receiving portions 50a, 50b, 50c, 50d are transmitted to the circuit board 52 via the conductive wires in the flexible board 51, and the output from this circuit board is sent to a counter (not shown) via the cable 53. It is like this. In this embodiment, since the polarizing plate, the photodiode and the circuit board can be unitized, there is an advantage that the entire detector can be made extremely small.

【0052】図8は、第8実施例を示す。この実施例で
は、四分の一波長板2を通過した光ビームを拡散させた
後偏光板に当てるようになっている。即ち、図8(a)
に示すように、四分の一波長板2を通過した光ビームは
凹レンズ54により拡散され、偏光板3〜6を通過した
後四分割フォトダイオード7で受光される。この場合、
光ビーム径がフォトダイオード7よりも充分大きけれ
ば、光ビームの光軸とフォトダイオード中心がずれても
光強度の差異は少ない。従って、フォトダイオード7の
取付け公差を緩やかにすることができるという利点があ
る。図8(b)は、凹平レンズ55と偏光板3〜6を張
り合わせた変形例を示している。このように凹平レンズ
と偏光板を一体化すると、各光学素子の取付けが容易に
なる。
FIG. 8 shows an eighth embodiment. In this embodiment, the light beam that has passed through the quarter-wave plate 2 is diffused and then applied to the polarizing plate. That is, FIG. 8 (a)
As shown in FIG. 5, the light beam that has passed through the quarter-wave plate 2 is diffused by the concave lens 54, passes through the polarizing plates 3 to 6, and is then received by the quadrant photodiode 7. in this case,
If the diameter of the light beam is sufficiently larger than that of the photodiode 7, even if the optical axis of the light beam deviates from the center of the photodiode, the difference in light intensity is small. Therefore, there is an advantage that the mounting tolerance of the photodiode 7 can be made gentle. FIG. 8B shows a modified example in which the concave plano lens 55 and the polarizing plates 3 to 6 are bonded together. By integrating the concave plano lens and the polarizing plate in this way, it becomes easy to attach each optical element.

【0053】図9は、第9実施例を示す。この実施例で
は、光ビームを四分割してから各偏光板とフォトダイオ
ードに入射させるようになっている。即ち、図9(a)
に示すように、四分の一波長板2を通過した光ビームは
四角錐状に成形された光学硝子より成るビーム分割素子
56により四分割された後、偏光板3〜6を通過して四
分割フォトダイオード7へ入射せしめられる。本実施例
では、光ビームが素子55の中央に入射するようにすれ
ば、入射角度の違いから四つの扇形のビームに分割され
て、各ビームが偏光板の境界線上に入射しないようにす
ることができるから、四枚の偏光板の張り合わせ誤差の
影響を受けないようにすることができるという利点があ
る。又、特開平1−250803号公報に記載のように
回折格子を用いる場合に比べて安価な光学部品で済み、
而も回折格子と異なり一次光以外も利用できるので光量
が多いという利点もある。ビーム分割素子56として
は、図9(b)に示すように素子の中央が内側に引っ込
んだものや、図9(c)に示すようにレンズを四枚張り
合わせたものでもよい。又、本実施例において、ビーム
分割素子56の前方又は後方にレンズを配置してビーム
を縮小させるようにしてもよい。この場合は、偏光板や
フォトダイオードに入射するビームの径が小さくなるの
で、偏光板やフォトダイオードの取付け公差を緩やかに
することができるという利点も加わる。
FIG. 9 shows a ninth embodiment. In this embodiment, the light beam is divided into four and then made incident on each polarizing plate and the photodiode. That is, FIG. 9 (a)
As shown in FIG. 3, the light beam that has passed through the quarter-wave plate 2 is divided into four by a beam splitting element 56 made of optical glass formed into a quadrangular pyramid shape, and then passes through polarizing plates 3 to 6 to be divided into four. It is made incident on the divided photodiode 7. In the present embodiment, if the light beam is made incident on the center of the element 55, it is divided into four fan-shaped beams due to the difference in the incident angle, and each beam is prevented from entering the boundary line of the polarizing plate. Therefore, there is an advantage that it can be prevented from being affected by the bonding error of the four polarizing plates. Further, it is possible to use inexpensive optical parts as compared with the case where a diffraction grating is used as described in JP-A-1-250803.
Also, unlike the diffraction grating, it is possible to use light other than the primary light, which is also advantageous in that the light quantity is large. The beam splitting element 56 may be one in which the center of the element is retracted inward as shown in FIG. 9B, or one in which four lenses are stuck together as shown in FIG. 9C. Further, in this embodiment, a lens may be arranged in front of or behind the beam splitting element 56 to reduce the beam. In this case, since the diameter of the beam incident on the polarizing plate or the photodiode becomes small, there is an added advantage that the mounting tolerance of the polarizing plate or the photodiode can be made gentle.

【0054】[0054]

【発明の効果】以上説明したように本発明の位相差検出
器は、光学素子やフォトディテクタの占めるスペースが
減り、簡単な構成で小型化が容易になる。また、出力信
号を利用して、アライメントを容易に行うことができ
る。
As described above, in the phase difference detector of the present invention, the space occupied by the optical element and the photodetector is reduced, and the miniaturization is facilitated with a simple structure. Further, the alignment can be easily performed by utilizing the output signal.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例の構成図である。FIG. 1 is a configuration diagram of a first embodiment of the present invention.

【図2】本発明の第2実施例の構成図である。FIG. 2 is a configuration diagram of a second embodiment of the present invention.

【図3】本発明の第3実施例の構成図である。FIG. 3 is a configuration diagram of a third embodiment of the present invention.

【図4】本発明の第4実施例の構成図である。FIG. 4 is a configuration diagram of a fourth embodiment of the present invention.

【図5】本発明の第5実施例の構成図である。FIG. 5 is a configuration diagram of a fifth embodiment of the present invention.

【図6】本発明の第6実施例の構成図である。FIG. 6 is a configuration diagram of a sixth embodiment of the present invention.

【図7】本発明の第7実施例の構成図である。FIG. 7 is a configuration diagram of a seventh embodiment of the present invention.

【図8】(a)は本発明の第8実施例の構成図である。
(b)は第8実施例における一部変形例を示す図であ
る。
FIG. 8A is a configuration diagram of an eighth embodiment of the present invention.
(B) is a figure which shows the partial modification in 8th Example.

【図9】(a)は本発明の第9実施例の構成図である。
(b)は第9実施例におけるビーム分割素子の一変形例
を示す図である。(c)は第9実施例におけるビーム分
割素子の他の変形例を示す図である。
FIG. 9A is a configuration diagram of a ninth embodiment of the present invention.
(B) is a diagram showing a modification of the beam splitting element in the ninth embodiment. (C) is a figure which shows the other modification of the beam splitter in 9th Example.

【図10】本発明を使用しない従来例の構成図である。FIG. 10 is a configuration diagram of a conventional example that does not use the present invention.

【符号の説明】[Explanation of symbols]

2 四分の一波長板 3〜6 偏光板 7 四分割フォトダイオード 9〜12 偏光板 13 四分割フォトダイオード 22 四分の一波長板 27〜30 フォトディテクタ 40 イメージガイド 41〜44 光ファイバー 45〜48 フォトダイオード 50 フォトダイオード基板 51 フレキシブル基板 52 回路基板 53 ケーブル 54 凹レンズ 55 凹平レンズ 56 ビーム分割素子 2 quarter-wave plate 3-6 polarizing plate 7 four-division photodiode 9-12 polarizing plate 13 four-division photodiode 22 quarter-wave plate 27-30 photodetector 40 image guide 41-44 optical fiber 45-48 photodiode 50 Photodiode Board 51 Flexible Board 52 Circuit Board 53 Cable 54 Concave Lens 55 Concave Plane Lens 56 Beam Splitting Element

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年12月4日[Submission date] December 4, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0052[Correction target item name] 0052

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0052】図8は、第8実施例を示す。この実施例で
は、四分の一波長板2を通過した光ビームを拡散させた
後偏光板に当てるようになっている。即ち、図8(a)
に示すように、四分の一波長板2を通過した光ビームは
凹レンズ54により拡散され、偏光板3〜6を通過した
後四分割フォトダイオード7で受光される。この場合、
光ビーム径がフォトダイオード7よりも充分大きけれ
ば、光ビームの光軸とフォトダイオードの中心がずれて
も光強度の差異は少ない。従って、フォトダイオード7
の取付け公差を緩やかにすることができるという利点が
ある。図8(b)は、凹平レンズ55と偏光板3〜6を
張り合わせた変形例を示している。このように凹平レン
ズと偏光板を一体化すると、各光学素子の取付けが容易
になる。
FIG. 8 shows an eighth embodiment. In this embodiment, the light beam that has passed through the quarter-wave plate 2 is diffused and then applied to the polarizing plate. That is, FIG. 8 (a)
As shown in FIG. 5, the light beam that has passed through the quarter-wave plate 2 is diffused by the concave lens 54, passes through the polarizing plates 3 to 6, and is then received by the quadrant photodiode 7. in this case,
If the diameter of the light beam is sufficiently larger than that of the photodiode 7, the difference in light intensity is small even if the optical axis of the light beam and the center of the photodiode are deviated. Therefore, the photodiode 7
There is an advantage that the mounting tolerance of can be loosened. FIG. 8B shows a modified example in which the concave plano lens 55 and the polarizing plates 3 to 6 are bonded together. By integrating the concave plano lens and the polarizing plate in this way, it becomes easy to attach each optical element.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 湯川 浩 東京都渋谷区幡ケ谷2丁目43番2号 オリ ンパス光学工業株式会社内 (72)発明者 江田 幸夫 東京都渋谷区幡ケ谷2丁目43番2号 オリ ンパス光学工業株式会社内 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Hiroshi Yukawa 2-43-2 Hatagaya, Shibuya-ku, Tokyo Olympus Optical Co., Ltd. (72) Inventor Yukio Eda 2-43-2 Hatagaya, Shibuya-ku, Tokyo Olympus Optical Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 干渉計の出力光が入射し、該出力光より
互いに所定の位相差をもった複数の信号を光電検出する
位相差検出器において、 四分の一波長板と、各々の偏光軸の少なくとも一部が所
定の角度だけ異なるような複数の偏光子を各偏光子が受
ける光量が略等しくなるように配置してなる偏光手段
と、該偏光手段の各偏光子と1対1で対応するフォトデ
ィテクタとを備えたことを特徴とする位相差検出器。
1. A phase difference detector for photoelectrically detecting a plurality of signals having a predetermined phase difference from the output light when the output light of the interferometer is incident on the quarter wave plate and each polarization. Polarizing means, in which a plurality of polarizers having at least a part of axes different from each other by a predetermined angle are arranged so that the amounts of light received by the respective polarizers are substantially equal, and one-to-one with each polarizer of the polarizing means. A phase difference detector comprising a corresponding photo detector.
【請求項2】 フォトディテクタの出力を補正する信号
を発生する補正手段を有し、干渉計の出力光の光路中に
光分岐手段を設け、該光分岐手段で分割された一方の光
束が偏光手段を経て該フォトディテクタに、他方の光束
が該補正手段に導かれるように配してなることを特徴と
する請求項1の位相差検出器。
2. A correction means for generating a signal for correcting the output of the photodetector, an optical branching means is provided in the optical path of the output light of the interferometer, and one light beam split by the optical branching means is a polarizing means. 2. The phase difference detector according to claim 1, wherein the photodetector is arranged so that the other light beam is guided to the correction means.
JP31510992A 1991-11-26 1992-11-25 Phase difference detector Withdrawn JPH05203408A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31510992A JPH05203408A (en) 1991-11-26 1992-11-25 Phase difference detector

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP31102291 1991-11-26
JP3-311022 1991-11-26
JP31510992A JPH05203408A (en) 1991-11-26 1992-11-25 Phase difference detector

Publications (1)

Publication Number Publication Date
JPH05203408A true JPH05203408A (en) 1993-08-10

Family

ID=26566549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31510992A Withdrawn JPH05203408A (en) 1991-11-26 1992-11-25 Phase difference detector

Country Status (1)

Country Link
JP (1) JPH05203408A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100775735B1 (en) * 2005-04-07 2007-11-09 주식회사 엘지화학 Equipment, Method and Computer-readible storage medium for determining the optical retardation of a sample
JP2010261776A (en) * 2009-05-01 2010-11-18 Canon Inc Device for measuring optical interference
JP2011099756A (en) * 2009-11-05 2011-05-19 Canon Inc Measuring apparatus
JP2012177701A (en) * 2012-04-11 2012-09-13 Hitachi Ltd Surface measurement method, and device thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100775735B1 (en) * 2005-04-07 2007-11-09 주식회사 엘지화학 Equipment, Method and Computer-readible storage medium for determining the optical retardation of a sample
JP2010261776A (en) * 2009-05-01 2010-11-18 Canon Inc Device for measuring optical interference
JP2011099756A (en) * 2009-11-05 2011-05-19 Canon Inc Measuring apparatus
JP2012177701A (en) * 2012-04-11 2012-09-13 Hitachi Ltd Surface measurement method, and device thereof

Similar Documents

Publication Publication Date Title
US7355719B2 (en) Interferometer for measuring perpendicular translations
US4512661A (en) Dual differential interferometer
GB2227558A (en) Grating-interference type displacement meter apparatus
JP2786484B2 (en) Magneto-optical reproducing device
EP0458354B1 (en) A compact reticle/wafer alignment system
KR20130045327A (en) Optical element and interferometer
JPH05296722A (en) Measurement device
JPH05203408A (en) Phase difference detector
JP2001336952A (en) Measuring apparatus
JP3413945B2 (en) Fringe counting displacement interferometer
JP2572111B2 (en) Laser interferometer
JP2007046938A (en) Interferometer
JP2636863B2 (en) Polarizing device
NL9001331A (en) DEVICE FOR OPTICAL HETERODYNE DETECTION AND OPTICAL COMPONENT SUITABLE FOR APPLICATION IN SUCH A DEVICE.
JP3068408B2 (en) Lattice interference displacement detector
JPH0540011A (en) Gauge interferometer
JPH06213623A (en) Optical displacement sensor
JP2000018917A (en) Optical system displacement measuring apparatus
US11598629B2 (en) Optical displacement sensor
JP2546206B2 (en) Surface position detector
JPH01250803A (en) Interferometer
JP2691899B2 (en) Interferometer
JPH01250804A (en) Interferometer
JPH085324A (en) Lattice-interference type displacement detector
JPH04286925A (en) Semiconductor laser wavelength detector

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000201